NYJM Logo

New York Journal of Mathematics
Volume 29 (2023), 554-579

  

Márcio Batista, Giovanni Molica Bisci, Henrique F. de Lima, and Wallace F. Gomes

Solitons of the spacelike mean curvature flow in generalized Robertson-Walker spacetimes

view    print


Published: May 13, 2023.
Keywords: Generalized Robertson-Walker spacetime; complete spacelike mean curvature flow solitons; Einstein-de Sitter spacetime; steady state type spacetimes; de Sitter and anti-de Sitter spaces; Calabi-Bernstein type results.
Subject [2010]: 53C42 and 53E10

Abstract
Our purpose in this paper is to study solitons of the spacelike mean curvature flow in a generalized Robertson-Walker (GRW) spacetime -I xf Mn. Under suitable constraints on the warping function f and on the curvatures of the Riemannian fiber Mn, we apply suitable maximum principles in order to obtain nonexistence and uniqueness results concerning these solitons. Applications to standard models of GRW spacetimes, namely, the Einstein-de Sitter spacetime, steady state type spacetimes, de Sitter and anti-de Sitter spaces, are given. Furthermore, we establish new Calabi-Bernstein type results related to entire spacelike mean curvature flow graphs constructed over the Riemannian fiber of the ambient spacetime.

Acknowledgements

The first author is partially supported by CNPq [Grant: 308440/2021-8 and 405468/2021-0], and FAPEAL [Grant: E:60030.0000001758/2022], and the third author is partially supported by CNPq [Grant: 301970/2019-0]. The second author is partially supported by INdAM-GNAMPA Research Project 2020 titled \textit{Equazioni alle derivate parziali: problemi e modelli}. The fourth author is partially supported by CAPES [Finance Code 001], Brazil.


Author information

Márcio Batista
CPMAT-IM
Universidade Federal de Alagoas
57072-970 Maceió, Alagoas, Brazil

mhbs@mat.ufal.br

Giovanni Molica Bisci
Dipartimento di Scienze Pure e Applicate (DiSPeA)
Universitá degli Studi di Urbino Carlo Bo
Piazza della Repubblica 13
61029 Urbino (Pesaro e Urbino), Italy

giovanni.molicabisci@uniurb.it

Henrique F. de Lima
Departamento de Matemática
Universidade Federal de Campina Grande
58.429-970 Campina Grande, Paraíba, Brazil

henriquedelima74@gmail.com

Wallace F. Gomes
Departamento de Matemática
Universidade Federal de Campina Grande
58.429-970 Campina Grande, Paraíba, Brazil

wfgomes.uepb@gmail.com