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Irreducibility and monicity for
representations of k-graph C∗-algebras

Carla Farsi, Elizabeth Gillaspy and Daniel Gonçalves

Abstract. The representations of a k-graph C∗-algebra C∗(Λ) which arise
from Λ-semibranching function systems are closely linked to the dynamics
of the k-graph Λ. In this paper, we undertake a systematic analysis of the
question of irreducibility for these representations. We provide a variety of
necessary and su�cient conditions for irreducibility, as well as a number
of examples indicating the optimality of our results. In addition, we study
the relationship between monic representations and the periodicity ofΛ; our
analysis yields results which are new even in the case of directed graphs. Fi-
nally, we explore the relationship between irreducible Λ-semibranching rep-
resentations and purely atomic representations of C∗(Λ). Throughout the
paper, we work in the setting of row-�nite source-free k-graphs; this paper
constitutes the �rst analysis of Λ-semibranching representations at this level
of generality.
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1. Introduction
Understanding the irreducible representations of a C∗-algebra enables an

analysis of its spectrum and primitive ideal space, as well as its representation
theory. In addition, longstanding open questions such as Naimark’s problem
[41] use irreducible representations to (conjecturally) determine how similar
two C∗-algebras are. However, for non-type I C∗-algebras A, it is well known
[25, 26] that the natural Borel structure on the space Â of irreducible represen-
tations ofA is not countably separated. Asmany higher-rank graphC∗-algebras
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are not type I, this lack of a “reasonable” parametrization of their irreducible
representations obligates us to restrict our attention to speci�c subfamilies of
representations when exploring the question of irreducibility. In this paper, we
study the irreducibility of the representations of higher-rank graph C∗-algebras
C∗(Λ) which arise from Λ-semibranching function systems.

For graph C∗-algebras and related constructions, the representations arising
from branching systems [39, 28, 29, 27, 21] provide a key insight into the struc-
ture of the C∗-algebra. Intuitively, a branching system is a family of subsets
of a measure space (X, �) which re�ects the structure of the graph C∗-algebra
C∗(Λ), so that one obtains a natural representation of C∗(Λ) on L2(X, �). In-
deed, this representation encodes the natural dynamics of the pre�xing and
coding maps on the space Λ∞ of in�nite paths in the graph Λ: the fact that
C0(Λ

∞) is a subalgebra of C∗(Λ) implies that the structure of C0(Λ∞), and in
particular the dynamics of changing an in�nite path x1x2x3… to x0x1x2x3…
or to x2x3…, must also be re�ected in the branching system on (X, �). Conse-
quently, the study of representations arising from branching systems also en-
hances our understanding of the symbolic dynamics associated to a graph or
higher-rank-graph.

In some settings, in fact, every representation arises from a branching sys-
tem: the third author togetherwithD. Royer identify in [28, 29] a class of graphs
for which every representation of the graph C∗-algebra is unitarily equivalent
to a representation arising from a branching system. For higher-rank graphsΛ,
branching systems were introduced as Λ-semibranching function systems by
the �rst and second authors together with S. Kang and J. Packer in [21], where
the associated representations were used to construct wavelets and to analyze
theKMS states of the higher-rank graphC∗-algebraC∗(Λ). Subsequentwork by
Farsi, Gillaspy, Kang, and Packer together with P. Jorgensen [17] showed that
a large class of representations of C∗(Λ) – the so-called monic representations
– all arise from Λ-semibranching function systems, and these authors provide
in [18] a more detailed analysis of the structure of Λ-semibranching function
systems in the case when the associated measure space is atomic. The ques-
tion of when aΛ-semibranching representation is faithful has been explored in
[21, 27, 19]. However, even in the previously mentioned studies, there has not
been a speci�c emphasis on irreducible representations, which instead consti-
tute the focus of this research. Although the primitive ideal space of higher-
rank graph C∗-algebras is well understood [7, 36], the broad applicability of
Λ-semibranching function systems has inspired us to explore the question of
when the associated representations of C∗(Λ) are irreducible.

Higher-rank graphs (or k-graphs) are a k-dimensional generalization of di-
rected graphs (1-graphs). Introduced by Kumjian and Pask in [37], k-graphs
provide a framework for combinatorial constructions of C∗-algebras and shift
spaces, beyond the setting of graph and Cuntz–Krieger C∗-algebras, and graph
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and Markov shift spaces. In fact, in the decades since their introduction, k-
graph C∗-algebras have led to advances in symbolic dynamics [47, 8] and non-
commutative geometry [33], as well as insights into the dimension theory of
C∗-algebras [45]. Higher-rank graph C∗-algebras share many of the important
properties of Cuntz and Cuntz–Krieger C∗-algebras (of which they are gener-
alizations [10, 11, 15, 38]), including Cuntz–Krieger uniqueness theorems and
realizations as groupoid C∗-algebras.

Aswementioned above themain objective of this paper is to provide a variety
of necessary and su�cient conditions for a Λ-semibranching function system
to give rise to an irreducible representation of C∗(Λ). In our work we will es-
tablish a strong link between the representation theory of k-graph C∗-algebras
and the symbolic dynamics associated to a k-graph, by detecting irreducibility
of a representation arising from Λ-semibranching functions systems in terms
of conditions on the coding maps. We focus on the setting of row-�nite source-
free k-graphs, whose Λ-semibranching function systems have not yet been an-
alyzed in the literature. There are nontrivial structural di�erences between the
�nite k-graph case and the row-�nite one: for example, the in�nite path space
in the row-�nite case is typically non-compact. To obtain our main results, we
consequently need to extend a number of results which had previously been
established in the literature only for �nite k-graphs.

We now describe the content of this paper. In addition to reviewing the rel-
evant background material (including de�nitions of higher-rank graphs and
their Λ-semibranching function systems) in Section 2, we also establish two
new results in that section. Namely, Proposition 2.16 shows that, given an in-
variant subset E ⊆ X and a Λ-semibranching representation on (X, �), we also
obtain a Λ-semibranching representation on L2(E, �) under mild hypotheses.
Theorem2.20 describes amethod for constructingmeasures on the in�nite path
space of Λ∞, ensuring that we have a supply of examples of Λ-semibranching
function systems. Then, Section 3 establishes that for row-�nite higher-rank
graphs, the characterization of those Λ-semibranching representations which
are unitarily equivalent to representations on the in�nite path spaceΛ∞ is anal-
ogous to the known characterization for �nite higher-rank graphs. In more de-
tail, Theorem 3.6 and Theorem 3.8 give respectively a representation-theoretic
and ameasure-theoretic characterization ofwhen aΛ-semibranching represen-
tation is equivalent to one arising fromΛ∞. Even when restricted to the setting
of �nite higher-rank graphs, Theorem 3.8 is stronger than the existing results
in the literature. We also explore the relationship between monic representa-
tions and the periodicity of Λ in Section 3, and obtain in Corollary 3.12 a new
necessary condition for the monicity of branching representations for directed
graphs containing cycles without entrance.

Section 4 is the main contribution of this paper where we establish connec-
tions between irreducibility of a representation arising from Λ-semibranching
function system and the dynamics associated to a k-graph. Here we provide
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a variety of necessary (Propositions 4.6 and 4.13, and Theorem 4.8) and su�-
cient (Theorems 4.15 and 4.20, and Proposition 4.26) conditions for a Λ-semi-
branching function system to give rise to an irreducible representation ofC∗(Λ).
Many of these necessary and su�cient conditions deal with the ergodicity of
the dynamics of the Λ-semibranching function system. We also wish to high-
light Theorem 4.8, which shows that only co�nal k-graphs admit irreducible
Λ-semibranching representations. Although we provide examples which in-
dicate that our necessary conditions are not in general su�cient, when the
measure space X of the Λ-semibranching function system is Λ∞, the situa-
tion is di�erent: Proposition 4.6 and Theorem 4.15 combine to imply that a
Λ-semibranching representation on (Λ∞, �) is irreducible precisely when the
coding maps are jointly ergodic with respect to �. Motivated in part by The-
orem 4.8, we also provide su�cient conditions in Theorems 4.15 and 4.20 for
irreducibility of aΛ-semibranching representation arising from a proper subset
X of Λ∞. In particular, Example 4.22 shows that, using Theorem 4.20, one can
use aΛ-semibranching function system to obtain an irreducible representation
of C∗(Λ) even if Λ is not necessarily co�nal.

We conclude this paper in Section 5 by studying the irreducibility of atomic
Λ-semibranching representations. Indeed, Theorem 5.3 shows that any irre-
ducible Λ-semibranching representation on an atomic measure space is purely
atomic in the sense of [18], andTheorem5.5 shows in particular that irreducible
representations on atomicmeasure spaces aremonic. Finally, in Section 5.1, we
present an application ofΛ-semibranching representations in the context of the
Naimark problem for graph algebras.
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Collaboration Grant for Mathematics #523991. E.G. was partially supported by
the National Science Foundation (DMS-1800749). D.G. was partially supported
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to thank the sabbatical program at the University of Colorado-Boulder for sup-
port. The authors thank Judith Packer for helpful conversations.

2. Preliminary material
In this section we recall the de�nition of higher-rank graphs and their C∗-

algebras from [37], together with results onΛ-semibranching function systems
and their associated representations that extend those for �nite higher-rank
graphs in [21] and [17].

2.1. De�nition of higher-rank graphs. Letℕ = {0, 1, 2, … } be themonoid of
natural numbers under addition, and let k ∈ ℕ with k ≥ 1. We write e1, … , ek
for the standard basis vectors of ℕk, where ei is the vector of ℕk with 1 in the
i-th position and 0 everywhere else.
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De�nition 2.1. [37, De�nition 1.1] A higher-rank graph or k-graph is a count-
able small category1 Λ with a degree functor d ∶ Λ → ℕk satisfying the fac-
torization property: for any morphism � ∈ Λ and any m, n ∈ ℕk such that
d(�) = m + n ∈ ℕk, there exist unique morphisms �, � ∈ Λ such that � = ��

and d(�) = m, d(�) = n.

When discussing k-graphs, we use the arrows-only picture of category the-
ory; thus, objects inΛ are identi�ed with identity morphisms, and the notation
� ∈ Λmeans � is a morphism in Λ.

Example 2.2. ,
(1) The higher-rank graphswith k = 1 (the 1-graphs) correspond to the cat-

egories whose objects are the vertices of a directed graph E, and whose
morphisms are the �nite paths in E. In this case, d(�) ∈ ℕ is the num-
ber of edges in �.

(2) The k-graphΩk has Obj(Ωk) = ℕk andMor(Ωk) = {(m, n) ∈ ℕk ×ℕk ∶

m ≤ n}. We have d(m, n) = n − m.

We often regardk-graphs as ak-dimensional generalization of directed graphs,
so we call morphisms � ∈ Λ paths in Λ, and the objects (identity morphisms)
are often called vertices. For n ∈ ℕk, we write

Λn ∶= {� ∈ Λ ∶ d(�) = n}. (1)
With this notation, note that Λ0 is the set of objects (vertices) of Λ, and we will
call elements of Λei (for any i) edges. We write r, s ∶ Λ → Λ0 for the range and
source maps in Λ respectively. For vertices v, w ∈ Λ0, we de�ne

vΛw ∶= {� ∈ Λ ∶ r(�) = v, s(�) = w}

and
vΛn ∶= {� ∈ Λ ∶ r(�) = v, d(�) = n}.

Our focus in this paper is on row-�nite k-graphs with no sources. We say
that Λ has no sources or is source-free if vΛn ≠ ∅ for all v ∈ Λ0 and n ∈ ℕk. It is
well known that this is equivalent to the condition that vΛei ≠ ∅ for all v ∈ Λ

and all basis vectors ei of ℕk. A k-graph Λ is row-�nite if

#
(
vΛn

)
< ∞, ∀v ∈ Λ0, ∀n ∈ ℕk. (2)

De�nition 2.3. The adjacency matrices {Ai}
k
i=1

of a k-graph Λ are Λ0 × Λ0 (in-
�nite) matrices with entries Ai(v, w) = |vΛeiw|.

Form, n ∈ ℕk, we writem∨n for the coordinatewise maximum ofm and n.
Given �, � ∈ Λ, we write

Λmin(�, �) ∶= {(�, �) ∈ Λ × Λ ∶ �� = ��, d(��) = d(�) ∨ d(�)}. (3)
If k = 1, then Λmin(�, �) will have at most one element; this need not be true if
k > 1.

1Recall that a small category is one in which the collection of arrows is a set.
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Related to the de�nition of Λmin(�, �) is

MCE(�, �) = {� ∈ Λ ∶ ∃(�, �) ∈ Λmin(�, �) such that � = �� = ��}.

Observe that if r(�) ≠ r(�) then MCE(�, �) = ∅ = Λmin(�, �); if r(�) = r(�)

then r(�) = r(�) for all � ∈ MCE(�, �).

De�nition 2.4 ([37] De�nitions 2.1). Let Λ be a k-graph. An in�nite path in Λ
is a k-graph morphism (degree-preserving functor) x ∶ Ωk → Λ, and we write
Λ∞ for the set of in�nite paths in Λ. Since Ωk has a terminal object (namely
0 ∈ ℕk) but no initial object, we think of our in�nite paths as having a range
r(x) ∶= x(0) but no source. For eachm ∈ ℕk, we have a shift map �m ∶ Λ∞ →

Λ∞ given by
�m(x)(p, q) = x(p + m, q + m) (4)

for x ∈ Λ∞ and (p, q) ∈ Ωk.
It is well-known that the collection of cylinder sets

Z(�) = {x ∈ Λ∞ ∶ x(0, d(�)) = �},

for � ∈ Λ, form a compact open basis for a locally compact Hausdor� topology
on Λ∞ if Λ is row-�nite: see Section 2 of [37]. The cylinder sets also generate
the standard Borel structure ℬo(Λ

∞) on Λ∞. In particular, if we enumerate
the vertices, say {vi}i∈ℕ of Λ, recall that the �-algebra A of the disjoint union
Λ∞ =

⨆

n∈ℕ
vnΛ

∞ is de�ned to be

A =
{
A ⊆ Λ∞ such that A ∩ vjΛ

∞ Borel, ∀j ∈ ℕ
}
.

We also have a partially de�ned “pre�xing map” �� ∶ Z(s(�)) → Z(�) for
each � ∈ Λ:

��(x) = �x =

⎡
⎢
⎢

⎣

(p, q) ↦

⎧

⎨

⎩

�(p, q), q ≤ d(�)

x(p − d(�), q − d(�)), p ≥ d(�)

�(p, d(�))x(0, q − d(�)), p < d(�) < q

⎤
⎥
⎥

⎦

.

De�nition 2.5. The orbit of an in�nite path x is

Orbit(x) = {y ∈ Λ∞ ∶ ∃m, n ∈ ℕk s.t. �n(x) = �m(y)}

= {��n(x) ∶ n ∈ ℕk, � ∈ Λ}. (5)

We say that a k-graph Λ is co�nal if, and only if, for all x ∈ Λ∞ and v ∈ Λ0,
there exists y ∈ Orbit(x) with r(y) = v.

Now we introduce the C∗-algebra associated to a row-�nite, source-free k-
graph Λ.

De�nition 2.6. ([37, De�nition 1.5]) Let Λ be a row-�nite k-graph with no
sources. A Cuntz–Krieger Λ-family is a collection {t� ∶ � ∈ Λ} of partial isome-
tries in a C∗-algebra satisfying
(CK1) {tv ∶ v ∈ Λ0} is a family of mutually orthogonal projections,
(CK2) t�t� = t�� if s(�) = r(�),
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(CK3) t∗
�
t� = ts(�) for all � ∈ Λ,

(CK4) for all v ∈ Λ and n ∈ ℕk, we have tv =
∑

�∈vΛn
t�t

∗

�
.

TheCuntz–KriegerC∗-algebraC∗(Λ) associated toΛ is the universalC∗-algebra
generated by a Cuntz–KriegerΛ-family, in the sense that for anyCuntz–Krieger
Λ-family {t� ∶ � ∈ Λ}, there is an onto ∗-homomorphism C∗(Λ) → C∗({t� ∶

� ∈ Λ}). We will usually write s� for the generator of C∗(Λ) corresponding to
� ∈ Λ.

Since the sum of two projections is a projection i� the summands are mutu-
ally orthogonal, (CK4) implies that t�t∗� ⟂ t�t

∗
� if � ≠ �. Also, conditions (CK2)

- (CK4) implies that for all �, � ∈ Λ, we have

t∗
�
t� =

∑

(�,�)∈Λmin(�,�)

t�t
∗

�
. (6)

It follows that C∗(Λ) = span{s�s
∗

�
∶ �, � ∈ Λ, s(�) = s(�)}.

2.2. �-semibranching function systems, �-projective systems, and rep-
resentations. In [21], separable representations of C∗(Λ) (when Λ is �nite)
were constructed usingΛ-semibranching function systems on measure spaces.
Intuitively, aΛ-semibranching function system is a way of encoding the Cuntz-
Krieger relations at the measure-space level: the pre�xing map �� corresponds
to the partial isometry s� ∈ C∗(Λ). The construction of a Λ-semibranching
function system from [21, Section 3.1] extends verbatim to the row-�nite case;
we provide the details below.

De�nition 2.7. [39, De�nition 2.1] Let (X, �) be a measure space, and let I
be a �nite or countable set of indices. Suppose that, for each i ∈ I, we have
a measurable subset Di ⊆ X, with 0 < �(Di) < ∞ for all i, and a measurable
map �i ∶ Di → X. The family {�i}i∈I is a semibranching function system if the
following hold.

(1) Writing Ri = �i(Di), we have

�(X∖
⋃

i

Ri) = 0, �(Ri ∩ Rj) = 0 for i ≠ j,

and �(Ri) < ∞ for all i.
(2) TheRadon–NikodymderivativeΦi ∶=

d(�◦�i)

d�
is strictly positive�-a.e. on

Di.
A measurable map � ∶ X → X is called a coding map for the family {�i}i∈I if
�◦�i = idDi for all i.

Since �(Ri) = �◦�i(Di) = ∫
Di

d(�◦�i)

d�
d�, and �(Di) > 0, the hypothesis that

theRadon–Nikodymderivative is strictly positive implies that 0 < �(Ri) always.

De�nition 2.8. [21, De�nition 3.2] Let Λ be a row-�nite source-free k-graph
and let (X, �) be a measure space. AΛ-semibranching function system on (X, �)
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is a collection {D�}�∈Λ of measurable subsets of X, together with a family of
pre�xing maps {�� ∶ D� → X}�∈Λ, and a family of coding maps {�m ∶ X →

X}m∈ℕk , such that the following conditions hold:
(a) For eachm ∈ ℕk, the family {�� ∶ d(�) = m} is a semibranching func-

tion system, with coding map �m.
(b) If v ∈ Λ0, then �v = id.
(c) Let R� = ��(D�). For each � ∈ Λ, � ∈ s(�)Λ, we have R� ⊆ D� (up to a

set of measure 0), and

���� = ��� a.e.

(Note that this implies that up to a set ofmeasure 0,D�� = D� whenever
s(�) = r(�)).

(d) The coding maps satisfy �m◦�n = �m+n for any m, n ∈ ℕk. (Note that
this implies that the coding maps pairwise commute.)

As established in [21] in the case of �nite k-graphs, any Λ-semibranching
function system gives rise to a representation ofC∗(Λ) via ‘pre�xing’ and ‘chop-
ping o�’ operators that satisfy theCuntz–Krieger relations. For the convenience
of the reader, we recall the formula for these Λ-semibranching representations
of C∗(Λ). The following theorem is an extension of [21, Theorem 3.5] to the
row-�nite case (cf. also [27, Theorem 3.5]); the proof for �nite k-graphs given
in [21] extends verbatim to the row-�nite setting.

Theorem 2.9. [21, Theorem 3.5], [27, Theorem 3.5] Let Λ be a row-�nite k-
graph with no sources and suppose that we have aΛ-semibranching function sys-
tem on ameasure space (X, �)with pre�xingmaps {�� ∶ � ∈ Λ} and codingmaps
{�m ∶ m ∈ ℕk}. For each � ∈ Λ, de�ne an operator S� on L2(X, �) by

S��(x) = �R�(x)(Φ�(�
d(�)(x)))−1∕2�(�d(�)(x)).

Then the operators {S� ∶ � ∈ Λ} form a Cuntz–Krieger Λ-family and hence gen-
erate a representation � of C∗(Λ) on L2(X, �).

We now recall the de�nition of a Λ-projective system from [17]. Roughly
speaking, a Λ-projective system on (X, �) consists of a Λ-semibranching func-
tion system plus some extra information (encoded in the functions f� below).

De�nition 2.10. Let Λ be a row-�nite k-graph with no sources. A Λ-projective
system on a measure space (X, �) is a Λ-semibranching function system on
(X, �), with pre�xing maps {�� ∶ D� → R�}�∈Λ and coding maps {�n ∶ n ∈ ℕk}

together with a family of functions {f�}�∈Λ ⊆ L2(X, �) satisfying the following
conditions:

(a) For any � ∈ Λ, we have 0 ≠ d(�◦(��)
−1)

d�
= |f�|

2;

(b) For any �, � ∈ Λ, we have f� ⋅ (f�◦�d(�)) = f��.

Recall from [17, Remark 3.3] that the functionsf� vanish outsideR�, because
the same is true for the Radon–Nikodym derivative d(�◦(��)

−1)

d�
.
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Condition (b) of De�nition 2.10 is necessary in order to associate a Cuntz–
KriegerΛ-family to aΛ-projective system. To be precise, we have the following
Proposition, which was established for �nite k-graphs in [17, Proposition 3.4].

Proposition 2.11. Let Λ be a row-�nite, source-free k-graph. Suppose that a
measure space (X, �) admits a Λ-semibranching function system with pre�xing
maps {�� ∶ � ∈ Λ} and coding maps {�n ∶ n ∈ ℕk}. Suppose that {f�}�∈Λ
is a collection of functions satisfying Condition (a) of De�nition 2.10. Then the
maps {��}, {�n} and {f�}� form a Λ-projective system on (X, �) if and only if the
operators T� ∈ B(L2(X, �)) given by

T�(f) = f� ⋅ (f◦�
d(�)) (7)

form a Cuntz–KriegerΛ-family with each T� nonzero (and hence give a represen-
tation of C∗(Λ)).

Proof. The proof given in [17, Proposition 3.4] for �nite higher-rank graphs
holds verbatim for row-�nite k-graphs. �

Wecall the representation given in Equation (7) aΛ-projective representation.

Example 2.12. For any Λ-semibranching function system on (X, �), there is a
natural choice of an associated Λ-projective system; namely, for � ∈ Λn we
de�ne

f�(x) ∶= Φ�(�
n(x))−1∕2�R�(x). (8)

Condition (a) is satis�ed because of the hypothesis that the Radon–Nikodym
derivatives be strictly positive �-a.e. on their domain of de�nition. Since the
operators S� ∈ B(L2(X, �)) of Theorem 2.9 are given by

S�(f) = f� ⋅ (f◦�
n),

and Theorem 2.9 establishes that {S�}�∈Λ is a Cuntz–Krieger Λ-family, Propo-
sition 2.11 shows that Equation (8) indeed describes a Λ-projective system.

Remark 2.13. If {T�}�∈Λ is a Λ-projective representation, then one computes
that

T∗
�
f =

�D� ⋅ (f◦��)

f�◦��
.

It now follows, using the fact that ��◦�d(�)|R� = id, that

T�T
∗

�
= M�R�

. (9)

Moreover, Example 2.12 tells us that Equation (9) also holds for any Λ-semi-
branching representation.

The following lemma will be used in Proposition 2.16 below, as well as later
in Lemma 4.18.

Lemma 2.14. Let {�n, ��}�,n be a Λ-semibranching function system on (X, �). If
�(B) = 0 then �(�n(B)) = 0 for any n ∈ ℕk.
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Proof. Observe that �n(B) =a.e.
⨆

d(�)=n
(��)

−1(B). Moreover, if �(B) = 0,

∫
(��)

−1(B)

d(�◦��)

d�
d� = (�◦��)(�

−1

�
(B)) = �(B) = 0.

However, the de�nition of a Λ-semibranching function system requires

Φ� =
d(�◦��)

d�
> 0

a.e. on Ds(�). In other words, �(�−1
�
(B)) = 0 for all � ∈ Λn, so �(�n(B)) = 0. �

Proposition 2.16 below shows that restricting a Λ-projective system to a sub-
space (A, �) of (X, �)will still give a �-projective system, as long as the subspace
is invariant.

De�nition 2.15. Let (X, �) be a measure space, and T ∶ X → X a function.
We say that B ⊂ X is invariant with respect to T if �(T−1(B)∆B) = 0.

Given a measurable subset A ∈ Σ of a measure space (X, Σ, �), we write
�A ∶= �( ⋅∩A) for themeasure given by restriction toA. We take the �-algebra
of �A-measurable sets to be {B ∩ A ∶ B ∈ Σ}.

Proposition 2.16. Suppose there is a Λ-semibranching function system {��, �
n}

on (X, �). If A ⊆ X is invariant with respect to �n for all n, and �(A ∩ Dv) is
nonzero for all v, then the restriction of a Λ-projective system on (X, �) to (X, �A)
is again a Λ-projective system.

Proof. We �rst check that if {��}�∈Λ is a Λ-semibranching function system on
(X, �), then {��}� also gives a Λ-semibranching function system on (X, �A). By
hypothesis we have �A(Dv) > 0 for all v ∈ Λ0, and for any n ∈ ℕk,

�A

⎛

⎜

⎝

X∖
⋃

d(�)=n

R�

⎞

⎟

⎠

= �
⎛

⎜

⎝

A ∩
⎛

⎜

⎝

X∖
⋃

d(�)=n

R�

⎞

⎟

⎠

⎞

⎟

⎠

≤ �
⎛

⎜

⎝

X∖
⋃

d(�)=n

R�

⎞

⎟

⎠

= 0.

We now argue that, for any � ∈ Λ, the set

Y� ∶= {y ∈ Ds(�) ∶
d(�A◦��)

d�A
(y) = 0}

has �A-measure zero. As A is invariant, i.e., �((�d(�))−1(A)∆A) = 0, the sets

{x ∈ A ∶ �d(�)(x) ∉ A} =a.e. {x ∈ A ∶ for all z ∈ A, d(�) = d(�), x ≠ ��(z)}

and

{x ∉ A ∶ �d(�)(x) ∈ A} =a.e. {x ∉ A ∶ x = ��(z) for some z ∈ A, d(�) = d(�)}

have measure zero.
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Thus, their intersectionwith anymeasurable subset ��(D) ofR� also hasmea-
sure zero, so the fact that �� is injective a.e.2 implies that (writing x = ��(z) for
z ∈ D)

0 = �({��(z) ∈ A ∶ z ∈ D∖A}) = �({��(z) ∉ A ∶ z ∈ A ∩ D}).

In other words, if D ⊆ Ds(�) ∩ A, then

�(��(D ∩ A) ∩ A) = �(��(D ∩ A)) = �(��(D)) = �(��(D) ∩ A).

We conclude that for any measurable set D ⊆ Ds(�) ∩ A,

0 < ∫
D

d(�◦��)

d�
d� = �(��(D)) = �(��(D) ∩ A) = �A(��(D))

= ∫
D

d(�A◦��)

d�A
d�A.

As �|A = �A, the uniqueness of the Radon-Nikodym derivatives implies that
d(�◦��)

d�
=
d(�A◦��)

d�A
a.e. on Ds(�) ∩ A. (10)

Recall from Condition (2) of De�nition 2.7 that

X� ∶= {x ∶
d(�◦��)

d�
(x) = 0}

has �-measure 0. In other words, Y� = X�∩A up to sets of measure zero. Since
�(X�) = 0 it follows that �A(Y�) = 0 as claimed.

We have thus established that the maps {��}�∈Λ on (X, �A) satisfy Condition
(a) of De�nition 2.8, and Condition (b) holds by construction. The fact that
�A(Y) ≤ �(Y) for all Y ⊆ X gives us Condition (c), and Condition (d) holds
on (X, �A) because we have not changed the de�nition of any of the maps. It
follows that {��}�∈Λ induces a Λ-semibranching function system on (X, �A).

To see that aΛ-projective systemon (X, �) restricts to one on (X, �A), suppose
that we have functions {f�}�∈Λ satisfyingDe�nition 2.10with respect to�. That
is, each f� is supported on R� and |f�|

2 =
d(�◦(��)

−1)

d�
, �-a.e. on R�.

Let D ⊆ R� be �A-measurable; then there exists a �-measurable set B ⊆ R�
such that D = A ∩ B. As D ⊆ A,

∫
D

d(�◦(��)
−1)

d�
d� = ∫

D

d(�◦(��)
−1)

d�
d�A.

Since D = A ∩ B ⊆ R� and A is invariant, �−1
�
(D) = {x ∶ ��(x) ∈ D = B ∩ A}

satis�es

�−1
�
(D)∖A = {x ∶ ��(x) ∈ D, x ∉ A} ⊆ {x ∶ ��(x) ∈ A, x ∉ A}

⊆ �d(�)({y ∈ R� ∩ A ∶ �d(�)(y) ∉ A}) ⊆ �d(�)(A∆(�d(�))−1(A))

2because �d(�)◦�� =a.e. id|Ds(�)
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has measure zero by Lemma 2.14. Furthermore, as D ⊆ B, we conclude that
(��)

−1(D)∖(��)
−1(B) = ∅ and hence �−1

�
(D) ⊆a.e. A ∩ (��)

−1(B). Similarly,

(A∖�−1
�
(A)) ∩ �−1

�
(B) = {x ∈ A ∶ ��(x) ∈ B∖A}

= �d(�)({y ∶ y ∉ A, �d(�)(y) ∈ A} ∩ B)

⊆ �d(�)((A∆(�d(�))−1(A)) ∩ B)

has measure 0, and so

A ∩ �−1
�
(B)∖

(
�−1
�
(D) = �−1

�
(A) ∩ �−1

�
(B)

)

has measure zero. Consequently, (��)−1(D) =a.e. A ∩ (��)
−1(B). Thus,

∫
D

d(�◦(��)
−1)

d�
d� = �(A ∩ (��)

−1(B)) = �A((��)
−1(B))

= ∫
D

d(�A◦(��)
−1)

d�A
d�A.

As D was an arbitrary �A-measurable set and Radon-Nikodym derivatives are
unique, it follows that

d(�◦(��)
−1)

d�

||||||||A

=
d(�A◦(��)

−1)

d�A
.

Consequently, if the functions {f�}�∈Λ give a Λ-projective system on (X, �), so
that |f�|2 =

(�◦(��)
−1)

d�
, then their restrictions f�|A satisfy |||f�|A

|||
2
=

d(�A◦(��)
−1)

d�A
.

The fact that the restrictions f�|A satisfy Condition (b) of De�nition 2.10 is im-
mediate from the assumption that Condition (b) holds for the functions f�. �

2.3. Measures on the in�nitepath space: theCarathéodory/Kolmogorov
extension theorem. In this sectionwewill present some results thatwill guar-
antee the existence of (projection-valued) measures on the in�nite path space
Λ∞ of a row-�nite source-free k-graph. Indeed, it will turn out that by using
the Carathéodory/Kolmogorov extension theorems and their projection-valued
analogues, it will be su�cient to de�ne our measures on cylinder sets.

Recall that a measure � on a measure space (X,ℬ) is �-�nite if there exists
a sequence of subsets Sn ∈ ℬ with X =

⋃

n
Sn and �(Sn) < ∞, ∀n. Also recall

that a family S of subsets of a set X is called a semiring of sets if it contains the
empty set, A ∩ B ∈ S for all A, B ∈ S and, for every pair of sets A, B ∈ S with
A ⊆ B, the set B ∖A is the union of �nitely many disjoint sets in S. If X ∈ S,
then S is called a semialgebra. Semirings and semialgebras canonically gener-
ate associated rings and algebras of sets by taking �nite unions. In particular
a semiring (resp. semialgebra) is a ring (resp. algebra) if and only if is closed
under �nite unions.
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Theorem 2.17 (Carathéodory/Kolmogorov). [2, Theorem 1.3.10] If ℱ0 is an
algebra3 of subsets of X, and � is a countably additive function on ℱ0 such that
X is �-�nite with respect to (ℱ0, �), then � extends uniquely to a measure on the
�-algebra generated byℱ0.

We also note the following projection-valuedmeasure extension of the above
result:

Lemma 2.18. [3, Theorem 7] If ℱ is a bounded projection-valued measure de-
�ned on a ring of sets ℛ, there exists one and only one (necessarily bounded)
projection-valued measure ℰ on �(ℛ), the �-ring generated by ℛ, such that ℰ is
an extension of ℱ. If ℛ is an algebra, then �(ℛ) equals the �-algebra generated
byℛ.

Wewill apply the above results to construct (projection-valued) measures on
Λ∞. In particular, in our applications we will often take X = vΛ∞ for a �xed
vertex v ∈ Λ0, and the algebra S to be the collection of sets formed by taking
�nite intersections and unions of the cylinder sets Z(�)with r(�) = v. To check
that S is an algebra, notice that X = vΛ∞ = Z(v) is in S and use the following
lemma, whose proof is a straightforward application of the de�nitions given
above.

Lemma 2.19. LetΛ be a row-�nite k-graph and v be a vertex inΛ0. If �, � ∈ vΛ

then:
(1) Z(�) ∩ Z(�) =

⨆

(�,�)∈Λmin(�,�)
Z(��) is a �nite disjoint union of cylinder

sets;
(2) Z(�)∖Z(�) = Z(�)∖

⨆

�∈MCE(�,�)
Z(�) =

⨆
{Z(��) ∶ d(��) = d(�) ∨

d(�) but �� ∉ MCE(�, �)} is also a �nite disjoint union of cylinder sets;
(3) Z(�) ∪ Z(�) is therefore also a �nite disjoint union of cylinder sets.

Before discussing projection-valued measures on Λ∞, we pause to reassure
the reader that there do indeed exist real-valued measures on the in�nite path
space of row-�nite k-graphs. One approach to constructing suchmeasures is to
�nd a vector � ∈ ℝΛ0

>0
which is an eigenvector for each adjacency matrix Ai of

Λ. Given such an eigenvector, write �i for the eigenvalue of Ai with respect to
�, and for n = (n1, … , nk) ∈ ℤk, write �n ∶= �

n1
1
⋯�

nk

k
. Then, if we de�ne

�(Z(�)) ∶= �−d(�)�s(�),

one can compute that � is countably additive on the algebra S of �nite unions of
cylinder sets, and hence, by Theorem 2.17, induces a measure on the �-algebra
generated by the cylinder sets. This is the content of the next theorem, which
arose from discussions with Sooran Kang.

Theorem 2.20. Suppose that Λ is a row-�nite k-graph with no sources. If there
exists a vector � ∈ ℝΛ0

>0
which is an eigenvector for each adjacency matrixAi ofΛ,

3Ash [2] uses the word “�eld” instead of “algebra.”



520 CARLA FARSI, ELIZABETH GILLASPY AND DANIEL GONÇALVES

then the formula
�(Z(�)) ∶= �−d(�)�s(�) (11)

de�nes a measure on the Borel �-algebra of Λ∞.

Proof. Wewill �rst show that � is well de�ned and �nitely additive on cylinder
sets; that is, if Z(�) = ⊔

p

i=1
Z(�i) then

∑p

i=1
�−d(�i)�s(�i) = �−d(�)�s(�).

Suppose Z(�) = ⊔
p

i=1
Z(�i). Since Z(�) = ⊔

p

i=1
Z(�i), MCE(�, �i) ≠ ∅ for all

1 ≤ i ≤ p. (In fact, for any n ≥ d(�) ∨ d(�i) and for any �j
i
∈ s(�i)Λ

n−d(�i), the
fact that Z(�) = ⊔

p

i=1
Z(�i) implies that �i�

j

i
is an extension of �. Consequently,

there must exist a corresponding �j
i
∈ s(�)Λn−d(�) so that ��j

i
= �i�

j

i
. In other

words, for any n ≥ d(�) ∨ d(�i), there is a bijection between Λmin(�, �i) and
s(�i)Λ

n−d(�i).)
SinceΛ is row-�nite, for each i, the setΛmin(�, �i) is �nite; write its elements

as {(�j
i
, �

j

i
)}j∈J , where J is a �nite index set. Let

n = ∨i,jd(��
j

i
) = ∨i,jd(�i�

j

i
).

Then we have

Z(�) =

p⨆

i=1

⨆

(�
j

i
,�
j

i
)∈Λmin(�,�i)

⨆

�ij∈s(�
j

i
)Λ

n−d(��
j

i
)

Z(��
j

i
�ij).

Observe that, for each i, j, d(�i
j
�ij) = n−d(��i

j
)+d(�i

j
) = n−d(�). Moreover,

for anym ∈ ℕk, Z(�) = ⊔
∈s(�)ΛmZ(�
). Takingm = n − d(�) tells us that

⨆


∈s(�)Λm

Z(�
) = Z(�) =

p⨆

i=1

⨆

(�
j

i
,�
j

i
)∈Λmin(�,�i)

⨆

�ij∈s(�)i
j)Λ

n−d(��
j

i
)

Z(��
j

i
�ij). (12)

Since both sides of the above equality are disjoint unions of cylinder sets of the
same degree, the list of cylinder sets on the left must be precisely equal to the
list of cylinder sets on the right. That is, each cylinder set Z(�
) must equal
Z(��

j

i
�ij) for precisely one path �

j

i
�ij.

From the fact that � is an eigenvector for each adjacency matrix Ai with
eigenvalue �i, we easily compute that for anym ∈ ℕk,

�(Z(�)) =
∑


∈s(�)Λm

�(Z(�
)). (13)

It now follows from Equations (13) and (12) that

�(Z(�)) =

p∑

i=1

∑

(�
j

i
,�
j

i
)∈Λmin(�,�i)

∑

�ij∈s(�
j

i
)Λ

n−d(��
j

i
)

�(Z(��
j

i
�ij)). (14)
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Since ��j
i
= �i�

j

i
, we get

�(Z(�)) =

p∑

i=1

∑

(�
j

i
,�
j

i
)∈Λmin(�,�i)

∑

�ij∈s(�)i
j)Λ

n−d(�i�
j

i
)

�(Z(�i�
j

i
�ij)). (15)

On the other hand, for �xed 1 ≤ i ≤ p,

Z(�i) =
⨆

(�
j

i
,�
j

i
)∈Λmin(�,�i)

⨆

�ij∈s(�
j

i
)Λ

n−d(�i�
j

i
)

Z(�i�
j

i
�ij), (16)

where n = ∨i,jd(��
j

i
) = ∨i,jd(�i�

j

i
). Again, d(�j

i
�ij) = n − d(�i�

j

i
) + d(�

j

i
) =

n − d(�i) is the same for all �ij. In other words, we can apply Equation (13) to
�i instead of �, using the decomposition of Z(�i) from Equation (16) and setting
m = n − d(�i). It follows that

�(Z(�i)) =
∑

(�
j

i
,�
j

i
)∈Λmin(�,�i)

∑

�ij∈s(�
j

i
)Λ

n−d(�i�
j

i
)

�(Z(�i�
j

i
�ij)). (17)

Now combining (14), (15) and (17), we obtain

p∑

i=1

�(Z(�i)) =

p∑

i=1

∑

(�
j

i
,�
j

i
)∈Λmin(�,�i)

∑

�ij∈s(�
j

i
)Λ

n−d(�i�
j

i
)

�(Z(�i�
j

i
�ij))

=

p∑

i=1

∑

(�
j

i
,�
j

i
)∈Λmin(�,�i)

∑

�ij∈s(�
j

i
)Λ

n−d(��
j

i
)

�(Z(��
j

i
�ij))

= �(Z(�)).

In other words, � is indeed well-de�ned and �nitely additive on cylinder sets.
We now show that � is countably additive, and hence a measure on the al-

gebra S of �nite disjoint unions of cylinder sets. By construction, if S ∈ S and
S = ⊔i∈ℕZ(�i), we are de�ning �(S) =

∑

i
�(Z(�i)). To see that � is a measure,

we merely need to check that � is additive on countable disjoint unions. Thus,
suppose

⨆

i∈ℕ
Z(�i) =

⨆

j∈ℕ
Z(�j). For each �xed i ∈ ℕ we have

Z(�i) =
⨆

j∈ℕ

Z(�i) ∩ Z(�j), and Z(�i) ∩ Z(�j) =
⨆

�∈MCE(�i ,�j)
Z(�).

The fact that Λ is row-�nite ensures that MCE(�i, �j) is �nite for all i, j, and
also that each cylinder set Z(�) is compact and open. It follows that, since
⨆

j∈ℕ
Z(�j) is a cover for Z(�i), there are only �nitely many indices j such that

Z(�i) ∩ Z(�j) ≠ ∅.
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Therefore, using the �nite additivity of �, we have
∑

i∈ℕ

�(Z(�i)) =
∑

i∈ℕ

∑

j∈ℕ

�(Z(�i) ∩ Z(�j))

=
∑

i,j∈ℕ

∑

�∈MCE(�i ,�j)
�(Z(�))

=
∑

j∈ℕ

�(Z(�j)),

as desired. Note that we are able to interchange the order of the summation
over i and j since, for �xed i (or equivalently for �xed j), only �nitely many of
the intersections Z(�i) ∩ Z(�j) are non-empty.

Now, we use Carathéodory’s Theorem (Theorem 2.17) to extend � uniquely
to give ameasure (also denoted �) on the Borel �-algebra ofΛ∞, as desired. �

The above analysis begs the question ofwhen the adjacencymatrices ofΛ ad-
mit a common positive eigenvector �. WhenΛ is �nite and strongly connected,
[35, Corollary 4.2] guarantees that a unique such eigenvector (of l1 norm 1)
exists. For row-�nite (not necessarily �nite) k-graphs, if k = 1, Thomsen iden-
ti�ed in [49]when an in�nite directed graphΛwill admit such an eigenvector �.
While we anticipate that much of Thomsen’s analysis could be extended to the
setting of higher-rank graphs, for the moment we simply present one example
where this can be done.

Example 2.21. De�ne matrices

A1 ∶=

⎛

⎜
⎜

⎝

1 0 0 1

1 0 0 1

0 1 1 0

0 1 1 0

⎞

⎟
⎟

⎠

, A2 ∶=

⎛

⎜
⎜

⎝

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

⎞

⎟
⎟

⎠

Let I denote the 4 × 4 identity matrix, and de�ne

S ∶=

⎛

⎜
⎜

⎝

A1 I 0 0 0 …

I A1 I 0 0 …

0 I A1 I 0 …

⋮ ⋱ …

⎞

⎟
⎟

⎠

, T ∶=

⎛

⎜
⎜

⎝

A2 I 0 0 0 …

I A2 I 0 0 …

0 I A2 I 0 …

⋮ ⋱ …

⎞

⎟
⎟

⎠

Let Λ be the in�nite 2-graph with vertex matrices S, T. Notice that Λ consists
of countably many copies {Γn}n∈ℕ of the Ledrappier 2-graph Γ (cf. Example 5.4
of [22]); consecutive copies are linked by four “forward” edges and four “back-
ward” edges of each color. Moreover, the vector � = (14, 24, 34, 44, 54, …) given
by �4l+m = l + 1 (if 0 ≤ m ≤ 3) is an eigenvector for both S and T, with
eigenvalue 4.

Thus, using the Carathéodory/Kolmogorov Extension Theorem (Theorem
2.17 above) we obtain a measure � on Λ∞ which extends the measure de�ned
on cylinder sets by

�(Z(�)) = (4, 4)−d(�) �s(�), ∀� ∈ Λ.
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3. Monicity
Themain results of this section are Theorem 3.6 and Theorem 3.8, which de-

scribe when a Λ-projective representation is equivalent to one arising from the
in�nite path space of Λ. Theorem 3.6 gives a representation-theoretic descrip-
tion, while Theorem 3.8 explains the equivalence at the level of the measure
space (X, �) underlying theΛ-projective representation. In both cases, versions
of these results were known for �nite k-graphs, but Theorem 3.8 is stronger
than the previously established results, even in the �nite case. We conclude this
section by providing a necessary condition for a Λ-projective representation to
be monic in Proposition 3.9, and we discuss the relationship of this condition
to the existence of cycles without entry and their higher-rank generalizations.

We �rst introduce, given a representation of C∗(Λ), an associated projection-
valuedmeasure onΛ∞,whichwill prove to be an invaluable tool in this section.

Enumerate the vertices of the k-graph, say {vi}i∈ℕ. Recall that the �-algebra
A of the disjoint union Λ∞ =

⨆

n∈ℕ
vnΛ

∞ is de�ned to be

A =
{
A ⊆ Λ∞ such that A ∩ vjΛ

∞ Borel, ∀j ∈ ℕ
}
.

3.1. Projection-valued measures. Lemma 2.18 is central to the proof of the
following Proposition.

Proposition 3.1. Let Λ be a row-�nite k-graph with no sources. Given a repre-
sentation � ∶ C∗(Λ) → ℋ, {�(s�) = t�}�∈Λ, of a k-graph C∗-algebra C∗(Λ) on a
separable Hilbert spaceℋ, there is a unique regular projection-valued measure P
on the Borel �-algebra ℬo(Λ

∞) of the in�nite path space Λ∞ which is de�ned on
cylinder sets by

P(Z(�)) = t�t
∗

�
for all � ∈ Λ. (18)

Moreover, the restriction � of the representation {t�}�∈Λ to the subalgebra C0(Λ∞)
is given by

�(f) = ∫
Λ∞

f(x)dP(x), ∀f ∈ C0(Λ
∞). (19)

Proof. First wewill deal with the compact spectrum case by restricting to vΛ∞,
where v ∈ Λ0.

Denote by S the algebra of �nite unions of cylinder sets {Z(�) ∶ � ∈ vΛ}.
GivenA ∈ S, write it as a �nite union of disjoint cylinder sets (this can be done
by Lemma 2.19), say A =

⨆n

i=1
Z(�i), and de�ne P(A) =

∑n

i=1
t�i t

∗

�i
. Without

loss of generality, since Λ is row-�nite and source-free, we may assume that
each �i has the same degree. Thus, (CK4) guarantees that the projections mak-
ing up P(A) are mutually orthogonal, so that P(A) is a projection for any such
A.

Next we prove that P is well de�ned (and hence a projection-valuedmeasure
on S). Suppose that A can be written in two ways as a �nite disjoint union of
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cylinder sets, A =
⨆
Z(�i) =

⨆
Z(�j). Then for each �xed i ∈ ℕ we have

Z(�i) =
⨆

j

Z(�i) ∩ Z(�j),

and that
Z(�i) ∩ Z(�j) =

⨆

�∈MCE(�i ,�j)
Z(�).

The fact that Λ is row-�nite ensures that MCE(�i, �j) is �nite for all i, j.
Setmi =

⋁

j
d(�i)∨d(�j) ∈ ℕk to be the coordinate-wisemaximumdegree of

all elements in {MCE(�i, �j)}j, and write ni,j = mi − (d(�i) ∨ d(�j)) ∈ ℕk. Note
that since

⨆

i
Z(�i) =

⨆

j
Z(�j), we in particular have that Z(�i) ⊆

⨆

j
Z(�j).

Thus every � ∈ s(�i)Λ
mi−d(�i)must satisfyZ(�i�) ⊆

⨆

j
Z(�j). By the de�nition

ofmi, we then have that �i� = �� for a unique � ∈ MCE(�i, �j), � ∈ s(�)Λni,j .

Moreover, if � ∈ MCE(�i, �j), � ∈ s(�)Λni,j then the fact that � extends �i and
our choice of the degrees of �, � imply that �� = �i� for some� ∈ s(�i)Λ

mi−d(�i).
Since t� is a partial isometry for all � ∈ Λ, it follows by (CK3) that

t� = t�t
∗

�
t� = t��(ss(�)) = t�

∑

�∈s(�)Λn

�(s�s
∗

�
) =

∑

�∈s(�)Λn

t��t
∗

�

for any n ∈ ℕk. It now follows by using (CK3), (CK4), and (CK2) that

P(
⨆

i

Z(�i)) =
∑

i

t�i t
∗

�i
=

∑

i

t�i

⎛

⎜

⎝

∑

�∈s(�i)Λ
mi−d(�i )

t�t
∗
�

⎞

⎟

⎠

t∗
�i

=
∑

i

∑

�∈s(�i)Λ
mi−d(�i )

t�i�t
∗

�i�

=
∑

i

∑

j

∑

�∈MCE(�i ,�j)

∑

�∈s(�)Λ
ni,j

t��t
∗

��
=

∑

i

∑

j

∑

�∈MCE(�i ,�j)
t�t

∗

�
.

Since all of the sums in question are �nite, we can rearrange the order of sum-
mation; then, by a symmetric argument to the one given above (replacing mi

with nj =
⋁

i
d(�j) ∨ d(�i) and � ∈ s(�i)Λ

mi−d(�i) with 
 ∈ s(�j)Λ
nj−d(�j)) we

see that

P(
⨆

i

Z(�i)) =
∑

j

∑

i

∑

�∈MCE(�i ,�j)
t�t

∗

�
=

∑

j

t�j t
∗
�j
= P(

⨆

j

Z(�j)).

ByLemma2.18P extends to a uniquemeasure on theBorel�-algebra of vΛ∞.
Now enumerate the vertices ofΛ, say {vi}i∈ℕ. Recall that the �-algebraA of the
disjoint union Λ∞ =

⨆

n∈ℕ
vnΛ

∞ is de�ned to be

A =
{
A ⊆ Λ∞ such that A ∩ vjΛ

∞ Borel, ∀j ∈ ℕ
}
.

De�ne the wanted projection-valued measure P on Λ∞ by
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P(A) =
∑

j

P(A ∩ vjΛ
∞). (20)

Note that P(A) =
∑

j
P(A ∩ vjΛ

∞) converges in the weak or strong operator
topologies.

Moreover, if we take a compact set C ⊆ Λ∞ Borel, then C is included in
a �nite union of the sets vjΛ∞, and so the projection-valued measure de�ned
in Equation (20), when evaluated at C, coincides with the projection-valued
measure coming from taking disjoint unions of �nitely many vjΛ∞ in this case.
The uniqueness of the measure follows from the uniqueness of the extension
to each ℬo(vnΛ

∞), and from the fact that every operator on L2(Λ∞) must be
of the form given in Equation (20), since the spaces L2(vnΛ∞) are orthogonal.
The regularity of the measure P follows from the fact that Λ∞ is �-compact
and metrizable, so all Borel sets are Baire sets. Consequently, [3, Theorem 18]
implies that P is regular.

Next we show the integral description of the representation. Following [34,
Section 37], de�ne for f bounded

∫
Λ∞

f(x)dP(x) ∶= Af,

where Af ∈ B(ℋ) is the unique operator such that for all �, � ∈ ℋ, ⟨Af�, �⟩ =

∫
Λ∞

f(x)dP�,�(x), for the complex measure P�,� de�ned by

P�,�(Z(�)) = ⟨t�t
∗

�
�, �⟩. (21)

Note that our de�nition of Af ensures that for all 
 ∈ Λ,

A�Z(
)
= �(�Z(
)).

Suppose fn → f ∈ C0(Λ
∞) and fn =

∑kn

i=1
�n
i
�Z(�i), where Z(�i) ∩ Z(�j) = ∅

for all i ≠ j. Then for all � > 0, there is N ∈ ℕ such that if n ≥ N we have
sup{|f(x)| ∶ x ∉

⋃kn

i=1
Z(�i)} < �} and sup{|f(x) − �n

i
| ∶ x ∈ Z(�i)} < �, and

so

|⟨(Af − Afn
)�, �⟩| =

||||||||
∫
Λ∞

(f − fn)dP�,�

||||||||
≤ �|⟨�, �⟩|.

Since our construction of fn ensures that Afn
= �(fn), the above inequality

becomes

|⟨(Af − �(fn))�, �⟩| ≤ �|⟨�, �⟩|

for all �, � ∈ ℋ and all n ≥ N. It follows that the sequence (�(fn))n∈ℕ con-
verges to Af in norm: if n ≥ N,



526 CARLA FARSI, ELIZABETH GILLASPY AND DANIEL GONÇALVES

‖Af − �(fn)‖
2 = ‖Af − Afn

‖2 = sup
‖�‖=1

‖(Af − Afn
)�‖2

= sup
‖�‖=1

⟨(Af − Afn
)�, (Af − Afn

)�⟩

≤ sup
‖�‖=1

sup
{
|⟨(Af − Afn

)�, �⟩| ∶ ‖�‖ = ‖(Af − Afn
)�‖

}

≤ sup
‖�‖=1

sup{�|⟨�, �⟩| ∶ ‖�‖ = ‖(Af − Afn
)�‖}

≤ sup
‖�‖=1

�‖�‖ ‖(Af − Afn
)�‖ = �‖Af − Afn

‖,

and consequently ‖Af − Afn
‖ ≤ � for large enough n.

On the other hand, the continuity of � implies that �(fn) → �(f). It follows
that

Af = ∫
Λ∞

f(x)dP(x) = �(f),

as claimed. �

Remark 3.2. In [17, Proposition 3.8] the existence of the projection valuedmea-
sure Pwas proved for �nite k-graphs using the Kolmogorov extension theorem.
Proposition 3.1 above gives an alternative approach to the proof of the existence
of this projection valued measure.

We now record some properties of the projection-valued measure associated
to a representation of C∗(Λ). The proofs are very similar to the proofs recorded
in [17] in the case of �nite k-graphs.

Proposition 3.3. ([17, Proposition 3.9 andDe�nition 4.1]) LetΛ be a row-�nite,
source-free k-graph, and �x a representation {t� ∶ � ∈ Λ} of C∗(Λ).

(a) For �, � ∈ Λ with s(�) = r(�), we have t�P(Z(�))t∗� = P(��(Z(�))) =

P(Z(��));
(b) For any �xed n ∈ ℕk, we have

∑

�∈s(�)Λn

t�P(�
−1

�
(Z(�)))t∗

�
= P(Z(�));

(c) For any �, � ∈ Λ with r(�) = r(�), we have t�P(�−1� (Z(�))) = P(Z(�))t�;
(d) When � ∈ Λn, we have t�P(Z(�)) = P((�n)−1(Z(�)))t�.

3.2. Monic representations. We now observe that the de�nition of monic
representation from [17], originally given in the context of �nite k-graphs, also
makes sense for row-�nite graphs.

De�nition 3.4. (cf. [17, De�nition 4.1]) Let Λ be a row-�nite k-graph with no
sources. A representation {t� ∶ � ∈ Λ} of Λ on a Hilbert space ℋ is called
monic if t� ≠ 0 for all � ∈ Λ, and there exists a vector � ∈ ℋ such that

span{t�t∗�� ∶ � ∈ Λ} = ℋ.
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We say that such a vector � is amonic vector for the representation.

Notice that a monic vector for {t�}� is a cyclic vector for the restriction � of
the representation generated by {t�}�∈Λ to C0(Λ∞). We therefore obtain a Borel
measure �� on Λ∞ given by

��(Z(�)) = ⟨�, P(Z(�))�⟩ = ⟨�, t�t
∗

�
�⟩. (22)

An important feature of a monic vector is that its support must have full
measure (cf. [17, Example 4.7]).

Proposition 3.5. Let (X, �) be a �-�nite measure space. If a Λ-projective repre-
sentation ofC∗(Λ) onL2(X, �) ismonic then the support of any of itsmonic vectors
� can di�er from X by at most a set of measure 0.

Proof. Recall that if {t� ∶ � ∈ Λ} is a Λ-projective representation, then t�t∗� =
M�R�

. Moreover, the support of any function in span{�R�� ∶ � ∈ Λ} is con-
tained in the support of �. So, if X = supp(�) ⊔ S for a set S with positive
measure, the function �A, where A ⊆ S is any measurable set of �nite pos-
itive measure in the complement of the support of �, is not in span{�R�� ∶

� ∈ Λ}. Consequently, {t�}� cannot be a monic Λ-projective representation if
S = X∖supp(�) has positive measure. �

Note that the hypothesis that (X, �) be �-�nite is necessary to guarantee the
existence of a setA as in the above proof. If we assume �(Rv) < ∞ for all v then
�-�niteness is automatic.

The following theorem is the main result of this section, which generalizes
the �nite case given in [17, Theorem 4.2]. The condition �(Z(vn)) < ∞ for all
n in the second part of the theorem below cannot be removed, see Remark 3.7.

Theorem 3.6. Let Λ be a row-�nite k-graph with no sources. If � ∶ C∗(Λ) →

ℋ, with �(s�) = t�, is a monic representation of C∗(Λ) on a Hilbert space ℋ,
then {t�}�∈Λ is unitarily equivalent to a representation {S�}�∈Λ associated to a
Λ-projective system on (Λ∞, ��) associated to the standard coding and pre�xing
maps �n, �� of De�nition 2.4.

Conversely, if we have a representation� ofC∗(Λ) onL2(Λ∞, �)with�(Z(v)) <
∞ for all v ∈ Λ0, which arises from a Λ-projective system associated to the stan-
dard coding and pre�xing maps �n, ��, then the representation is monic, and
L2(Λ∞, �) is isometric with L2(Λ∞, ��).

Proof. The proof is very similar to the proof of [17, Theorem 4.2], and because
of that we will only give a quick sketch of it, which highlights the di�erences
between the �nite and row-�nite cases. The construction of a Λ-projective sys-
tem on Λ∞ from a monic representation � proceeds exactly as in [17, Theorem
4.2]. First, one de�nes the measure �� on cylinder sets Z(�) ⊆ Λ∞ by

��(Z(�)) ∶= ⟨�, �(�Z(�))�⟩,

where � is the cyclic vector for �. We use Caratheéodory’s theorem to extend
�� to a measure on Λ∞. Then the proof of [17, Theorem 4.2] can be followed
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to construct a Λ-projective system {f�}�∈Λ associated to the usual coding and
pre�xingmaps {�n, ��}n,� onΛ∞, such that the a�liatedΛ-projective represen-
tation is immediately seen to be unitarily equivalent to �.

For the converse, suppose we have a representation � of C∗(Λ) on L2(Λ∞, �)
which arises from a Λ-projective system. Then, in particular,

�(s�s
∗

�
) = M�Z(�)

is the operator of multiplication by �Z(�) ∈ L2(Λ∞, �).
Enumerate the vertices in Λ0 as {vn}n∈ℕ and de�ne

� =
∑

vn∈Λ
0

�Z(vn)

n
√
�(Z(vn))

∈ L2(Λ∞, �).

(Note that �(Z(v)) > 0 for all v by Condition (b) of De�nition 2.8.) Then � is
cyclic for C0(Λ∞). To see this, it su�ces to show that �Z(�) ∈ �(C0(Λ

∞))(�) for
all � ∈ Λ. Given � ∈ Λ with r(�) = vn, we compute:

�(n

√

�(Z(vn))�Z(�))� = n

√

�(Z(vn))�(s�s
∗

�
)� = �Z(�),

since Z(�) ∩ Z(v) ≠ ∅ only when v = r(�). The fact that L2(Λ∞, �) is isometric
with L2(Λ∞, ��) now follows from the �rst part of the proof. �

Remark 3.7. ,
(1) In the proof of the converse direction above, if �(Λ∞) < ∞ then we

could alternatively take � = �Λ∞ to be our cyclic vector.
(2) As shown in the proof above, the measure �� on Λ∞ associated to a

monic representation � ∶ C∗(Λ) → ℋ withmonic vector �must satisfy

��(Z(�)) = ⟨�, �(s�s
∗

�
)�⟩ℋ < ∞, ∀� ∈ Λ.

Additionally,ℋ is isometric to L2(Λ∞, ��) (see the proof of [17, Theo-
rem4.2]). If in particularℋ = L2(Λ∞, �), thenL2(Λ∞, �) andL2(Λ∞, ��)
are isometric, and so�(Z(�)) = ��(Z(�)) < ∞, ∀� ∈ Λ ⟺ �(Z(v)) =

��(Z(v)) < ∞. This shows that �(Z(v)) = ��(Z(v)) < ∞ is a necessary
condition for the monicity of a representation � ∶ C∗(Λ) → L2(Λ∞, �).

Next we extend to row-�nite graphs [17, Theorem 4.5], which shows that a
Λ-semibranching system on (X, �) induces a monic representation of C∗(Λ),
with monic vector the characteristic function of the whole space, if and only if
the associated range sets generate the �-algebra ℱ of X. We also improve the
aforementioned theorem by dropping the condition on the monic vector.

The following Theorem is the only result in this paper which depends explic-
itly on the �-algebraℱ, so for this result only, we denote the associated Hilbert
space by L2(X,ℱ, �).

Theorem 3.8. Let Λ be a row-�nite, source-free k-graph and let {t�}�∈Λ be a Λ-
semibranching representation of C∗(Λ) on L2(X,ℱ, �) with �(X) < ∞, where ℱ
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denotes the �-algebra onX. Letℛ be the collection of sets which are modi�cations
of range sets R� by sets of measure zero; that is, each element Y ∈ ℛ has the form

Y = R� ∪ S or Y = R�∖S

for some set S of measure zero. Let �(ℛ) be the �-algebra generated by ℛ. The
representation {t�}�∈Λ is monic if and only if �(ℛ) = ℱ. In particular, for amonic
Λ-semibranching representation {t�}�∈Λ, the set

S ∶=
{ n∑

i=1

ait�i t
∗

�i

∑

k

1

k
�Dvk

| n ∈ ℕ, �i ∈ Λ, ai ∈ ℂ
}

=
{ n∑

i=1

ai�R�i
| n ∈ ℕ, �i ∈ Λ, ai ∈ ℂ

}

is dense in L2(X,ℱ, �).

Proof. Observe �rst that, if � ∈ vkΛ, then for any Λ-semibranching represen-
tation {t�}�∈Λ, Remark 2.13 establishes that

t�t
∗

�

∑

k

1

k
�Dvk

= M�R�

∑

k

1

k
�Dvk

=
1

k
�R� .

In other words, the two descriptions of S given in the statement of the theorem
are equivalent.

For the forward implication, suppose that the Λ-semibranching representa-
tion {t�}�∈Λ is monic and that � is a monic vector for the representation. By
Proposition 3.5, the support of � is equal to X a.e.. Moreover, Remark 2.13 es-
tablishes that

M ∶= span{t�t∗�(�) ∶ � ∈ Λ} = span{�R�� ∶ � ∈ Λ},

which is dense in L2(X,ℱ, �). Furthermore, the support of any function in
M belongs to �(ℛ) since the support of � is X a.e.. Therefore for any f ∈

L2(X,ℱ, �) there is a sequence (fj)j, with fj ∈ M, such that

lim
j→∞

∫
X

|fj − f|2 d� = 0.

In particular, (fj) → f in measure. The rest of the proof follows now exactly
as in the proof of Theorem 4.5 in [17].

For the converse, suppose �(ℛ) = ℱ; we will show that �X is a monic
vector for the representation by showing that S is dense in L2(X,ℱ, �). Fix
f ∈ L2(X, �(ℛ), �) and � > 0. Choose a simple function � =

∑n

i=1
ai�Xi , with

Xi ∈ �(ℛ), such that ∫
X
|�−f|2d� < �, and setA ∶= max |ai|. By [12, Lemma

A.2.1(ii)], for each i, there is an element Bi of the algebra ℛ̃ of sets generated by
ℛ such that �(Bi∆Xi) <

�

n(n−1)A2
. That is, each Bi is a �nite union of elements

of ℛ, so for each i there exists a �nite collection {R�ij }j of range sets such that
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�
(
Bi∆(∪jR�ij )

)
= 0. In other words, if we de�ne  =

∑n

i=1
ai�Bi , then  ∈ S.

Moreover,

∫
X

| − �|2 d� = ∫
X

|||||||||

∑

i

ai(�Bi∖Xi − �Xi∖Bi )

|||||||||

2

d� ≤ ∫ (
∑

i

|ai|�Xi∆Bi)

2

d�

=
∑

i

∫
Xi∆Bi

|ai|
2 d� + 2

∑

i≠j

|ai| |aj|�((Xi∆Bi) ∩ (Xj∆Bj)) < 2�.

The Cauchy-Schwarz inequality now implies that

∫
X

| − f|2 d� ≤ ∫
X

(| − �| + |� − f|)2 d�

≤ ∫
X

| − �|2 d� + ∫
X

|� − f|2 d� + 2 ∫
X

|� −  | |� − f| d�

< 2� + � + 2
√
2�.

It follows that S is dense in L2(X,ℱ, �) as claimed. �

We conclude this section with a necessary condition for monicity of a repre-
sentation of a k-graph C∗-algebra.

Proposition 3.9. Let Λ be a row-�nite source-free k-graph and �x a Λ-semi-
branching function system on a �-�nite measure space (X, �). Suppose that a
vertex v of Λ satis�es

∀� ∈ vΛ ∶ R� = Rv� = Dv. (23)

If there is a measurable subset Xv of Dv with 0 < �(Xv) < �(Dv), then no Λ-
projective representation arising from this Λ-semibranching function system will
be monic.

Proof. Let {t�}�∈Λ be a Λ-projective representation of C∗(Λ) on L2(X, �), and
write� for the induced representation ofC0(Λ∞). Recall fromRemark 2.13 that

t�t
∗

�
(f) = �(�Z(�))(f) = �R�f

for any �nite path � ∈ Λ and any f ∈ L2(X, �).
Suppose that v and Xv ⊆ Dv are as in the statement of the theorem. We will

show that no vector � ∈ L2(X, �) can be monic. Recall from Proposition 3.5
that if � is monic for � then X∖supp(�) has measure zero. Choose, therefore,
� ∈ L2(X, �) with a.e. full support. Let

M = span{�R�� ∶ � ∈ Λ} = span{t�t∗�(�)} = �(C0(Λ
∞))(�).

Equation (23) implies that, if r(�) = v, then �R��|Dv = �|Dv . So if f ∈ M then
the support of f|Dv is either Dv or has measure zero. Therefore �Xv ∉ M and
hence � is not monic. �
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Remark 3.10. By De�nition 2.8, if we have a Λ-semibranching function system
on (X, �), then for every �xedm ∈ ℕk,

Dv =
⋃

�∈vΛm

R�,

and each R� has positive measure. It follows that Equation (23) is satis�ed i�

For everym ∈ ℕk there is precisely one path of degreem having range v.
(24)

De�nition3.11. In a directed graph (1-graph)E, a cycle is a �nite path e1e2⋯en
with s(en) = r(e1). We say that a cycle has an entrance if there is an i ≤ n and
an edge e with r(e) = s(ei) but e ≠ ei+1.

Corollary 3.12. LetE be a row-�nite source-free directed graph which contains a
cycle without entrance, and let (X, �) be �-�nite. If a Λ-projective representation
of C∗(E) on L2(X, �) is monic, then for every vertex v lying on a cycle without
entrance, Dv has no measurable subsets Xv with 0 < �(Xv) < �(Dv).

Proof. By de�nition, if v lies on a cycle without entrance, then v satis�es Con-
dition (24). The result now follows from Proposition 3.9. �

Remark 3.13. In [17, Example 4.7], the authors present an example of a Λ-
semi-branching representation associated to a 1-graph, on L2([0, 1]) (with usual
Lebesgue measure), such that the vector �[0,1] is not monic. Indeed, in that
graph, there is a vertex v = v2 which supports a loop with no entrance, such
that Dv = (1∕2, 1]. Thus, the corollary above shows that the representation
constructed in [17, Example 4.7] cannot be monic, and has no monic vectors.

Remark 3.14. Although Evans and Sims generalized the concept of “cycle with-
out entrance” to higher-rank graphs in [16] (see [16, Remark 3.6]), we do not
have an analogue of Corollary 3.12 for higher-rank cycles without entrance:
the 2-graph of [16, Example 6.1] contains a generalized cycle without entrance
but does not satisfy Condition (24). The cycline pairs introduced in [6, De�ni-
tion 4.3] can also be viewed as a generalization of the notion of “cycles with-
out entrance” to higher-rank graphs – by [6, Remark 4.9], a generalized cycle
without entrance is a cycline pair if every extension of that generalized cycle
without entrance is also a generalized cycle without entrance. However, even
this stronger condition is not enough to guarantee Condition (24). Section 5.11
of [40] (cf. also [23, Section 5.1]) exhibits a 2-graph with one vertex for which
Condition (24) fails, but which has nontrivial cycline pairs such as (e1, f1).

4. Irreducibility
In this section, we describe a variety of necessary and su�cient conditions

for aΛ-projective representation to be irreducible. We begin by de�ning the no-
tions of ergodicity that we will use to analyze the irreducibility of Λ-projective
representations, and describing them in both measure- and operator-theoretic
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terms. Proposition 4.5 then identi�es the commutant of a Λ-projective repre-
sentation on (X, �) in terms of invariant functions on X.

Section 4.1 highlights three necessary conditions for a Λ-projective repre-
sentation to be irreducible, but shows by example that these conditions are not
su�cient. However, in Section 4.2 we identify a variety of conditions under
which a Λ-projective representation on the in�nite path space Λ∞ must be ir-
reducible. The �nal subsection, Section 4.3, includes a variety of other results
related to the irreducibility of Λ-semibranching representations.

De�nition 4.1. Let (X, �) be a measure space. A function T ∶ X → X is
ergodic with respect to � if whenever �(A∆T−1(A)) = 0 (i.e., A is invariant as
in De�nition 2.15) we have either �(A) = 0 or �(X∖A) = 0. A family of maps
{Ti}i∈I is jointly ergodic with respect to � if whenever �(A∆T−1

i
(A)) = 0 for all

i, we have either �(A) = 0 or �(X∖A) = 0.

Remark 4.2. If�(X) < ∞, this de�nition agreeswith the de�nition of ergodicity
used in earlier papers such as [17].

De�nition 4.3. Let (X, �) be a measure space, and T ∶ X → X a function. A
measurable function f is invariant with respect to T if f◦T = f a.e.. We say
that f is jointly invariant with respect to a family of maps {Ti}i∈I if f◦Ti = f

a.e.. for all i.

The following lemma is undoubtedly well-known to experts; we include it
here for completeness and ease of reference.

Lemma 4.4. Let (X, �) be ameasure space, and �xT ∶ X → X andTi ∶ X → X,
i ∈ I. Then,

(a) T is ergodic if, and only if, every invariant measurable function f ∶ X →

ℂ is constant a.e..
(b) The family {Ti} is jointly ergodic if, and only if, every jointly invariantmea-

surable function f ∶ X → ℂ is constant a.e..

Proof. We prove (a) and leave the proof of (b) to the reader, as it is essentially
the same.

Suppose �rst that every invariant measurable function on X is constant. We
choose A ⊆ X such that �(A∆T−1(A)) = 0. Then �A◦T = �A a.e. and so �A is
constant a.e.. Therefore either �A = 0 a.e. (and so �(A) = 0) or �A = 1 a.e., in
which case �(Ac) = 0.

Suppose now that T is ergodic and let f be a measurable invariant function.
For each r ∈ ℝ, set
Ir = {x ∈ X ∶ Imf(x) > r}, Rr = {x ∈ X ∶ Ref(x) > r}, Er ∈ {Ir, Rr}.

Notice that each Er, for r ∈ ℝ, is measurable and invariant with respect to T,
and that if s > r then Is ⊆ Ir and Rs ⊆ Rr. Since T is ergodic, we obtain that, for
all r, �(Er) = 0 or �(X ⧵ Er) = 0. Before we proceed, we quickly observe that a
real-valued function f is constant if, and only if, there exists C such that for all
r ≥ C, �(Rr) = 0, and for all r < C, �(X ⧵ Rr) = 0.
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Now, let KI = sup{r ∶ �(Ir) ≠ 0} and KR = sup{r ∶ �(Rr) ≠ 0}. First,
we will show that KI < ∞; a similar argument will also establish that KR <

∞. If x ∈
⋂

n∈ℕ
In then f(x) = +∞. Consequently, �(

⋂

n∈ℕ
In) = 0 (in fact

⋂

n∈ℕ
In = ∅). As f is invariant and T is ergodic, for every r, either �(Ir) =

0 or �(X ⧵ Ir) = 0. Notice that if �(Ir) = 0 for some r then �(Is) = 0 for
all s > r and in this case KI is �nite. Suppose that �(X ⧵ Ir) = 0 for all r.
Then �

(
X ⧵

⋂

n∈ℕ
In

)
= �

(⋃

n∈ℕ
X ⧵ In

)
= 0, which implies that �(X) = 0, a

contradiction.
Moreover, �(IKI ) = 0, since IKI =

⋃

n∈ℕ
I
KI+

1

n

and �(I
KI+

1

n

) = 0 for all n. We

now use the characterization of a constant function given above. For r ≥ KI we
have that �(Ir) ≤ �(IKI ) = 0 and, for r < KI , there exists r1 such that r < r1 <

KI and �(X ⧵ Ir1) = 0 (from the de�nition of sup and the fact that the invariant
set Ir1 satis�es�(Ir1) ≠ 0). Since Ir1 ⊆ Ir, this implies that�(X⧵Ir) = 0. In other
words, whenever r < KI , there is a set of full measure on which Imf(x) > r. It
follows that Im(f) = KI a.e.. A similar argument will show that Re(f) = KR
a.e., completing the proof that f = KR + iKI is constant a.e.. �

One of the equivalent ways to describe irreducibility of a representation is
via its commutant. Therefore, we give a description of the commutant of a
representation associated to a Λ-projective system below.

Proposition 4.5. Let Λ be a row-�nite k-graph with no sources. Suppose that
we have a Λ-projective system on a locally compact, �-compact, Hausdor� space
(X, �), where � is a Radon measure, and let {T� ∶ � ∈ Λ} be the associated
representation of C∗(Λ) on L2(X, �). Then, the commutant of the operators {T� ∶
� ∈ Λ} consists of multiplication operators, and contains the set of multiplication
operators by functions ℎ with ℎ◦�n = ℎ �-a.e., for all n ∈ ℕk.

Proof. LetT ∈ B(L2(X, �)) be an operator in the commutant of theΛ-projective
representation. ThenT commutes with the representation� of the abelian sub-
algebra C0(Λ∞) of C∗(Λ), where

�(�Z(�)) = T�T
∗

�
= M�R�

.

By [1, Theorem 6.3.4 and Proposition 6.3.6], the fact that � is a Radon measure
on the locally compact, �-compact, Hausdor� spaceX, enables us to invoke the
proof of [42, Proposition 4.7.6] to conclude that T = Mℎ, for some ℎ ∈ L∞(X).
It is easy to check that any multiplication operator T = Mℎ, where ℎ◦�n = ℎ

a.e. for all n ∈ ℕk, commutes with each operator T�.
�

4.1. Necessary conditions for irreducibility. In this subsectionwe describe
three necessary conditions for the irreducibility of a Λ-projective representa-
tion of C∗(Λ) arising fromΛ-projective systems. Proposition 4.6 tells us that all
irreducible Λ-projective representations arise from Λ-semibranching function
systems with jointly ergodic coding maps. From this, we deduce Theorem 4.8,
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which states that only co�nal k-graphs admit irreducibleΛ-semibranching rep-
resentations. Finally, Proposition 4.13 describes how the functions f� associ-
ated to an irreducibleΛ-projective representationmust interact. We also present
a variety of examples, indicating the insu�ciency of these necessary conditions
to guarantee irreducibility.

Proposition 4.6. LetΛ be a row-�nite k-graph with no sources. Suppose that we
have aΛ-projective system on (X, �), and let {T� ∶ � ∈ Λ} be the associated repre-
sentation of C∗(Λ) on L2(X, �). If the representation {T� ∶ � ∈ Λ} is irreducible,
then the coding maps �n are jointly ergodic with respect to the measure �.

Proof. Suppose the representation generated by {T�}� is irreducible, and sup-
poseA ⊆ X satis�es �(A∆(�n)−1(A)) = 0 for all n. Then both (�n)−1(A)∖A and
A∖(�n)−1(A) have measure zero, for any n ∈ ℕk, and consequently

M�A◦�
n = M�(�n)−1(A)

= M�(�n)−1(A)∩A
= M�A

.

It now follows from the de�nition of the operators T� that, for all � ∈ Λ,M�A

commutes with T� and T∗� . To see this, recall that

T�M�A
(f) = f� ⋅ (�A◦�

d(�)) ⋅ (f◦�d(�))

whileM�A
T�(f) = �A ⋅ f� ⋅ (f◦�

d(�)), so since f� is supported on R� it su�ces
to show that �A∩R� = �R�(�A◦�

d(�)). Observe that

�R�(�A◦�
d(�)) = ���(A),

and consequently it su�ces to show that �((A ∩ R�)∆��(A)) = 0.
By de�nition, (A ∩ R�)∆��(A) = {��(z) ∈ A ∶ z ∉ A} ∪ {��(z) ∉ A ∶ z ∈ A}.

Our hypothesis that A is invariant implies that

0 = �(A∆(�d(�))−1(A))

= �
(
{y ∈ A ∶ y ≠ ��(z) for any z ∈ A, d(�) = d(�)} ∪ {y ∉ A ∶ �d(�)(y) ∈ A}

)

Restricting the sets described in the previous equation to R� will not increase
their measure, so we also have

0 = �
(
{y ∈ A ∩ R� ∶ y ≠ ��(z) for any z ∈ A} ∪ {y ∈ R�∖A ∶ �d(�)(y) ∈ A}

)

= � ({��(z) ∈ A ∶ z ∉ A} ∪ {��(z) ∉ A ∶ z ∈ A})

by using the fact that �d(�)◦�� = id|Ds(�) a.e. and hence �� is injective a.e.. We
conclude that T� commutes withM�A

as claimed.
To see thatT∗

�
also commuteswithM�A

, weuse the fact thatT�M�A
= M�A

T�.
Thus, for any f, g ∈ L2(X, �),

⟨T�M�A
f, g⟩ = ⟨M�A

T�f, g⟩ = ⟨f, T∗
�
M�A

g⟩

asM�A
is self-adjoint. On the other hand, we also have

⟨T�M�A
f, g⟩ = ⟨f,M�A

T∗
�
g⟩,
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so for all f, g ∈ L2(X, �),

⟨f, (T∗
�
M�A

−M�A
T∗
�
)g⟩ = 0.

It follows that T∗
�
M�A

−M�A
T∗
�
= 0, soM�A

commutes with T∗
�
as well, for all

� ∈ Λ.
As the representation is irreducible, this implies that M�A

∈ ℂ1 = ℂM�X
.

SinceM�A
is a projection, it follows that either�(A) = 0 (ifM�A

= 0) or�(Ac) =

0 (ifM�A
= 1 = M�X

). Thus, the operators �n are jointly ergodic with respect
to the measure �. �

Next, we give an example that the converse of the above proposition does not
hold in general.

Example 4.7. Let E be the graph with one vertex v and one edge e. We will
build a semibranching function system for E on the set {0, 1} with counting
measure. Let Re = {0, 1} = Dv and de�ne the pre�xing map fe ∶ Dv → Re by
fe(x) = x + 1 mod 2. Then {Dv, Re, fe} is a branching system in the sense of
[27, De�nition 3.6]. By [27, Proposition 3.12 and Remark 3.11], this branching
system gives rise to a semibranching function system. Let � be the induced
representation of C∗(Λ) on l2({0, 1}). By Proposition 3.9 this representation is
not monic. Hence, Theorem 5.5 implies that � is not irreducible. Indeed l2{0}
and l2{1} are invariant subspaces of l2{0, 1}. On the other hand, there are no
nonempty proper subsets of {0, 1} which are invariant by all of the powers of
the coding map.

Theorem 4.8. Let Λ be a row-�nite k-graph with no sources. Suppose Λ is not
co�nal (De�nition 2.5). Then there are no irreducible representations of C∗(Λ)
arising from Λ-semibranching function systems.

Proof. Let x ∈ Λ∞ and v ∈ Λ0 be obtained from the fact that Λ is not co-
�nal. Given a Λ-semibranching function system {�n, ��} on (X, �), let A de-
note the smallest set which contains Rr(x) and is invariant with respect to all
the coding maps �n. Observe that �(A ∩ Rv) = 0 so, since �(Rv) > 0 and
�(A) ≥ �(Rr(x)) > 0, it follows from Proposition 4.6 that any representation
associated to a Λ-semibranching function system will be reducible. �

Remark 4.9. However, Λ-semibranching function systems on non-co�nal k-
graphs can give rise to irreducible representations if we restrict our attention
to a minimal �-invariant subset; see De�nition 4.17 and Theorem 4.20 below.

We now conclude this subsection by applying the work of Carlsen et al. [7]
on irreducible representations of k-graphs to the setting of Λ-projective repre-
sentations.

De�nition 4.10. Let Λ be a row-�nite source-free k-graph. Recall that a pair
(�, �) ∈ Λ × Λ is a cycline pair if s(�) = s(�) and �x = �x for all x ∈ Z(s(�)).
We set

Per(Λ) ∶= {d(�) − d(�) ∶ (�, �) cycline}.
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If Λ0 is amaximal tail— that is, for every v1, v2 ∈ Λ0 there isw ∈ Λ0 such that
v1Λw ≠ ∅ and v2Λw ≠ ∅— then [7, Theorem 4.2(1)] establishes that Per(Λ) is
a subgroup of ℤk.

Following [7], we set HPer(Λ) to be the set of vertices which realize all of
Per(Λ): that is,

HPer(Λ) = {v ∈ Λ0 ∶ if r(�) = v and ∃m ∈ ℕk: d(�) − m ∈ Per(Λ),
then ∃� ∈ vΛm s.t. (�, �) cycline}.

Observe that if (�, �) is a cycline pair then�d(�) = �d(�) onZ(�) = Z(�). How-
ever, we need not have �d(�) = �d(�) on an arbitrary Λ-semibranching function
system.

Example 4.11. Consider the following 1-graph Λ:

v1 v2e

g

f

De�ne a Λ-semibranching function system on [0, 1] (equipped with Lebesgue
measure) by setting Dv1 = (0, 1∕2) and Dv2 = (1∕2, 1), and de�ning

�e(x) = �g(x) =
x

2
, �f(x) =

3

2
− x.

The coding map is then given by �1(x) = {
2x, x ∈ (0, 1∕2)
3

2
− x, x ∈ (1∕2, 1).

One easily checks that the hypotheses of aΛ-semibranching function system
are satis�ed. Moreover, (f, v2) is a cycline pair, but �1 ≠ id on Rf ∩ Rv2 =

(1∕2, 1).

Proposition 4.12. In any Λ-semibranching function system, if (�, �) is a cycline
pair, then �(R�∆R�) = 0.

Proof. Suppose x ∈ R�. By de�nition, x = ��(y) for some y ∈ Ds(�) = Ds(�).
Letm = (d(�) ∨ d(�)) − d(�); by the de�nition of a Λ-semibranching function
system, we can write

Ds(�) =
⨆

�∈s(�)Λm

R�

modulo sets of measure zero. Therefore, without loss of generality, we may
assume y = ��(z) for some � ∈ s(�)Λm and some z ∈ Ds(�).

The fact that (�, �) is a cycline pair implies, in particular, that since d(��) =
d(�) ∨ d(�) ≥ d(�), we have �� = ��̃ for some �̃ ∈ s(�)Λ. Consequently, since
x = ��(y) = ���(z), we must have x = ���̃(z̃) for some z̃ ∈ R�̃. It follows that
x = ��(��̃(z̃)) ∈ R�, and so almost all x ∈ R� are also in R�, as claimed. �
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Proposition 4.13. Let Λ be a row-�nite, source-free k-graph and let {T�}�∈Λ be
a Λ-projective representation of C∗(Λ) on L2(X, �), with associated functions f�
de�ned on R�. If {T�}�∈Λ is irreducible and for every cycline pair (�, �) we have
�d(�) = �d(�) on R� ∩ R�, then there exists z ∈ Tk such that for every cycline pair
(�, �) with r(�) = r(�) ∈ HPer(Λ), we have

f�

f�
= zd(�)−d(�) on R� ∩ R�.

Proof. Suppose {T�}� is irreducible. As Tv = M�Rv
is nonzero for each v ∈ Λ0,

themaximal tailT invoked in [7, Theorem5.3(2)] is given in our case byT = Λ0.
Therefore, [7, Theorem 5.3(2)] implies that there exists z ∈ Tk (which imple-
ments a character of the periodicity group Per(Λ)) such that T� = zd(�)−d(�)T�
for all (�, �) as in the statement of the proposition. Moreover, if (�, �) is cycline,
then by Proposition 4.12, R� = R� a.e. and therefore f�, f� are de�ned and
nonzero on R� ∩ R�. From our hypothesis that �d(�) = �d(�) on this domain, it
follows that

T� = zd(�)−d(�)T� ⇔
f�

f�
= zd(�)−d(�) on R� ∩ R�. �

However, the converse of this proposition fails. In the discussion of the fol-
lowing example, we will interpret the 0th power of a loop � to mean the vertex
r(�).

Example 4.14. Consider the 1-graphΛ from Example 4.11. Observe that in this
case Λ∞ = {e∞, {engf∞}n∈ℕ, f

∞}, and that for allm, n ∈ ℕ,

Z(f) = Z(fm) = {f∞}; Z(en) = {e∞, {emgf∞}m≥n};

Z(eng) = Z(engfm) = {engf∞}.

Therefore, every in�nite path save for e∞ constitutes an clopen set, and so
the topology and the Borel �-algebra of Λ∞ is precisely the power set of Λ∞.
Moreover, the set of cycline pairs is {(gifm, gifn) ∶ i ∈ {0, 1},m, n ∈ ℕ}, so
Per(Λ) = ℤ. However, the set HPer(Λ) of vertices with maximal periodicity is
{v2}, since the paths en all have source v1 but do not appear in any cycline pair.

De�ne a measure � on Λ∞ by

�(Z(f)) = 1∕4; �(Z(eng)) =
1

2n+2
; �(Z(en)) =

1

4
+

1

2n+1
.

Observe that this measure gives �({e∞}) = 1∕4. Furthermore, (�n)−1({e∞}) =
{e∞} for all n, so �(�−1({e∞})∆{e∞}) = 0, but neither {e∞} nor Λ∞∖{e∞} has
measure zero. Theorem 3.12(b) of [17] (or Proposition 4.6 above) now implies
that any Λ-projective representation associated to (Λ∞, �) will fail to be irre-
ducible.

We now compute the Radon–Nikodym derivatives associated to the Λ-semi-
branching function system on (Λ∞, �) given by the usual coding and pre�xing
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maps. First, the fact that the cylinder sets Z(g) = Z(gfm) and Z(f) = Z(fm)

consist of single points makes it easy to compute that

Φg = Φgfm = 1 for allm ∈ ℕ; Φf = Φfm = 1 ∀ m ∈ ℕ.

However, Φe is not constant on its domain Z(v1):

Φe(e
∞) =

d(�◦�e)

d�
(e∞) = 1, but Φe(engf∞) =

1

2
.

In particular, if (for each �nite path �) we set f� = Φ
−1∕2

�
on its domain Z(�),

then for (�, �) = (fn, fm) cycline we have

f�

f�
=
ffn

ffm
= 1 = 1d(�)−d(�).

Thus, the conclusion of Proposition 4.13 holds but the hypothesis fails.

We conclude by observing that the irreducible representation �[f∞],1 that
Carlsen et al. [7] associate to the maximal tail {v1, v2}, the element 1 ∈ Tk,
and the co�nal path f∞ is, up to rescaling, our Λ-projective representation on
Λ∞∖{e∞}.

4.2. Su�cient conditions for irreducibility. In this subsectionwe show that,
although the necessary conditions for irreducibility described in the previous
subsection are not necessarily su�cient, forΛ-projective representations on the
in�nite path space of a k-graph the situation is di�erent. For example, we ob-
tain a converse to Proposition 4.6 in Theorem 4.15 below (with E = X = Λ∞).
If Λ has no sinks, then we obtain an alternative su�cient condition for irre-
ducibility in Theorem 4.20. Finally, we identify another su�cient condition in
Proposition 4.26 by relating the Λ-projective representation of C∗(Λ) on Λ∞ to
a representation of a related 1-graph. A variety of examples indicate that each
of these su�cient conditions has a di�erent domain of applicability.

Theorem 4.15. Let Λ be a row-�nite k-graph with no sources. Suppose that
the in�nite path space Λ∞ admits a Λ-projective system on (Λ∞, �), for some
Radon measure � with standard pre�xing maps {�� ∶ � ∈ Λ}, coding maps
{�n ∶ n ∈ ℕk}, and functions {f� ∶ � ∈ Λ} satisfying Conditions (a) and (b)
of De�nition 2.10, with the measure of all cylinder sets �nite. Let {T� ∶ � ∈ Λ}

be the operators given by Equation (7) of Proposition 2.11. Let E ⊆ Λ∞ satisfy the
hypotheses of Proposition 2.16, so that the restriction {TE

�
}�∈Λ of the Λ-projective

representation to L2(E, �) is again a Λ-projective representation. Then
(a) The commutant of the operators {TE

�
∶ � ∈ Λ} consists of multiplication

operators by functions ℎ with ℎ◦�n = ℎ, �E-a.e., for all n ∈ ℕk.
(b) If �n is ergodic with respect to �E for some n ∈ ℕk, then {TE

�
}�∈Λ is irre-

ducible.
(c) If {�n} is a jointly ergodic family with respect to �E , then {TE� }�∈Λ is irre-

ducible.
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Proof. First we prove (a). Proposition 4.5 implies that if T ∈ B(L2(Λ∞, �E))

is an operator in the commutant of the Λ-projective representation {TE
�
}�, then

T = Mℎ for some ℎ ∈ L∞(E, �). We will show that ℎ◦�n = ℎ a.e. for all n ∈ ℕk.
By Proposition 4.5, this completes the proof of (a).

Since T commutes with TE
�
for all � ∈ Λ, for any f ∈ L2(E, �) we have

T�Tf = TT�f, and consequently

ℎ f�|E (f◦�
n) = (ℎ◦�n)f�|E(f◦�

n) whenever d(�) = n, f ∈ L2(E, �).

Fix � ∈ Λn and consider f = �Z(s(�))∩E , which is a nonzero element of L2(E, �)
by hypothesis. The de�nition of a Λ-projective system and the above equation
combine to reveal that ℎ◦�n = ℎ, �E-a.e. on Z(�). Since Λ∞ =

⨆

�∈Λn
Z(�) for

any n ∈ ℕk, it follows that ℎ◦�n = ℎ a.e. on E.
For (b), choose T = Mℎ in the commutant of the representation {TE

�
}�, so

that ℎ = ℎ◦�n for all n. Ergodicity of one of the coding maps �n implies, by
item (a) of Lemma 4.4, that ℎ is constant, and so {TE

�
}� is irreducible.

Finally, (c) follows as (b) above, using item (b) of Lemma 4.4 this time. �

Remark 4.16. One can take E = Λ∞ in the previous Theorem; in this case, com-
bining Theorem 4.15 with Proposition 4.6, we have a necessary and su�cient
characterization of the irreducibility of a Λ-projective representation on Λ∞.

We obtain another su�cient condition for the irreducibility of the restric-
tion to L2(E, �) of the representation {T�}�∈Λ if, instead of requiring that �(E ∩
Z(v)) be nonzero for all vertices v, we ask that E satisfy the following de�ni-
tion. Recall that a �-measurable set E is invariant with respect to a function
T if �(E∆T−1(E)) = 0, and note that if E is invariant with respect to T, then
�(E ∩ T−1(E)) = �(E).

De�nition 4.17. Fix a Radon measure � on Λ∞. A Borel subset of non-zero
measure A ⊆ Λ∞ is �-invariant if A is invariant with respect to the standard
coding maps �n, for all n ∈ ℕk, i.e., �(A∆(�n)−1(A)) = 0, ∀n. A �-invariant
subset E ⊆ Λ∞ is minimal �-invariant if there is no �-invariant subset A of E
with �(A∆E) ≠ 0.

To obtain our next results, we restrict our attention to higher rank graphs
with no sinks – that is, for every 1 ≤ i ≤ k, and for every v ∈ Λ0, we have
Λeiv ≠ ∅. If Λ has no sinks then, for every n, the coding map �n ∶ Λ∞ → Λ∞ is
surjective.

Lemma 4.18. Suppose Λ is a row-�nite, source-free higher-rank graph with no
sinks.

(a) Let A ⊆ Λ∞, with �(A) > 0. If �((�n)−1(A)∆A) = 0 for some n, then
�(A∆�n(A)) = 0.

(b) If E ⊆ Λ∞ is �-invariant, �(E) > 0, and a subset A ⊂ E satis�es the
condition �((�n|E)−1(A)∆A) = 0 for some n, then �(A∆�n(A)) = 0.
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(c) If E is minimal �-invariant then {�n} is a jointly ergodic family in E, that
is, if A ⊂ E, with �(A∆(�n|E)−1(A)) = 0 for all n, then either �(A) = 0

or �(E∖A) = 0.

Proof. (a) By de�nition
A∆�n(A) = {x ∈ A ∶ x ≠ �n(y) for all y ∈ A}

∪ {x ∈ Ac ∶ x = �n(y) for some y ∈ A}

and (�n)−1(A)∆A = {x ∈ A ∶ �n(x) ∉ A} ∪ {x ∈ Ac ∶ �n(x) ∈ A}.
Assuming that Λ has no sinks, each of the sets in the description of
A∆�n(A) above is contained in the image under �n of one of the sets
making up (�n)−1(A)∆A. To be precise,
�n({x ∈ A ∶ �n(x) ∉ A}) = {y ∈ Ac ∶ y = �n(x) for some x ∈ A}

and, since each coding map is surjective by hypothesis,
�n({x ∈ Ac ∶ �n(x) ∈ A}) ⊇ {y ∈ A ∶ y ≠ �n(x) for any x ∈ A}.

By Lemma 2.14, the claim follows.
(b) Let E ⊆ Λ∞, with �(E) > 0, be �-invariant. By item (a), �(E∆�n(E)) =

0 for all n. Let A ⊂ E be such that �((�n|E)−1(A)∆A) = 0 for some n.
Notice that

(�n|E)
−1(A)∆A = {x ∈ A ∶ �n(x) ∉ A} ∪ {x ∈ E ⧵ A ∶ �n(x) ∈ A},

and thatA∆�n(A) ⊆ E a.e.. Proceeding as in item (a), we conclude that
A∆�n(A) ⊆ �n

(
(�n|E)

−1(A)∆A
)

a.e.,
where the inclusion

�n({x ∈ E ⧵ A ∶ �n(x) ∈ A}) ⊇ {y ∈ A ∶ y ≠ �n(x) for any x ∈ A} a.e.
follows from A ⊆ E and �(E∆�n(E)) = 0. The proof now follows as in
the proof of item (a), taking B ∶= (�n|E)

−1(A)∆A and C ∶= A∆�n(A).
(c) Let E be aminimal �-invariant set, and letA ⊂ E be such that �(A) > 0

and�(A∆(�n|E)−1(A)) = 0 for all n. Consequently, �({x ∈ A ∶ �n(x) ∉

A}) = 0 and �({x ∈ E∖A ∶ �n(x) ∈ A}) = 0. If A is not �-invariant,
then there exists n ∈ ℕk such that �(A∆(�n)−1(A)) > 0, and conse-
quently �({x ∈ Ac ∶ �n(x) ∈ A}) > 0. As E is �-invariant, �({x ∈

Ec ∶ �n(x) ∈ A ⊆ E}) = 0. We conclude that �({x ∈ E∖A ∶ �n(x) ∈

A}) > 0, which contradicts the fact that �(A∆(�n|E)−1(A)) = 0. In
other words, A must be �-invariant. By the minimality of E it follows
that �(E ⧵ A) = �(E∆A) = 0, as desired.

�

Remark 4.19. Lemma 4.18 need not hold for k-graphs with sinks. For a sim-
ple example, consider the graph E with vertices v1, v2 and edges e1, e2 such
that s(e1) = r(e1) = s(e2) = v1 and r(e2) = v2. Then Λ∞ = {e∞

1
, e2e

∞
1
}.

Let � be a measure on Λ∞ satisfying �({e∞
1
}) > 0 and �({e2e∞1 }) = 0. Then

none of the conclusions of the above lemma hold. For example, for any n ≠ 0,
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{e2e
∞
1
}∆�n{e2e

∞
1
} = Λ∞ has positive measure, while (�n)−1({e2e∞1 })∆{e2e

∞
1
} =

{e2e
∞
1
} has measure zero.

Theorem 4.20. Let Λ be a row-�nite, source-free k-graph with no sinks, and � a
Radonmeasure onΛ∞ which gives rise to aΛ-projective system. Suppose E ⊆ Λ∞

is a minimal �-invariant subset. Then the restriction of {T� ∶ � ∈ Λ} to L2(E, �)
gives an irreducible representation of C∗(Λ).

Proof. We �rst show that T�(L2(E, �)) ⊆ L2(E, �). By Lemma 4.18, knowing
that �((�n)−1(E)∆E) = 0 for all n implies that �(E∆�n(E)) = 0 for all n as well.
If we �x f ∈ L2(E, �) and � ∈ Λ, then Condition (a) of De�nition 2.10 implies
that

∫
E

|T�(f)|
2 d� = ∫

E

|f�|
2 ⋅

||||f◦�
d(�)||||

2
d� = ∫

E

||||f◦�
d(�)||||

2 d(�◦(��)
−1)

d�
d�

= ∫
E

||||f◦�
d(�)||||

2
d(�◦(��)

−1) = ∫
(��)

−1(E)

|f|2 d�

≤ ∫
�d(�)(E)

|f|2 d� = ∫
E

|f|2 d� < ∞,

where the second line holds because (��)−1(E) ⊆ �d(�)(E). It follows that, as
claimed, T�(L2(E, �)) ⊆ L2(E, �).

Now, suppose T commutes with T�|L2(E,�) for all � ∈ Λ. Thanks to the
fact that T�|L2(E,�)T∗�|L2(E,�) = M�Z(�)∩E

, a careful read of the proof of Theo-
rem 4.15(a) reveals that, in this case as well, we can conclude that T = Mℎ

for some ℎ ∈ L∞(E, �). Thus, if f ∈ L2(E, �) we have

ℎ ⋅ f� ⋅ (f◦�
d(�)) = f� ⋅ (ℎ◦�

d(�)) ⋅ (f◦�d(�)) (25)

as functions in L2(E, �). The fact that f� is nonzero precisely on Z(�) means
that both sides of Equation (25) are supported on Z(�) ∩ E.

If �(E ∩ Z(�)) ≠ 0, the fact that E is invariant with respect to �d(�) implies
that �(E ∩ Z(�)) = �(E ∩ Z(s(�))), and so f = �Z(s(�)) is a nonzero element
of L2(E, �). Consequently, Equation (25) implies that ℎ = ℎ◦�d(�), �E-a.e. on
Z(�), whenever �E(Z(�)) ≠ 0.

Recall that, for any n ∈ ℕk, we have E =
⨆

�∈Λn
Z(�) ∩ E. It now follows

that ℎ = ℎ◦�n as functions in L2(E, �) for all n ∈ ℕk. So, ℎ is jointly invariant
with respect to {�n}. Since, by Lemma 4.18, the maps {�n} are jointly ergodic
in E, it follows from Lemma 4.4 that ℎ is constant, that is, ℎ ∈ ℂ�E . Thus the
restriction of {T� ∶ � ∈ Λ} to L2(E, �) is indeed an irreducible representation.

�

Remark 4.21. If a monic representation of a sink-free, source-free, row-�nite
k-graph has an atom, then Theorem 4.20 implies that the restriction of the rep-
resentation to the orbit of this atom is irreducible. Wewill study representations
with atoms in detail in the next section. For non-atomic measures, a minimal
invariant set should be seen as an analogue of an orbit of an atom.
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The following example shows that Theorem 4.20 may apply when Theorem
4.15 does not. Indeed, this example shows that Λ-semibranching function sys-
tems may give rise to irreducible representations even when Λ is not co�nal, if
we can apply Theorem 4.20.

Example 4.22. Consider the following 1-graph Λ:

v w

u

e

g

f

ℎ

k

De�ne a measure � on Λ∞ by

�(Z(en)) =
1

2n+1
, �(Z(u)) = �(Z(w)) =

1

4
, �(Z(eng)) =

1

2n+3
= �(Z(enℎ)).

(Recall that for a loop �, we denote �0 = s(�).) One easily checks that the usual
pre�xing and coding maps {�n, ��} make (Λ∞, �) a Λ-semibranching function
system. Observe that each in�nite path in Λ∞ except for e∞ has nonzero �-
measure. Set E = {engf∞ ∶ n ∈ ℕ} ∪ {f∞}. Since E ∩ Z(u) = ∅, E does
not satisfy the hypotheses of Proposition 2.16 (and consequently of Theorem
4.15). However, E is �-invariant, because E = �−1(E). In fact, E is minimal
�-invariant: if A ⊆ E and �(A∆E) = �(E∖A) ≠ 0, then there is an in�nite
path x ∈ E∖A. Since each in�nite path in E has nontrivial measure, and E
is �-invariant, in order to have �(A∆�−1(A)) = 0 we must have A = �−1(A).
Consequently,A cannot contain any path of the form ��n(x), for � a �nite path
in Λ and n ∈ ℕ. As every path in E is of this form, we conclude that the only
proper �-invariant subset A of E is A = ∅, so E is minimal �-invariant.

Theorem 4.20 now implies that any Λ-projective representation of C∗(Λ) on
L2(Λ∞, �) will restrict to an irreducible representation on L2(E, �).

Our �nal su�cient condition for the irreducibility of a Λ-projective repre-
sentation relies on the link between k-graphs and directed graphs which we
now describe.

If Λ is a row-�nite k-graph, recall that for each 1 ≤ i ≤ k, we writeAi for the
Λ0×Λ0 (in�nite)matrix with entryAi(v, w) = |vΛeiw|. Fix J = (j1, … , jk), with
all js ∈ ℕ>0, and de�neA ∶= AJ = A

j1
1
…A

jk

k
. ThenA can also be interpreted as

the matrix of a row-�nite 1-graph which we will call ΛA. Note that every �nite
path �A ∈ ΛA can be viewed as a �nite path �̃A ∈ Λ of degree |�A|J by using
the “diagonal construction" (see [20] for the case jr = 1, ∀r; the general case is
similar). More formally, there is a functor ΦA between the path categories of
the 1-graph ΛA and the k-graph Λ de�ned by

ΦA(vA) ∶= ṽA, ΦA(�A) ∶= �̃A. ∀vA ∈ Λ0
A
, �A ∈ ΛA
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Now recall from [22, Lemma 5.1] (cf. also [20, Proposition 2.10]) that the in-
�nite path spaceΛ∞ ofΛ is homeomorphic and Borel isomorphic to the in�nite
path space Λ∞

A
of the ΛA:

Proposition 4.23. There is a canonical homeomorphism ΨA between Λ∞
A

and
Λ∞ induced by ΦA. Moreover, ΨA also induces an isomorphism of Borel struc-
tures.

Proof. The result follows from the observation that the cylinder sets of degree
nJ, n ∈ ℕ, generate the topology in Λ∞. This observation was established for
row-�nite source-free k-graphs in the references given above, and one easily
checks that the proofs given there work for all source-free row-�nite higher-
rank graphs. �

Moreover, since theCuntz-Krieger relations forC∗(ΛA) are satis�ed by {S�̃A ∶
�A ∈ ΛA}, the universal property of graph C∗-algebras, see [4], implies that
there exists a ∗-homomorphism 'A ∶ C∗(ΛA) → C∗(Λ) such that 'A(S�A) =
S�̃A . Now, let � ∶ C∗(Λ) → ℬ

(
L2(Λ∞, ��)

)
be a monic representation of C∗(Λ).

Proposition 4.24. The composition �A ∶= �◦'A is a monic representation of
C∗(ΛA).

Proof. ByProposition 4.23, we know thatL2(Λ∞, ��) ≅ L2(Λ∞
A
, ��). Moreover,

if ��, �n denote the standard coding and pre�xing maps for Λ, and we denote
by ��, �n the coding maps for ΛA, we have

�n◦ΨA = �nJ , ��◦ΨA = ��̃.

Therefore, by applying Theorem 3.6 we conclude that �A is monic. �

In addition, Proposition 4.23 implies the following result.

Proposition 4.25. The measure ��A on Λ
∞
A
, obtained by integrating against the

monic vector the projection-valued measure of Theorem 3.1, is the same as the
measure ��, when we identify Λ∞ and Λ∞

A
using Proposition 4.23. In particular

the two coding maps satisfy �A = �
(j1,j2…,jk)

Λ
.

Now recall from Theorem 4.15 that the representation � (resp �A) is irre-
ducible if, and only if, the coding maps �n, n ∈ ℕk (resp. �m

A
, m ∈ ℕ) are

jointly ergodic with respect to the measure �� (resp. ��A); here, additionally,
�� = ��A . We thus obtain the following result.

Proposition 4.26. Assume, with hypotheses as above, that the representation �A
is irreducible. Then � is irreducible.

Proof. By Theorem 4.15, it is enough to check that if ��
(
(�n)−1(B)∆B

)
= 0 for

alln ∈ ℕk, then either��(B) = 0 or��(Λ∞⧵B) = 0. For this, letB ⊂ Λ∞ ≅ Λ∞
A
,

with (�n)−1(B) = B for all n ∈ ℕk; then in particular ��A((�
m
A
)−1(B)∆B) = 0 for

allm ∈ ℕ. Since �A is irreducible, Theorem 4.15 now implies that ��A(B) = 0

or ��A(Λ
∞
A
⧵ B) = 0, which also implies ��(B) = 0 or ��(Λ∞ ⧵ B) = 0.

�



544 CARLA FARSI, ELIZABETH GILLASPY AND DANIEL GONÇALVES

4.3. Further results on irreducibility. In this subsection we explore a few
more results related with the irreducibility of representations arising from Λ-
semibranching function systems. Our �rst result regards the decomposition
of a representation as a direct sum of irreducible representations. For purely
atomic representations this follows by restricting the representation to the or-
bits, see [18, Corollary 3.4] and [14, Proposition 4.3]. So we will focus on the
case of measures on Λ∞ without atoms (since measures with atoms induce
purely atomic representations, see Theorem 5.3). In this more general setting,
we will need an extra hypothesis to obtain the desired decomposition (see De�-
nition 4.27 below). The section concludes with Proposition 4.29, which relates
the question of when two Λ-semibranching representations are disjoint to the
supports of the associated measures.

De�nition 4.27. Fix a Radon measure � on Λ∞. Let E ⊆ Λ∞ be a �-invariant
Borel subset of non-zero measure. We say that E is "-approximately ergodic
if there exists " such that if B ⊂ E is invariant and 0 < �(B) < �(E), then
" < �(B) < �(E) − ".

Proposition 4.28. Let Λ be a row-�nite, source-free k-graph with no sinks, and
� a Radonmeasure onΛ∞ which gives rise to aΛ-projective system. Suppose that
there exists an " > 0 such that every �-invariant subset of non-zero measure is "-
approximately ergodic and that �(Λ∞) < ∞. Then the representation {T� ∶ � ∈
Λ} splits as a direct sum of irreducible representations.

Proof. Our goal in this proof is to show that Λ∞ = ⊔Ei, where each Ei is a
minimal �-invariant set. Once we have this, the result follows from L2(Λ∞) =
⨁

L2(Ei) and Theorem 4.20.
If the representation given by {T� ∶ � ∈ Λ} is irreducible, we are done.

Suppose it is not. Then, applyingTheorem4.15(c) to the setE = Λ∞, we see that
there exists a �−invariant Borel subset B1 ⊆ Λ∞ such that 0 < �(B1) < �(Λ∞).
Notice that Λ∞ ⧵ B1 is also �-invariant and 0 < �(Λ∞ ⧵ B1) < �(Λ∞). By
hypothesis, both B1 and Λ∞ ⧵ B1 are "-approximately ergodic, so " < �(B1) <

�(Λ∞) − ". If B1 is a minimal �-invariant set, we let E1 ∶= B1. If not, there
is a �-invariant Borel subset B2 of B1 such that 0 < �(B2) < �(B1), B1 ⧵ B2 is
�-invariant and 0 < �(B1 ⧵B2) < �(B1). By hypothesis, both B2 and B1 ⧵B2 are
"-approximately ergodic. If B2 is minimal �-invariant we let E1 ∶= B2. If not,
then " < �(B2) < �(B1) − " < �(Λ∞) − 2" and proceed inductively. As �(Λ∞)
is �nite, this process must terminate; that is, one of the Bn’s must be a minimal
�-invariant set, hence E1 is de�ned.

Now, suppose that E1 = BN . Notice that �(E1) > " and, furthermore, Λ∞ ⧵
E1 = (Λ∞ ⧵B1)∪ (B1 ⧵B2)∪…∪(BN−1 ⧵BN), which is �-invariant and has non-
zero measure. Applying the same procedure described in the paragraph above,
starting withΛ∞ ⧵E1 instead ofΛ∞, we obtain a set E2 such that " < �(E2) and
E2 ⊆ Λ∞ ⧵ E1. Proceeding inductively, we de�ne the En.
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Finally, since �(Λ∞) < ∞, �(En) > " for every n, and the En are disjoint, we
obtain the desired decomposition into minimal �-invariant sets, that is, Λ∞ =

⊔En. �

In [17, Theorem 3.10] the authors prove that for �nite k-graphs, and for
representations of C∗(Λ) arising from Λ-projective systems, on Λ∞, the task
of checking when two representations are equivalent reduces to a measure-
theoretical problem. To be precise, in the �nite setting, two Λ-semibranching
representations which arise frommeasures �, �′ onΛ∞ are disjoint if, and only
if, �, �′ are mutually singular. As with Theorem 4.15, it is interesting to know
if this result holds for general measure spaces. In fact, as before, the result only
holds partially, as we show below.

Proposition 4.29. (Cf. [13, Theorem 2.12] and [17, Theorem 3.10] ) Let Λ be
a row-�nite k-graph with no sources. Suppose that L2(X, �) and L2(X, �′) are
twoΛ-semibranching function systems as in De�nitions 2.7 and 2.8, with �-�nite
measures �, �′, identical D�, R�, and coding maps {�n ∶ n ∈ ℕk}. Choose non-
negative functions f�, f′� satisfying De�nition 2.10 and let {T� ∶ � ∈ Λ} and
{T′

�
∶ � ∈ Λ} be the associated representations of C∗(Λ) as in Proposition 2.11.

If the representations {T� ∶ � ∈ Λ} and {T′
�
∶ � ∈ Λ} are disjoint, then the two

measures �, �′ are mutually singular.
Conversely, if �, �′ are �nite measures which are mutually singular and X =

Λ∞, then the associated Λ-projective representations are disjoint.

Proof. We �rst observe that [17, Proposition 3.6], although stated for �nite k-
graphs only, still holds for row-�nite k-graphs.

Assume that the representations {T�}�, {T′�}�, are disjoint. Following [17,
Proposition 3.6], decompose d�′ = ℎ2d� + d�, where � is supported on B and
� is supported on A = X∖B, the sets A, B are invariant under the pre�xing and
coding maps, and ℎ ≥ 0. SinceA is invariant under the pre�xing map �n for all
n, L2(A, �′) is an invariant subspace for the representation {T′

�
∶ � ∈ Λ}.

De�ne the operator W on L2(X, �′) by W(f) = f ⋅ ℎ if f ∈ L2(A, �′), and
W(f) = 0 on the orthogonal complement of L2(A, �′) ⊆ L2(X, �′). To check
that W is intertwining, we recall from [17, Proposition 3.6(d)] and the non-
negativity condition on {f�} and {f′�} that f� ⋅ ℎ◦�

d(�) = f′
�
⋅ ℎ on A. We conse-

quently obtain the following equalities for f ∈ L2(A, �′):

T�W(f) = f�(ℎ◦�
d(�))(f◦�d(�)) = f′

�
ℎ (f◦�d(�)) = WT′

�
(f).

If f ∈ L2(A, �′)⟂ thenW(f) = T′
�
(f) = 0 and so the above equality holds on

L2(X, �′). Since W intertwines the representations {T�}�∈Λ, {T′�}�∈Λ of C∗(Λ),
we must haveW = 0; hence ℎ = 0, so �, �′ are mutually singular.

The proof of the �nal statement follows verbatim as in [17, Theorem 3.10],
so we refrain from presenting it here. �

Example 4.30. For a simple example that the converse of the above proposi-
tion does not hold when X ≠ Λ∞, let E be the graph with vertices v1, v2 and
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edges e1, e2 such that s(ei) = vi, i = 1, 2, r(e1) = v2 and r(e2) = v1. As with
Example 4.7, we �rst de�ne a branching system in the sense of [27], which
then gives us a semibranching function system. Let X = {1, 2, 3, 4} and de�ne
Re1 = Dv2 = {1, 2} and Re2 = Dv1 = {3, 4}. Let fe1 ∶ Ds(e1) → Re1 be given by
fe1(x) = x − 2 and fe2 ∶ Ds(e2) → Re2 be given by fe2(x) = x + 2. Now we
de�ne two mutually singular measures. Let �1(2i + 1) = 1 and �1(2i + 2) = 0

i = 0, 1, and �2(2i + 1) = 0 and �2(2i + 2) = 1 i = 0, 1. Notice that both mea-
sures are non-zero on the sets Dvi , i = 1, 2. So, following [27, Proposition 3.12
and Remark 3.11] we get two semibranching function systems. Let �1 and �2
be the induced representation on l2(X, �1) and l2(X, �2) respectively. They are
clearly unitary equivalent, but the measures �1 and �2 are mutually singular.

5. On atomic irreducible representations of C∗(�)

The study of (irreducible) purely atomic representations of C∗(Λ) was initi-
ated in [18]. Previously to this, in the algebraic context, irreducible representa-
tions of Leavitt path algebras (Chenmodules) were studied in [9]. Many results
in [18] (restricted to 1-graphs) and [9] can be put in correspondence, as is usual
in the development of the theory of graph algebras. Themost natural candidate
for the analytical counterpart of a purely algebraic (semi)-branching system is
to equip the (semi)-branching system with counting measure (see [24, 30, 31]
for some of the algebraic results regarding representations arising from branch-
ing systems). However, it is not immediately obvious that a representation aris-
ing from a Λ-semibranching function system on a measure space (X, �) which
has an atom is purely atomic in the sense of [18]. We prove in Theorem 5.3
below that this is indeed the case, if the associated Λ-projective representation
is irreducible. Our results in this section (when restricted to the 1-graph case)
therefore clarify and strengthen the parallel between the algebraic and analyt-
ical settings. In particular, we show in Theorem 5.5 that any irreducible Λ-
projective representation on an atomic measure space must be monic. Finally,
we�nish the paperwith an application of our results in the context ofNaimark’s
problem for k-graph C∗-algebras.

We begin our analysis by recalling the de�nition of purely atomic represen-
tations.

De�nition 5.1. [18, De�nition 3.1]
Let Λ be a row-�nite k-graph with no sources. A representation {t�}�∈Λ of

C∗(Λ) on a Hilbert spaceℋ is called purely atomic if there exists a Borel subset
Ω ⊂ Λ∞ such that the projection valued measure P de�ned on the Borel sets of
Λ∞ as in Proposition 3.1 satis�es

(a) P(Λ∞∖Ω) = 0ℋ ,

(b) P({!}) ≠ 0ℋ for all ! ∈ Ω,
(c)

⨁

!∈Ω
P({!}) = Idℋ ,

where the sum on the left-hand side of (c) converges in the strong operator
topology.
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Thus, a representation of C∗(Λ) is said to be purely atomic if the correspond-
ing projection-valued measure is purely atomic on the Borel �-algebraℬo(Λ

∞)

of Λ∞.

Let � be a representation of C∗(Λ) arising from a Λ-semibranching function
system on (X, �). In the results below, it will be key to �nd a “coding" of X
in the path space Λ∞. This will be accomplished by de�ning a map from a
“large" subset of X to the path space Λ∞. The ideas presented here generalize
the constructions in [9, 32] to the k-graph setting.

Given a Λ-semibranching function system on (X, �), de�ne Y ⊆ X by dis-
carding a set of measure zero, so that

Y =
⨆

v∈Λ0

(Y ∩ Rv), Y ∩ R� ⊆ Y ∩ Dr(�) ∀ � ∈ Λ,

and for all v ∈ Λ0 and all n ∈ ℕk,

Y ∩ Rv =
⨆

�∈vΛn

Y ∩ R�.

We de�ne a map � from Y to Λ∞ as follows. Pick y ∈ Y; then y ∈ R�1 for a
unique �1 ∈ Λ(1,…,1). In fact, for any n ∈ ℕ, we have y ∈ R�n for a unique
�n ∈ Λ(n,…,n), and for each k < n we have a decomposition of �n as �n = �k�n,k,
where d(�n,k) = (n−k, n−k,… , n−k). Thus, [37, Remark 2.2] implies that the
sequence (�n)n∈ℕ determines a unique path in Λ∞; this is �(y). Notice more-
over that the pre�xing and coding maps on Y are taken via � to the standard
pre�xing and coding maps �n, �� on Λ∞.

Remark 5.2. The map � de�ned above does not need to be onto. The same
example used in [32] in the algebraic context (for algebras associated to ultra-
graphs) also applies here. More precisely, let E be the graph with one vertex u
and two edges, say e1 and e2. Let Re1 and Re2 be two in�nite countable disjoint
sets, X = Du = Re1 ∪ Re2 with counting measure, and let �ei ∶ Rei → Du be any
bijection, for i ∈ {1, 2}. Then X is countable, but Λ∞ is not.

We can now show that an irreducible representation arising from a Λ-semi-
branching function system on (X, �), where � has an atom, must be purely
atomic. The orbit of an in�nite path was de�ned in Equation (5).

Theorem 5.3. Let Λ be a row-�nite source-free k-graph and � be an irreducible
representation ofC∗(Λ)arising fromaΛ-semibranch-ing function systemon (X, �),
where � has an atom, say y ∈ X. Then � is purely atomic and the associated pro-
jection valued measure is supported on the orbit of �(y).

Proof. Recall that the projection valued-measure P associated to � assigns to
any Borel set A ⊆ Λ∞ a projection P(A) ∈ ℬ(L2(X, �)), see Proposition 3.1.
Also recall that by Remark 2.13, on cylinder sets we have t�t

∗

�
= M�R�

. Let
y ∈ X be an atom for (X, �) and let 
 = �(y). By [18, Proposition 3.8] it is
enough to prove that {
} is an atom of P – that is, that P({
}) ≠ 0. We will show
that P({
})(�y) ≠ 0.
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Observe �rst that P(Z(
n))(�y) = t
n t
∗

n
(�y) = M�R
n

(�y) = �y, where 
n are
the initial segments of 
 de�ned in the construction of �(y). Moreover, for any
n,

P(Z(r(
))∖Z(
n))(�y) =
∑


n≠�∈r(
)Λ
(n,…,n)

P(Z(�))(�y)

=
∑


n≠�∈r(
)Λ
(n,…,n)

M�R�
�y = 0.

Since P is regular, P(Z(r(
))∖{
})(�y) = 0. However, since P(Z(r(
)))(�y) = �y,
the �nite additivity of P implies that

P({
})�y = �y.

As �y ∈ L2(Y, �) is nonzero, we conclude that {
} is an atom of P. �

We now state a row-�nite version of [18, Theorem 3.12]. Since the proof of
this theorem is analogous to the �nite case proof given in [18] we refrain from
presenting it here. We only remark that the forward direction of the proof in
[18, Theorem 3.12] uses Theorems 3.13 and 4.2 in [17], for which we have row-
�nite versions, see Theorem 4.15 and Theorem 3.6 respectively.

Theorem 5.4. [18, Theorem 3.12] LetΛ be a row-�nite k-graph with no sources.
Let {t� ∶ � ∈ Λ} be a purely atomic representation ofC∗(Λ) on a separable Hilbert
space H. Suppose that t�t∗� ≠ 0 for all � ∈ Λ. Then the representation is monic
if, and only if, for every atom x ∈ Λ∞, P({x}) is one-dimensional. Moreover,
in this case the associated measure � arising from the monic representation (see
Equation (22)) is atomic.

Using the above theoremwewill show that any representation arising from a
Λ-semibranching function system on (X, �), where� has an atom, ismonic and
so if such a representation is irreducible we conclude that it is unitarily equiv-
alent to a representation arising from a Λ-semibranching function system on
the path space with the standard coding and pre�xing maps (see Theorem 3.6).
This is the �nal step to complete the analytical correspondence with the results
in [9, 32] for 1-graphs.

Theorem 5.5. Let Λ be a row-�nite source-free k-graph and � be an irreducible
representation ofC∗(Λ)arising fromaΛ-semibranching function systemon (X, �),
where � has an atom. Then � is monic.

Proof. Suppose that y is an atom for �. Then, by Theorem 5.3, � is purely
atomic and, furthermore, � is supported on the orbit of �(y). Since � is irre-
ducible, by [18, Proposition 3.10(c)], we have that dim[Range(P({�(y)})] = 1;
this is also true for the atoms in the orbit of �(y), see [18, Proposition 3.3]. Now
apply Theorem 5.4. �

We�nish the paperwith an application of our results in the context ofNaimark’s
problem for k-graph C∗-algebras.
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5.1. Naimark’s problem for graph C*-algebras. Naimark’s problem asks if
it is true that a C∗-algebra that has only one irreducible ∗-representation up
to unitary equivalence is isomorphic to the C∗-algebra of compact operators
on some (not necessarily separable) Hilbert space, see [41]. Recently, Suri and
Tomforde showed that this problem has a positive answer for AF graph C∗-
algebras as well as forC∗-algebras of graphs inwhich each vertex emits a count-
able number of edges, see [46]. It is therefore interesting to obtain a combina-
torial description of graphs for which the associated C∗-algebra is AF and has
a unique irreducible representation up to unitary equivalence. This is partially
done in [46]. In fact, in [46, Proposition 3.5] the authors show that if E is a di-
rected graph such that C∗(E) is AF and has a unique irreducible representation
up to unitary equivalence, then one of two distinct possibilities must occur:4
Either

(1) E has exactly one source and no in�nite paths; or
(2) E is source-free and has an in�nite path � ∶= e1e2… with r−1(r(ei)) =

{ei} for all i ∈ ℕ.
We will show next that the converse of [46, Proposition 3.5] does not hold,

that is, we will build a graph such that the associated C∗-algebra is AF and
satis�es item (2) above, but such that there are two non-equivalent irreducible
representations.

Example 5.6. Let E be the graph with vertices {vi}, i = 0, 1, 2, … and {wi}, i =
1, 2, …, and edges ei and fi such that r(e1) = r(f1) = v0, s(ei) = vi and s(fi) =
wi for i = 1, 2, …, and r(ei) = vi−1, r(fi) = wi−1 for i = 2, 3, ….

Proposition 5.7. Let E be the graph of Example 5.6. Then C∗(E) is AF and sat-
is�es satis�es item (2) above, but there exist two non-equivalent irreducible repre-
sentations of C∗(E).

Proof. Since E has no loops, C∗(E) is AF (see [38]).
Let � be theΛ-semibranching representation of C∗(E) associated to (Λ∞, �),

with the standard coding and pre�xing maps and counting measure �. Let p
be the path e1e2e3… and denote by [p] the orbit of p. Similarly, let q be the path
f1f2f3… and denote by [q] the orbit of q. By Theorem 5.3, both the restriction
of � to [p], and its restriction to [q], are purely atomic. Moreover, [18, Theorem
3.10(c)] implies that both of these restrictions are irreducible. However, they
are disjoint (hence not equivalent) by [18, Theorem 3.10(a)]. �

For k-graphs (with k > 1), some (partial) results on Naimark’s problem can
be obtained as follows. First of all, note that if Λ is a row-�nite k-graph with
C∗(Λ) having only one irreducible ∗-representation up to unitary equivalence,
then C∗(Λ)must be simple by [46, Lemma 2.4] (which also holds in this case).
Moreover, if C∗(Λ) is separable (this for example happens if Λ0 is �nite) then,
by Rosenberg’s theorem (see [46, Page 487] and [44, Theorem 4]), C∗(Λ)must

4In [46], the authors use the reverse convention regarding ranges and sources of edges. We
have adapted their statement here to re�ect our conventions.
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be isomorphic to the compact operators. Furthermore, since C∗(Λ) is AF, by
[16, Corollary 3.8] Λ does not contain generalized cycles with an entrance. On
the other hand, if Λ0 is �nite and Λ contains no cycles then, by [16, Theorem
5.2], C∗(Λ) is a matrix algebra (because it is simple). Finally, if Λ is a locally
convex k-graph such thatΛ0 is �nite andΛ contains no cycles, thenΛ0 contains
a unique source, and C∗(Λ) = MΛv(ℂ), see [16, Corollary 5.7].
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