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Global obstructions to conformally Einstein
metrics in dimension six

Je�rey S. Case

Abstract. We present a global conformal invariant on closed six-manifolds
which obstructs the existence of a conformally Einsteinmetric. We show that
this obstruction is nontrivial and, up to multiplication by a constant, is the
unique such invariant. This also gives rise to a (possibly trivial) di�eomor-
phism invariant which obstructs the existence of an Einstein metric. We also
discuss global conformal invariants which obstruct the existence of a con-
formally Einstein metric on closed six-manifolds with in�nite fundamental
group.
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1. Introduction
A fundamental problem in Riemannian geometry is to determine whether

a given closed manifold admits an Einstein metric; i.e. a Riemannian metric
g for which the Ricci curvature satis�es Ricg = �g for some constant � ∈ ℝ.
Much is known about this problem in dimension atmost four: Every closed sur-
face admits an Einstein metric, while there are topological obstructions to the
existence of an Einstein metric on a closed three- or four-manifold [4]. There
are no known obstructions in higher dimension, and indeed there are many
constructions of Einsteinmetrics in higher dimensions [4, 5, 6, 9, 10, 11, 23, 24].

A natural approach to �nding obstructions, if they exist, is to �rst seek global
obstructions to the existence of an Einstein metric in a given conformal class.
One reason for this is that the space of global conformal invariants — i.e.
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conformally invariant integrals of complete contractions of the metric, its in-
verse, the Riemannian volume form, and covariant derivatives of the Riemann
curvature tensor — is classi�ed [1]. Another reason is that the Berger [4, Para-
graph 6.32] and Hitchin–Thorpe [18, 22] inequalities are quickly derived by
considering global conformal invariants in dimension four:

The space of global conformal invariants of a closed, oriented Riemannian
four-manifold is three-dimensional and spanned by

∫
M
Qg4 dvolg and ∫

M
|W±

g |2g dvolg,

where Q4 ∶= − 1
6
∆R + 1

24
R2 − 1

2
|E|2 is the fourth-order Q-curvature [7], E ∶=

Ric−R
4
g is the trace-free part of the Ricci tensor, andW+ (resp.W−) is the self-

dual (resp. anti-self-dual) part of the Weyl tensor. Each of ∫ Q4, ∫ |W+|2, and
∫ |W−|2 is nonnegative if (M4, g) is Einstein. In particular, if the di�eomor-
phism invariant Q(M) ∶= supg ∫ Q

g
4 dvolg is negative, thenM does not admit

an Einstein metric. Moreover, the Gauss–Bonnet–Chern and Hirzebruch sig-
nature formulas,

8�2�(M) = 1
4 ∫ |W+

g |2g dvolg +
1
4 ∫ |W−

g |2g dvolg + ∫ Qg4 dvolg,

12�2�(M) = 1
4 ∫ |W+

g |2g dvolg −
1
4 ∫ |W−

g |2g dvolg,

respectively, imply that Q(M) ≤ 8�2�(M) and Q(M) ≤ 8�2
(
�(M) ± 3

2
�(M)

)
.

The �rst estimate yields Berger’s inequality: If �(M) ≤ 0, then M admits an
Einstein metric if and only if it is, up to taking a �nite cover, a four-torus. The
second estimate yields theHitchin–Thorpe inequality: If�(M) ≤ 3

2
|�(M)|, then

M admits an Einstein metric if and only if it is, up to taking a �nite cover and
reversing the orientation, a four-torus or a K3 surface. Note that there are in-
�nitely many closed, simply-connected four-manifolds with �(M) > 3

2
|�(M)|

which do not admit Einstein metrics [19].
We now specialize to closed six-manifolds. In this case, the space of global

conformal invariants is four-dimensional [1, 2, 3, 8, 13, 14] and spanned by the
total integrals of

Q6 ∶= −∆2J + 4∆J2 − 8�
(
P(∇J)

)
+ 4∆|P|2 (1.1a)

− 8J3 + 24J|P|2 − 16 trP3 − 8⟨B, P⟩,
L1 ∶= 2∆|W|2 − 48∇l(WijklCijk) (1.1b)

+ |∇W|2 + 48PstWsijkWtijk − 8J|W|2 − 64|C|2,

L2 ∶=
1
2∆|W|2 − 8∇l(WijklCijk) + 8PstWsijkWtijk − 2J|W|2 − 8|C|2, (1.1c)

L3 ∶=Wij
klWkl

stWst
ij, (1.1d)
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where Pij is the Schouten tensor, J is its trace, Cijk is the Cotton tensor,Wijkl is
the Weyl tensor, and Bij is the Bach tensor; see Section 2 for their de�nitions.
Note that Q6 is (the negative of) the critical Q-curvature [7] in dimension six.
We denote byQ(M, g) ∶= ∫ Qg dvolg andℒj(M, g) ∶= ∫ Lgj dvolg, j ∈ {1, 2, 3},
the corresponding global conformal invariants.

We have chosen the basis (1.1) to illustrate the signs taken by evaluating
global conformal invariants on conformal classes of closed, Einstein manifolds
of dimension 6. For example, Equation (1.1b) implies that the negativity of
ℒ1(M, g) obstructs the existence of an Einstein metric conformal to g. Indeed,
this is the only such obstruction, up to multiplication by a positive constant.

Theorem 1.1. Let (M6, g) be a closed Riemannian 6-manifold. Then

ℒ1(M, g) = ∫
M

(
|∇W|2 + 12EtsWtijkWsijk − 64|C|2

)
dvol (1.2)

is conformally invariant, where E ∶= Ric−R
6
g is the trace-free part of the Ricci

tensor. If ĝ ∶= e2ug is Einstein, then ℒ1(M, g) ≥ 0 with equality if and only
if ĝ is locally symmetric. Moreover, if ℐ is a global conformal invariant which is
nonnegative at every Einstein metric, then ℐ = aℒ1 for some constant a ≥ 0.

Theproof of Theorem1.1 is relatively simple. Wehave alreadynoted that (1.2)
is a global conformal invariant which is nonnegative at conformally Einstein
metrics. The uniqueness of ℒ1 follows by considering simple examples; see
Section 4 for details.

Importantly, ℒ1 is a nontrivial obstruction to the existence of an Einstein
metric in a given conformal class.

Proposition 1.2. Let (T2 × S4, g ∶= dx2 + d�2) be the Riemannian product of a
�at two-torus and a round four-sphere of constant sectional curvature one. Then

ℒ1(T2 × S4, g) = −96�2 Voldx2(T2).
In particular, g is not conformally Einstein.

Proposition 1.2 follows by direct computation; see Proposition 5.2 for a more
general statement. Work of Gover and Nurowski [15] implies that g is not even
locally conformally Einstein.

Theorem 1.1 motivates the introduction of the di�eomorphism invariant

ℒ1(M6) ∶= sup {ℒ1(M, g) ∶ g ∈ Met(M)} ,
whereMet(M) denotes the space of Riemannian metrics on a given closed six-
manifold M. This invariant gives a topological obstruction to the existence of
an Einstein metric.

Theorem 1.3. Let M6 be a closed six-manifold with ℒ1(M) ≤ 0. If ℒ1(M) =
0, assume additionally that |�1(M)| = ∞ and the universal cover of M is not
di�eomorphic toℝ6. ThenM does not admit an Einstein metric.
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We are not presently aware of a closed six-manifold M for which ℒ1(M) is
�nite, let alone nonpositive.

The fact that the product metric on S1×S5 is locally conformally �at implies
that ℒ1(S1 × S5) ≥ 0. A scaling argument and Proposition 1.2 together imply
thatℒ1(T2 × S4) ≥ 0. If equality holds in either case, then Theorem 1.3 implies
that the relevant manifold does not admit an Einstein metric. Note that, by
Berger’s inequality, neither S1 × S3 nor T2 × S2 admits an Einstein metric.

The global conformal invariant ℒ1(M, g) depends on the choice of Einstein
metric on a given closed six-manifold, if one exists. Additionally, Einstein met-
rics are not generally critical points of the functional g ↦ ℒ1(M, g). See Sec-
tion 5 for details. These observations limit the applicability ofℒ1 to other ques-
tions involving Einstein manifolds.

The total integrals of (1.1) give additional obstructions to the existence of an
Einstein metric with nonpositive scalar curvature in a given conformal class.

Theorem 1.4. Let (M6, g) be a closed Riemannian six-manifold. Then

Q(M, g) ∶= ∫
M

(− 1
225R

3 + 1
10R|E|

2 − 1
4 trE

3 − 2⟨B, E⟩) dvolg,

ℒ1(M, g) ∶= ∫
M

(
|∇W|2 + 12EtsWtijkWsijk − 64|C|2

)
dvolg,

ℒ2(M, g) ∶= ∫
M

(2EtsWtijkWsijk − 1
15R|W|2 − 8|C|2) dvolg

(1.3)

are conformally invariant. Suppose that ĝ ∶= e2ug is an Einstein metric with
nonpositive curvature. Then

(i) Q(M, g) ≥ 0 with equality if and only if Y(M, g) = 0;
(ii) ℒ1(M, g) ≥ 0 with equality if and only if ĝ is locally symmetric; and
(iii) ℒ2(M, g) ≥ 0 with equality if and only if Y(M, g) = 0 or g is locally

conformally �at.

Here Y(M, g) is the Yamabe constant [20]; i.e. the in�mum of the total
scalar curvature over all unit-volume metrics conformal to g.

Any convex linear combination of Q(M, g), ℒ1(M, g), and ℒ2(M, g) is also
nonnegative if (M, g) is conformal to an Einstein manifold with nonpositive
scalar curvature. We do not presently know whether these are the only such
invariants.

The motivation for Theorem 1.4 is that, by Myers’ Theorem [21], the global
conformal invariantsQ,ℒ1, andℒ2 obstruct the existence of an Einstein metric
on a closed conformal six-manifold with in�nite fundamental group.

Corollary 1.5. Let (M6, g) be a closed Einstein six-manifold with |�1(M)| = ∞.
Then

(i) Q(M, g) ≥ 0 with equality if and only if Y(M, g) = 0;
(ii) ℒ1(M, g) ≥ 0 with equality if and only if g is locally symmetric; and
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(iii) ℒ2(M, g) ≥ 0 with equality if and only if Y(M, g) = 0 or g is locally
conformally �at.

Theorem1.4 andCorollary 1.5 are simple consequences of the formulas (1.1).
In Section 5 we compute the invariants Q,ℒ1, andℒ2 on Riemannian products
of spaceforms to show that they all give nontrivial obstructions.

Theorem 1.4 motivates the introduction of the di�eomorphism invariants

Q≤0(M) ∶= sup {Q(M, g) ∶ g ∈ Met(M),Y(M, g) ≤ 0} ,
ℒ≤0
1 (M) ∶= sup {ℒ1(M, g) ∶ g ∈ Met(M),Y(M, g) ≤ 0} ,

ℒ≤0
2 (M) ∶= sup {ℒ2(M, g) ∶ g ∈ Met(M),Y(M, g) ≤ 0} .

One can formulate an analogue of Theorem 1.3 for the invariants Q≤0(M),
ℒ≤0
1 (M), andℒ≤0

2 (M) on a closed six-manifoldwith in�nite fundamental group.
We presently cannot show that any of these invariants is �nite, let alone non-
positive.

Unlike the situation in dimension four, the space of global conformal invari-
ants in dimension six doesnot admit a basis of invariantswhich are nonnegative
at Einstein six-manifolds with in�nite fundamental group, let alone Einstein
six-manifolds in general. However, the Gauss–Bonnet–Chern Theorem [12]
implies that any global conformal invariant is a linear combination of the Euler
characteristic and the three linearly independent invariants of Theorem 1.4.

Theorem 1.6. Let (M6, g) be a closed six-manifold. Then

64�3�(M) = −Q(M, g) − 1
3ℒ1(M, g) + 7

6ℒ2(M, g) +ℒ3(M, g).

Theorem 1.6 follows readily from a known expression [16] of the Gauss–
Bonnet–Chern formula in terms of global conformal invariants. It is presently
unclear whether one can combine Corollary 1.5 and Theorem 1.6 to �nd a
closed six-manifold which does not admit an Einstein metric.

This article is organized as follows.
In Section 2 we give a detailed account of the global conformal invariants

determined by (1.1). We also prove Theorem 1.6.
In Section 3we compute the scalar invariants (1.1) at products of spaceforms.
In Section 4 we prove Theorems 1.1, 1.3 and 1.4 and Corollary 1.5.
In Section 5 we discuss some examples, and in particular prove Proposi-

tion 1.2.

2. Global conformal invariants in dimension six
Let (Mn, g) be a Riemannian n-manifold. The Schouten tensor Pij, the

Weyl tensorWijkl, the Cotton tensor Cijk, and the Bach tensor Bij are

Pij ∶=
1

n − 2
(
Rij − Jgij

)
,

Wijkl ∶= Rijkl − Pikgjl − Pjlgik + Pilgjk + Pjkgil,
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Cijk ∶= ∇iPjk − ∇jPik,
Bij ∶= ∇sCsij +WisjtPst,

respectively, whereRij is the Ricci tensor, Rijkl is the Riemann curvature tensor,
and J ∶= Pss. We use Penrose’s abstract index notation throughout this article.

The importance of these tensors stems from their symmetries and conformal
transformation properties. TheWeyl tensor is conformally invariant, and hence
the Schouten tensor determines the behavior of the Riemann curvature tensor
under conformal transformation. Under conformal change of metric, the Cot-
ton and Bach tensors depend only on the one-jet of the conformal factor [13].
The relevant algebraic symmetries of these tensors are

P[ij] = 0,
Wijkl =W[ij][kl] =W[kl][ij], W[ijk]l = 0,
Cijk = C[ij]k, C[ijk] = 0,
B[ij] = 0,

where square brackets indicate skew symmetrization. All traces of these tensors
can be computed from these symmetries and the identities

J = Pss, Wisj
s = 0, Csis = 0.

We also require the consequence

∇[iWjk]
lm = −2C[ij[lgk]m] (2.1)

of the second Bianchi identity.
We now verify that the total integrals of (1.1) form a basis for the space of

global conformal invariants in dimension six.

Proposition 2.1. The space of global conformal invariants is four-dimensional
and spanned by the total integrals of (1.1).

Proof. This follows from the following three observations. First, any global
conformal invariant is a linear combination of ∫ Qg dvolg and an integral of a
local conformal invariant [1]. Second, in dimension six,

I1 ∶= |∇W|2 − 16∇l(WijklCijk) + 16PstWsijkWtijk − 32|C|2,
I2 ∶=Wi

k
j
lWk

s
l
tWs

i
t
j,

I3 ∶=Wij
klWkl

stWst
ij.

give a basis for the space of local conformal invariants [2, 3, 13, 14]. Third, (2.1)
implies that, in dimension six,

1
2∆|W|2 = |∇W|2 − 8∇l(WijklCijk) + 2J|W|2 + 8PstWsjklWtjkl

− 24|C|2 − 4I2 − I3. �

We conclude with the Gauss–Bonnet–Chern theorem in dimension six.
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Proof of Theorem 1.6. It is known [16, pg. 38] that

64�3�(M) = ∫
M

(−Qg6 −
1
2I1 +

2
3I2 +

7
6I3) dvolg .

The conclusion readily follows. �

3. Some computations on locally symmetric spaces
In this sectionwe collect somebasic computations on locally symmetric spaces,

and especially products of spaceforms.
We begin by discussing contractions of certain algebraic curvature operators.

To that end, given elements Gij andHij of S2T∗pM, denote by

(G ?H)ijkl ∶= GikHjl + GjlHik − GilHjk − GjkHil,
(G◦H)ij ∶= GiuHuj,

the Kulkarni–Nomizu product and composition with respect to the identi�-
cation S2T∗pM ≅ End(TpM), respectively. Given elements Uijkl and Vijkl of
S2Λ2T∗pM— so that Uijkl = U[ij][kl] = U[kl][ij] — denote by

(U◦V)ijkl ∶=
1
2Uij

uvVuvkl

the composition with respect to the identi�cation S2Λ2T∗pM ≅ End(Λ2T∗pM).
We have the following identities for compositions of certain Kulkarni–Nomizu
products.

Lemma 3.1. Let (Mn, g) be a Riemannian manifold and let G,H ∈ S2T∗pM be
such that G◦H = 0. Then

(G ? G)◦(G ? G) = 2G2 ? G2,
(G ? G)◦(G ?H) = 0,
(G ? G)◦(H ?H) = 0,
(G ?H)◦(G ?H) = G2 ?H2.

Proof. Given G1, G2, G3, G4 ∈ S2T∗pM, it is straightforward to check that

(G1 ? G2)◦(G3 ? G4) = (G1◦G3)? (G2◦G4) + (G1◦G4)? (G2◦G3).
The conclusion readily follows. �

De�ne the partial trace tr∶ S2Λ2T∗pM → S2T∗pM by

(trU)ij ∶= Uiuj
u.

Wehave the following identities for the trace of the Kulkarni–Nomizu products
of elements of S2T∗pM.

Lemma 3.2. Let (Mn, g) be a Riemannian manifold and let G,H ∈ S2T∗pM be
such that G◦H = 0. Then

tr(G ? G) = 2(trG)G − 2G2,
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tr(G ?H) = (trG)H + (trH)G.

Proof. Given G,H ∈ S2T∗pM, we compute that

tr(G ?H) = (trG)H + (trH)G − G◦H −H◦G.
The conclusion readily follows. �

Lemmas 3.1 and 3.2 give simple formulas for the curvature of a Riemannian
product of spaceforms.

Lemma 3.3. Let (Mm, g) and (Nn, ℎ) be Riemannian spaceforms of constant
sectional curvature � and �, respectively. Set (Xm+n, g) ∶= (M ×N, g+ ℎ). Then

Rg = m(m − 1)� + n(n − 1)�, (3.1)

Eg =
(m − 1)� − (n − 1)�

m + n (ng −mℎ) , (3.2)

Wg =
� + �

2(m + n − 1)(m + n − 2)
(
n(n − 1)g ? g (3.3)

− 2(n − 1)(m − 1)g ? ℎ +m(m − 1)ℎ ? ℎ
)
,

where Eg ∶= Ricg −
Rg
m+n

g is the trace-free part of the Ricci tensor of g.

Proof. Observe that Ricg = (m − 1)�g + (n − 1)�ℎ. This readily yields (3.1)
and (3.2). Observe also that

Wg =
�
2 g ? g + �

2ℎ ? ℎ − 1
m + n − 2Eg ? g − 1

2(m + n)(m + n − 1)
Rgg ? g.

Combining this with (3.1) and (3.2) yields (3.3). �

Recall that a Riemannian manifold (Mn, g) is locally symmetric if its Rie-
mann curvature tensor is parallel. In this case, the local invariants (1.1) sim-
plify.

Lemma 3.4. Let (M6, g) be locally symmetric. Then

Q = − 1
225R

3 + 1
10R|E|

2 − 1
4 trE

3 − 1
2WijklEikEjl,

L1 = 24⟨E, trW2⟩,

L2 = 4⟨E, trW2⟩ − 2
15R tr

2W2,

L3 = 4 tr2W3,
whereW2 ∶=W◦W andW3 ∶=W◦W◦W.

Proof. The assumption that (M6, g) is locally symmetric implies that ∇W = 0
and ∇P = 0. Hence Bij =

1
4
WisjtEst. The conclusion readily follows. �

SpecializingLemma3.4 to theRiemannianproduct of two three-dimensional
spaceforms and to the Riemannian product of a two- and a four-dimensional
spaceform yields enough examples for the results of this article.
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Proposition 3.5. Let (M3, g)and (N3, ℎ) be closed three-manifoldswith constant

sectional curvature � and �, respectively. Then (M
6
, g) ∶= (M×N, g+ℎ) satis�es

Q = −2425(� + �)3,
L1 = 0,

L2 = −3625(� + �)3,

L3 =
18
25(� + �)3.

Proof. Lemma 3.3 implies that

Rg = 6(� + �),
Eg = (� − �) (g − ℎ) ,

Wg =
� + �
20 (3g ? g − 4g ? ℎ + 3ℎ ? ℎ) .

The conclusion follows from Lemmas 3.1, 3.2 and 3.4. �

Proposition 3.6. Let (M2, g) be a closed surface with constant sectional curva-
ture � and let (N4, ℎ) be a closed four-manifold with constant sectional curvature

�. Then (M
6
, g) ∶= (M ×N, g + ℎ) satis�es

Q = −1225(�
3 − 7�2� + 33��2 − 9�3),

L1 = 12(� + �)2(� − 3�),

L2 =
6
25(� + �)2(7� − 33�),

L3 =
39
25(� + �)3.

Proof. Lemma 3.3 implies that

Rg = 2(� + 6�),

Eg =
� − 3�
3 (2g − ℎ) ,

Wg =
� + �
20 (6g ? g − 3g ? ℎ + ℎ ? ℎ) .

The conclusion follows from Lemmas 3.1, 3.2 and 3.4. �

4. Proofs of main results
In this section we prove our main results, Theorems 1.1 and 1.4 and Corol-

lary 1.5.
First we consider the obstruction for a conformally Einstein metric.

Proof of Theorem 1.1. Proposition 2.1 implies that ℒ1(M, g) is conformally
invariant. Integrating (1.1b) yields (1.2).
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Let g be Einstein. Equation (1.2) implies that

ℒ1(M, g) = ∫
M
|∇W|2 dvol .

Thus ℒ1(M, g) ≥ 0 with equality if and only if ∇W = 0. Since ∇W = ∇Rm,
we see that equality holds if and only if g is locally symmetric.

Suppose now that ℐ is a global conformal invariant which is nonnegative at
everyEinsteinmetric. Proposition 2.1 implies that there are constantsa, b, c, e ∈
ℝ such that

ℐ(M, g) = aℒ1(M, g) + ∫
M

(
bQg6 + cLg2 + eLg3

)
dvolg . (4.1)

We prove that b = c = e = 0. The conclusion then follows from the exis-
tence [4] of closed Einstein manifolds which are not locally symmetric.

First, let (M6, g) be a closed spaceform with constant sectional curvature �.
Lemma 3.4 implies that ℐ(M, g) = −120b�3 Volg(M). Since � is arbitrary, b =
0.

Second, let (M3, g) and (N3, ℎ) be closed spaceforms with constant sectional
curvature �. Lemma 3.3 and Proposition 3.5 imply that (M×N, g+ℎ) is Einstein
with

L1 = 0,

L2 = −28825 �
3,

L3 =
144
25 �

3.

Recalling that b = 0, we deduce that

ℐ(M ×N, g + ℎ) = 144
25 (e − 2c)�3 Volg(M) Volℎ(N).

Since � is arbitrary, e = 2c.
Third, let (M2, g) be a closed surface with constant sectional curvature �

and let (N4, ℎ) be a closed four-manifold with constant sectional curvature �∕3.
Lemma 3.3 and Proposition 3.6 imply that (M ×N, g + ℎ) is Einstein with

L1 = 0,

L2 = −12875 �
3,

L3 =
832
225�

3.

Recalling that b = 0 and e = 2c, we deduce that

ℐ(M ×N, g + ℎ) = 256
45 c�

3 Volg(M) Volℎ(N).

Since � is arbitrary, c = e = 0. �

Next we prove that the nonpositivity of the di�eomorphism invariantℒ1(M)
obstructs the existence of an Einsteinmetric on a given closed six-manifoldM6.
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Proof of Theorem 1.3. Suppose that (M6, g) is a closed Einstein six-manifold
with ℒ1(M) ≤ 0. Theorem 1.1 implies that ℒ1(M) = 0 and g is locally sym-
metric. Hence its universal cover (M̃, g̃) is a symmetric Einstein manifold [17,
Corollary IV.5.7].

If g has positive scalar curvature, then Myers’ Theorem implies that M̃ is
compact. Hence |�1(M)| <∞.

If g has nonpositive scalar curvature, then (M̃, g̃) has nonpositive sectional
curvature [17, Theorem V.3.1 and Proposition V.4.2]. The Cartan–Hadamard
Theorem then implies that M̃ is di�eomorphic to ℝn. �

We conclude this section by discussing global conformal invariants which
obstruct the existence of an Einstein metric with nonpositive scalar curvature,
and hence the existence of an Einstein metric on a closed six-manifold with
in�nite fundamental group.

Proof of Theorem 1.4. Proposition 2.1 implies that Q(M, g), ℒ1(M, g), and
ℒ2(M, g) are conformally invariant. Integrating (1.1) yields (1.3).

Suppose that (M6, g) is a closed Einstein six-manifold with Ric = 5�g ≤ 0.
Then

Q(M, g) = −120�3 Volg(M),

ℒ1(M, g) = ∫
M
|∇gWg|2g dvolg,

ℒ2(M, g) = −2� ∫
M
|Wg|2g dvolg .

The conclusion readily follows. �

Proof of Corollary 1.5. Let M6 be a closed six-manifold with |�1(M)| = ∞.
Suppose that g is an Einsteinmetric onM. Myers’ Theorem implies thatRicg ≤
0. The conclusion follows from Theorem 1.4. �

5. Some examples
We conclude by discussing additional properties of the global conformal in-

variants of Theorems 1.1 and 1.4 through the context of some examples.
Since there are closed six-manifolds which admit geometrically distinct Ein-

stein metrics [5], one might ask whetherℒ1(M, g) is independent of the choice
of Einstein metric. This is not the case.

Proposition 5.1. There is an Einstein metric g on S6 with ℒ1(S6, g) > 0. In
particular, ℒ1(M, g) depends on the choice of Einstein metric onM.

Proof. Let g be one of the nontrivial cohomogeneity one Einsteinmetrics on S6
constructed by Böhm [5, Theorem 3.6]. Then (S6, g) is not a global Riemannian
symmetric space. Since S6 is simply connected, (S6, g) is not locally symmetric.
We conclude fromTheorem 1.1 thatℒ1(S6, g) > 0. The �nal conclusion follows
from the fact that the round metric d�2 on S6 is such that ℒ1(S6, d�2) = 0. �
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Next we show that Q, ℒ1, and ℒ2 give nontrivial obstructions, in the sense
that for each invariant one can �nd a closed Riemannian six-manifold with
in�nite fundamental group for which the given invariant is negative.

Proposition 5.2. Let (Tk, dx2) and (Sk, d�2) denote a k-dimensional �at torus
and a round k-sphere of constant sectional curvature one, respectively. Then

Q(S2 × T4, d�2 + dx2) = −48�25 Voldx2(T4),

ℒ1(T2 × S4, dx2 + d�2) = −96�2 Voldx2(T2),

ℒ2(T2 × S4, dx2 + d�2) = −528�
2

25 Voldx2(T2).

In particular, each of Q,ℒ1, andℒ2 gives a nontrivial obstruction to the existence
of an Einstein metric on a closed six-manifold with in�nite fundamental group.

Proof. Proposition 3.6 implies that

ℒ1(T2 × S4, dx2 + d�2) = −36Voldx2(T2) Vold�2(S4),

ℒ2(T2 × S4, dx2 + d�2) = −19825 Voldx2(T2) Vold�2(S4).

and

Q(S2 × T4, d�2 + dx2) = −1225 Vold�2(S
2) Voldx2(T4).

The conclusion follows from the formulas Vold�2(S2) = 4� and Vold�2(S4) =
8
3
�2. �

We conclude by pointing out that Einstein metrics are not critical points of
ℒ1 in general.

Proposition 5.3. Let (S2, g) be the closed two-sphere of constant sectional cur-
vature 3 and let (S4, ℎ) be a closed four-sphere of constant sectional curvature 1.
Then

ℒ1(S2 × S4, g + c2ℎ) = 128�3c−1(3c + 1)2(c − 1) (5.1)
for all c > 0. In particular, the Einstein manifold (S2 × S4, g + ℎ) is not a critical
point of ℒ1 in the space of Riemannian metrics on S2 × S4.

Proof. Equation (5.1) follows immediately from Proposition 3.6 and the fact
that (S4, cℎ) is a spaceform with constant sectional curvature c−1. It is clear
that (S2 × S4, g + ℎ) is Einstein, while (5.1) implies that

d
dc

|||||||c=1
ℐ(S2 × S4, g + cℎ) ≠ 0. �
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