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The generalized transfer theorem

Moshe Jarden and Aharon Razon

Abstract. We generalize the transfer theorem for global �elds proved in
[FrJ08, Chap. 20] to a transfer theorem for �nitely generated extensions of
global �elds. Themain tool used in the proof is the Artin-Chebotarev density
theorem for the latter �elds, due to Serre [Ser65].
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Introduction
The transfer theorem [FrJ08, p. 447, Thm. 20.9.3] considers the ring of inte-

gersOK of a global �eldK and a sentence � of the languageℒ(ring, OK) of rings
with each element of OK being a constant symbol. It says that the set ΣK̃∕K(�)
of all � in the absolute Galois group Gal(K) of K for which � holds in the �xed
�eld K̃(�) of � in the algebraic closure K̃ of K is measurable and its Haar mea-
sure �K(ΣK̃∕K(�)) is equal to the Dirichlet density �(AOK (�)) of the set AOK (�)
of all maximal ideals p of OK for which � holds in K̄p ∶= OK∕p.

The aim of this work is to generalize the transfer theorem to integrally closed
integral domainsR that are �nitely generated asℤ-algebras or �nitely generated
as Fp-algebras and are in�nite.

To this end, we recall that an element p of Spec(R) is closed if and only if p
is a maximal ideal of R, so R∕p is a �nite �eld (Lemma 1.7). Then we use the
“Dirichlet density” � on the set Max(R) of all maximal ideals of R introduced
by Serre in [Ser65, p. 91] and the Artin-Chebotarev density theorem [Ser65,
p. 91, Thm. 7]. Let K = Quot(R). The generalized transfer theorem says that
�K(ΣK̃∕K(�)) = �(AR(�)) for every sentence � of ℒ(ring, R) (Theorem 4.4).
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Moreover, combining the latter theorem with [FrJ08, p. 440, Lemma 20.6.1],
we get that �(AR(�)) is a rational number for each sentence � of ℒ(ring, R).
Furthermore, if R and � are “explicitly given”, then �(AR(�)) can be recursively
(and even primitive recursively) computed (Theorem 4.7).

The authors are indebted to the anonymous referee for many useful com-
ments.

1. Preliminaries
The classical Chebotarev density theoremdealswith a �niteGalois extension

L∕K of global �elds and with the corresponding extensionOL∕OK of their rings
of integers. The generalized density theorem replacesOL∕OK by a “�nite Galois
coverX → Y” of irreducible schemes of �nite type over Spec(ℤ). Thus, there is
a �nite groupG that acts onX such thatY = X∕G and the associated action ofG
on the function �eld of X being faithful (Remark 1.9). Subsets of closed points
of Y which are contained in closed subsets of Y of lower dimension replace the
�nite exceptional sets that appear in the classical case.

The generalized theorem is due to Jean-Pierre Serre [Ser65, p. 91, Thm. 7],
who calls it the Artin-Chebotarev density theorem. The missing proofs in
[Ser65] can be found in the master thesis [Hol04] of Armin Holschbach.

A central geometric concept that enters the density theorem is a “morphism
of �nite type”.

Remark 1.1 (Finitely generated). Let '∶ R0 → R be a homomorphism of in-
tegral domains and set r̄0 = '(r0) for r0 ∈ R0 and R̄0 = '(R0). Then, the rule
r0 ⋅r = '(r0)r for r0 ∈ R0 and r ∈ Rmakes R into an R0-algebra. Assume that as
such, R is �nitely generated. Thus, there exist x1,… , xm ∈ R such that every
element r in R is a polynomial in x1,… , xm with coe�cients in R̄0, so R = R̄0[x]
with x = (x1,… , xm). 1

Let '∗∶ Spec(R) → Spec(R0) be the morphism induced by '. In particular,
'∗(p) = '−1(p) for each p ∈ Spec(R). Since both Spec(R) and Spec(R0) are
a�ne, “'∗ is of �nite type”.

To this end, recall that a morphism f∶ X → Y of schemes is of �nite type
if there exists a covering of Y by open a�ne subsets Vi ∶= Spec(Bi) such that
for each i, f−1(Vi) can be covered by �nitely many open a�ne subsets Uij ∶=
Spec(Aij), where each Aij is a �nitely generated Bi-algebra [Har77, p. 84, 1st
De�nition].

By [Har77, p. 91, Exer. 3.3(a)], every morphism of schemes f that is of �nite
type is quasi-compact. Hence, our de�nition (taken from [Har77]) coincides
with other de�nitions that demand f to be quasi-compact (e.g. [GoW10, p. 243,
Def. 10.6]).

1One could also write R = R0[x], where each element in R is a polynomial over R0 interpreted
in R via ' [Eis95, p. 13, 2nd paragraph]. However, in this note we will write R = R0[x] only if
R0 ⊆ R and ' is the inclusion map R0 → R.
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In the special case where R∕R0 is an extension of integral domains such that
R is a �nitely generated R0-algebra, we take '∶ R0 → R to be the inclusionmap.
In particular, '∗(p) = p ∩ R0 for each p ∈ Spec(R). Again, '∗ is of �nite type.

If, in addition, R′ ∶= R[y1,… , yn] is an integral domain extension of R, then
R′ = R0[x, y1,… , yn] is a �nitely generated R0-algebra, so the corresponding
map Spec(R′) → Spec(R0) is also of �nite type. Replacing R by R′ turns out to
be useful in the sequel.

Example 1.2. The casewhereY inRemark 1.1 is Spec(ℤ): Let L be a �nitely
generated �eld extension of ℚ and let t ∶= (t1,… , tr) be a transcendence ba-
sis for L∕ℚ. Then, by the Hilbert basis theorem, ℤ[t] is a Noetherian domain
[Eis95, p. 27, Thm. 1.2]. Hence, a theorem of Emmy Noether, [Eis95, p. 127,
Thm. 4.14], gives u1,… , us ∈ L such that S ∶= ∑s

j=1ℤ[t]uj is the integral clo-
sure ofℤ[t] in L. In particular, S = ℤ[t,u] is a �nitely generatedℤ-algebra. So,
by the second paragraph of the current example, the epimorphism Spec(S) →
Spec(ℤ) attached to the inclusion ℤ→ S is of �nite type.

IfL is a �nitely generated �eld extension ofFp, then onemay choose a �nitely
generated integral domain extension S of Fp with Quot(S) = L. Then, the re-
duction ℤ → Fp modulo p combined with the inclusion map Fp → S give a
homomorphism '∶ ℤ → S that makes S a �nitely generated ℤ-algebra. As
above, the corresponding morphism '∗∶ Spec(S)→ Spec(ℤ) is of �nite type.

Whenever needed in the coming proofs, we may replace S by S[u1,… , ur],
where u1,… , ur are arbitrary elements of L, in particular, when we need S to be
integrally closed.

De�nition 1.3 (Generalized ring of integers). Recall that a �eld K is said to be
global if K is either a �nite extension of ℚ or K is a �nite extension of Fp(t)
for some prime number p and a transcendental element t over Fp. The ring of
integers of K is the integral closure ofℤ in K, in the �rst case, and the integral
closure of Fp[t] in K, in the second case. Note that in the second case, the ring
of integers depends on t.

We say thatK is a generalized global �eld ifK is either a �nitely generated
�eld extension ofℚ or a �nitely generated in�nite �eld extension ofFp for some
prime number p.

Likewise, we say that an integral domain R is a generalized subring of
integers if R = ℤ[x1,… , xn] is a �nitely generated ring extension of ℤ or
R = Fp[x1,… , xn] is an in�nite �nitely generated ring extension of Fp for some
prime number p.

Note that in both cases, the scheme Spec(R) is integral [Liu06, p. 65, Prop. 4.17]
(hence, irreducible), Noetherian, and of �nite type over Spec(ℤ). Moreover, the
quotient �eld of R is a generalized global �eld.

If in addition R is integrally closed, we say that R is a generalized ring of
integers. In this case Spec(R) is also normal.

De�nition 1.4 (Dimension). Let X be an irreducible scheme of �nite type
over Spec(ℤ). Then, the dimension of X is the maximum length of a chain
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X0 ⊆ X1 ⊆ ⋯ ⊆ Xn of closed irreducible subschemes of X wih Xi ≠ Xi+1
for i = 0,… , n − 1 [Liu06, p. 68, Def. 5.1]. Moreover, dim(X) is also the Kro-
necker dimension of the function �eld F of X. This means that dim(X) =
trans.deg(F∕ℚ) + 1 if char(F) = 0 and dim(X) = trans.deg(F∕Fp) if char(F) =
p > 0 [Ser65, p. 83, (1)].

Here and in the sequel, the adjectives open, closed, dense and alike for sub-
sets of a scheme are meant in the Zariski topology of the scheme.

De�nition 1.5 (Closed points). A point x of a scheme X is closed if the set {x}
is closed in X [GoW10, p. 43, Def. 2.8(1)].

If X = Spec(S) for an integral domain S, then x is a prime ideal p of S, and
x is a closed point of X if and only if p is a maximal ideal of S [GoW10, p. 44,
Example 2.9(1)], that is if and only if the quotient ring S∕p is a �eld.

Remark1.6 (Sets of closed points). Given a schemeX of �nite type over Spec(ℤ),
[Ser65, p. 83, 1.2] denotes the set of closed points of X by X̄. We �nd this no-
tation somewhat misleading, because the bar notation could be confused with
the closure operation. Therefore, we denote the set of closed points of X by
CLP(X). Given a subset A of X we write CLP(A) = A ∩ CLP(X) for the set of
closed points of A. This notation satis�es the obvious rule:
(1) IfA andA′ are disjoint subsets of X, then so are CLP(A) and CLP(A′) and

CLP(A ∪ A′) = CLP(A) ∪ CLP(A′).
By De�nition 1.5, if X = Spec(S) for an integral domain S, then CLP(X) is

the setMax(S) of all maximal ideals of S.

Lemma 1.7. Let S be a generalized subring of integers. Then, a point x of Spec(S)
is closed if and only if the residue �eld of x is a �nite �eld.

Proof. (See also [Hol04, Lemma 3.1.1].) ByDe�nition 1.3,X = Spec(S)where
S = ℤ[x1,… , xn] is a �nitely generated extension of ℤ, in the characteristic 0
case, and S = Fp[x1,… , xn] in the characteristic p case. Let p be a closed point
of Spec(S). By De�nition 1.5, p is a maximal ideal of S, so S∕p is a �eld.

Note that bothℤ and Fp are Jacobson rings, i.e. rings in which every prime
ideal is the intersection of maximal ideals [Eis95, p. 131]. Hence, by a general
form of the Nullstellensatz [Eis95, p. 132, Thm. 4.19], in the characteristic 0
case, p∩ℤ is a maximal ideal of ℤ, that is p∩ℤ = pℤ for some prime number
p. Similarly p ∩ Fp = 0 in the characteristic p case.

In both cases, S∕p is a �nite �eld extension of Fp [Eis95, p. 132, Thm. 4.19].
Therefore, S∕p is a �nite �eld, as claimed. □

In the notation of the proof of Lemma 1.7, we denote the order of S∕p by
N(p) and also by N(x) when we consider p as a point x of X.

Lemma 1.8 (Number of Points). Let X be a scheme of �nite type over Spec(ℤ)
and F a �nite �eld. Then
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(a) X has only �nitely many closed points with residue �eld isomorphic to F.
Moreover, let m be a positive integer. Then, X has only �nitely many closed
points with resdue �elds of cardinality at mostm.

(b) The set of all closed points of X is countable.

Proof. (See also [Hol04, Lemma 3.1.4].) By [Har77, p. 90, Exer. 3.1], X is a
union of �nitely many open a�ne subsets, each of them is of �nite type over
Spec(ℤ). Hence, wemay assume thatX = Spec(S), where, in the characteristic
0 case, S = ℤ[x1,… , xn] is a �nitely generated algebra overℤ. In the character-
istic p case, S = Fp[x1,… , xn] is a �nitely generated algebra over Fp.

Statement (b) is now a consequence of statement (a) and Lemma 1.7, so it
su�ces now to prove statement (a).

Note that the set of closed points of X with residue �eld isomorphic to F
is contained in the set X(F) of F-rational points of X. By de�nition, each F-
rational point of X corresponds to a homomorphism ℎ∶ S → F. In the char-
acteristic 0 case, the restriction of ℎ to ℤ is the reduction ℤ → Fp modulo
p ∶= char(F). In the characteristic p case, S = Fp[x1,… , xn] and the restric-
tion of ℎ to Fp is the identity map. Thus, in both cases, the F-rational point
corresponds to the n-tuple (ℎ(x1),… , ℎ(xn)). Since Fn is a �nite set, there are
up to isomorphismonly �nitelymany suchn-tuples, soX has only �nitelymany
F-rational points.

Let m be a positive integer. Since F = Fpk for some prime number p and a
positive integer k, there are up to isomorphism only �nitely many �elds with
cardinality at most m. Hence, by the preceding paragraph, X has only �nitely
many closed points with residue �elds, up to isomorphism, of cardinality at
mostm. □

Remark 1.9 (Action of a �nite group on a scheme). Let S be an integral domain
and G a �nite group of automorphisms of S. Write R ∶= SG ∶= {a ∈ S | �a =
a for all � ∈ G} for the �xed integral domain of S under the action of G. Then,
the action of G on S extends to an action of G on the �eld L ∶= Quot(S) and L
is a Galois extension of the �xed �eld K ∶= LG = Quot(R) of L under G with
Gal(L∕K) = G [Lan02, p. 264, Thm. 1.8]. By de�nition, the action of G on S,
hence the action of G on L, is faithful. Thus, �a = a for all a ∈ S implies that
� is the identity element of G.

The action of G on S naturally induces an action of G on X ∶= Spec(S).
Let Y = Spec(R) and �∶ X → Y be the restriction morphism, in particular,
�(p) = p ∩ R for each p ∈ Spec(S).

It turns out thatY is then the quotient scheme ofX underG, also denoted
by X∕G [GoW10, p. 44, (2.3) and Prop. 2.10]. This means that �◦� = � for each
� ∈ G, and for every morphism f∶ X → Y′ of schemes with f◦� = f for all
� ∈ G there exists a unique morphism �̄∶ Y → Y′ with �̄◦� = f [GoW10,
p. 331, (12.7)].

By [GoW10, p. 331, Prop. 12.27(2)], for all x, x′ ∈ X the equality �(x) = �(x′)
holds if and only if there exists � ∈ G with �(x) = x′. Moreover, the morphism
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� is integral and surjective [GoW10, p. 331, Prop. 12.27(3)]. In particular, � is
closed [GoW10, p. 325, Prop. 12.12]. If X is of �nite type over a Noetherian
ring S0 andG acts onX by S0-automorphisms, then themorphism �∶ X → Y is
�nite [Har77, p. 84, second de�nition] and X∕G is of �nite type over Spec(S0)
[GoW10, p. 331, Prop. 12.27(4)].

Although we won’t use the following remark, it is still interesting to note the
ring theoretic analogue of the geometric one appearing in Remark 1.9.

Remark 1.10. If S in Remark 1.9 is integrally closed, then so is R and S is
the integral closure of R in L. Morever, if R is Noetherian, then S is a �nitely
generated module [GoW10, p. 331, Prop. 12.27(4)].

Indeed, if r ∈ K is integral over R, then r ∈ L and r is integral over S. Since
S is integrally closed, r ∈ S. In addition, �r = r for each � ∈ G, so r ∈ SG = R.
Therefore, R is also integrally closed.

Further, each s ∈ S is a root of the monic polynomial
∏

�∈G(T − �s) with
coe�cients in R, so s is integral over R.

Conversely, if s ∈ L is integral over R, then s is integral over S, so s ∈ S.
Therefore, S is the integral closure of R in L, as claimed.

Now assume that S in Remark 1.9 is a generalized ring of integers. Then,
L = Quot(S) is a generalized global �eld. Moreover, R = SG is a generalized
ring of integers of the generalized global �eld K.
De�nition 1.11 (Decomposition and inertia groups). Let �∶ X → Y and G be
as in Remark 1.9. Then G acts on CLP(X), so CLP(Y) may be identi�ed with
CLP(X)∕G.

Indeed, let x ∈ CLP(X). Since � is closed, y ∶= �(x) lies in CLP(Y). Let
p ∈ Max(S) and q = p∩R ∈ Max(R) be the maximal ideals corresponding to x
and y, respectively. Then, the �eld K̄y ∶= R∕q naturally embeds in L̄x ∶= S∕p.

Assume that S is integrally closed. Then Dx ∶= {� ∈ G | �x = x} is the
decomposition group of x, the extension of residue �elds L̄x∕K̄y is normal,
and there is a natural epimorphism

Dx → Aut(L̄x∕K̄y)
mapping each � ∈ Dx onto the unique automorphism �̄ ∈ Aut(L̄x∕K̄y) satisfy-
ing �̄x̄ = �x for each x ∈ S, where the reduction is modulo the maximal ideal
p [FrJ08, p. 108, Lemma 6.1.1(a)]. The kernel Ix of that homomorphism is the
inertia group of x. When Ix is the trivial subgroup 1 of G and L̄x∕K̄y is sepa-
rable, the morphism X → Y is unrami�ed at x. In this case, Dx is canonically
isomorphic to Gal(L̄x∕K̄y).

In the notation of Remark 1.9, we may choose an element z of S withK(z) =
L. Then, consider the discriminant u ∶= discr(f) of the irreducible polyno-
mial f of z over K. Note that f is monic, irreducible, with coe�cients in R,
and separable (because L∕K is Galois), so u ∈ R and u ≠ 0. Then, in the lan-
guage of [FrJ08, p. 109, Def. 6.1.3], S[u−1]∕R[u−1] is a ring cover. In particular
X′ ∶= Spec(S[u−1]) is unrami�ed over Y′ ∶= Spec(R[u−1]), i.e. X′ → Y′ is



494 MOSHE JARDEN AND AHARON RAZON

unrami�ed at each x′ ∈ X′ [FrJ08, p. 109, Lemma 6.1.4]. Indeed, that map is
even standard étale at each point x′ ∈ X′ [Mil80, p. 26, 3rd paragraph].

Assume that S is a generalized ring of integers and the morphism X → Y
is unrami�ed at x. Since, by Lemma 1.7, L̄x∕K̄y is a �nite extension of �nite
�elds, this extension is Galois andDx is generated by the unique element Frobx
that corresponds to the Frobenius element Frobx of Gal(L̄x∕K̄y) de�ned by
Frobx(c) = ccard(K̄y) for each c ∈ L̄x.

2. The Artin-Chebotarev density theorem
One of the main tools in the proof of the transfer theorem for generalized

global �elds mentioned in De�nition 1.3 is theChebotarev density theorem:
Let L∕K be a �nite Galois extension of global �elds, OL∕OK the corresponding
extension of its rings of integers, andC a conjugacy class ofGal(L∕K). Then, the
Dirichlet density of the set of prime ideals p ofOK for which the “Artin symbol”(L∕K

p
)
is contained in C is card(C)

[L∶K]
(e.g. [FrJ08, Sections 6.2 and 6.3]).

One of the features of the Dirichlet density is that it is zero on �nite sets.
Hence, one may assume that the prime ideals that appear in the theorem are
unrami�ed, so that the corresponding Artin symbols are well de�ned.

Following [Ser65], we generalize the density theorem to irreducible schemes
of dimension ≥ 1 and of �nite type over Spec(ℤ).

Remark 2.1 (The zeta function). LetY be a scheme of �nite type over Spec(ℤ).
The zeta function of Y is de�ned by the formal Euler product

�(Y, s) =
∏

y∈CLP(Y)

1
1 − 1

N(y)s

(2)

for a complex variable s, where CLP(Y) is, as above, the set of all closed points
of Y [Ser65, p. 83, (2)].

By [Ser65, p. 83, Thm. 1], �(Y, s) converges absolutely (meaning, “the prod-
uct on the right hand side of (2) converges absolutely”) on the right half com-
plex plane Re(s) > dim(Y). Thus, �(Y, s) is an analytic function on that right
half plane. By [Ser65, p. 84, Thm. 2], �(Y, s) can be continued as ameromorphic
function to the half-plane Re(s) > dim(Y) − 1

2
.

Assume that Y is irreducible and let E be the function �eld of Y. Then,
[Ser65, p. 84, Thm. 3] supplies the following information:

If char(E) = 0, then the only pole of �(Y, s) in the half planeRe(s) > dim(Y)−
1
2
is s = dim(Y) and it is a simple pole. In particular, the domain of conver-

gence of the zeta function �(Y, s) is the half plane Re(s) > dim(Y). Moreover,
ifY = Spec(ℤ), then �(Y, s) coincides with the classical Riemann zeta function
[FrJ08, p. 80, Prop. 4.2.2].
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If char(E) = p > 0, let q be the highest power of p with Fq ⊆ E. Then,
the only poles of �(Y, s) in the half plane Re(s) > dim(Y) − 1

2
are the points

s = dim(Y) + 2�i⋅n
log(q)

with n ∈ ℤ and they are simple.

Remark 2.2 (Dirichlet’s density). LetY be an irreducible scheme of �nite type
over Spec(ℤ) of dimension ≥ 1. Using the fact that �(Y, s) has a simple pole
s = dim(Y) one proves that

∑

y∈CLP(Y)

1
N(y)s ∼ log 1

s − dim(Y) as s → dim(Y)+ (3)

[Ser65, p. 91, (18)].
Here and in the sequel “s → r+” for a real number r and a complex variable

s means, as usual, that s approaches r on the real axis from the right.
A subset A of CLP(Y) has Dirichlet density �(A) if

�(A) = lim
s→dim(Y)+

( ∑

y∈A

1
N(y)s

)/
log 1

s − dim(Y) (4)

[Ser65, p. 91, �rst paragraph of Section 2.7].
Whenever we write �(A) for a subset A of CLP(Y), we assume that A has a

Dirichlet density, given by (4). In particular this means that the limit on the
right hand side of (4) exists.

Lemma 2.3. The Dirichlet density has the following useful properties:
(a) �(CLP(Y)) = 1.
(b) IfA,A′ ⊆ CLP(Y), bothA andA′ have a Dirichlet density, andA ⊆ A′, then

�(A) ≤ �(A′).
(c) If A ⊆ CLP(Y) has density 0 and A0 ⊆ A, then �(A0) = 0.
(d) If A,A′ ⊆ CLP(Y), A ∩ A′ = ∅, and both A and A′ have a Dirichlet density,

then �(A ∪ A′) = �(A) + �(A′).
(e) If A,A′, B ⊆ CLP(Y), A ∩ A′ = ∅, A ∪ A′ = B, and both A and B have a

Dirichlet density, then �(A′) = �(B) − �(A). In particular, �(CLP(Y) ∖A) =
1 − �(A).

(f) IfA is a �nite subset of CLP(Y), then �(A) = 0. If B, B′ are subsets of CLP(Y)
with �(B) = �(B′) = 0, then �(B ∪ B′) = 0.

(g) If Y0 is a closed subset of Y with dim(Y0) < dim(Y), then �(CLP(Y0)) = 0.
(h) If a subset A of CLP(Y) has a Dirichlet density and U is a nonempty open

subset of Y, then �(A ∩U) = �(A). In particular, �(CLP(U)) = 1 (by (a)).
(i) LetU be a nonempty open subset of Y. Then, �(CLP(Y ∖U)) = 0.
(j) LetA be a subset ofCLP(Y) andU a nonempty open subset ofY. IfA∩U has

a Dirichlet density, then �(A) = �(A ∩U).
(k) If R is a ring of integers of a global �eld andY = Spec(R), then (4) is the usual

de�nition of the Dirichlet density of a set of prime ideals of R.
Proof of (a). Use (3).

Proof of (b). Use (4).
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Proof of (c). Indeed,
∑

y∈A0
1

N(y)s
≤ ∑

y∈A
1

N(y)s
for every real number s >

dim(Y). Thus, our claim follows from (4).

Proof of (d). Use (4).

Proof of (e). Consider the continuous real valued functions

g(s) =
( ∑

y∈B
1∕N(y)s

)/
log 1

s − dim(Y) and

ℎ(s) =
( ∑

y∈A
1∕N(y)s

)/
log 1

s − dim(Y)

de�ned for s > dim(Y)+. Then,
lim

s→dim(Y)+
g(s) − lim

s→dim(Y)+
ℎ(s) = lim

s→dim(Y)+
(g(s) − ℎ(s))

= lim
s→dim(Y)+

( ∑

y∈A′

1
N(y)s

)/
log 1

s − dim(Y) .

Hence, by (4), �(B) − �(A) = �(A′), as claimed.

Proof of (f). Both statements follow from (4).
Proof of (g). By de�nition (4), �(CLP(Y0)) is equal to the expression

lim
s→dim(Y)+

∑

y∈CLP(Y0)

1
N(y)s

/
log 1

s − dim(Y) , (5)

if the limit exists.
We endowY0 with the induced reduced subscheme structure [GoW10, p. 88,

Prop. 3.52]. Let �∶ Y0 → Y be the corresponding closed immersion [GoW10, p.
84, �rst paragraph after Def. 3.41]. By [GoW10, p. 243, Prop. 10.7(1)], the mor-
phism � is of �nite type. Hence, by [GoW10, p. 244, Prop. 10.7(2)], the combined
morphism Y0 → Y → Spec(ℤ) is of �nite type.

By Remark 2.1, applied to Y0 rather than to Y, we get that �(Y0, s) converges
at s = dim(Y) > dim(Y0). Hence, �(Y0, dim(Y)) < ∞. Therefore, the numera-
tor in (5) converges at s = dim(Y).

Indeed, byLemma1.8(b), the setCLP(Y0) is countable. For eachy ∈ CLP(Y0)
let ay =

1
N(y)dim(Y)

. Then 0 < ay < 1 and
∑

y∈CLP(Y0)

1
N(y)dim(Y)

=
∑

y∈CLP(Y0)
ay ≤

∏

y∈CLP(Y0)
(1 + ay)

≤
∏

y∈CLP(Y0)

1
1 − ay

(2)= �(Y0, dim(Y)) <∞.

On the other hand, the denominator of the right hand side of (5) diverges at
s = dim(Y). Hence, �(CLP(Y0)) = 0, as claimed.

Proof of (h). Indeed, Y ∖U is a proper closed subset of Y. Since Y is irre-
ducible, we have dim(Y ∖U) < dim(Y). Hence, by (g), �(CLP(Y ∖U)) = 0.
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Taking into account thatA ∖U ⊆ CLP(Y ∖U), we have by (c) that �(A ∖U) = 0.
Therefore,

�(A ∩U) (e)= �(A) − �(A ∖U) = �(A),
as claimed.

Proof of (i). By assumption, Y ∖U is a proper closed subset of Y. Since Y
is irreducible, dim(Y ∖U) < dim(Y). Hence, by (g), �(CLP(Y ∖U)) = 0, as
claimed.

Proof of (j). SinceA is a subset of CLP(Y), so areA ∖U andA∩U. By (i) and
(c), �(A ∖U) = 0. Hence,

�(A) (d)= �(A ∖U) + �(A ∩U) = �(A ∩U),
as claimed.

Proof of (k). See for example, [FrJ08, p. 113, Sec. 6.3]. □

Theorem 2.4 (The Density Theorem). Let X be an irreducible scheme of �nite
type over Spec(ℤ)with dim(X) ≥ 1 and let F be the function �eld ofX. LetG be a
�nite group that acts onX such thatG acts faithfully on F and suppose thatY ∶=
X∕G exists. Assume that the inertia group of each x ∈ CLP(X) is trivial. Finally,
consider a G-conjugacy domain C in G. Then, the set of elements y ∈ CLP(Y)
such that Froby ⊆ C has a Dirichlet density equal to card(C)∕card(G).

This theorem is stated as [Ser65, p. 91, Thm. 7], using the analytic theory
of L-functions. Detailed proofs of the statements included in [Ser65] are given
in [Hol04, p. 55, Thm. 3.7.2]. The case where X is the spectrum of the ring of
integers of a global �eld appears for example in [FrJ08, p. 114, Thm. 6.3.1].

We improve Theorem 2.4 in the special case where X = Spec(S) as intro-
duced in Remark 1.9, with S0 = ℤ, by getting rid of the rami�cation condition:

Corollary 2.5. Let S be a generalized ring of integers (De�nition 1.3). Let G be
a �nite group that acts faithfully on S, let C be a conjugacy domain of G, and set
R = SG . Put L = Quot(S), K = Quot(R), X = Spec(S), and Y = Spec(R).

Then, the set CLP(Y)C of points y ∈ CLP(Y) unrami�ed under the morphism
X → Y such that Froby ⊆ C has a Dirichlet density equal to card(C)∕card(G).
Proof. As in De�nition 1.11, we choose a nonzero element u ∈ R such that
X′ ∶= Spec(S[u−1]) is unrami�ed over Y′ ∶= Spec(R[u−1]). Then, G acts on
X′.

Since S is a �nitely generated ℤ-algebra, so is R [Lan02, p. 147, Cor. 7.2].
Hence, by Example 1.1, both morphisms X′ → Spec(ℤ) and Y′ → Spec(ℤ) are
of �nite type. In addition L = Quot(S[u−1]) and K = Quot(R[u−1]).

Note that, by Remark 1.9, G acts faithfully on L and Y′ = X′∕G (see also
[Tak69, p. 325, Thm. 1.7]). Hence, by Theorem 2.4, the Dirichlet density of the
set

CLP(Y′)C ∶= {y ∈ CLP(Y′) | Froby ∈ C}



498 MOSHE JARDEN AND AHARON RAZON

is card(C)∕card(G). Since Y is irreducible and Y′ is a nonempty open subset of
Y, it follows from Lemma 2.3(j) that the density of CLP(Y)C is the same as that
of CLP(Y′)C , that is, card(C)∕card(G), as claimed. □

3. Test sentences
This and the next section generalize the transfer theorem from rings of inte-

gers of global �elds [FrJ08, p. 447, Thm. 20.9.3] to generalized rings of integers
(whose quotient �elds are generalized global �elds), as introduced inDe�nition
1.3. By [FrJ08, p. 242, Thm. 13.4.2],
(6) every generalized global �eld is Hilbertian [FrJ08, p. 219, Section 12.1].
We choose a generalized ring of integers R with Quot(R) = K and a mor-

phism Spec(R) → Spec(ℤ) of �nite type as in Example 1.1, “The case where
Y = Spec(ℤ)”.

As inDe�nition 1.11, wedenote the residue�eld of a closed pointp ∈ Spec(R)
by K̄p. By Lemma 1.7 and the paragraph that follows that lemma, K̄p is a �nite
�eld with N(p) = card(K̄p). In addition we denote the �rst order language of
rings whose constant symbols are the elements ofR byℒ(ring, R) [FrJ08, p. 135,
Example 7.3.1] and considerℒ(ring, R)-structures which are either �eld exten-
sions of K or one of the residue �elds K̄p with p ∈ Max(R).
Remark 3.1 (Small sets). Let S be the family of all subsets A ofMax(R) which
are contained in a proper closed subset of Spec(R). By Lemma 2.3(g), �(A) = 0
for each A ∈ S. The family S has the following properties:
(7a) Max(R) ∉ S,
(7b) A, B ∈ S implies A ∪ B ∈ S,
(7c) B ∈ S and A ⊆ B imply A ∈ S, and
(7d) A ∈ S for every �nite subset A ofMax(R).
Proof of (7a). LetW be a proper closed subset of Spec(R). We endowW with
the induced reduced subscheme structure [GoW10, p. 88, Prop. 3.52]. Thus,
W = V(a) for some nonzero ideal a of R [GoW10, p. 84, Thm. 3.42], where
its underlying topological space is {p ∈ Spec(R) | a ⊆ p}. By assumption, R is
�nitely generated over ℤ. Hence, since ℤ is a Jacobson ring, so is R [Eis95, p.
132, Thm. 4.19]. In particular, the intersection of all maximal ideals of R is the
zero ideal. Thus, there is a maximal ideal q of R not containing a. It follows
thatMax(R) ⊈ W. Conclude thatMax(R) ∉ S.
Proof of (7b). By assumption, there exist proper closed subsetsV,W of Spec(R)
such thatA ⊆ V and B ⊆ W. Hence,A∪B ⊆ V ∪W ⊂ Spec(R), again, because
Spec(R) is irreducible.
Proof of (7c). By assumption Spec(R) has a proper closed subset V such that
A ⊆ B ⊆ V ⊂ Spec(R). Hence A ∈ S.
Proof of (7d). As a �nite subset of Max(R), the �nite set A is closed. Since
dim(Spec(R)) ≥ 1, A is a proper subset of Spec(R). Hence, A ∈ S.
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Thus, in the terminology of [FrJ08, p. 139, Sec. 7.6], S is a family of small
sets that contains every �nite subset ofMax(R). Henceforth, we will say that a
subset A ofMax(R) is small if A ∈ S. Then, we say that a subset B ofMax(R)
is large ifMax(R) ∖B is small.

Example 3.2. Consider the case where K is a global �eld and OK is the ring
of integers of K. Then, OK is a Dedekind ring and dim(Spec(OK)) = 1. Thus,
small subsets of Spec(OK) are just �nite sets of nonzero prime ideals of OK , in
agreementwith the convention of [FrJ08, p. 446, Section 20.9 and p. 147, Section
7.9].

This convention is stronger than taking the small sets to be thosewith density
zero. Consider, for example, the case where K = ℚ and OK = ℤ. In this case
there exist in�nite sets of prime numbers of Dirichlet density zero.

Remark 3.3 (Filter). Taking complements of subsets ofMax(R) and using Re-
mark 3.1, we �nd that the family S′ ∶= {A ⊆ Max(R) | A′ ∈ S} with A′ ∶=
Max(R) ∖A satis�es the following rules:
(8a) ∅ ∉ S′,
(8b) A, B ∈ S′ implies A ∩ B ∈ S′,
(8c) A ∈ S′ and A ⊆ B ⊆ Max(R) imply B ∈ S′, and
(8d) A ∈ S′ if A is co�nite inMax(R).
Conditions (8a)–(8c) say that S′ is a �lter onMax(R) [FrJ08, p. 138, Sec. 7.5].

By [FrJ08, p. 139, Cor. 7.5.3], S′ is contained in an ultra�lterD of subsets of
Max(R). Thus, in addition to conditions (8a)–(8c) for D rather that for S′, the
familyD satis�es the following one:
(9) A, B ⊆ Max(R) and A ∪ B ∈ D imply A ∈ D or B ∈ D.
In addition, D contains no �nite subset. Thus, D is a nonprincipal ultra-

�lter [FrJ08, p. 139, Example 5.1(b)].

De�nition 3.4. Given a sentence � of ℒ(ring, R) [FrJ08, p. 133], we set
AR(�) = {p ∈ Max(R) | K̄p ⊧ �},

where “K̄p ⊧ �” means that “� is true in K̄p” [FrJ08, p. 134]. We call AR(�)
the truth set of � along Max(R) and say that � is true in K̄p for almost all
p ∈ Max(R) if AR(�) is a large subset ofMax(R).
Remark 3.5 (The probability space Gal(K)). We denote the maximal separa-
ble extension of K in K̃ by Ksep and let Gal(K) be the absolute Galois group
Gal(Ksep∕K) of K. Then we denote the �xed �eld in Ksep of an element � ∈
Gal(K) byKsep(�) and write K̃(�) for themaximal purely inseparable extension
of Ksep(�) in K̃.

Being a pro�nite group, Gal(K) is equipped with a unique Haar measure �K
with �K(Gal(K)) = 1 [FrJ08, p. 366, Prop. 18.2.1]. In this case, a small subset
of Gal(K) is just a subset of measure 0 and a large subset of Gal(K) is a subset
of measure 1. Each of the perfect �elds K̃(�) is an ℒ(ring, R)-structure. Then,
“a sentence � ofℒ(ring, R) is true in K̃(�) for almost all �”means that � is true
in K̃(�) for a large set of �’s in Gal(K).
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We de�ne the truth set of � along Gal(K) by
ΣK̃∕K(�) ∶= {� ∈ Gal(K) | K̃(�) ⊧ �},

(observe the change of notation from [FrJ08, p. 440, (1)]).

Remark 3.6 (Boolean polynomials). Following [FrJ08, p. 140], we de�ne Boo-
leanpolynomials in the variablesZ1,… , Zm recursively: Z1,… , Zm areBoolean
polynomials, and if U,U1, U2 are Boolean polynomials, then U′, U1 ∪U2, and
U1 ∩U2 are Boolean polynomials.

Evaluate a Boolean polynomial P(Z1,… , Zm) at subsets A1,… , Am of a set
by interpreting the symbols ∪,∩, and ′ as a union, an intersection, and tak-
ing the complement, respectively. Likewise, evaluateP(Z1,… , Zm) at sentences
�1,… , �m of a �rst order language [FrJ08, p. 132, Sec. 7.1] by interpreting ∪,∩,
and ′ as disjunction, conjunction, and negation, respectively.

Thus, in order to prove a property P ofP(A1,… , An) for subsets (respectively,
P(�1,… , �n) for sentences) it su�ces to prove:
(10a) P holds for each Ai (resp. �i),
(10b) P holds for a subset A (resp. a sentence �) implies that P holds for the

complement of A (resp. for the negation of �), and
(10c) P holds for setsA1, A2 (resp. sentences �1, �2) implies that P holds for the

union A1 ∪ A2 (resp. the disjunction �1 ∨ �2).
This procedure is called an induction on structure [FrJ08, p. 133].

In particular, induction on structure shows for sentences �1,… , �m ofℒ(ring, R)
and a Boolean polynomial P(Z1,… , Zm) that

AR(P(�1,… , �m)) = P(AR(�1),… , AR(�m)) and
ΣK̃∕K(P(�1,… , �m)) = P(ΣK̃∕K(�1),… ,ΣK̃∕K(�m))

in the notation of De�nition 3.4 and Remark 3.5.

Remark 3.7 (Test sentences). We call a sentence � of ℒ(ring, R) of the form
P((∃T)[f1(T) = 0],… , (∃T)[fm(T) = 0]) (11)

with f1,… , fm ∈ R[T] separable polynomials and P a boolean polynomial a
test sentence. It is also a test sentence of ℒ(ring, K) in the sense of [FrJ08,
p. 440, Sect. 20.6]. Let L be the splitting �eld of f1f2⋯fm over K. Denote the
set of all � ∈ Gal(L∕K) with L(�) ⊧ � (i.e. � is true in the �xed �eld L(�) of � in
L) by ΣL∕K(�). Then, by [FrJ08, p. 440, (3)],

ΣK̃∕K(�) = {� ∈ Gal(K) | resL� ∈ ΣL∕K(�)}. (12)

Therefore, by [FrJ08, p. 370, Example 18.2.3],

�K(ΣK̃∕K(�)) =
card(ΣL∕K(�))

[L ∶ K] . (13)

De�nition 3.8 (Decomposition and inertia groups). We give here the ring the-
oretic analog of the notions introduced in De�nition 1.11. These notions will
be used in the next lemma.



THE GENERALIZED TRANSFER THEOREM 501

Recall that if R is an integrally closed domain with quotient �eld K, L is a
�nite Galois extension ofK, S is the integral closure of R in L, p ∈ Spec(R), and
q ∈ Spec(S) lies over p (i.e. q ∩ R = p), then Dq ∶= {� ∈ Gal(L∕K) | �q = q}
is the decomposition group of q over K (alternatively, over p). Let K̄p ∶=
Quot(R∕p) = Rp∕pRp and L̄q ∶= Quot(S∕q) = Sq∕qSq be the respective residue
�elds. For each x ∈ S let x̄ ∶= x + q be the equivalence class of x modulo q.
Each � ∈ Dq induces a unique automorphism �̄ of L̄q over K̄p satisfying �̄x̄ =
�x for each x ∈ S. By [FrJ08, p. 108, Lemma 6.1.1(a)], the �eld extension L̄q∕K̄p
is normal and the map � ↦ �̄ is an epimorphism from Dq onto Aut(L̄q∕K̄p).

The inertia group of q over K is
Iq ∶ = {� ∈ Gal(L∕K) | �x ∈ x + q for each x ∈ S}

= {� ∈ Gal(L∕K) | �̄ = 1}.
If K̄p is a �nite �eld, then L̄q∕K̄p is a Galois extension. If, in addition, Iq is
trivial, then the map � ↦ �̄ is an isomorphism of Dq onto Gal(L̄q∕K̄q) [FrJ08,
p. 108, Lemma 6.1.1(b)]. Again, in this case, we say that q is unrami�ed over K
and p is unrami�ed in L.

The following result generalizes [FrJ08, p. 446, Lemma 20.9.2].

Lemma 3.9. Let � be the test sentence (11) of ℒ(ring, R). Let B be the set of all
p ∈ Spec(R) such that the leading coe�cients and the discriminants of the fi ’s
are units of Rp, i = 1,… , m. Denote the splitting �eld of f1⋯fm over K by L and
let S be the integral closure of R in L. Then:
(a) For each p ∈ CLP(B), every q ∈ Spec(S) over p, every � ∈ Dq, and every

�eld extension F of K̄p satisfying L̄q ∩ F = L̄q(�̄), where �̄ is the image of �
under the map Dq → Gal(L̄q∕K̄p) induced by q, we have L(�) ⊧ � if and only
if F ⊧ �.

(b) B ∩ AR(�) = {p ∈ B ∩Max(R) | Frobp ⊆ ΣL∕K(�)}.
(c) �(AR(�)) =

card(ΣL∕K(�))
[L∶K]

.

Proof of (a). If m = 1, then � is (∃T)[f1(T) = 0] and statement (a) is a
consequence of [FrJ08, p. 111, Lemma 6.1.8(a)]. The general case follows by
induction on the structure of �.
Proof of (b). Each p that belongs to either of the sides of (b) lies in Max(R)
(De�nition 3.4).

Consider p that belongs to the right hand side of (b). Let q be a prime ideal
of S lying over p, so q ∈ Max(S). Let L̄q = S∕q and K̄p = R∕p. Then, L̄q∕K̄p is a
�nite Galois extension of �nite �elds and there is a generator � of Dq which is
mapped onto a generator �̄ of Gal(L̄q∕K̄p). Since L(�) ⊧ �, we get, by (a), that
K̄p ⊧ �. Thus, p ∈ B ∩ AR(�).

The other direction of (b) follows similarly.

Proof of (c). Note that B is a nonempty open subset of Spec(R)with dim(B) =
dim(Spec(R)), because each fi is separable. By [FrJ08, p. 111, Lemma 6.1.8(b)],
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the inertia group in Gal(L∕K) of each closed point of B is trivial. By Lemma
2.3(h), �(B ∩ AR(�)) = �(AR(�)).

By Corollary 2.5, with G = Gal(L∕K),

�({p ∈ B ∩Max(R) | Frobp ⊆ ΣL∕K(�)}) =
card(ΣL∕K(�))

[L ∶ K] .

Therefore, by (b), �(AR(�)) = �(B ∩ AR(�)) =
card(ΣL∕K(�))

[L∶K]
, as claimed. □

4. Ultraproducts
We refer to Remark 3.3 and [FrJ08, p. 141, Sec. 7.7], respectively, for the con-

cepts “ultra�lter of a familyD of subsets of a set S” and “ultraproduct∏As∕D
of models As of an elementary theory with indices s ∈ S modulo D”. If S is
equipped with a family of small sets (hence, also a family of large sets), then
an ultra�lterD is regular if it contains no small set of S, equivalently if “each
large set of S belongs to D”. In this case we say that

∏As∕D is a regular ul-
traproduct.

As in Section 3, K is a generalized global �eld and R is a generalized ring of
integers with Quot(R) = K equipped with a morphism Spec(R) → Spec(ℤ) of
�nite type, as in De�nition 1.3.

The following result is a special case of [FrJ08, p. 437, Prop. 20.4.4]. To this
endnote that since every element ofK is a quotient of two elements ofR, the lan-
guageℒ(ring, K) used in the latter proposition can be interpreted inℒ(ring, R).
Lemma 4.1. There exists a set Ax(R) of axioms in the language ℒ(ring, R) such
that a �eld extension F of K satis�es those axioms if and only if F is perfect, PAC,
and Gal(F) is procyclic.

These axioms are sentences that interpret the �eld axioms [FrJ08, p. 135, Ex-
ample 7.3.1], perfectness axioms, [p ≠ 0] ∨ (∀X)(∃Y)[Yp = X], as p ranges over
the prime numbers, the positive diagram of R [FrJ08, p. 135, Example 7.3.1], and
the following axioms:
(a) PAC axioms: Every absolutely irreducible polynomial f(X,Y) of degree d has

a zero, d = 1, 2, 3,… .
(b) Procyclic axioms: The �nite groups which appear as Galois groups over F are

all cyclic. Thus, Gal(F) is procyclic [FrJ08, p. 16, Exer. 6].
The following result connects the �elds K̃(�)with � ∈ Gal(K) to the residue

�elds K̄p where p ∈ Max(R). It generalizes [FrJ08, p. 446, Lemma 20.9.1].

Lemma 4.2. If a sentence � of ℒ(ring, R) is true in K̃(�) for almost all � ∈
Gal(K), then � is true in K̄p for almost all p ∈ Max(R).
Proof. By [FrJ08, p. 146, Prop. 7.8.1(a)], a sentence � ∈ ℒ(ring, R) is true in K̄p
for almost all p ∈ Max(R) if and only if � is true in every regular ultraproduct
of the K̄p’s. By Remark 3.3, every regular ultra�lter D on Max(R) is nonprin-
cipal, hence the map a ↦ āp, with p ranging on Max(R), embeds R into the
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ultraproduct F ∶= ∏ K̄p∕D. In particular, if a ∈ R and a ≠ 0, then āp ∈ K̄×
p

for almost all p ∈ Max(R).
By Lemma 1.8(a),

(14) for each positive integerm there are only �nitely many p ∈ Max(R) such
that card(K̄p) ≤ m.

Using that every �nite subset ofMax(R) is small, Lemma 4.1, and Łoš ’ the-
orem [FrJ08, p. 142, Prop. 7.7.1], we have that F is perfect, Gal(F) ≅ ℤ̂, and F
is a PAC �eld.

Indeed, every �nite �eld is perfect. By [FrJ08, p. 15, Section 1.5], Gal(K̄p) ≅
ℤ̂ for each p ∈ Max(R). Also, by [FrJ08, p. 105, Cor. 5.4.2] and (14), the follow-
ing statement is true for all but �nitely many p ∈ Max(R):
(15) For every absolutely irreducible polynomial f ∈ K̄p[X,Y] of degree d

there is a point (x, y) ∈ K̄p × K̄p with f(x, y) = 0.
Moreover, by (6), K is Hilbertian. Hence, by [FrJ08, p. 439, Thm. 20.5.4], �

is true in K̄p for almost all p ∈ Max(R), as claimed. □
We write Almost(K) for the theory of all � ∈ ℒ(ring, R) that are true in K̃(�)

for almost all � ∈ Gal(K). Likewise, we write Almost(R) for the theory of all
� ∈ ℒ(ring, R) that are true in K̄p for almost all p ∈ Max(R).
Lemma 4.3. For each sentence � ofℒ(ring, R) there exists a test sentence � satis-
fying the following condition:

The sets ΣK̃∕K(�) and ΣK̃∕K(�) di�er only by a small subset of Gal(K), i.e. by a
set of measure zero. Thus, the sentence � ↔ � belongs to Almost(K).
Proof. By (6), K is Hilbertian. Hence, [FrJ08, p. 442, Prop. 20.6.6] gives a test
sentence � inℒ(ring, K) that satis�es the requirement of the lemma. Multiply-
ing all of the polynomials that appear in � by an appropriate nonzero element
of R, we may assume that the coe�cients of those polynomials are in R, so � is
a test sentence in ℒ(ring, R), as required. □

Here is our main result:

Theorem4.4 (TheGeneralizedTransfer Theorem). Let� be a sentence ofℒ(ring, R).
Then, ΣK̃∕K(�) is measurable, AR(�) has a Dirichlet density, and

�(AR(�)) = �K(ΣK̃∕K(�)). (16)

Moreover:
(a) �(AR(�)) is a rational number.
(b) �(AR(�)) = 0 if and only if AR(�) is a small set.
(c) �(AR(�)) depends only on K.
Proof. Lemma 4.3 provides a test sentence � in ℒ(ring, R) of the form (11)
such that � ↔ � is true in K̃(�) for almost all � ∈ Gal(K). By Lemma 4.2, � ↔ �
is also true in K̄p for almost all p ∈ Max(R). Hence, ΣK̃∕K(�) and ΣK̃∕K(�) di�er
only by a subset of Gal(K) of measure 0 and AR(�) di�ers from AR(�) only by a
small set, i.e. a subset ofMax(R) which is contained in a proper closed subset
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of Spec(R), so its Dirichlet density is zero (Remark 3.1). Therefore, it su�ces to
prove the theorem for � rather than for �.

Let L be the splitting �eld over K of the polynomial f1⋯fm, with f1,… , fm
being the polynomials occurring in the de�nition (11) of the test sentence �.
Then L is a �nite Galois extension of K, ΣL∕K(�) ∶= {� ∈ Gal(L∕K) | L(�) ⊧ �}
is a conjugacy domain of Gal(L∕K), and ΣK̃∕K(�) = {� ∈ Gal(K) | resL� ∈
ΣL∕K(�)} (by (12)). By (13), �K(ΣK̃∕K(�)) = card(ΣL∕K(�))

[L∶K]
. By Lemma 3.9(c),

�(AR(�)) =
card(ΣL∕K(�))

[L∶K]
. Consequently, �(AR(�)) is a rational number, so (a)

holds. Also, �K(ΣK̃∕K(�)) = �(AR(�)). This proves (16).
If AR(�) is a small set, then by Remark 3.1, �(AR(�)) = 0. Conversely, if

�K(ΣK̃∕K(�)) = �(AR(�)) = 0, then ΣL∕K(�) = ∅. Hence, by Lemma 3.9(b),
B ∩ AR(�) = ∅, where B is the nonempty open subset of Spec(R) from Lemma
3.9. Thus, AR(�) is a subset ofMax(R) which is contained in the proper closed
subset Spec(R) ∖B of Spec(R), so AR(�) is a small set, as required. This proves
(b).

Finally, �K(ΣK̃∕K(�)) depends only on the quotient �eldK ofR, hence so does
�(AR(�)), as stated in (c). □

Here is a generalization of Theorem 4.4(c).

Proposition 4.5. Let R ⊆ R′ be generalized rings of integers and � a sentence of
ℒ(ring, R), viewed also as a sentence ofℒ(ring, R′). Suppose thatK′ ∶= Quot(R′)
is a regular extension of K ∶= Quot(R). Then, �(AR(�)) = �(AR′(�)).
Proof. Both K and K′ are generalized global �elds and K′ is a regular exten-
sion of K. In particular, by (6), both K and K′ are Hilbertian, so (K, 1) and
(K′, 1) are “Hilbertian pairs” in the sense of [FrJ08, p. 439].

By Theorem 4.4,

�(AR(�)) = �K(ΣK̃∕K(�)) and �(AR′(�)) = �K′(ΣK̃′∕K′(�)).
By [FrJ08, p. 443, Thm. 20.7.1(c)], �K(ΣK̃∕K(�)) = �K′(∑K̃′∕K′(�)). Hence,
�(AR(�)) = �(AR′(�)). □

Example 4.6. The regularity condition in Proposition 4.5 is essential. For ex-
ample, let R = ℤ and R′ = ℤ[

√
2]. Then Quot(R) = ℚ and Quot(R′) = ℚ(

√
2).

By [Lan70, p. 76, Thm. 5], R′ is the integral closure of ℤ in ℚ(
√
2).

Let � be the sentence (∃X)[X2 = 2]. Then, �ℚ(Σℚ̃∕ℚ(�)) =
1
2
but

�ℚ(√2)
(
Σℚ̃∕ℚ(√2)(�)

)
= 1.

The following result generalizes [FrJ08, p. 442, Thm. 20.6.7]. In this result
we refer to the �eld K, its subring R introduced in the second paragraph of this
section, and a sentence � ofℒ(ring, R). As in [FrJ08, p. 440, Sec. 20.6], we speak
about the explicit case, when all of these objects are “presented” in the sense
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of [FrJ08, p. 403–406, Sec. 19.1] and K has an elimination theory as de�ned
in [FrJ08, p. 410, Def. 19.2.8].

Theorem 4.7 (Decidability Theorem). Let R be a generalized ring of integers,
andK ∶= Quot(R) the corresponding generalized global �eld. Let � be a sentence
of ℒ(ring, R). Then, in the explicit case, the rational number �(AR(�)) can be
recursively computed. Indeed, it can be even primitive recursively computed.

Thus, Th(Almost(R)) is recursive and even primitive recursive.

Proof. By [FrJ08, p. 442, Thm. 20.6.7], the rational number �K(ΣK̃∕K(�)) can
be recursively computed. Since, �(AR(�)) = �K(ΣK̃∕K(�)) (by Theorem 4.4),
also �(AR(�)) can be recursively computed. In particular, one can recursively
decide whether �K(ΣK̃∕K(�)) = 1. Hence, one can recursively decide whether
�(AR(�)) = 1, which by Theorem 4.4(b) happens if and only if AR(�) is large.
Therefore, one can recursively decide whether � holds in K̄p for almost all p ∈
Max(R). Thus, Th(Almost(R)) is recursive.

Finally, by [FrJ08, p. 726, Thm. 30.7.2], again in the explicit case, the func-
tion �K(ΣK̃∕K(�)) from sentences ofℒ(ring, K) to rational numbers is primitive
recursive. Hence, as in the previous paragraph, �(AR(�)) can be primitive re-
cursively computed and Th(Almost(R)) is even primitive recursive. □
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