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Braided surfaces and their
characteristic maps

Louis Funar and Pablo G. Pagotto

Abstract. We show that branched coverings of surfaces of large enough
genus arise as characteristic maps of braided surfaces that is, lift to embed-
dings in the product of the surface with ℝ2. This result is nontrivial already
for unrami�ed coverings, in which case the lifting problem is well-known
to reduce to the purely algebraic problem of factoring the monodromy map
to the symmetric group Sn through the braid group Bn. In our approach,
this factorization is often achieved as a consequence of a stronger property:
a factorization through a free group. In the reverse direction we show that
any non-abelian surface group has in�nitely many �nite simple non-abelian
groups quotients with characteristic kernels which do not contain any sim-
ple loop and hence the quotient maps do not factor through free groups. By a
pullback construction, �nite dimensional Hermitian representations of braid
groups provide invariants for the braided surfaces. We show that the strong
equivalence classes of braided surfaces are separated by such invariants if and
only if they are pro�nitely separated.
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1. Introduction
The question addressed in the present paper is the description of a particu-

lar case of 2-dimensional knots, called braided surfaces, up to �ber preserving
isotopy.
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De�nition 1.1. A braided surface over some surface Σ is an embedding of a
surface j ∶ S → Σ ×ℝ2, such that the composition

S
j
↪ Σ ×ℝ2 p

→ Σ

with the �rst factor projection p is a branched covering. Throughout this paper
we only consider locally �at PL embeddings j. The composition p◦j is called
the characteristic map of the braided surface S.

Braided surfaces over the disk were �rst considered and studied by Viro,
Rudolph (see [39]) and later extensively studied by Kamada ([19]). A compre-
hensive survey of the subject could be found in the monograph [20]. Braided
surfaces over the torus were introduced more recently in [30].

Equivalence classes of braided surfaces are in one-to-one correspondence
with a subset of the set of representations of the punctured surface group into
the braid group up to conjugacy and mapping class group action. Our aim is to
give some insight about the structure of such discrete representation varieties.

De�nition 1.2. A map S → Σ between surfaces is called a 2-prem if it factors
as above as p◦j, where j is an embedding and p is the second factor projection
Σ ×ℝ2 → Σ.

Whether all generic smooth maps are 2-prems seems widely open. We refer
to the article [29] of Melikhov for the state of the art on this question. Although
branched coverings are not generic the question of whether they are 2-prems
seems natural. Our �rst result gives an a�rmative answer in the asymptotic
range:

Theorem 1.3. There exists some ℎn,m such that any degree n rami�ed covering
of the closed orientable surface of genus g ≥ ℎn,m withm branch points occurs as
a 2-prem.

The key ingredient is the description of themapping class group orbits on the
space of surface group representations onto a �nite group in the stable range,
i.e. for large genus g. This was done by Dun�eld and Thurston (see [8]) in the
closed case and by Catanese, Lönne and Perroni (see [6]) in the branched case.
Their results establish the classi�cation of these orbits by means of some ver-
sions of homological Schur invariants. Note that the bound ℎn,m is not explicit.

The genuine classi�cation of these orbits seems much subtler, see [26] for
a survey of this and related questions. Livingston provided ([24]) examples of
distinct orbits with the same homological Schur invariants.

De�nition 1.4. The homological Schur invariant of a surjective homomor-
phism f ∶ �1(Σ) → G of a closed orientable surface group onto a group G
is the image sc(f) ∈ H2(G) of the fundamental class [Σ] ∈ H2(Σ) by f. Recall
that such a homomorphism f ∶ �1(Σ) → G is called elementary if it factors
through a free group.
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The null-homologous case, where the homological Schur invariant vanishes,
corresponds to �nding whether a surjective homomorphism f ∶ �1(Σ) → G
of a closed surface group onto a �nite group G inducing a trivial map in 2-
homology is elementary. This amounts to estimating the minimal Heegaard
genus for a 3-manifold group to which f extends, problem which was recently
considered by Liechti and Marché for tori (see [22]).

These questions arose in relation with the equivalence problem for epimor-
phisms of free groups onto non-abelian simple groups. Let Fn denote the free
group on n ≥ 3 generators andOut(Fn) its outer automorphism group. Wiegold
conjectured (see [26]) that for any �nite simple non-abelian group G the group
Out(Fn) acts transitively on the set of conjugacy classes of surjective homomor-
phisms Fn → G. A weaker statement which allows additional stabilizations is
known to hold (see [28]). Also Gilman ([14]) and Evans ([10, 11]) proved that
there exists a large orbit of Out(Fn) on this set. In [2, 8] the authors proved
that the action of the mapping class groups Γ(Σ) on the set of conjugacy classes
of surjective homomorphisms onto �nite groups G also has at least one large
orbit.

Wiegold’s conjecture implies that there is no isolated orbit, namely there is
no �nite simple quotient G which is characteristic. Recall that a subgroupH ⊆
G is a characteristic subgroup of G if it is invariant by all automorphisms of G.
In this case G∕H is called a characteristic quotient of G.

In [13] one proved that there exist �nite simple non-abelian quotients of sur-
face groups which are characteristic, by using quantum representations. Con-
jugacy classes of surjective homomorphisms onto characteristic quotients of
�1(Σ) are therefore isolated orbits for the action of the mapping class group,
contrasting with large orbits from [2, 8]. An easy consequence is that all these
quotient epimorphisms are non-elementary, so that the classi�cation of map-
ping class group orbits fundamentally di�ers from the stable one. This im-
proves previous work of Livingston ([24, 25]) and Pikaart ([37])(see Proposi-
tions 5.3 and 5.4):

Theorem 1.5. For any g ≥ 2 there exist in�nitely many simple non-abelian
groups G and surjective homomorphisms of the closed genus g orientable surface
ontoG, such that the kernels are characteristic and do not contain any simple loop
homotopy class. In particular, these homomorphisms are not elementary.

Remark 1.6. Given an embedding G ⊂ Sn, if the surjective homomorphism
�1(Σ) → G is elementary, then f can be lifted to �1(Σ) → Bn. We don’t know
whether the non-elementary homomorphisms from Theorem 1.5 admit lifts to
Bn, see also Remark 2.7.

De�nition 1.7. Two braided surfaces ji ∶ S → Σ × ℝ2, i = 0, 1 over Σ are
(Hurwitz) equivalent if there exists some ambient isotopy ℎt ∶ Σ×ℝ2 → Σ×ℝ2,
ℎ0 = id such that ℎt is �ber-preserving and ℎ1◦j0 = j1. Recall that ℎt is �ber-
preserving if there exists a homeomorphism 't ∶ Σ→ Σ such that p◦ℎt = 't◦p.
There is no loss of generality to impose 't to be an isotopy of Σ. Assume that
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the branch loci of the branched coverings ji◦p are the same �nite set B. When
't can be taken to be isotopy �xing pointwise the branch locus B, we say that
the braided surfaces are strongly equivalent. These de�nitions extend naturally
to the case when these surfaces have boundary by requiring isotopies to �x the
boundary points of ji(S).

In the last part of this paper we show that �nite dimensional Hermitian
representations of braid groups provide invariants for the strong equivalence
classes of braided surfaces, by a standard pullback construction (see section 7),
called spherical functions. We then show that the topological information un-
derlying the spherical functions is of pro�nite nature (see Theorem 7.7 for the
general statement):

Theorem 1.8. Strong equivalence classes of braided surfaces are separated by
some spherical function if and only if they are pro�nitely separated.

Acknowledgements. The authors are grateful to P. Bellingeri, G. Kuperberg,
L. Liechti, M. Lönne, J. Marché, J.B. Meilhan, S. Melikhov, E. Samperton and
E. Wagner for useful conversations and to the referees for pointing out several
errors and incomplete arguments in the previous versions of this paper and
improving the exposition.

2. Braided surfaces
Consider a braided surface over a closed orientable surface Σ, namely a lo-

cally �at PL embedding of a closed orientable surface j ∶ S → Σ×ℝ2, such that
the composition p◦j is a branched covering. We might consider, more gener-
ally, that S is embedded in a (orientable) plane bundle over Σ. However, the
existence of nontrivial examples, for instance that some connected unrami�ed
covering of degree> 1 arise as a characteristic map, implies that the plane bun-
dle should be trivial (see [9]).

A degree n branched covering S → Σ determines a homomorphism f ∶
�1(Σ⧵B, ∗)→ Sn, where B is the branch locus of F, called amonodromy homo-
morphism. Choose small simple loops 
i each one encircling one branch point
bi of B, which will be called peripheral loops or homotopy classes in the sequel.

The degree n and branch locus B of a braided surface j ∶ S → Σ × ℝ2 are,
respectively, the degree and branch locus of its associated branched covering
map p◦j. Observe that the projection map

p|(Σ×ℝ2)⧵j(S) ∶ (Σ ×ℝ2) ⧵ j(S)→ Σ

restricts to a locally trivial �ber bundle over Σ − B. The monodromy of this
locally trivial �ber bundle is then a homomorphism

f ∶ �1(Σ ⧵ B)→ Bn
into the braid group Bn on n-strands, whichwill be called the braidmonodromy
of the braided surface in the sequel.
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Recall that two branched coverings F1, F2 ∶ S → Σ are equivalent if there
are homeomorphisms Φ ∶ S → S and � ∶ Σ → Σ such that F1◦Φ = �◦F2.
They are further strongly equivalent when there is some � which is isotopic to
the identity rel the branch locus.

Hurwitz proved that strong equivalence classes of branched coverings with
given genus g of Σ, B and n, bijectively correspond to conjugacy classes of mon-
odromy homomorphisms having nontrivial image on every peripheral loop.
Denote by Γ(Σ) the puremapping class group of the possibly punctured surface
Σ. Moreover, equivalence classes of branched coverings bijectively correspond
to orbits of the mapping class group Γ(Σ ⧵ B) on the set of conjugacy classes of
monodromy homomorphisms as above.

We will show that a similar result holds in the case of braided surfaces. Let

 ⊂ Σ ⧵ B be an embedded loop. Its preimage l
 = p−1(
) ∩ j(S) is a link in
the open solid torus p−1(
) ≃ 
 × ℝ2. The link l
 is the link closure b̂ of a
braid b ∈ Bn within the solid torus, because the projection p|l
 ∶ l
 → 
 is an
unrami�ed covering. Note that the link l
 in the solid torus determines and is
determined by the conjugacy class of b in Bn.

If 
 were a peripheral loop, let us choose a bounding disk � embedded in Σ,
which contains a single point of B. Since S is compact, we can assume that
j(S) ⊂ Σ×D2, whereD2 ⊂ ℝ2 is a compact disk. Then p−1(�)∩Σ×D2 ≃ �×D2

is a manifold with corners di�eomorphic (after rounding the corners) with the
4-diskD4. In particular, the solid torus link l
 determines a link in S3 bymeans
of the embedding l
 ⊂ 
 × D2 ⊂ )D4.

De�nition 2.1. A solid torus link l ⊂ 
 × D2 is completely split if there exist
disjoint disks D2

i ⊂ D2 such that each connected component of L is contained
within a solid torus 
 × D2

i . The braid b ∈ Bn is completely splittable if the
corresponding link b̂ ⊂ 
 × D2 is completely split as a solid torus link and also
trivial as a link in S3. We denote byAn ⊂ Bn⧵{1} the set of completely splittable
nontrivial braids.

If l ⊂ 
 × D2 is a completely split unlink with components li, then choose
points xi ∈ D2

i and let y be the single branch point belonging to int(�). Let
C(li) be the cone on li with vertex (y, xi) ∈ � × D2 and C(l) be the union of
C(li). Since each component li of l is a trivial knot in )(�×D2), themulti-cone
C(l) is the disjoint union of locally �at embedded disks in � × D2. Note that
C(l) is a braided surface over the disk � with a single branch point {y}. By [20],
Lemma 16.11) this is the unique braided surface over � with branch point {y}
and boundary l.

Lemma 2.2. A braided surface S of degree n over Σ without branch points is de-
termined up to equivalence rel boundary by its braidmonodromy homomorphism
f ∶ �1(Σ)→ Bn.

Proof. Ahomomorphism f corresponds to a unique locally trivial �ber bundle
over Σ with �ber D2 ⧵ {p1, p2,… , pn} which is trivialized on the boundary )D2
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�ber bundle. One constructs the braided surface over a wedge of circles �rst
and observe that it extends over the 2-cell which produces the surface Σ, as f is
a group homomorphism. �

Theorem 2.3. A homomorphism f ∶ �1(Σ ⧵ B) → Bn arises as the braid
monodromy of some braided surface of degree n with branch locus B if and only
if f sends each peripheral loop 
i into a completely splittable nontrivial braid
f(
i) ∈ An ⊂ Bn. Moreover, a braided surface S of degree n over Σ is determined
up to strong equivalence by its braid monodromy f ∶ �1(Σ ⧵ B)→ Bn.

Proof. Consider disjoint disks �i bounded by peripheral loops 
i, for all branch
points and let X be their complement. Then j(S) ∩ p−1(�i) is a braided surface
over the disk �i. By ([20], Lemma 16.12) j(S) ∩p−1(�i) has a braid monodromy
homomorphism f with f(
i) completely splittable. This proves the necessity
of our conditions.

Conversely, themulti-coneC(l
i ) over the linkl
i provides a braided surface
over �i. The homomorphism f ∶ �1(Σ − ∪�i) → Bn provides by Lemma 2.2
a unique embedding j ∶ S′ → Σ × ℝ2 which has no branch points. We then
glue together S′ and the cones Ci along their boundaries, in order to respect
the projection map p. As the glued surface S is unique, the braided surface is
determined up to strong equivalence by f (see also [19] and [20, Thm. 17.13]).

�

As an immediate consequence we have:

Corollary 2.4. The degree n branched covering S → Σwith branch locus B is the
characteristic branched covering of a braided surface over Σ if and only if its mon-
odromy homomorphism f ∶ �1(Σ ⧵ B) → Sn can be lifted to a homomorphism
F ∶ �1(Σ ⧵ B)→ Bn such that F sends peripheral loops into completely splittable
nontrivial braids.

Proof. Theorem 2.3 yields a braided surface lifting some branched covering
S′ → Σ of degree n, branch locus B and the prescribed monodromy f. As the
rami�cation degrees are determined by the cycle structure of the permutations
corresponding to the peripheral loops, this branched covering can be identi�ed
with S → Σ. �

When B = ∅ we retrieve the following result of Hansen ([15, 16]):

Corollary 2.5. The degree n unrami�ed covering S → Σ factors as the composi-
tion

S
j
↪ Σ ×ℝ2 p

→ Σ

of some embedding j and the second factor projection p, if and only if its mon-
odromy map f ∶ �1(Σ)→ Sn lifts to a homomorphism �1(Σ)→ Bn.

Another consequence is
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Corollary 2.6. Degree n braided surfaces on Σ with branch locus B, up to strong
equivalence rel boundary are in one-to-one correspondence with the setMBn(Σ, B)
of homomorphisms �1(Σ ⧵ B) → Bn sending peripheral loops into An modulo
the conjugacy action by Bn. Furthermore, the classes of these braided surfaces up
to equivalence rel boundary are in one-to-one with the setℳBn(Σ, B) of orbits of
the mapping class group Γ(Σ ⧵ B) action on MBn(Σ, B) by left composition. In
particular, braided surfaces provide a topological interpretation for the space of
double cosets B∞∖Bk∞∕B∞, studied by Pagotto in [32, 33].

Remark 2.7. Symmetric groups and braid groups formnested sequences⊂ Sn ⊂
Sn+1 ⊂⋯ and ⊂ Bn ⊂ Bn+1 ⊂⋯, where inclusions are induced by adding one
more strand on the right. Inclusions are compatible with the projections pn ∶
Bn → Sn. We note that the answer to the lifting question for homomorphism
f ∶ �1(Σ ⧵ B) → Sn is independent on the chosen value for n. This follows
from the existence of a group homomorphism p−1n+1(Sn) → Bn induced by the
map removing the last strand from the right, which sends completely splittable
braids into completely splittable braids.

Remark 2.8. The braided surfaces whose characteristic branched covering is a
simple branched covering are analogous to achiral Lefschetz �brations. The
monodromy around a branch point is given by a band, namely a standard gen-
erator of the braid group or its inverse.

Remark 2.9. Recovering braided surfaces from their characteristic maps is just
an instance of more general questions about compacti�cations of �bre bun-
dles. There are examples of smooth maps between closed manifolds in speci�c
dimensions having only �nitely many critical points (see e.g. [12]). Charac-
terizing the �bre bundle arising in the complementary of the critical locus and
how they determine the original maps might have far-reaching implications.

3. Lifting homomorphisms and the proof of Theorem 1.3
3.1. The stable lifting problem. A basic problem in algebra and topology is,
for a given surjective homomorphism p ∶ G̃ → G, to characterize those group
homomorphisms f ∶ J → G which admit a lift to G̃, namely a homomor-
phism ' ∶ J → G̃ such that p◦' = f. In the simplest case when J is a free
group any homomorphism is liftable. The next interesting case is J = �1(Σg),
where Σg denote the genus g closed orientable surface and g ≥ 2. The lifting
question might appear under a slightly more general form, by requiring that
('(
i))i=1,…,m = (ci)i=1,…,m ∈ G̃, for a set of elements 
i ∈ J, ci ∈ G̃.

Let Σ′ be a closed orientable surface and Σ a surface, possibly punctured. De-
note by Σ♯Σ′ the connected sum. There is a natural map Σ♯Σ′ → Σ, called pinch
which consists of crushing the complement of an open disk inΣ′ to a point. The
operation which replaces Σ by Σ♯Σ′ will be called a (genus) stabilization.

Although in general it seems di�cult to lift homomorphisms f (see [29, 34])
there is only a homological obstruction to lift f, if we allow the surface be sta-
bilized, as it will be explained below.
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Let Σℎ ⧵ B be a stabilization of the surface Σg ⧵ B, ℎ ≥ g + 1 and let P ∶
�1(Σℎ ⧵ B) → �1(Σg ⧵ B) be the homomorphism induced by the pinch map.
If f ∶ �1(Σg ⧵ B) → G is a homomorphism, we call the composition f◦P a
(genus) stabilization of f. We further say that f ∶ �1(Σg ⧵ B) → G stably lifts
along p ∶ G̃ → G if it has some stabilization f′ = f◦P ∶ �1(Σℎ ⧵B)→ G which
lifts to G̃.

3.2. Lifting in the unrami�ed case. We start with an outline of the proof
of Theorem 1.3 in the unrami�ed case. A homomorphism �1(Σg) → G corre-
sponds to a homotopy class of based maps f ∶ Σg → K(G, 1), thereby de�ning
the Schur class sc(f) = f∗([Σg]) ∈ H2(G).

Recall that two surjective homomorphisms f, f′ ∶ �1(Σg) → G are equiva-
lent if there exists an automorphism Θ ∈ Aut+(�1(Σg)) such that f′ = f◦Θ−1.
Here Aut+(�1(Σg)) is the group of automorphisms of the fundamental group
which are induced by homeomorphisms preserving the orientation and �x-
ing a point of the surface Σg. Alternatively, these are those automorphisms
of �1(Σg) which act trivially on H2(�1(Σg)). Now, Zimmermann ([43], see also
[23]) proved that group epimorphisms have stabilizations which are equivalent
if and only if their classes in the second homology agree.

This implies that an epimorphism stably lifts to G̃ if and only if its Schur class
in H2(G) lies in the image of H2(G̃). Indeed every class in H2(G̃) is the Schur
class of some homomorphism �1(Σg̃) → G̃, and moreover it is not hard to �nd
a g̃ and such a homomorphism which is surjective (see Lemma 3.3).

Dun�eld and Thurston (see [8]) improved this result when the group G is
�nite. They showed that there exists g(G) with the property that any two sur-
jective homomorphisms f, f′ ∶ �1(Σg) → G with g ≥ g(G) having the same
Schur class in H2(G) are already equivalent under the action of Γ(Σg,1) × G,
where G acts by inner automorphisms by right composition. The same argu-
ment as above shows that for large enough g ≥ g(G) a surjective homomor-
phism f ∶ �1(Σg) → G lifts to G̃ if and only if sc(f) lies in the image of H2(G̃).
Eventually, whenG ⊆ Sn and G̃ is the preimage ofG within the braid group Bn,
one shows that H2(G̃)→ H2(G) is surjective (see Lemma 3.8). This proves our
claim.

The rest of this section is devoted to make this strategy work for the rami�ed
case as well.

3.3. Schur invariants forpunctured surfaces. Wenowdescribe a construc-
tion of homological Schur invariants for homomorphisms �1(Σg ⧵ B) → G. At
�rst letD2 be a disk embedded inΣg containing the puncturesB = {b1, b2,… , bm}
and 
i be a based loop encircling once the puncture bi, so that 
i are pairwise
disjoint except for their base-point. Identify then Σg ⧵ B with the boundary
union of Σg ⧵D2 andD2 ⧵B, so that there is a �xed system of curves 
i on Σg ⧵B.

Consider the surface with boundary Σ obtained from Σg after removing pair-
wise disjoint open small disks around each puncture bi, namely replacing the
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puncture bi with a boundary component bi. Let also Σ◦ be the result of cutting
Σ along the curves 
i and discarding the annuli bounded by bi and 
i.

Given elements c = (ci)i=1,…,m ∈ Gm we represent them as homotopy classes
of based oriented loops li embedded within the space K′(G, 1) = K(G, 1) ×ℝ5,
which are disjoint except for their base-point. Let also Li be disjoint embedded
oriented loops in K′(G, 1) such that each pair li and Li bounds an embedded
annulus Ai in K′(G, 1). Let Lc be the union of Li.

A homomorphism f ∶ �1(Σg ⧵ B) → G such that f(
i) = ci ∈ G, for every
i, provides a continuous based map � ∶ Σ◦ → K′(G, 1), which is unique up to
homotopy. Then �(
i) is based homotopic to li. By adjoining these homotopies
we can arrange that �(
i) = li. By gluing the annuli Ai we obtain a based map
� ∶ Σ → K′(G, 1) which sends )Σ homeomorphically onto Lc. Two based
homotopies between �(
i) and li de�ne a map from a 2-sphere (with poles
identi�ed) into K′(G, 1) which must extend to the 3-disk, since �2(K′(G, 1)) =
0. This implies that

�∗([Σ, )Σ]) ∈ H2(K′(G, 1), Lc)
is a well-de�ned homology class in the relative homology, independent on the
various choices made in the construction.

Of course a homomorphism f as above could only exist if
∏m

i=1 ci belongs
to the commutator subgroup [G,G], which we assume to be the case from now
on.

De�nition 3.1. Let c = (ci)i=1,…,m ∈ Gm with
∏m

i=1 ci ∈ [G,G], and choose
a system of curves 
i and a link Lc as above. We denote by H2(G; c) the group
H2(K′(G, 1), Lc) and say that sc(f) = �∗([Σ, )Σ]) ∈ H2(G; c) is the Schur class
of f.

From the exact sequence of the pair (K′(G, 1), Lc) we derive the exact se-
quence:

0→ H2(G)→ H2(G, c)→ ℤm → H1(G).
As the map � is a degree one map on the circles 
i, the image of sc(f) in

H1(Lc) = ℤm is (1, 1,… , 1) andhence the rightmostmap sends (1, 1,… , 1) ∈ ℤm

into 0 ∈ H1(G), by exactness. Classes in H2(G, c) whose image is (1, 1,… , 1) ∈
ℤm will be called primitive.

A similar invariant, denoted "(f), was de�ned by Catanese, Lönne and Per-
roni in [5]. Our invariant sc(f) is non-canonical, in the sense that it depends on
the choice of the curves 
i and Lc, while "(f) is canonical. The construction of
"(f) proceeds as above, working with all possible values of c at once. The target
group in [5] would naturally be H2(K(G, 1), K(G, 1)(1)), where K(G, 1)(1) is the
1-skeleton ofK(G, 1). However, the classes so obtained inH2(K(G, 1), K(G, 1)(1))
are onlywell-de�nedwhenwepass to a suitable quotient of it identifying classes
of surfaces Σ whose boundaries are only freely homotopic in K(G, 1).

This equivalence relation between surface groups homomorphisms readily
extends to surjective homomorphisms f ∶ �1(Σg ⧵ B) → G with prescribed
peripheral monodromy f(
i) = ci, for i = 1,… , m. Then two homomorphisms
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f andf′ as above are equivalent if there exists someΘ ∈ SAut+(�1(Σg⧵B)) such
that f′ = f◦Θ−1. Here SAut+(�1(Σg ⧵B)) denotes the group of automorphisms
of the group �1(Σg ⧵B)which are induced by homeomorphisms preserving the
orientation of Σg ⧵ B �xing a point of the surface and preserving pointwise the
punctures along with the peripheral monodromy, that is f◦Θ−1(
i) = ci, for
i = 1,… , m. Observe that SAut+(�1(Σg ⧵ B)) contains the automorphisms of
�1(Σg ⧵B)whose classes belongs to the subgroup Γ(Σg,1) ⊂ Γ(Σg ⧵B, ∗) of those
mapping classes of homeomorphismswhich are the identity onD2⧵B ⊂ Σg⧵B.
Then the Schur class sc(f) ∈ H2(G, c) of a homomorphism f is invariant with
respect to the left action by SAut+(�1(Σg ⧵ B)).

When B = ∅ the equivalence relation is compatible with the G-conjugacy.
Consider the set

MG(Σg) = Homs(�1(Σg), G)∕G
of G-conjugacy classes of surjective homomorphisms f. There is an obvious
action of the mapping class group Γ(Σg) onMG(Σg) by left composition. We say
thatG-conjugacy classes of homomorphisms are equivalent if they belong to the
same Γ(Σg)-orbit. Conjugacy in G acts trivially on H2(G). Livingston ([23], see
also [43]) has proved that G-conjugacy classes of surjective homomorphisms
are stably equivalent if and only if their classes inH2(G) agree.

In the punctured case we �x anm-tuple c ∈ Gm and its conjugacy class with
respect to the diagonal action:

G ⋅ c = {(acia−1)i=1,⋯,m, |a ∈ G} ⊂ Gm.

We then consider the set of surjective homomorphisms mod conjugacy:

MG(Σg, B, c) = {f ∈ Homs(�1(Σg ⧵ B), G)|(f(
i))i=1,⋯,m ∈ G ⋅ c}∕G,

where Homs denotes the surjective homomorphism. The pure mapping class
group Γ(Σg ⧵ B) (which �xes the punctures bi pointwise) has a left action on
Hom(�1(Σg ⧵ B), G)∕G which keeps the subspaceMG(Σg, B, c) invariant. Con-
jugacy classes are said to be equivalent if they determine the same element in
the orbit set:

ℳG(Σg, B, c) = Γ(Σg ⧵ B)∖MG(Σg, B, c).

The conjugacy by a ∈ G sends isomorphically H2(G; c) onto H2(G, aca−1), in
particular sc(f) does not descend to MG(Σg, B, c). However we can identify
those pairs of elements in the union of groupsH2(G;b), where b ∈ G ⋅ cwhich
are related by some conjugacy isomorphism. The result is a quotient ofH2(G; c)
which was explicitly described by Catanese, Lönne and Perroni in [5]. More-
over, the image of sc(f) in this quotient group is the same as their " invariant
which is de�ned onMG(Σg, B, c).

3.4. Stable equivalence for punctured surfaces. The previous result of Liv-
ingston and Zimmermann on G-conjugacy classes was extended to the punc-
tured case by Catanese, Lönne and Perroni in [6]. Speci�cally, the G-conjugacy
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classes fromMG(Σg, B, c) are stably equivalent if and only if their "-invariants
agree. There is a corresponding result for genuine homomorphisms, as follows:

Proposition 3.2. Surjective homomorphisms of surface groups with the same
puncture set B and boundary holonomy c ∈ Gm are stably equivalent if and only
if their Schur classes inH2(G, c) agree.

Proof. One can derive this from the corresponding stability result in [6]. How-
ever, there is a direct proof following the lines of the closed case (see [23]). First,
the class sc(f) is preserved by stabilizations. Further, ifΩn(X,A) is the dimen-
sion n orientable bordism group associated to the pair (X,A) of CW complexes,
then seminal work of Thom implies that the natural homomorphism

Ωn(X,A)→ Hn(X,A)

is an isomorphism if n ≤ 3 and an epimorphism if n ≤ 6 (see e.g. [40], Thm.
IV.7.37). In particular, the classes inH2(G, p(c)) correspond to bordism classes
of maps f ∶ (Σ, )Σ)→ (K′(G, 1), Lc).

The maps f and f′ ∶ (Σ′, )Σ′)→ (K′(G, 1), Lc)) are bordant if they extend to
a 3-manifold. Thismeans that that there exists a 3-manifoldMwhose boundary
splits as )M = )+M ∪ )0M ∪ )−M, where )+M = Σ and )−M = Σ′, and a
map F ∶ (M, )0M) → (K′(G, 1), Lc), which restricts to )±M to f and f′. We
can assume that )0M is a trivial cobordism and moreover F ∶ )0M → Lc is a
product projection.

Take then aHeegaard surface (Σ′′, )Σ′′) of the triad (M, )+M, )M−), as in [4].
This means that )Σ′′ is the union of core circles of )0M and Σ′′ decomposesM
into two compression bodies H and H′. We can obtain such Heegaard decom-
positions by extending smoothly to M a function which takes constant values
on )±M and perturb it away from the boundary to become Morse. Assuming
that Σ and Σ′ are connected we obtain a Heegaard surface after attaching index
one handles away from )+M.

It follows that the map induced by F∗ on the image of �1(Σ′′) within �1(M)
is a common stabilization of the homomorphisms f and f′, up the the action
of the gluing homeomorphism of the two compression bodiesH andH′. �

We now prove:

Lemma 3.3. Let G̃ be a �nitely generated group, c̃ ∈ G̃p and a ∈ H2(G̃, c̃). Then
there is a compact surfaceΣ and a surjective homomorphism� ∶ �1(Σ)→ G̃ such
that �∗([Σ, )Σ]) = a and (f(
i))i=1,⋯,p = c̃ ∈ G̃p.

Proof. Let �rst a = 0 and c̃ empty. For large enough n there exists a surjective
homomorphism  ∶ Fn → G̃. Consider then �0 =  ◦i∗, where the homomor-
phism i∗ ∶ �1(Σn) → �1(Hn) = Fn is induced by the inclusion i of Σn into
the boundary of the genus n handlebody Hn. Note that i∗ is a surjection. Then
�0∗([Σn]) = 0, as �0 factors through a free group.

Let now a ∈ H2(G̃, c̃) be arbitrary. Pick a homomorphism  a ∶ �1(Σm,p) →
G̃ realizing the class a, so that ( a(
i))i=1,⋯,p = c̃ ∈ G̃p. By crushing the genus
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n separating loop on Σn+m,p to a point we obtain a surjective homomorphism
� ∶ �1(Σn+m,p) → �1(Σn) ∗ �1(Σm,p) onto the fundamental group of the join
Σn ∨ Σm,p. Consider further the homomorphism

 0 ∗  a ∶ �1(Σn) ∗ �1(Σm,p)→ G̃.

Then the composition

�a ∶ �1(Σn+m,p)→ G̃, �a = ( 0 ∗  a)◦�

is surjective. Further, by Mayer-Vietoris we have

H2(Σn ∨ Σm,p, )Σm,p)) = H2(Σn)⊕H2(Σm,p, )Σm,p)

and
�∗([Σn+m,p, )Σn+m,p]) = ([Σn], [Σm,p, )Σm,p]).

This implies that �a∗([Σm+n,p]) = a. Thus �a satis�es our requirements. �

Proposition 3.4. Consider c̃ ∈ G̃p. The surjective homomorphism

f ∶ �1(Σg ⧵ B)→ G

stably lifts to a (surjective) homomorphism

' ∶ �1(Σℎ ⧵ B)→ G̃

satisfying the constraints '(
i) = c̃i , for 1 ≤ i ≤ p, if and only if there exists a
class a ∈ H2(G̃, c̃) such that

p∗(a) = sc(f) = f∗([Σ, )Σ]) ∈ H2(G, p(c̃)).

Proof. If � is the map provided by Lemma 3.3 above, then p◦� and f are
two surjective homomorphisms having the same Schur class. By the previous
Proposition 3.2 they have equivalent stabilizations. This shows that f is stably
equivalent with a liftable homomorphism and hence stably liftable. �

3.5. Finite target groups. In case when the group G is �nite there is an im-
provement of the stable equivalence of surface group epimorphisms, following
the Dun�eld-Thurston Theorem ([8], Thm.6.20) and we can state:

Proposition 3.5. Let G be a �nite group. There exists g(G,m) with the property
that any two surjective homomorphismsf, f′ ∶ �1(Σg⧵B)→ G with g ≥ g(G,m)
and f(
i) = f′(
i) = ci ∈ G having the same class in H2(G, c) are equivalent
under the action of SAut+(�1(Σg ⧵ B)).

Proof. The proof from ([8] Thm. 6.20 and 6.23) extends without major mod-
i�cations. In fact if g > |G| any homomorphism f ∶ �1(Σg ⧵ B) → G is a
stabilization and this produces a surjective homomorphism induced by stabi-
lization

MG(Σg, B, c)→ MG(Σg+1, B, c).
It follows that the cardinal of the orbits set is eventually constant. On the other
hand, by Proposition 3.2, the orbits set eventually injects intoH2(G, c). �
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Proposition 3.6. LetG be a �nite groupG, p ∶ G̃ → G be a surjective homomor-
phism and c ∈ Gm such that

∏
i ci ∈ [G,G].

(1) There exist lifts c̃ ∈ G̃m such that p(c̃) = c and
∏

i c̃i ∈ [G̃, G̃].
(2) Given a lift c̃ as in the previous item, there exists some g(G,m, G̃, c̃) such

that every surjective homomorphism f ∶ �1(Σg ⧵ B) → G with f(
i) =
ci ∈ G, g ≥ g(G,m, G̃, c̃), for which there exists some class a ∈ H2(G̃; c̃)
satisfying

p∗(a) = sc(f) ∈ H2(G, c)
lifts to ' ∶ �1(Σg ⧵B)→ G̃ with the constraints ('(
i))i=1,⋯,m = c̃ ∈ G̃m.

Proof. Let K denote the kernel of the surjection G̃ → G. Choose any lift c̃ ∈
G̃m. Then the product of its components di�ers from a product of commutators
by some element k ∈ K. We can correct this by replacing the lift c̃1 by k−1c̃1.
This proves the �rst claim.

Consider the �nite set of all pairs (c, s), where c ∈ Gm is an m-tuple which
admits a lift c̃ ∈ G̃m and some class ac ∈ H2(G̃; c̃) projecting onto the primitive
class s ∈ H2(G, c).

By Lemma 3.3 there exists a punctured surface Σk(ac) ⧵ B and a continu-
ous map de�ned on the compact surface with boundary (Σ′, )Σ′) which com-
pacti�es it, say (Σ′, )Σ′) → (K′(G̃, 1), Lc), which induces a surjective homo-
morphism � ∶ �1(Σk(ac) ⧵ B) → G̃ such that �∗([Σ′, )Σ′]) = ac. Let then
g0 = g0(G,m, G̃, c̃) be the maximum of all k(ac).

If g ≥ g0 we stabilize � to be de�ned on Σg ⧵ B. Let then ' = p◦�. Then ' is
a surjective homomorphism onto G and

'∗([Σ′, )Σ′]) = f∗([Σ, )Σ]) ∈ H2(G, p(c̃)).

Now, from Proposition 3.5. there exists some g(G) such that for g ≥ g(G) any
two surjective homomorphisms' andf as above are equivalent up to the action
of SAut+(�1(Σg ⧵ B)). We can take g(G,m, G̃, c̃) = max(g(G), g0(G,m, G̃, c̃)).
The action of SAut+(�1(Σg ⧵ B)) preserves the set of homomorphisms �1(Σg ⧵
B)→ G which admit a lift to G̃ with the given constraints, thereby proving our
claim. �

Adirectly related question iswhether a surjective homomorphismf ∶ �1(Σg)
→ G with vanishing Schur class factors through a free group F, in which case
of course it can be lifted along any epimorphism p ∶ G̃ → G, for any group G̃.
If this happens, the homomorphism f will be called free, or elementary. As can
be inferred from the previous results we have:

Proposition 3.7. Let G be a �nite group. Then there is some g(G) such that for
any g ≥ g(G) every surjective homomorphism f ∶ �1(Σg) → G with f∗([Σg]) =
0 ∈ H2(G) is elementary.

Proof. We can take G̃ to be a �xed free group surjecting onto G and use Propo-
sition 3.6. �
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We now need some preliminary results concerning braid groups.

Lemma 3.8. LetG ⊆ Sn be a �nite group and G̃ ⊂ Bn be the preimage ofG by the
projection homomorphism p ∶ Bn → Sn. Then the map p∗ ∶ H2(G̃) → H2(G) is
surjective.

Proof. The kernel of p is the pure braid group Pn on n strands. The �ve term
exact sequence in homology reads:

H2(G̃)→ H2(G)→ H1(Pn)G → H1(G̃)→ H1(G)→ 0.

On one handH2(G) is a torsion group, as G is �nite. FurthermoreH1(Pn) is the
free abelian group generated by the set S(n) of classes Aij, 1 ≤ i < j ≤ n and
the action of Sn is

� ⋅ Aij = Amin(�(i),�(j)),max(�(i),�(j)).

By ([3], II.2.ex.1) the module of co-invariants H1(Pn)G = ℤS(n)G is isomor-
phic to the free abelian group ℤ[S(n)∕G]. In particular any homomorphisms
H2(G) → H1(Pn)G must be trivial. Then the exact sequence above implies the
claim. �

3.6. Lifting permutations to completely splittable braids.

Lemma 3.9. Everym-tuple � ∈ Smn satisfying
∏

i �i ∈ [Sn, Sn] has a lift �̃ ∈ Bmn
with the properties:

(1) �̃ ∈ Am
n ⊂ Bmn ;

(2)
∏

i �̃i ∈ [Bn, Bn];
(3) Suppose that {r1, r2,… , r�, t1, t2,… , t�} ⊆ {1, 2,… , m} is a subset of the set

of indices with the property �rs = �−1ts , for 1 ≤ s ≤ �. Then we can choose
�̃i such that additionally:

�̃rs = �̃−1ts , for 1 ≤ s ≤ �.

Proof. Let bi, 1 ≤ i ≤ n− 1, denote the standard generators of the braid group
Bn. Recall that the exponent sum e ∶ Bn → ℤ is the unique homomorphism
taking values e(bi) = 1 on the standard generators. Set also �j for the transpo-
sition (j, j + 1) of Sn.

We �rst show that any permutation � has a lift �̃ ∈ An, such that e(�̃) =
�, where � is any prescribed element of {−1, 1}, when � is odd and � = 0,
otherwise. This is obvious for n = 2. We proceed by induction when n > 2, by
assuming the claim for n−1. Any � ∈ Sn which does not belong to Sn−1 can be
written as � = ��n−1�, where �, � ∈ Sn−1. Pick-up some � ∈ {−1, 0, 1} which
is compatible with the parity of �, as asked above. Choose an arbitrary lift �̃ ∈
Bn. By the induction hypothesis we can �nd a lift �̃� ∈ An−1 with prescribed
exponent sum � ∈ {−1, 0, 1}, depending on the parity of the permutation �� ∈
Sn. We then de�ne the lift:

�̃ = �̃−1 ⋅ �̃� ⋅ ��n−1 ⋅ �̃,
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where we set:

� = { �, if � ∈ {−1, 1};
−�, if � = 0.

Now �̃ is conjugate to �̃� ⋅ ��n−1 which is a stabilization of �̃� and hence it has
the same link closure as the latter. Therefore �̃ ∈ An, proving the induction
step and hence the claim. Moreover, we can take �̃−1 = �̃−1 ⋅ �−�n−1 ⋅ (�̃�)

−1 ⋅ �̃,
as a lift of �−1, which still belongs to An.

We can actually �nd explicit lifts �̃ as follows. Recall that the half-braid bi,j
is de�ned as:

bi,j = {
bibi+1⋯ bj−2bj−1b−1j−2⋯ b−1i+1b

−1
i , i < j,

bi,j = b−1j,i , i > j.

To every permutation cycle c = (i1, i2,… , ik) ∈ Sn and cycle signature map
" ∶ {i1, i2,… , ik−1}→ {±1}, we associate a signed mikado braid, as follows:

�(c, ") = b"(i1)i1,i2
b"(i2)i2,i3

⋯ b"(ik−1)ik−1,ik
∈ Bn.

Now, every permutation � ∈ Sn is the product of disjoint cycles, say � =
c1c2⋯ cs. Pick-up a cycle signature "i for each cycle ci. We then set:

�(�, ("i)) = �(c1, "1)�(c2, "2)⋯ �(cs, "s).

Observe that �(c, ") and �(c′, "′) commute with each other if the cycles c and c′
are disjoint. This implies that p(�(�, ("i)) = �.

Note that the closure of �(c, �) is a trivial link, for any cycle c. In fact, we can
assume up to a conjugacy, that the cycle c has the form (1, 2,… , k), so that up
to a conjugacy in Bn we have:

�(c, �) = b"(1)1 b"(2)2 ⋯ b"(k−1)k−1 ∈ Bn.

Now we see that this is an iterated stabilization of a trivial braid and hence its
closure is a trivial link, regardless of the cycle signature. Moreover, the closure
of a product of such braids �(ci, �i) associated to disjoint cycles ci is split, each
cycle providing a single component of the link. Thus �(�, ("i)) is a completely
split unlink.

We can always choose the cycle signature " of a given cycle c such that
e(�(c, �)) = 0, when c has odd length and e(�(c, �)) = 1, otherwise. By changing
the cycle signature above to its negative −" we can also �nd a cycle signature
such that e(�(c,−�)) = −1, if the length of c is even. If � is the product of
disjoint cycles ci we can �nd some cycle signatures "i such that e(�(�, ("i)) ∈
{−1, 0, 1}, by summing up factors with e(�(ci, "i) ∈ {−1, 0, 1}.

Let now �i ∈ Sn be a collection of permutations such that
∏

i �i ∈ [Sn, Sn].
We then set �̃i = �(�i, ("ij)) for suitable cycle signature maps "ij, such that
e(�(�i, ("ij)) ∈ {−1, 0, 1} and also e(

∏
i �(�i, ("ij)) ∈ {−1, 0, 1}.

If �rs = �−1ts , then the decompositions into cycles correspond bijectively to
each other. For each cycle crsj of length kj arising in the decomposition of �rs
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the cycle ctsj = c−1rsj appears in the decomposition of �−1ts . We then set:

"tsj(q) = "rsj(kj − q).
This implies that

�(ctsj, ("tsj)) = �(crsj, ("rsj))
−1,

and hence:
�̃rs = �(�ts , ("tsj)) = �(�rs , ("rsj))

−1 = �̃−1ts .
Since

∏
i �i is an even permutation, e(

∏
i �̃i)must be even and hence itmust

vanish, since it belongs to {−1, 0, 1}. This implies that
∏

i �̃i ∈ [Bn, Bn], proving
the claim. �

Remark 3.10. We have a large freedom in the choice of lifts �̃ ∈ An. Indeed any
braid conjugate to �(�, ("i)) is inAn and the corresponding product still belongs
to the commutator subgroup of Bn.

3.7. Endofproof ofTheorem1.3. We further have the following result, which
along with Corollary 2.4 proves Theorem 1.3. Several arguments of the proof
have essentially been discussed in [1].

Theorem 3.11. There exists some ℎn,m such that if g ≥ ℎn,m, then every homo-
morphism f ∶ �1(Σg ⧵ B) → Sn, admits a lift ' ∶ �1(Σg ⧵ B) → Bn satisfying
'(
i) ∈ An.

The case n = 3 and B = ∅ was solved in [17].

Proof. The group Sn is generated by two elements a and b, for instance a n-
cycle and a transposition. Set B′ for the result of adding 4 more points pm+1,
pm+2,pm+3, andpm+4 toB. There is a natural surjection�1(Σg⧵B′)→ �1(Σg⧵B)
which corresponds to removing the extra punctures. De�ne the lift f′ ∶ �1(Σg⧵
B′) → Sn of f by asking that the monodromy �m+i around a loop encircling
once counterclockwise pm+i, for 1 ≤ i ≤ 4 be a, a−1, b and b−1, respectively. By
construction f′ is a surjective homomorphism onto Sn.

By Lemma 3.9 we can choose for each (m + 4)-tuple � ∈ Sm+4n some lift
�̃ ∈ Am+4

n ⊂ Bm+4n with
∏

i c̃i ∈ [Bn, Bn] and �̃m+1�̃m+2 = 1, �̃m+3�̃m+4 = 1.
Let ℎn,m be the maximum of g(Sn, m + 4, Bn, �̃), over all � ∈ Sm+4n .

We claim that we can lift f′ to Bn with the constraints �̃ ∈ Bm+4n . By Proposi-
tion 3.6, it su�ces to prove that the homomorphismp∗ ∶ H2(Bn, c̃)→ H2(Sn, c)
surjects onto the primitive classes. We have a commutative diagram:

0 → H2(Bn) → H2(Bn, c̃) → ℤm+4 → H1(Bn) → 0
↓ ↓ ↓ ↓

0 → H2(Sn) → H2(Sn, c) → ℤm+4 → H1(Sn) → 0,
where the rightmost vertical arrow is the homomorphism induced by the pro-
jectionH1(Bn)→ H1(Sn), which is surjective. Note that the third vertical arrow
is H1(Lc̃) → H1(Lc), which is an isomorphism. Then the �ve-lemma reduces
the surjectivity claim to the surjectivity of p∗ ∶ H2(Bn) → H2(Sn), which was
proved in Lemma 3.8.



596 LOUIS FUNAR AND PABLO G. PAGOTTO

Therefore f′ lifts to a homomorphism '′ ∶ �1(Σg ⧵ B′) → Bn. By removing
from Σg ⧵ B two disks containing the pairs pm+1, pm+2 and pm+3, pm+4 respec-
tively, we obtain a surface with boundary, whose fundamental group injects
into�1(Σg⧵B′). The homomorphism'′ takes trivial values on the loops around
each of the two holes. Therefore'′ induces a homomorphismof the fundamen-
tal group of the surface obtained by capping o� the boundary components by
disks, namely a homomorphism ' ∶ �1(Σg ⧵ B) → Bn. This is the desired lift
for f. �

4. Thickness of elementary surface group homomorphisms
4.1. Elementary homomorphisms and 3-manifolds. For the sake of sim-
plicity, we stick in this section to the unrami�ed case B = ∅. Let f ∶ �1(Σg) →
G be a surjective homomorphism. Assume that f∗([Σg]) = 0 ∈ H2(G). Then
there exists some 3-manifoldM3 with boundary Σg such that f extends to F ∶
�1(M3)→ G (see the proof of Propositions 3.2 and 4.2).

De�nition 4.1. The thickness t(f) of the surjective homomorphism f ∶ �1(Σg)
→ Gwith sc(f) = 0 is the smallest value of n for which there exists a 3-manifold
M3 with boundary Σg and Heegaard genus g + n such that f extends to F ∶
�1(M3)→ G.

Other meaningful versions might be the rank of the homology or the rank
of �1(M3), the hyperbolic volume (when g = 1) ofM3 or any other complexity
function on 3-manifolds.

This situation generalizes the case of the commutator width of elements in
[G,G]. On the other hand it is an analog of Thurston’s norm on the homology
H2(M) of a 3-manifold.

Proposition 4.2. Letf ∶ �1(Σg)→ G be a homomorphism satisfyingf∗([Σg]) =
0 ∈ H2(G). The minimal genus ℎ for which there exists a stabilization f′ ∶
�1(Σℎ)→ Gwhich is elementary equals theminimalHeegaard genus a 3-manifold
M3 with boundary Σg such that f extends to a homomorphism �1(M3)→ G.

Proof. The arguments come fromLivingston’s proof ([23, 8]) of the stable equiv-
alence of homomorphisms. Observe that there is a map F ∶ Σg → BG induc-
ing f at the fundamental group level. Our assumptions and Thom’s solution
to the Steenrod realization problem implies that there is some 3-manifold M3

with boundary Σg such that F extends to a map still denoted by the same letter
F ∶ M3 → BG. It follows that f factors as the composition

�1(Σg)→ �1(M3)
F∗→ G,

where �1(Σg)→ �1(M3) is the homomorphism induced by the inclusion.
Let Σk be a Heegaard surface in M3, bounding a handlebody Hk of genus

k on one side and a compression body Hk,g on the other side. Recall that a
compression bodyHk,g is a compact orientable irreducible 3-manifold obtained
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from Σk × [0, 1] by adding 2-handles with disjoint attaching curves, so that
�1(Σk) → �1(Hk,g) is surjective. Alternatively we can see Hk,g as the result of
adding to Σg × [0, 1] a number of 1-handles, so that �1(Hk,g) = �1(Σg) ∗ Fk−g.
We then have �1(M3) = �1(Hk) ∗�1(Σk) �1(Hk,g) where all homomorphisms
are induced by the inclusions.

Observe that f is given by the composition:

�1(Σg)→ �1(Hk,g)→ �1(M3)
F∗→ G,

where the �rst two arrows are inclusion induced homomorphisms. Consider
now the homomorphism f′ de�ned by the composition

�1(Σk)→ �1(Hk,g)→ �1(M3)
F∗→ G,

where the �rst two arrows are inclusion induced homomorphism. Since F∗
extends f, it follows that f′ is a stabilization of f (see also [8] section 6.15). On
the other hand f′ factors through the free group �1(Hk). It follows that ℎ is
bounded by the Heegaard genus, ℎ ≤ k.

Conversely, let f′ ∶ �1(Σℎ)→ G be a stabilization of fwhich factors through
a free group F, namely we can write it as f′ = q′◦�, where q′ ∶ F → G and
� ∶ �1(Σℎ)→ F.

Recall the following lemma due to Zieschang, Stallings and Jaco (see [42],
[21, Lemma 3.2]) in the form presented by Liechti and Marché ([22], Lemma
3.5):

Lemma 4.3. Let Σℎ be a surface bounding a handlebodyHℎ and F a free group.
Then any homomorphism � ∶ �1(Σℎ) → F factors as q◦i∗◦�∗, where �∗ is an
automorphism of �1(Σℎ) preserving the orientation, i ∶ �1(Σℎ) → �1(Hℎ) is the
inclusion and q ∶ �1(Hℎ)→ F is a homomorphism.

Write then � = q◦i∗◦�∗ as in Lemma 4.3 and de�ne the manifold M3 =
Hℎ ∪� Hℎ,g, where the gluing homeomorphism � induces the automorphism
�∗. It then follows that f′ factors through �1(M3) = �1(Hℎ) ∗�1(Σℎ) �1(Hℎ,g).
Since Σℎ is a Heegaard surface inM3 we derive that k ≤ ℎ. �

Corollary 4.4. There is some ℎn such that whenever g ≥ ℎn and f ∶ �1(Σg) →
G ⊆ Sn is a homomorphism with f∗([Σg]) = 0 ∈ H2(G), then f is equivalent to a
homomorphism which factors through �1(Hg).

4.2. Expressing thickness algebraically. The next result aims at providing
an algebraic formula for t(f), similar to Hopf’s formula for the second homol-
ogy. Consider a standard presentation of the group �1(Σg) using the generators
system {ai, bi}i∈{1,2,…,g} of the form:

�1(Σg) = ⟨{ai, bi}i∈{1,2,…,g}|
g∏

i=1
[ai, bi] = 1⟩.
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Then one identi�es a homomorphism f ∶ �1(Σg) → G with a labeled set S =
{�i = f(ai), �i = f(bi)}i∈{1,2,…,g} of elements of G satisfying the condition:

g∏

i=1
[�i, �i] = 1 ∈ G. (4.1)

Let G = F∕R be a presentation of the group G, where F is a free group and
R the normal subgroup generated by the relators. For every labeled set S̃ =
{(�̃i, �̃i)}i∈{1,2,…,g} of lifts of S to F we set:

ocl(S̃) = min
{
n|there exist fj ∈ F, rj ∈ R, j = 1, 2,… , n with (4.2)

g∏

i=1
[�̃i, �̃i] =

n∏

j=1
[rj, fj]

}
.

Note that such n exists. Indeed the Hopf formula provides us with an isomor-
phism

H2(G) =
[F,F] ∩ R
[F, R]

.

Under this identi�cation the f∗([Σg]) is represented by the class of the element
∏g

i=1[�̃i, �̃i] ∈ [F,F]∩R. Asf∗([Σg]) vanishes by our assumptions
∏g

i=1[�̃i, �̃i] ∈
[F, R].

Eventually we de�ne:

ocl(f) = min{ocl(S̃)|S̃ lif ts S}. (4.3)

We then have the following:

Proposition 4.5. The minimal number of stabilizations needed for making f
elementary is ocl(f) − g.

Proof. By Proposition 4.2 the minimal ℎ = g + n which appears above is the
minimal Heegaard genus of a manifold M3 with boundary Σg such that f ex-
tends to some homomorphism F∗ ∶ �1(M3) → G. It remains to prove that the
smallest Heegaard genus coincides with ocl(f). The proof goes similarly with
that given by Liechti-Marché [22] for the case of a bordant torus.

Let Σℎ a Heegaard surface in M3. Take a standard system of generators of
�1(Σℎ) of the form {aj, bj}j=1,…,ℎ such that all bj bound disks in the handlebody
Hℎ. By adjoining 2-handles to Σℎ×[0, 1] along bj×{0}, for all j ∉ {1, 2,… , g}, we
obtain a compression body Hℎ,g and we can writeM3 = Hℎ,g ∪� Hℎ, for some
gluing homeomorphism�. Wehave then surjective homomorphisms�1(Σℎ)→
�1(Hℎ) and �1(Σℎ)→ �1(Hℎ,g), while �1(M3) = �1(Hℎ,g) ∗�1(Σℎ) �1(Hℎ).

Denote by �∗ ∶ �1(Σℎ) → �1(M3) the inclusion induced homomorphism.
We observed in the proof of Proposition 4.2 above that F∗◦�∗ ∶ �1(Σℎ) → G is
a stabilization of f. Its key property is that

F∗◦�∗(bi) = 1, if i ∉ {1, 2,… , g}.
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The homomorphism � factors through the free group �1(Hℎ). Therefore
F∗◦�∗ ∶ �1(Σℎ) → G lifts to a homomorphism f̃ ∶ �1(Σℎ) → F. Consider
the images �̃j = f̃◦i∗(aj), b̃j = f̃◦i∗(bj) of the generators above into F. As f̃◦i∗
is a homomorphism, we have the relation:

g∏

i=1
[�̃i, �̃i] =

ℎ∏

i=g+1
[�̃i, �̃i]. (4.4)

As �̃i ∈ R, we derive that
ocl(f) + g ≤ ℎ. (4.5)

Conversely, if we have elements �̃j, �̃j satisfying equation (4.4), then we can
de�ne a homomorphism f̃ ∶ �1(Σℎ) → F, by f̃(�j) = �̃j, f̃(�j) = �̃j, 1 ≤ j ≤
ℎ. By Lemma 4.3 such a homomorphism factors through �1(Hℎ), namely is a
composition

f̃ = q◦i∗◦�−1∗ ,
where i∗ is as above, �∗ is an automorphism of �1(Σℎ) and q ∶ �1(Hℎ) → F is
some homomorphism.

Let f′ ∶ �1(Σℎ) → G be the composition of the projection F → G with
f̃. Then f′◦�∗(bi) = 1, for i = 1, 2,… , ℎ. On the other hand, as �̃j ∈ R,
for j > g, f′ factors also through �1(Hℎ,g). This implies that f′ extends to
a homomorphism F∗ ∶ �1(M3) → G, where M3 = Hℎ,g ∪� Hℎ. Eventually,
note that the restriction of F∗ to the image of �1(Σg) within �1(M3) is f. We
constructed an extension of f to a 3-manifold of Heegaard genus at most ℎ and
thus we proved the reverse inequality

ocl(f) + g ≥ ℎ. (4.6)

�

Remark 4.6. Consider two surjective homomorphisms fj ∶ �1(Σgj ) → G. We
know that fj are stably equivalent if and only

f1∗[Σ1] = f2∗[Σ2] ∈ H2(G).

If Sj = {�i, �i}i∈Ij are images of generators of �1(Σj) by fj and S̃j = {�̃i, �̃i}i∈Ij
are lifts to F, we can de�ne

ocls(S̃1, S̃2) = min
{
n|there exist fj, f′j ∈ F, rj, r′j ∈ R, such that ∶

∏

i∈I1

[�̃i, �̃i]
n−g1∏

j=1
[rj, fj] =

∏

i∈I2

[�̃i, �̃i]
n−g2∏

j=1
[r′j, f

′
j]
}
.

Eventually we set:

ocls(f1, f2) = min{ocl(S̃1, S̃2)|S̃j lif ts Sj}.

If f1 and f2 are stably equivalent, then ocls(f1, f2) equals the minimal genus
of a Heegaard splitting separating the boundaries of a 3-manifold to which fj
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extend and also the minimal number of stabilizations yielding equivalent rep-
resentations in G. The proof is identical.

Remark 4.7. The branched surface case of homomorphisms f ∶ �1(Σg ⧵ B) →
G with prescribed images of peripheral loops follows directly from the closed
surface treated above, without essential modi�cations.

5. Nontrivial thickness and proof of Theorem 1.5
5.1. Finite simple non-abelian characteristic quotients. In [13] the au-
thors proved that the obvious extension ofWiegold’s conjecture to surface groups
does not hold.

LetΣ1g denote the once punctured closed orientable surface of genus g. TQFTs
provide the so-called quantum representations of punctured mapping class
groups

�p ∶ Γ(Σ1g)→ PGp,
for prime p ≡ 3 (mod 4), into the integral points of a projective pseudo-unitary
group PGp de�ned over ℚ. It is proved in [13] that for large enough p (or p <
100) the restriction to �p(�1(Σg)) is a Zariski dense subgroup of PGp. By the
Nori-Weisfeiler strong approximation Theorem we obtain (see [13, Theorem
1.4]):

Theorem 5.1. For large prime p ≡ 3 (mod 4) and large enough primes q the
reduction mod q of the quantum representation �p exists and has the following
properties:

(1) its restriction to �1(Σg) is a surjective homomorphism fp,q ∶ �1(Σg) →
PGp(Fq) onto group of points of PGp over the �nite �eld Fq;

(2) the �nite groups PGp(Fq) are �nite simple groups of Lie type;
(3) kerfp,q is a characteristic subgroup of �1(Σg).

Remark 5.2. For all but �nitely many q the �nite groups PGp(Fq) are isomor-
phic to either PSL(Ng,p,Fq) or to projective unitary groups PU(Fq2). If q − 1 is
coprime with Ng,p, then PSL(Ng,p,Fq) has vanishing Schur multiplier

H2(PSL(Ng,p,Fq)) = 0.

We�rst show that such quotient homomorphism should be non-elementary:

Proposition 5.3. If f ∶ �1(Σg)→ G is a surjective homomorphism onto a char-
acteristic �nite non-trivial quotient G, then f is not elementary, namely its thick-
ness is positive.

Proof. From Lemma 4.3 f is elementary if and only if there exists some auto-
morphism � such that f = ℎ◦i∗◦�−1, where i∗ ∶ �1(Σg) → �1(Hg) = Fg is the
inclusion induced homomorphism and ℎ ∶ Fg → G. If � is an oriented simple
closed curve on Σg let � denote the conjugacy class of � in �1(Σg). Let � be a
non-separating simple closed curve on Σg which bounds a properly embedded
disk inHg. Then i∗(�) = 1, so that �(�) ∈ kerf.
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Since ker(f) is a characteristic subgroup of �1(Σg), we also have  (�) ⊂
ker(f) for any automorphism  ∈ Aut(�1(Σg)). However, any non-separating
simple closed curve 
 on Σg is the image of � by some homeomorphism of the
surface. In particular, the conjugacy classes of the simple closed curves from a
standard generator system of �1(Σg) are contained into kerf. This implies that
f would be constant, which is a contradiction, thereby proving the claim. �

5.2. Non-geometric quotients. We can slightly improve the result above, for
the speci�c case of the homomorphisms fp,q from [13].

Proposition 5.4. Let fp,q ∶ �1(Σg) → PGp(Fq) be the homomorphisms above,
de�ned by prime p ≡ 3 (mod 4), and prime q large enough, depending on p.
Then kerfp,q is non-geometric, namely it contains no simple closed curve.

Proof. The image of the homotopy class of a based simple closed curve 
 into
Γ(Σ1g) is the product of the two commuting left Dehn twists along the curves 
+
and 
− obtained by pushing slightly the curve 
 o� the base point towards the
left and right, respectively. Therefore the order of �p(
) is equal to the order of
the image of a Dehn twist by the representation �p, which is known to be p (see
[13]).

Consider the projective matrices �p(
)m, for 1 ≤ m < p, where 
 belongs to
a �nite set of representatives of the set of simple closed on Σ1g up to themapping
class group action. Then, for all large enough primes q the reduction mod q of
these projective matrices are non-trivial. Thus, for every simple closed curve

 the elements fp,q(
) have order p. In particular, the kernel of fp,q is non-
geometric. �

Theorem 1.5 is a consequence Theorem 5.1 along with Propositions 5.3 and
5.4.

It is not known what is the largest possible stabilizer of the kernel of an ele-
mentary homomorphism. The following is relevant:

Proposition 5.5. Let Γ(H1
g) be the mapping class group of the punctured han-

dlebodyH1
g . If f ∶ �1(Σg)→ G is a surjective elementary homomorphism onto a

�nite quotient whose kernel is invariant by the handlebody subgroup Γ(H1
g), then

there exists a characteristic �nite quotient of Fg.

Proof. If f is elementary, then up to composing with an automorphism � of
�1(Σg), it factors through i∗ ∶ �1(Σg) → �1(Hg) = Fg, namely f = ℎ◦i∗◦�, for
some homomorphism ℎ ∶ �1(Hg)→ G.

Recall from [18] that the mapping class group Γ(H1
g) of the once punctured

(ormarked) handlebody embeds into themapping class groupΓ(Σ1g) of its bound-
ary surface. Moreover, Luft ([27]) showed that the action in homotopy provides
an exact sequence:

1→ Tw(H1
g)→ Γ(H1

g)→ Aut+(Fg)→ 1
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whose kernel is the group of twists, generated by the Dehn twists along merid-
ians of Σ1g (i.e. curves bounding disks inH1

g).
As f is invariant by Γ(H1

g), the exact sequence above shows that the homo-
morphism ℎ is also invariant by Aut+(Fg). The same argument also work for
the full automorphism group. �

Remark 5.6. Let P ∶ �1(Σg+1) → �1(Σg) be the map induced by a pinch map
P ∶ Σg+1 → Σg. Let 
 be a simple closed curve on Σg based at the point of Σg
corresponding to the image of the pinched handle. The based homotopy class
of 
p can be realized by p parallel copies of 
 which only intersect at the base
point. Observe that 
p is the image by the pinch map of a simple closed loop

̂ in Σg+1. If f is a homomorphism into a group G and f(
) has order p then
f◦P(
̂) = 1 and hence f◦P has not anymore non-geometric kernel.

Remark 5.7. The method used in [13] also provides epimorphisms f ∶ �1(Σg ⧵
B) → G onto �nite simple non-abelian groups G, whose kernels are Γ(Σg ⧵ B)-
invariant.

6. Stabilizing cohomology groups
We now consider approximated lifts of homomorphisms into Sn. Let 
0G =

G, 
k+1G = [
kG,G] denote the lower central series of the group G. It is well-
known that PBn is residually torsion-free nilpotent, namely

⋂∞
k=0 
kPBn = 1

and Ak =

k−1PBn

kPBn

are �nitely generated torsion-free abelian groups. We denote

B(k)n the quotient Bn∕
kPBn. We then have a series of abelian extensions

1→ 
kPBn∕
k+1PBn → B(k+1)n → B(k)n → 1.

The question whether a homomorphism fk ∶ �1(Σg) → B(k)n admits a lift to
fk+1 ∶ �1(Σg) → B(k+1)n can be reformulated in purely cohomological terms.
For every k ≥ 1 there exist examples of homomorphisms fk which admit no
lift. Our goal here is to show that the lifting is always possible when k = 0.

In order to do that, we �rst show that the pinching map P induces an in-
jection at cohomological level. For the sake of simplicity we only consider
the unrami�ed case, but the result works in full generality. Speci�cally, let
f ∶ �1(Σg) → G be a surjective homomorphism and A be a �nitely generated
G-module, say bymeans of a homomorphism � ∶ G → Aut(A). ThenA inherits
a�1(Σg)-module structure through �◦f. Let now P ∶ �1(Σg+1)→ �1(Σg) be the
pinch map, which is given in convenient basis {�i, �i}i=1,…,g+1 and {ai, bi}i=1,…,g
by

P(�i) = ai, P(�i) = bi, i ≤ g, P(�g+1) = P(�g+1) = 1.
Then f◦P ∶ �1(Σg+1) → G provides a �1(Σg+1)-module structure on A by
means of �◦f◦P. Our main result is the following:

Proposition 6.1. The homomorphism

P∗ ∶ H2(�1(Σg), A)→ H2(�1(Σg+1), A)
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is injective.

Proof. Consider a normalized 2-cocycle w ∶ �1(Σg) × �1(Σg) → A, namely
such that w(x, 1) = w(1, x) = 0, whose cohomology class lies in kerP∗. Then
the image 2-cocycle P∗w is given by P∗w(x, y) = w(P(x), P(y)). By hypothesis
it is exact, namely of the form

P∗w(x, y) = ��(x, y) = x ⋅ �(y) − �(xy) + �(x),

where � ∶ �1(Σg+1) → A is a 1-cochain. Let H = ⟨�i, �i, i ∈ {1, 2,… , g}⟩
and K = ⟨�g+1, �g+1⟩ be the subgroups of �1(Σg+1) generated by the respective
elements and note that they are free groups. We observe that whenever x ∈ H
and u, v ∈ K we have:

�(xu) = x ⋅ �(u) + �(x) − w(P(x), P(u)) = x ⋅ �(u) + �(x),

�(ux) = u ⋅ �(x) + �(u) − w(P(u), P(x)) = �(x) + �(u),

�(uv) = u ⋅ �(v) + �(u) − w(P(u), P(v)) = �(v) + �(u).
The last equation implies that �(u−1) = −�(u) for u ∈ K, so that

�([�g+1, �g+1]) = 0.

We aim at analyzing the restriction of � toH. Set

R =
g∏

i=1
[�i, �i] ∈ H.

Then

0 = �(1) = �(R[�g+1, �g+1]) = R ⋅ �(R) = P(R) ⋅ �(R) = �(R).

Consider further x ∈ H. By above we have

�(xRx−1) =xR ⋅ �(x−1) + �(x) − P∗w(xR, x−1)
=xR ⋅ (x−1 ⋅ (P∗w(x, x−1) − �(x)) + �(x) − P∗w(xR, x−1)
=xRx−1 ⋅ P∗w(x, x−1) − xRx−1 ⋅ �(x) + �(x) − P∗w(xR, x−1)
=xRx−1 ⋅ P∗w(x, x−1) − P∗w(xR, x−1),

the last equality following from the fact that P(xRx−1) = 1 thereby xRx−1 is
acting trivially on A. Recall that w is a 2-cocycle and hence satis�es

x ⋅ w(y, z) − w(xy, z) + w(x, yz) − w(x, y) = 0.

Its pullback veri�es then

�(xRx−1) =xRx−1 ⋅ P∗w(x, x−1) − P∗w(xR, x−1) =
=P∗w(xRx−1, x) − P∗w(xRx−1, 1) = w(P(xRx−1), P(x)) = 0.

It follows that �(xR−1x) = 0.
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Let L ⊲ H be the normal subgroup generated by R within H. Every element
of L can be written as a product of conjugates of R and R−1 withinH. If x, y ∈ L
and �(x) = �(y) = 0, then

�(xy) = x ⋅ �(y) + �(x) − w(P(x), P(y)) = 0,

because P(x) = P(y) = 1. By induction on the number of conjugates, we derive
that �|L ∶ L → A is trivial.

Now, if x = uy, where u ∈ L, then

�(x) = �(uy) = u�(y) + �(u) − w(P(u), P(y)) = �(y),

because P(u) = 1. It follows that � is constant on right cosets of L, so that �
induces a well-de�ned map � ∶ H∕L → A. Moreover the restriction of the
homomorphism P ∶ �1(Σg+1) → �1(Σg) to H induces an isomorphism of P ∶
H∕L → �1(Σg).

Observe that the 1-chain � satis�es for all x, y ∈ H∕L

��(x, y) = P∗w(x̃, ỹ) = w(P(x), P(y)),

where x̃, ỹ are lifts inH ofx, y, respectively. It follows thatw is exact, as claimed.
�

Then using Proposition 6.1 we obtain a conceptual (without calculation)
proof of the following:

Proposition 6.2. Anyhomomorphismf ∶ �1(Σg)→ Sn has a liftf1 ∶ �1(Σg)→
B(1)n .

Proof. Let ℰ1 denote the extension with abelian kernel:

1→ A1 → B(1)n → Sn → 1

whose characteristic class cℰ1 is denoted e1 ∈ H2(Sn, A1).
Observe �rst that f admits a lift f1 to B

(1)
n if and only if the pull-back exten-

sion f∗ℰ1 admits a section s over �1(Σg). This amounts to saying that f∗ℰ1 is
a split extension which is equivalent with cf∗ℰ1 = f∗e1 = 0 ∈ H2(�1(Σg), A1),
where A1 has a �1(Σg)-module structure induced by f.

On the other hand Theorem 3.11 shows that after su�ciently many stabi-
lizations f◦Pg,ℎ lifts to a homomorphism F into Bn, where Pg,ℎ ∶ �1(Σg+ℎ) →
�1(Σg) is the pinch map of the last ℎ handles. Let Q(1) ∶ Bn → B(1)n be the
quotient by 
1PBn. Then Q(1)◦F is a lift of f◦Pg,ℎ to B

(1)
n .

The previous argument implies that (f◦Pg,ℎ)∗ℰ1 is a split extension over
�1(Σg+ℎ) and hence P∗g,ℎ◦f

∗e1 = 0 ∈ H2(�1(Σg+ℎ), A1). Proposition 6.1 im-
plies that f∗e1 = 0 ∈ H2(�1(Σg), A1) and thus the claim follows. �

Remark 6.3. The lifts f1 of f modulo A1-conjugacy are in one-to-one corre-
spondence with the section s of f∗ℰ1, and thus they form an a�ne space with
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underlying vector space H1(�1(Σg), A1). It seems possible that for any f there
exists some lift f1 of f which further can be lifted to B(2)n .

7. Spherical functions and proof of Theorem 1.8
7.1. Pullback spherical functions fromLie groups. A key algebraic object
in this section is the representation space

MG(Σ, B) ⊆ Hom(�1(Σ ⧵ B), G)∕G,

containing the subspaceMG(Σ, B, c) of classes of representationswith prescribed
conjugacy classes of peripheral loops. There are analogous moduli spaces of
mapping class group orbits:

ℳG(Σ, B) = Γ(Σ ⧵ B)∖MG(Σ, B).

We observed in the �rst section that the corresponding discrete spaces for G =
Bn correspond to (strong) equivalence classes of braided surfaces. One should
note that G = Γ(S) corresponds to achiral Lefschetz �brations with �ber S.
Our aim is to construct functions on these spaces, corresponding in particular
to invariants of braided surfaces.

In order to treat the unbranched caseB = ∅weobserve thatwehave a natural
embedding:

MG(Σ, ∅) ⊂ Hom(�1(Σ ⧵ {p}), G)∕G,
which provides functions on MG(Σ, ∅) by restricting functions de�ned on the
right hand side space.

We construct spherical functions on representation spaces associated to dis-
crete groups by pullback of spherical functions de�ned on Lie groups. Let
R ∶ G → G be a homomorphism representation of G into the Lie group G.
To any f ∶ �1(Σ ⧵ B) → G we associate the homomorphism R∗(f) = R◦f ∶
�1(Σ ⧵ B)→ G. This induces a map

R∗ ∶ MG(Σ, B)→ MG(Σ, B).

Obviously the map R∗ only depends on the class of R inside Hom(G,G)∕G.
Now, the representation variety MG(Σ, B) was the subject on intensive study,
whenG is a Lie group.

If B ≠ ∅, then MG(Σ, B) = Gm∕G, where m is the rank of the free group
�1(Σ ⧵ B) and G acts diagonally by conjugation on Gm. Note thatMG(Σ, B) can
also be identi�edwith the double coset spaceG∖Gm+1∕G, whereG is diagonally
embedded in Gm+1.

Let now introduce some terminology from representation theory. If � is a
unitary representation of a group H in a Hilbert space V, then a matrix coef-
�cient is the function �(x) = ⟨�(x)v, w⟩, where v, w ∈ V. Let L(H) be the
vector space of complex functions on H. If K ⊆ H is a subgroup, we denote
by L(K∖H∕K) ⊂ L(H) the subspace of functions which are bi-K-invariant,
namely such that �(k1xk2) = �(x), for ki ∈ K, x ∈ H. A matrix coe�cient
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�(x) = ⟨�(x)v, w⟩ is bi-K-invariant if v, w belong to the space of K-invariants
vectors VK .

Observe �rst that in the case when V is �nite dimensional complex vector
space, the same formula de�ne a bi-K-invariant function, even if ⟨ , ⟩ is only a
Hermitian form on V, not necessarily positive de�nite. The functions obtained
thiswaywill be calledK-spherical functions onH; wewill addunitary if wewant
to specify that the Hermitian form is positive de�nite. Carrying this construc-
tion for the pair K = G and H = Gk we obtain a family of complex functions
on G∖Gk∕G, called spherical functions. The main question addressed here is
to what extent the spherical functions separate points of representation spaces.

7.2. Compact Lie groups. We can organize spherical functions by using the
map R∗ associated to a representation ofG into some compact groupG in order
to pull back spherical functions fromGk. The following should be well-known,
but for lack of references, we sketch the proof:

Proposition 7.1. Let K ⊂ H be either �nite groups or compact connected Lie
groups. Then theunitaryK-spherical functions onH separate the points ofK∖H∕K.

Proof. Let L(H∕K) be the Hilbert space of complex valued functions onH∕K,
which is endowed with the tautological left action byH.

Consider �rst the casewhenH is �nite. WriteL(H∕K) as a sumof irreducible
representations Vj, along with their multiplicitiesmj:

L(H∕K) = ⊕j∈JV
mj
j .

ByWielandt’s lemma (see e.g. [7], Thm.3.13.3), the number ofK-orbits inH∕K
is equal to

∑
j∈Jm

2
j , so that

dimL(K∖H∕K) =
∑

j∈J
m2
j .

Now the Frobenius reciprocity (see [41], Thm. 1.4.9) gives us

mj = dimVK
j .

Consider the matrix coe�cients associated to irreducible representations ofG
into �nite dimensional vector spaces V and vectors v, w arising from a basis
of VK . According to ([7], Lemma 3.6.3) matrix coe�cients of this form are or-
thonormal in L(H). Since they are

∑
j∈Jm

2
j elements of L(K∖H∕K), it follows

that they form a basis of L(K∖H∕K). In particular, the basis functions separate
points of K∖H∕K), as the set of all functions in L(K∖H∕K) does separate.

The proof in the case whereH is a compact Lie group follows the same lines
as in the �nite case, now using instead the Peter-Weyl theorem. For instance,
matrix coe�cients are dense in the space L2(G), the H-spherical functions are
spanning the space of L2-class functions while L2(G) = ⊕WdimW is the direct
sum of all irreducible representations W of G with multiplicity equal to their
dimension. We leave details to the reader. �
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This method provides an in�nite family of spherical functions for the case
whereMG(Σ, B) = G∖Gk∕G, when B ≠ ∅ and �1(Σ ⧵ B) is a free group of rank
k − 1. Speci�cally we consider the set Vi, i ∈ Ĝ of all isomorphisms types of
irreducible representations ofG. ThenVi1⊗⋯Vik form a representation ofGk.
We should restrict to those unitary representations forwhichVi1⊗⋯⊗Vik has a
�xedG-vector. For each u, v ∈ BI in some basis BI of the space ofG-invariants
H0(G, Vi1 ⊗⋯⊗Vik ) we have the spherical function

�u,v,I(x) = ⟨Vi1 ⊗⋯⊗Vik (x)u, v⟩,

where I = (i1,… , ik). The (in�nite) set of all such functions will separate points
of MG(Σ, B) = G∖Gk∕G. It is now easy to construct a single function taking
values in the series in several variables with matrix coe�cients:

Φ(x) =
∑

I,(u,v)

1
I! (�I,u,v(x))u,v∈BI )X

I .

A direct consequence of Proposition 7.1 is:

Proposition 7.2. Assume that G is a compact Lie group. Then Φ is a complete
invariant forMG(Σ, B), namely it separates its points: Φ(x) = Φ(y) if and only if
x = y.

Neretin ([31]) considered the case G = SU(2) and expressed (a modi�ed
version of) the algebraic function Φ as a determinant. In this case we know
that BI is indexed by the set of partitions � = (�st)s,t=1,…,k with

∑

t
�st = is.

Then we consider
ΦN =

∑

I,(�st)

1
�!�!

∏

s,t
x�y�(�I,�,�),

where we set x� =
∏

s,t x
�st
st , �! =

∏
s,t �st!. Then the closed formula of [31]

reads:
ΦN(A) = det(1 − AXA⟂Y)−1∕2

for A ∈ SU(2)k, where X = (Xij), Y = (Yij) are matrices of blocks of the form

Xij = ( 0 xij
−xij 0 ), Yij = ( 0 yij

−yij 0 ), and xij, yij are variables.

In particular we obtain:

Proposition 7.3. To any representation R ∶ G → SU(2) of the group G we have
associated a polynomial valued invariant map ΦR ∶ MG(Σ, B)→ ℂ[X,Y], given
by:

ΦR(a) = det(1 − R(A)XR(A)⟂Y).
In particular, this holds when the groupG is the braid groupB3 andR is the Burau
representation for a parameter within the unit circleU(1), the map ΦR providing
then invariants of braided surfaces of degree 3 with nontrivial branch locus.
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Often we can reduce the matrix-valued function Φ to a �nite polynomial in
more variables. In fact, for any G as above MG(Σ, B) is homeomorphic to a
�nite CW complex. In particular it admits an embedding ' ∶ MG(Σ, B) → ℝn.
The components of ' form therefore a complete invariant forMG(Σ, B) and so
there is a much simpler invariant than Φ. Nevertheless we lack an exact form
of ', in general.

In many interesting casesG∖Gk∕G has the structure of an (a�ne) algebraic
variety overℂ. Thus we can expect to have a nice algebraic embedding '. Such
an embedding can be obtained from a basis of the algebra of regular functions
onMG(Σ, B).

This is the case ofG = U(n), for instance. Let A = (A1, A2,… , Ak) ∈ U(n)k,
I = {i1, i2,… , ij}, 1 ≤ i1 < i2 < … < ij ≤ k and " ∶ I → {1, ⋆}. We denote by

AI;" = A"(i1)
i1

A"(i2)
i2

⋯A
"(ij)
ij

,

where A⋆ denotes (A−1)T. Procesi proved in ([38], Thm. 11.2) that the set of
trace functions

{tr(AI;")| I ⊆ {1, 2,… , k}, " ∶ I → {1, ⋆}}

over all possible I and " represent a basis of the algebra of regular functions on
U(n)∖U(n)k∕U(n). Let xi be noncommutative variables,

XI;" = x"(i1)i1
x"(i2)i2

⋯A
"(ij)
xj ,

where "(i) = "(i), when the later equals 1 and −1, otherwise. Then the non-
commutative Laurent polynomial

Ψ(A) =
∑

I,"
tr(AI;")XI;"

separates points of U(n)∖U(n)k∕U(n).

Proposition 7.4. To any unitary representation R ∶ G → U(n) of the group G
we have associated a noncommutative Laurent polynomial valued invariantmap
ΨR onMG(Σ, B), given by:

ΨR(a) = Ψ(R(a)).

In particular, this holds when the group G = Bn and the R is the Burau repre-
sentation for a parameter within the unit circleU(1), the map ΨR providing then
invariants of braided surfaces of degree n with nontrivial branch locus.

Remark 7.5. There is a similar result for the noncommutative polynomial

Ψ′R(A) =
∑

I⊆{1,2,…,k}
tr(AI)XI

associated to a linear representation R ∶ G → GL(n) of the groupG, which now
separates points of GL(n)∖GL(n)k∕GL(n), following ([38], section 3).
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7.3. Spherical functions for discrete groups. Consider now the case of a
discrete group G. As observed above it is enough to consider that B ≠ ∅, so
that MG(Σ, B) = G∖Gk∕G is a space of cosets. In contrast to the case of a
compact group G, now spherical functions do not necessarily separate points
ofMG(Σ, B).

For a discrete group H we denote by Ĥ its pro�nite completion. There is a
natural map i ∶ H → Ĥ which is injective if and only if H is residually �nite.
If K ⊆ H is a subgroup, we denote by K the closure of i(K) into Ĥ. The map i
induces a map between cosets

� ∶ K∖H∕K → K∖Ĥ∕K.

De�nition 7.6. Two cosets of K∖H∕K are pro�nitely separated if their images
by � are distinct.

One case of interest is when K = G is embedded diagonally within H =
Gk. It is easy to see that Ĝk is isomorphic to Ĝk and we will identify them in
the sequel. If G is embedded diagonally into Gk, then its closure G into Ĝk is
isomorphic to the image of Ĝ into Ĝk by its diagonal embedding. Then themap
� from above

� ∶ G∖Gk∕G → Ĝ∖Ĝk∕Ĝ

sends a double coset mod G into its class mod Ĝ. This notion encompasses
more classic notions, as the conjugacy separability of the group G, when we
take k = 2 above.

The main result of this section is:

Theorem 7.7. Assume that H is �nitely generated and K ⊆ H is a subgroup.
Two cosets of K∖H∕K are separated by some Hermitian spherical function if and
only if they are pro�nitely separated.

Proof. Let x and y be cosets which cannot be distinguished by spherical func-
tions associated to Hermitian representations ofH, and in particular by spheri-
cal functions associated to �nite representations. Let now F be a �nite quotient
of H, KF be the image of K in F. Proposition 7.1 shows that spherical func-
tions associated to linear representations of F separately precisely the points of
KF∖F∕KF . Then the images of x and y should coincide in KF∖F∕KF , for any F
and hence �(x) = �(y).

Conversely, a �nite dimensional Hermitian representation V ofH is de�ned
over some �nitely generated ring O ⊂ ℂ. By enlarging O we can suppose that
⟨ , ⟩ has entries from O. We can assume, by further enlarging O, that there is a
basis B of VH consisting of vectors whose coordinates belong to O.

Suppose that for someH-invariant vectors u and v the spherical function�u,v
separates the cosets x and y. We can take then u, v ∈ O⟨B⟩. Further, for all but
�nitely many prime ideals p in O, we have

�u,v(x) ≢ �u,v(y)(mod p) ∈ O∕p.
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Now let W be the reduction mod p of the H representation on V. These are
�nite representations and the invariant subspace WK contains the reduction
mod p of VK . Denote by w the reduction mod p of the vector w ∈ O⟨B⟩. It
follows that u and v belong toWH . As spherical functions are bilinear, for any
z ∈ H we have:

�u,v(z) ≡ �u,v(z) ∈ O∕p.
In particular, the spherical function �u,v associated to a �nite representation
distinguishes x from y. This implies that x and y are pro�nitely separated. �

Remark 7.8. The pro�nite separability of all cosets in Bn∖Bkn∕Bn and their map-
ping class group generalizations seems to be widely open.

7.4. Hurwitz equivalence. To step from strong equivalence to the usual (i.e.
Hurwitz) equivalence amounts of studying the action of Γ(Σ ⧵ B) on the vector
space of functions on MG(Σ, B). However the previous approach using pull-
backs of spherical functions from compact Lie groups leads to a dead end. In
fact, we have the following result due to Goldman for SU(2) and to Pickrell and
Xia for a general compact group:

Theorem 7.9 ([35, 36]). If G is a compact connected Lie group and Σ ⧵ B is
hyperbolic then the action of Γ(Σ ⧵ B) onMG(Σg, B) is ergodic with respect to the
quasi-invariant measure.

In particular there are no continuous functions onMG(Σg, B) which are in-
variant under the Γ(Σ⧵B) action, other than the constants. Pull-backs of spher-
ical functions associated to compact groups could only provide constant func-
tions onℳG(Σ, B). In order to get further insight by thismethodwe have to step
to non-compact Lie groups and the corresponding higher Teichmüller theory.
As in the previous section, components ofℳG(Σ, B)which have a CW complex
structure, as Hitchin components, will provide functions on the corresponding
subsets ofℳG(Σ, B).
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