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Topological Frobenius reciprocity and
invariant hermitian forms

Tim Bratten andMauro Natale

Abstract. In his article Unitary Representations and Complex Analysis,
David Vogan gives a characterization of the continuous invariant Hermit-
ian forms de�ned on the compactly supported sheaf cohomology groups of
certain homogeneous analytic sheaves de�ned on open orbits in generalized
�ag manifolds. In the last section of the manuscript, Vogan raises a question
about the possibility of a topological Frobenius reciprocity for these represen-
tations. In this article we give a speci�c version of the topological reciprocity
in the regular, antidominant case and use it to study the existence of contin-
uous invariant hermitian forms on the sheaf cohomology. In particular, we
obtain a natural relationship between invariant forms on the sheaf cohomol-
ogy and invariant forms on the geometric �ber.
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1. Introduction
In the article [11], D. Vogan gives a characterization of the continuous invari-

ant Hermitian forms that exist on some geometrically de�ned representations
that were studied in [7] and [2]. In the last section of the manuscript, Vogan
raises a question (Question 10.2) about the possibility of a topological Frobe-
nius reciprocity for these representations. Motivated by Vogan’s question, in
this manuscript we establish a speci�c version of the reciprocity, in the regu-
lar antidominant case, and use it to study the continuous invariant Hermitian
forms on the nonzero compactly supported sheaf cohomology group of a homo-
geneous analytic sheaf. A natural application of the reciprocity is an analysis
of the relationship between the invariant forms de�ned on sheaf cohomology
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and invariant forms de�ned on the geometric �ber. In order to unpack this
relationship, we need to understand a corresponding Lie algebra cohomology
group de�ned on the conjugate point. A key ingredient in our analysis is a gen-
eralization of a duality theorem that appears in [14] and [5].

To treat our results in more detail, we introduce the basic set up. The proofs
we give for reciprocity work for a reductive Lie group G0 of Harish-Chandra
class. However, for the sake of the introduction, we will assume that G0 is a
real form of a connected complex reductive group G. By this we mean: G0 is a
closed subgroup of G, G0 has �nitely many connected components, and the Lie
algebra g0 of G0 is a real form of the Lie algebra, g of G. In general, P ⊆ G will
denote a parabolic subgroup of G and

Y = G∕P

will be the corresponding generalized �ag manifold. Since a parabolic sub-
group is equal to its normalizer in G, points in Y are naturally identi�ed with
the parabolic subgroups conjugate to P. In general, we will use Y to indicate
the complex analytic structure the generalizedmanifold has as a homogeneous
holomorphic space for the complex analytic group G. However, in the process
of our proof, we will also need to consider the compatible algebraic structure,
Yalg, that the complex manifold Y has, as an algebraic homogeneous space for
the group G, when G is equipped with its structure as an a�ne algebraic group
(we will refrain from utilizing the notation Galg). Adopting Vogan’s nomencla-
ture, a parabolic subgroup Pwill be called nice if it contains a Levi factor L such
that

G0 ∩ P = G0 ∩ L.

In this case,
L0 = G0 ∩ L

is a real form of L called the real Levi subgroup. A G0-orbit in Y is nicewhen it’s
the orbit of a nice parabolic subgroup. Nice orbits are open in Y. We remark
that every open orbit on the full �ag manifold

X = G∕B

of Borel subgroups, B ⊆ G, is nice and that sometimes, open orbits on general-
ized �ag manifolds are not nice.

We recall a few facts about the representations of reductive Lie groups. Let
K0 ⊆ G0 be a maximal compact subgroup and let K ⊆ G be its complexi�ca-
tion. A Harish-Chandra moduleM can be de�ned as a �nite-length g-module
with compatible, algebraic K-action. We remark that the structure of M as a
(g0, K0)-module uniquely determines the g and K-actions, since both actions
are obtained by complexi�cation. A �nite-length, admissible representation of
G0 on a complete, locally convex space is called a globalization of M if the sub-
space of K0-�nite vectors in the representation is isomorphic toM. We use the
notationMglob to indicate the globalization of a Harish-Chandra moduleM. In
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this manuscript, we will focus on two canonical globalizations: Schmid’s min-
imal and maximal globalizations [9]. Both globalizations de�ne exact functors
and are related by the natural isomorphism

Mmax ≅ ((M∨)min)′

whereM∨ is the K-�nite dual of the Harish-Chandra moduleM and the prime
indicates the continuous dual with the strong topology. In general, there are
continuous G0-equivariant inclusions

Mmin → Mglob → Mmax.

Suppose P is a nice parabolic subgroup and let S = G0 ⋅P be the G0-orbit of P
in Y = G∕P. There are certain points in S that work well with respect to some
algebraic constructions involving the choice of maximal compact subgroup K0
and its complexi�cation K. Vogan calls these the very nice parabolic subgroups
and they can be characterized as the points in S such that K0 ∩ P = K0 ∩ L0 is a
maximal compact subgroup of the real Levi factor. Both K0 and its complexi�-
cationK act transitively on the very nice parabolic subgroups and they form the
unique K-orbit Q in Y that satis�es Q ⊆ S [13]. The vanishing number, q = qS,
of S, is de�ned as the complex codimension of Q. We want to emphasize that,
throughout this manuscript, we will use the letter q exclusively in formulas to in-
dicate the vanishing number of S, while running indices will be indicated with
the letters p or n (or anything but q).

Now letVmin be aminimal globalization for L0. Then, generalizing the �nite-
dimensional case, when V = Vmin, one can de�ne a corresponding G0-equi-
variant analytic sheafO(P,Vmin) on S [2, Section 6]. In the in�nite-dimensional
case it is not clear this sheaf is locally free over the structure sheaf of holomor-
phic functions, however, the geometric �ber is isomorphic to Vmin. It follows
from the work in [2], that the compactly supported sheaf cohomology groups

Hp
c (S,O(P,Vmin))

are minimal globalizations for G0 and that they vanish if p < q. On the other
hand, let u be the Lie algebra of the unipotent radical U of P. WhenWmax is a
maximal globalization forG0 then it turns out the Lie algebra homology groups

Hn(u,Wmax)

are maximal globalizations for L0 [4]. In fact, when P is a very nice parabolic
subgroup, then there is a natural isomorphism

Hn(u,W)max ≅ Hn(u,Wmax).

Vogan’s Question 10.2 asks about the relationship between

HomG0
(
Hp

c (S,O(P,Vmin)),Wmax
)
and HomL0 (Vmin, Hp(u,Wmax))

where Hp(u,Wmax) denotes the Lie algebra cohomology group (although it
might be best to frame the question directly in terms of the u-homology). He
poses a similar question for the dual case and goes on to conjecture the exis-
tence of a certain spectral sequence, relating Ext groups, that reduces to a sharp
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identity of the corresponding spaces of homomorphisms, when enough items
vanish. In this paper, we will directly prove the sharp identity in a key, and
fundamentally important case.

In order to more precisely formulate our treatment of this relationship, we
need to introduce the calculus of in�nitesimal characters. Let Z(g) denote the
center of the enveloping algebra U(g). A g-in�nitesimal character is a mor-
phism of algebras Θ ∶ Z(g) → ℂ. A g-module is called quasisimple if Z(g) acts
by an in�nitesimal character. In general, a globalization, Mglob, of a Harish-
ChandramoduleM, is called quasisimple ifM is a quasisimple g-module. Since
Mmin and Mmax are both smooth representations, they will be quasisimple g-
modules if and only if M is. One key property of our geometric construction
of representations is that it preserves the property of being quasisimple in a
speci�c way. In particular, if Vmin is a minimal globalization for L0 with Z(l)-
in�nitesimal character � ∶ Z(l) ⟶ ℂ, then the sheaf cohomology groups
Hp

c (S,O(Vmin))will have the in�nitesimal characterΘ given by composition of
� with the Harish-Chandra map

Z(g)→ Z(l).

In turn, ifh ⊆ l is aCartan subalgebra, wehave (unnormalized)Harish-Chandra
maps Z(l)→ U(h) and Z(g)→ U(h), and a commutative diagram

Z(g) Z(l)

U(h)

Let W be the Weyl group of h in g and let Wl be the Weyl group of h in
l. Then the respective Harish-Chandra maps identify Θ with aW-orbit and �
with aWl-orbit in the dual space h∗. The l-in�nitesimal character � is said to
be regular (with respect to g) ifW acts freely on the correspondingW-orbit in
h∗. � is called antidominant (with respect to parabolic subgroup P) if for any �
in the correspondingWl-orbit we have

�∨(�) ∉ {1, 2, 3,⋯}

for every root � of h in u. In terms of our construction of representations we
have the following:

(1) When the in�nitesimal character, � of Vmin is antidominant then

Hp
c (S,O(P,Vmin)) = 0

unless p = q is the vanishing number.
(2) When the in�nitesimal character of Vmin is antidominant and regular

thenHq
c (S,O(P,Vmin)) is irreducible when Vmin is.

In particular, if � is a regular, antidominant in�nitesimal character for L0 then

Vmin ↦ Hq
c (S,O(P,Vmin))
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de�nes an exact (and, in fact, fully faithful) functor from the category of mini-
mal globalizations for L0 with in�nitesimal character � to the category of qua-
sisimple �nite length admissible representations for G0.

The topological Frobenius reciprocity is the fact that the geometric induction
has a right adjoint given by the following construction. Letu be the nilradical of
the Lie algebra of P and supposeMmax is a quasisimple maximal globalization
for G0. Let Hq(u,Mmax)� denote the corresponding Z(l) eigenspace in the Lie
algebra homology group (q is the vanishing number). Then the right adjoint to
the functor of geometric induction is given by

Mglob ↦ Hq(u,Mmax)�
where Mglob is a quasisimple �nite length admissible representation for G0.
That is:

HomG0
(
Hq

c (S,O(P,Vmin)),Mglob
)
≅ HomL0

(
Vmin, Hq(u,Mmax)

)

for every quasisimple �nite length admissible representation Mglob (Theorem
3.1 of this manuscript). For any nice parabolic subgroup P, we obtain the nat-
ural isomorphism

HomG0
(
Hq

c (S,O(P,Vmin)),Mmax
)
≅ HomL0

(
Vmin, Hq(u,Mmax)

)
.

Dualizing, letting s be the complex dimension of Q and giving a completely
formal de�nition to the representationHs(S,O(p,Wmax))we obtain the natural
isomorphism

HomG0 (Mmin, Hs(S,O(p,Wmax))) ≅ HomL0 (Hs(u,Mmin),Wmax)
which is valid at least whenMmin is quasisimple andWmax has an in�nitesimal
character that satis�es an appropriate regular dominant condition.

Our proof of the formula is based on the geometric construction of theHarish-
Chandramodule ofHq

c (S,O(P,Vmin)) and depends on known properties of that
construction, although we’ve never previously encountered them put together
this way. The rest follows from results in [3] and [4]. We remark that this does
give a very di�erent proof than the one used by Vogan to derive analagous for-
mulas for the cohomological parabolic induction in [12].

Ostensibly, the topological Frobenius reciprocity gives a relationship between
the continuous, invariant Hermitian forms de�ned on the representation
Hq

c (S,O(P,Vmin)) and the continuous, invariant Hermitian forms de�ned on
the geometric �ber. To explain this, let (Mmin)ℎ denote the Hermitian dual of
a minimal globalizationMmin, as de�ned by Vogan in [11]. Then the space of
continuous invariant sesquilinear forms on Mmin is naturally identi�ed with
the �nite-dimensional complex vector space

HomG0
(
Mmin, (Mmin)ℎ

)
.

The subspace of continuous invariant Hermitian forms is a real form. Since
Hp(u, (Mmin)ℎ) ≅ Hp(uop,Mmin)ℎ
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for each p, where Hp(uop,Mmin) is the corresponding Lie algebra cohomology
group de�ned for the nilradical of the conjugate (or opposite) parabolic subal-
gebra, letting I(P,V)min denote the representationH

q
c (S,O(P,Vmin)), we obtain

HomG0
(
I(P,V)min, (I(P,V)min)ℎ

)
≅ HomL0

(
Vmin, Hq(u, (I(P,V)min)ℎ)

)
≅

HomL0
(
Vmin, Hq(uop, I(P,V)min)ℎ

)
.

Thus, we would like to understand the uop-cohomology group

Hq(uop, Hq
c (S,O(P,Vmin))).

Our strategy for this problem involves extending a duality theorem for standard
modules that appears in [14] and [5]. This allows us to conclude that

Hq(uop, Hq
c (S,O(P,Vmin)))� ≅ Vmin

at least when Vmin is irreducible (our proof for duality, which is adapted from
[5], depends on irreducibility). In this way, we provide a natural (and geomet-
ric) proof of the known result that a nondegenerate continuous invariant Her-
mitian form on Vmin induces a nondegenerate continuous invariant Hermit-
ian form on Hq

c (S,O(P,Vmin)) (Theorem 4.2 in the manuscript). Conversely,
whether or not Vmin is irreducible, any nonzero continuous invariant Hermit-
ian form onHq

c (S,O(P,Vmin)) induces a nonzero morphism between Vmin and
its Hermitian dual inHq(uop, Hq

c (S,O(P,Vmin)))ℎ.

Our article is organized as follows. The �rst section is the introduction. In
the second section, we give a geometric proof of the algebraic reciprocity. In
the third section, we introduce the topological reciprocity and consider the ef-
fects of the Hermitian dual functor, introduced by Vogan in [11]. We also give
a fairly detailed example of how things work when G0 is a connected complex
reductive group and S is the open orbit on a full �ag space. In the �nal section,
we generalize Chang’s duality theorem and use this to analyze the relation-
ship between the continuous invariant Hermitian forms on the representation
Hq

c (S,O(P,Vmin)) and the continuous invariant Hermitian forms on the geo-
metric �ber.

2. Algebraic Frobenius reciprocity
In this section, we give an argument for algebraic version of our reciprocity

formula, using the localization theory to a generalized �ag manifold. The alge-
braic reciprocity theorem is an adjointness property that holds, in general, for
closed K-orbits in Y (i.e. does not depend on the assumption that P is nice.)
The result follows from previously established facts about: (1) localization (the
equivalence of categories given by localization and global sections), (2) the di-
rect image for closed embeddings (Kashiwara’s equivalence of categories) and
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(3) the identi�cation of geometric �berswithu-homology. However, we are un-
aware of any version of this reciprocity in the published literature, sowe provide
a proof.

We remark that all objects in this section are treated in the algebraic sense. In
particular, the generalized �ag manifold Y = Yalg is a smooth algebraic variety
with its accompanying structure sheaf of regular functions OY . Since the ob-
jects and morphisms in this section live exclusively in the algebraic universe,
we avoid writing superscripts to simplify notation.

A natural context for establishing our main result is to assume K ⊆ G is an
algebraic subgroup that has �nitely many orbits on the full �ag manifold (for
example, this is the context used in [8]). We need to introduce the machin-
ery of the localization theory and review the corresponding construction of the
standard Harish-Chandra modules.

Let X be the full �ag manifold of Borel subgroups of G, suppose P ⊆ G is a
parabolic subgroup and let Y = G∕P. Since each Borel subgroup of P is conju-
gate in P, there is a canonical G-equivariant projection � ∶ X → Y.

For each x ∈ X, let bx be the corresponding Borel subalgebra of g and let

nx = [bx, bx]
be the nilradical of bx. The adjoint action of the Borel subgroup Bx on bx and
nx determines homogeneous algebraic vector bundles on X. We let b∙ and n∙
denote the corresponding sheaves of sections. Since Bx acts trivially on the
quotient bx∕nx, the sheaf b∙∕n∙ is a free OX-module and the global sections

h = Γ(X, b∙∕n∙)
are a �nite-dimensional, abelian Lie algebra, isomorphic to aCartan subalgebra
c of g contained in bx, via the specialization to x:

c→ bx∕nx ← h.
We call h the abstract Cartan subalgebra. Let h∗ be the complex dual of h. There
is a set of abstract roots Σ ⊆ h∗ and a corresponding Weyl groupW. The set of
positive roots Σ+ ⊆ Σ correspond to the roots of a Cartan subalgebra c in bx via
the specialization to x.

Via the Harish-Chandra map, the Weyl group orbits in h∗ parameterize the
in�nitesimal characters of Z(g). We will write � ∈ Θ if the Weyl group orbit
W ⋅ � corresponds to the in�nitesimal character Θ. LetUΘ denote the quotient
ofU(g) by the ideal generated from the kernel ofΘ. For each � ∈ h∗, Beilinson
and Bernstein de�ne a twisted sheaf of di�erential operatorsD� onX [1]. They
show thatD� is acyclic for global sections and that

Γ(X,D�) ≅ UΘ

when � ∈ Θ. On the other hand, if M is a UΘ-module, then for each � ∈ h∗,
there is a localization functor, ∆�, is de�ned by

∆�(M) = D� ⊗UΘ
M.

Localization is left adjoint to the functor of global sections.
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An in�nitesimal character is called regular if the Weyl group acts freely on
the corresponding orbit in h∗. An element � ∈ h∗ is called antidominant if
�∨(�) is not a positive integer, for every positive coroot �∨. When � is antidom-
inant and regular then localization and global sections de�ne an equivalence of
categories between the category of Harish-Chandramodules with in�nitesimal
characterΘ and the category ofK-equivariant coherent sheaves ofD�-modules
(called the Harish-Chandra sheaves on X).

We now consider how these results carry over to a generalized �agmanifold,
Y, in a way that is suitable for our purposes. The set up is the same as in [2].
For each y ∈ Y, py is the corresponding parabolic subalgebra and uy will be
the nilradical of py. The action of the parabolic subgroup Py on the quotient

ly = py∕uy
is not trivial in this more general setting. We introduce the G-equivariant sheaf
of algebraic sections, U(l∙), corresponding to the Py action on the universal
enveloping algberaU(ly). This is a locally free sheaf ofOY-modules and a sheaf
of algebras with the pointwise multiplication. Hence, the center Z(l∙) of U(l∙)
is a free sheaf of OY-modules and the global sections

Z(l) = Γ(Y, Z(l∙))
will be isomorphic to the center, Z(l), of the enveloping algebra of a Levi factor
l ⊆ py via the specialization to a point y:

Z(l)→ Z(ly)← Z(l).
Since the natural projection identi�es the Borel subalgebras of g contained in
py with the Borel subalgebras of ly, we can use specialization to identify a set
of abstract roots of the Levi factor Σ(l) ⊆ Σ and a corresponding set of posi-
tive roots Σ(l)+ ⊆ Σ+. We let Wl ⊆ W be the Weyl group of the root system
Σ(l). Since Xy = �−1({y}) is the �ag manifold for ly, the restriction identi�es
h with the abstract Cartan of ly. There is an unnormalized Harish-Chandra
map Z(l) → U(h). We parametrize the in�nitesimal characters of Z(l) via the
composition

Z(l)→ U(h)
�+�
,,,,→ℂ

where � ∈ h∗ and � denotes one-half the sum of the roots in Σ+. In this way, the
Z(l)-in�nitesimal characters are parameterized byWl-orbits in h∗. Occasion-
ally we use the notation �� to indicate the corresponding in�nitesimal char-
acter, even though �� = � + � when ly = bx∕nx. Since the unnormalized
Harish-Chandra map sends Z(g) into Z(l), a g-in�nitesimal character Θ. with
� ∈ Θ, corresponds to the family of Z(l)-in�nitesimal characters

{�[w]� ∶ [w] ∈W∕Wl}.
Each member of this family will be called regular if the corresponding Z(g)-
in�nitesimal character is regular. An element � ∈ h∗ will be called antidom-
inant for Y if there is an element in the orbit Wl ⋅ � that is antidominant.
Equivalently we could require that �∨(�) not be a positive integer for each � ∈
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Σ+ − Σ+(l). When this condition holds, we also refer to the Z(l)-in�nitesimal
character �� as being antidominant.

We consider the sheaf of algebras �∗D� on Y. One knows that D� is acylic
for�∗ [5]. By the Leray spectral sequence, it follows that�∗D� is a acylic for the
global sections onY. There is amorphism of sheaves of algebrasZ(l∙)→ �∗D�.
Via the restriction map, Z(l) acts on the geometric �ber of a sheaf of �∗D�-
modules, by the in�nitesimal character �� and

�∗D� ≅ �∗Dw� for each w ∈Wl.
Given aUΘ-moduleM and aWl-orbitWl ⋅� for � ∈ Θ (i.e. a Z(l)-in�nitesimal
character ��), we can de�ne a localization functor

∆Y(M) = �∗D� ⊗UΘ
M.

Localization is left adjoint to the functor of global sections. When �� is regular
and antidominant, then localization and global sections de�ne an equivalence
of categories between the Harish-Chandra modules with in�nitesimal charac-
ter Θ and the K-equivariant coherent sheaves of �∗D�-modules (the Harish-
Chandra sheaves on Y) [5].

We review the construction of the standard Harish-Chandra sheaves from
[5] and used in [2]. Let

i ∶ Q → Y
be the inclusion and begin by assumingQ is an arbitraryK-orbit. Choose y ∈ Q
and suppose V is a Harish-Chandra module for (ly, Ky) where Ky is the stabi-
lizer of y inK andwe also assumeZ(l) acts by an in�nitesimal character �. The
Harish-Chandra module V determines a K-equivariant algebraic vector bun-
dle over Q. The corresponding sheaf of sections V is a locally free sheaf of OQ
-modules. Let UQ(l∙) be the K-equivariant locally free sheaf corresponding to
the Ky-action on U(ly) and let k be the Lie algebra of K. The action of ly on
V determines a pointwise action of UQ(l∙) on V and, by di�erentiating the K-
action, we obtain an action of U(k∙) on V . Supppse � ∈ �. In turn, the actions
of UQ(l∙) and U(k∙) determine an action for a sheaf of algebras, (�∗D�)i, and
there is a corresponding direct image functor

V ↦ i+V
that sendsHarish-Chandra sheaves for ((�∗(D�)i, K) toHarish-Chandra sheaves
for (�∗(D�, K). When the orbit Q is a�nely embedded then the direct image is
exact. In particular, if the in�nitesimal character � is regular and antidominant
for Y then the functor

V ↦ Γ(Y, i+V)
is an exact functor from the category of Harish-Chandra modules,M�(ly, Ky),
with ly-in�nitesimal character �, to the category of Harish-Chandra modules,
MΘ(g, K), with g-in�nitesimal character Θ.

We now introduce theuy-homology groupsHp(uy,M) for aHarish-Chandra
moduleM for (g, K). These areHarish-Chandramodules for (ly, Ky) (a geomet-
ric argument for this can be given as in [2, Section 7]). WhenM is inMΘ(g, K)
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with Θ regular, then the homology groups Hp(uy,M) split as a direct sum of
eigenspaces for the Z(l)-in�nitesimal characters coming from the compatible
family mentioned previously [4]. Let

Hp(uy,M)�
denote the Z(l)-eigenspace for the in�nitesimal character �. The algebraic
Frobenius reciprocity is the following.

Theorem 2.1. Maintain the previous notations. Assume Q is a closed orbit and
let q be the codimension of Q in Y. Suppose � is a Z(l)-in�nitesimal character
that is regular and antidominant for Y. Then the exact functor

V ↦ Γ(Y, i+V)
from the categoryM�(ly, Ky) to the categoryMΘ(g, K) has right adjoint

M ↦ Hq(uy,M)�.

Proof. Suppose � ∈ � and let

∆Y(M) = �∗D� ⊗UΘ
M

be the localization functor. If ℱ is a sheaf of OY-modules then let

Tyℱ = ℂ⊗(OY)y ℱy

denote the geometric �ber of ℱ at the point y. Since Θ is regular it follows [4]
that for anyM inMΘ(g, K) there is a natural isomorphism of Harish-Chandra
modules

Hq(uy,M)� ≅ LqTy∆Y(M)
where LqTy denotes the q-th derived functor of the geometric �ber. Since � is
regular and antidominant for Y it follows that global sections and localization
are equivalences of categories. Therefore,

Hom(g,K)(Γ(Y, i+V),M) ≅ Hom(�∗D� ,K)(i+V ,∆Y(M)).
Thus, it su�ces to show

Hom(�∗D� ,K)(i+V ,∆Y(M)) ≅ Hom(ly ,Ky)(V, LqTy∆Y(M)).

It turns out this last identity can be deduced from Kashiwara’s equivalence of
categories as follows. When ℱ is a sheaf of Harish-Chandra modules then the
inverse image in the category category of O-modules

i∗ℱ = OQ ⊗i−1OY
i−1ℱ

is a Harish-Chandra sheaf for ((�∗(D�)i, K), as are the derived inverse images
Lpi∗ℱ which vanish for p > q. One knows

Lqi∗i+V ≅ V and i+Lqi∗ℱ ≅ ΓQℱ
where ΓQℱ denotes the sheaf of sections with support in Q. It follows from
these formulas that the functor Lqi∗ is right adjoint to the direct image, so that

Hom(�∗D� ,K)(i+V ,∆Y(M)) ≅ Hom((�∗D�)i ,K)(V , Lqi
∗∆Y(M)).
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Since Lqi∗∆Y(M)) is a Harish-Chandra sheaf on a K-orbit, it is a locally free
sheaf of OQ-modules so that morphisms are completely determined by mor-
phisms of the geometric �ber. Thus,

Hom((�∗D�)i ,K)(V , Lqi
∗∆Y(M)) ≅ Hom(ly ,Ky)(V, T

Q
y Lqi∗∆Y(M))

where TQy is the geometric �ber for a sheaf of OQ-modules. Thus it su�ces to
prove

TQy Lqi∗∆Y(M) ≅ LqTy∆Y(M).

But this last point follows from a standard homological algebra argument, since
TQy ◦i∗ ≅ Ty and since each of the sheaves Lpi∗∆Y(M), for 0 ≤ p ≤ q, is a
Harish-Chandra sheaf of (�∗(D�)i, K)-modules and thus a locally free sheaf of
OQ-modules that is acyclic for the functor TQy . �

Remark 2.2. Maintaining the assumptions of the previous theorem, we obtain
the formula

Hom(g,K)(Γ(Y, i+V),M) ≅ Hom(ly ,Ky)(V,Hq(uy,M))

for any quasisimple Harish-ChandramoduleM. For a general Harish-Chandra
moduleM we can introduce the Z(g)-eigenspaceMΘ into the formula:

Hom(g,K)(Γ(Y, i+V),M) ≅ Hom(g,K)(Γ(Y, i+V),MΘ)
≅ Hom(ly ,Ky)(V,Hq(uy,MΘ)).

Remark 2.3. Now supppose that K is the complexi�cation of a maximal com-
pact subgroup K0 of G0 and Py is a very nice parabolic subgroup with real Levi
subgroup L0. We introduce the K0-�nite dual

M ↦ M∨

on the category of Harish-Chandra modules (we use the same notation for the
K0 ∩ L0-�nite dual). Then one knows [4]:

Hq(uy,M∨) ≅ Hq(uy,M)∨

where Hq(uy,M) denotes the q-th Lie algebra cohomology group. Using the
duality theorem in [6] and the fact that theK0-�nite dual is exact, one can trans-
pose the result in Theorem 2.1 into a reciprocity theorem for the cohomological
parabolic induction, where the (n − q)-th Lie algebra homology group de�nes
the left adjoint to the induction functor. We leave the details to the reader.

3. Topological reciprocity and the Hermitian dual
In this section,G0 is a reductive group ofHarish-Chandra classwithmaximal

compact subgroup K0. We begin with the topological reciprocity.



TOPOLOGICAL FROBENIUS RECIPROCITY 1075

Theorem 3.1. Suppose p is a very nice parabolic subalgebra, L0 is the real Levi
subgroup, u is the nilradical of p, S is the G0-orbit of p in the corresponding �ag
manifoldY and q is the vanishing number of S. LetVmin be a minimal globaliza-
tion of L0 that has a regular, antidominant in�nitesimal character. Then for every
quasisimple �nite length admissible representationMglob forG0 there is a natural
isomorphism

HomG0
(
Hq

c (S,O(p, Vmin)),Mglob
)
≅ HomL0

(
Vmin, Hq(u,Mmax)

)
.

Proof. Let y ∈ Y be the point corresponding to the parabolic subalgebra p.
Since K0 ∩L0 is a maximal compact subgroup of L0 and since K is the complex-
i�cation of K0, referring to the notation in the previous section, Ky is a para-
bolic subgroup of K with a Levi factor that is the complexi�cation of K0 ∩ L0.
Thus, Vmin is the minimal globalization of a Harish-Chandra module, V for
(ly, Ky), that has a regular antidominant in�nitesimal character. Using the
notation from the previous section, let Γ(Yalg, i+V) denote the corresponding
standard Harish-Chandra module and let I(p, V) denote the Harish-Chandra
ofHq

c (S,O(p, Vmin)). Then one of the main points of [2] is that

Γ(Yalg, i+V) ≅ I(p, V).

On the other hand, the representationMglob is the globalization of a quasisimple
Harish-Chandra moduleM for (g, K). Therefore,

HomG0
(
Hq

c (S,O(p, Vmin)),Mglob
)
≅ Hom(g,K)(I(p, V),M) ≅

Hom(g,K)(Γ(Yalg, i+V),M) ≅ Hom(ly ,Ky)(V,Hq(u,M) ≅

HomL0
(
Vmin, Hq(u,M)max

)
≅ HomL0

(
Vmin, Hq(u,Mmax)

)

where the fact themaximal globalization commutes with theu-homolgy group
is shown in [4]. �

If we replace Mglob with Mmax in the above reciprocity formula, then it no
longer depends on the identi�cation of a Harish-Chandra module. Therefore,
we obtain the following.

Corollary 3.2. Suppose p is a nice parabolic subalgebra, L0 is the real Levi sub-
group, u is the nilradical of p, S is the G0-orbit of p in the corresponding �ag
manifold Y and q is the vanishing number of S. Let Vmin be a minimal global-
ization of L0 that has a regular, antidominant in�nitesimal character. Then for
every quasisimple maximal globalizationMmax, there is a natural isomorphism

HomG0
(
Hq

c (S,O(p, Vmin)),Mmax
)
≅ HomL0

(
Vmin, Hq(u,Mmax)

)
.

Remark 3.3. The dual form of the topological Frobenius reciprocity, referred
to in Vogan’s Question 10.2, is a formal consequence of the previous theorem.
Indeed, since

HomG0 (Mmin, Nmax) ≅ HomG0
(
(Nmax)′, (Mmin)′

)
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for an pair of representations, we have

HomG0
(
(Nmax)′, H

q
c (S,O(p, Vmin))′

)
≅ HomL0

(
Hq(u, Nmax)′, (Vmin)′

)
≅

HomL0
(
Hq(u, (Nmax)′), (Vmin)′

)
.

Replacing (Nmax)′ withMmin in the formula, and using the fact that

Hq(u, (Nmax)′) ≅ Hs(u, (Nmax)′)⊗�−1u

where s = dimℂ(Y) − q and �u is the determinant character for the adjoint
action of L0 on u, we obtain

HomG0
(
Mmin, H

q
c (S,O(p, Vmin))′

)
≅ HomL0

(
Hs(u,Mmin), (Vmin)′ ⊗�u

)
.

Introducing the perspicuous notation

Hq
c (S,O(p, Vmin))′ = Hs(S,O(p, (Vmin)′)⊗�u)

and replacing (Vmin)′ ⊗�u withWmax, we obtain the reciprocity formula

HomG0 (Mmin, Hs(S,O(p,Wmax))) ≅ HomL0 (Hs(u,Mmin),Wmax)

which is valid whenMmin is quasisimple andWmax has an in�nitesimal charac-
ter that satisi�es the corresponding regular, dominant condition. WhenWmax
is �nite-dimensional then Serre duality [10] implies that the representation
Hs(S,O(p,Wmax)) is the sheaf cohomology of a corresponding G0-equivariant
holomorphic vector bundle de�ned on S. However it is not obvious to us that
this representation is realized as the sheaf cohomology group of some corre-
sponding G0-equivariant sheaf on S, whenWmax is in�nite-dimensional. Nev-
ertheless, in the in�nite-dimensional case, the representationHs(S,O(p,Wmax))
can be realized as the hypercohomology of the dual of the complex used to cal-
culate the sheaf cohomology forHq

c (S,O(p, Vmin)).

We now introduce the Hermitian dual (Mmin)ℎ as de�ned by Vogan in [11].
In particular, (Mmin)ℎ is the space of continuous, conjugate-linear forms on
Mmin with its natural topology as a maximal globalization, i.e. conjugation on
ℂ de�nes an equivariant, conjugate-linear isomorphism between (Mmin)ℎ and
the continuous dual (Mmin)′ ≅ (V∨)

max
. The contravariant functor

M ↦ (Mmin)ℎ

is exact. One can naturally extend the de�nition of Hermitian dual to maximal
globalizations. In this way we obtain the identities

((Mmin)ℎ)ℎ ≅ Mmin and ((Mmax)ℎ)ℎ ≅ Mmax.
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Proposition 3.4. Suppose Mmin is a minimal globalization. Then the space of
continuous invariant sesquilinear forms onMmin is naturally isomorphic to

HomG0
(
Mmin, (Mmin)ℎ

)

and the corresponding space of continuous invariant Hermitian forms is a real
form of HomG0

(
Mmin, (Mmin)ℎ

)
.

Proof. This is basically shown in Vogan’s manuscript, but we sketch some de-
tails for completeness.

If ' ∈ HomG0
(
Mmin, (Mmin)ℎ

)
then

⟨m1, m2⟩ = ('(m1))(m2)

is a separately continuous invariant sesquilinear form and vice versa. The fact
that separately continuous sesquilinear forms are continuous in this context
follows from a theorem of topological vector spaces. On the other hand, for
any continuous invariant sesqulinear form, ⟨⋅, ⋅⟩, we can de�ne the conjugate
transpose ⟨⋅, ⋅⟩† by the equation

⟨v, w⟩† = ⟨w, v⟩.

This is another continuous invariant sesquilinear form and the original form is
Hermitian if and only if

⟨⋅, ⋅⟩† = ⟨⋅, ⋅⟩.
Now suppose � is a continuous invariant sesquilinear form and de�ne

re(�) =
� + �†

2 and im(�) =
i(�† − �)

2 .

Then each of these forms is a continuous invariant hermitian form and � =
re(�) + iim(�). �

We now consider the e�ect of the Hermitian dual on the Lie algebra homol-
ogy groupsHp(u, (Mmin). Let � ∶ g→ g be the conjugation induced by the real
form g0 ⊆ g. We call �(p) the opposite parabolic subalgebra from p and write

pop = �(p).

If l is the complexi�ed Lie algebra of L0 then

p ∩ �(p) = l.

In particular,
uop = �(u)

is the nilradical of pop.

Proposition 3.5. Maintain the previous notations. Then there is a natural iso-
morphism of L

0
-modules:

Hp(u, (Mmin)ℎ) ≅ Hp(uop,Mmin)ℎ
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Proof. We claim that
uℎ ≅ u

as L0-modules. Let B(�, �) denote the Killing form on g. Then the Hermitian
form on u de�ned by

⟨�, �⟩ = B(�, �(�))
is nondegenerate and L0-invariante, which proves the claim. Now an argument
using the standard complex for computing the u-homology, as in the proof of
Proposition 2.1 in [4], shows that

Hp(u, (Mmin)ℎ) ≅ Hp(u∗,Mmin)ℎ

where u∗ is the dual representation. Hence the result follows, as u∗ ≅ uop. �

Corollary 3.6. Let I(p, V)min denote the representationH
q
c (S,O(p, Vmin)). Then

HomG0
(
I(p, V)min, (I(p, V)min)ℎ

)
≅ HomL0

(
Vmin, Hq(uop, I(p, V)min)ℎ

)
.

Example 3.7. Suppose G0 is a connected complex reductive group and let b be
a nice Borel subalgebra. Let C0 be the corresponding Cartan subgroup of G0
and n the nilradical of b. Suppose

�� ∶ H0 → ℂ∗

is a continuous characterwith derivative�0 ∈ (c0)∗ and complexi�ed derivative
� ∈ c∗. Let � be one-half the sum of the roots of c in b and de�ne � = �−�. We
assume � is antidominant and regular. In this case it is not hard to explicitly
calculate the C0-representation on the nop-cohomology group

Hq(nop, I(b,ℂ�)min)).

In fact,
Hq(n, I(b,ℂ�)min) ≅ Hq(nop, I(b,ℂ�)min).

We brie�y elaborate. First, observe that since the maximal compact subgroup
K0 of G0 is a compact real form, the complexi�cation K is a complex group
isomorphic to G, although the actions of the two groups on the full �ag space
X are distinct. Thus, Q = K ⋅ b is the full �ag manifold of Borel subgroups of
G0 and this means the complex dimension s of Q and the vanishing number q
coincide. Next, observe that the Weyl group,W0 of G0 acts simply transitively
on the Borel subaglebras in S that contain c and that

wl ⋅ b = bop

if wl is the longest element inW0.
For each w ∈W0, let

�w�+� ∶ H0 → ℂ∗

be the character with complexi�ed derivative w(� − �) + �.We claim

Hq(n, I(b,ℂ�)min) ≅
⨁

w∈W0

ℂw�+�.



TOPOLOGICAL FROBENIUS RECIPROCITY 1079

To establish this, letW be theWeyl group of c in g. Then, since the in�nitesimal
character of I(b,ℂ�) is regular, one knows

Hq(n, I(b,ℂ�)min) =
⨁

w∈W
Hq(n, I(b,ℂ�)min)w�+�

where the subindex indicates the corresponding eigenspace for the c-action.
To calculate these eigenspaces, we use the following two ingredients: (1) The
intertwining functor (see [7, Proposition 9.10]); (2) for each w ∈ W0 there is
a natural action on the standard complex for computing n-homology, which
induces a linear isomorphism

Hq(n, I(b,ℂ�)min)→ Hq(w−1n, I(b,ℂ�)min)

that intertwines the C0 action on Hq(n, I(b,ℂ�)min) with the w−1C0-action on
Hq(w−1n, I(b,ℂ�)min).

Calculating with the intertwining functor, we can show

Hq(n, I(b,ℂ�)min)w�+� = {0} if w ∉W0

and
Hq(w−1n, I(b,ℂ�)min)�+w−1� ≅ ℂ�−�+w−1� if w ∈W0.

Hence,
Hq(n, I(b,ℂ�)min)w�+� ≅ ℂw�+� if w ∈W0.

Now the result follows since

Hq(nop, I(b,ℂ�)min) ≅ Hq(nop, I(b,ℂ�)min)⊗ ℂ2� =

Hq(wln, I(b,ℂ�)min)⊗ ℂ2� ≅ Hq(n, I(b,ℂ�)min).
It’s worthwhile noting that the character

��−w� ∶ C0 → S1 ⊆ ℂ∗

is unitary. In particular, if � is a root of c in b, appearing in the sum of roots
given by � −w� then the root that takes the value −� on c0 also appears in the
sum. Thus, in the corresponding product of characters of C0, we have �� and
�−� = �ℎ� . Thus,

|��(g)�−�(g)| = 1
for each g ∈ C0.

Now we can use the Frobenius reciprocity. In particular, if �� is a unitary
character then there is a nondegenerate continuous invariant Hermitian form
on the irreducible representation I(b,ℂ�)min and each of the characters�w�+� is
unitary. On the other hand, if there is a nonzero continuous invariant Hermit-
ian form on I(b,ℂ�)min, then since I(b,ℂ�)min is irreducible, the corresponding
nonzero morphism

I(b,ℂ�)min → (I(b,ℂ�)min)ℎ

induces an isomorphism on the level of Harish-Chandra modules. Thus

Hq(nop, I(b,ℂ�)min) ≅ Hq(nop, (I(b,ℂ�)min)ℎ) ≅ Hq(nop, I(b,ℂ�)min)ℎ
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and we have
Hq(n, I(b,ℂ�)min) ≅ Hq(n, I(b,ℂ�)min)ℎ.

In the next section, we give a general consideration of the L0-representation
Hq(uop, Hq

c (S,O(p, Vmin)))ℎ and draw some conclusions.

4. Invariant Hermitian forms on representations
In order to complete our consideration of the continuous invariant Hermit-

ian forms onHq
c (S,O(p, Vmin)), we will show in this section that

Vmin ≅ Hq(uop, Hq
c (S,O(p, Vmin)))�

at leastwhenVmin is irreducible andG0 is a real formof a connected complex re-
ductive group G. Our proof relies on the extension of a duality theorem, shown
for discrete series in [14] and for open orbits in full �agmanifolds in [5]. In par-
ticular, let I(p, V) denote the Harish-Chandra module ofHq

c (S,O(p, Vmin)) and
let pop be the parabolic subalgebra of g opposite to p. The duality theorem that
interests us, is simply expressed as an isomorphism of Harish-Chadra modules

I(p, V)∨ ≅ I(pop, V∨).

The proof utilized in [5] carries over in a rather straightforward manner to the
context of a very nice parabolic subgroup and an irreducible representation.
However, this demonstration doesn’t produce a natural transformation of (ex-
act, contravariant) functors. The proof in [14] does de�ne a natural transfor-
mation of functors, but it is not clear to us how to generalize this.

We need to adapt our notation to the design of the argument in [5] and re-
turn to the conventions in Section 2. Let h∗ denote the abstract Cartan dual
and for � ∈ h∗, let �� denote the corresponding in�nitesimal in Z(l). Since the
in�nitesimal character � for the L0-module Vmin is antidominant and regular
with respect to the parabolic subalgebra p, there is a � ∈ h∗ which is antidom-
inant and regular, such that � is the specialization of �� to l in p. Let wl be
the longest element in the Weyl group of h∗. Then the abstract in�nitesimal
character �−wl� is antidominant and regular. If �∨ denotes the in�nitesimal
character of V∨ then the specialization of �−wl� to l at p

op is �∨. In general, if
M is a g-module, we let

Hp(uy,M)�−wl�
denote the corresponding Z(ly)-eigenspace on the p-th uy-homology group
given by specialization. Let I denote theHarish-Chandramodule I(p, V). Since
� is a parameter for the in�nitesimal character of I, it follows that−wl� is a pa-
rameter for the in�nitesimal character of I∨. The idea of the proof is to calculate
the localization

∆alg−wl�(I
∨)

toYalg with respect to�−wl� by calculating the geometric �bers, which are given
by the homology groups

Hp(uy, I∨)�−wl� .
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Similarly, we can directly calculate the corresponding analytic localization of
(I∨)min to obtain the result. Actually, the calculation on the homology group
Hq(uop, I∨)�∨ is su�cient for our purposes, but the argument for the full duality
theorem is a simple step more.

To calculate the homology groups, we use a construction which Chang cred-
its to Vogan [5, Lemma 7.2]. In particular, suppose G0 is a connected real form
of a connected complex reductive Lie group G and K0 is a maximal compact
subgroup of G0. Let C ⊆ G be a Cartan subgroup such of G that G0 ∩ C = C0 is
a real form of C and such thatK0∩C0 = T0 is a maximal torus of C0 (C is called
stable). Then there exists an involutive automorphism

�C ∶ G → G

such that �C(K0) = K0 and such that �C(ℎ) = ℎ−1 for every ℎ ∈ C.
Given a Harish-Chandra moduleM for (g, K0), we can de�ne a new Harish-

Chandra moduleM�C by applying �rst the automorphism and then the (g, K0)-
action on V. The property we use is that whenM is irreducible, then

M�C ≅ M∨.

To calculate the homology groupsHp(uop, I∨)�∨ , we let

L = P ∩ Pop

and choose a stable Cartan subgroup C ⊆ L. Thus �C(L) = L and �C(K0∩L0) =
K0 ∩ L0. Also note that the map �C ∶ u → uop de�nes an isomorphism of
L-modules

u�C ≅ uop.

Applying the automorphism �C to the standard complex for computing homol-
ogy and using the fact that �◦�C = �∨, we obtain

Hp(uop, I∨)�∨ ≅ Hp(u�C , I�C )�∨ ≅ (Hp(u, I)�)�C ≅ {
{0} p ≠ q
V�C ≅ V∨ p ≠ q

since V is irreducible.
On the hand, suppose py ∈ Y and C ⊆ Py is a stable Cartan subgroup such

that �C(py) = popy ∉ S. We choose a Levi factor L of Py, that contains C and
such that K0 ∩ Py ⊆ L and let l be the Lie algebra of L. Then Hp(uy, I∨) is a
Harish-Chandra module (it has �nite length and is admissible) for (l, K0 ∩ L).
As before, there is an isomorphism of L-modules

u�Cy ≅ uop
y

and the in�nitesimal character for Z(l) given by the composition of the special-
ization of �−wl� to y with �C is equal to the specialization of �� to the opposite
point. Thus we have

Hp(uy, I∨)�−wl� ≅ Hp((u
op
y )�C , I�C )�−wl� ≅ (Hp(u

op
y , I)��)

�C = 0.
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Theorem 4.1. Suppose G0 is a real form of a connected complex reductive group
G. Let P be very nice parabolic subgroup and supposeVmin is an irreducible mini-
mal globalization for L0 with an antidominant and regular in�nitesimal charac-
ter. Let I(P,V) be the Harish-Chandra module of the irreducible minimal glob-
alizationHq

c (S,O(P,Vmin)) and let I(Pop, V∨) be the Harish-Chandra module of
minimal globalizationHq

c (S,O(Pop, (V∨)min)). Then

I(P,V)∨ ≅ I(Pop, V∨).

Proof. WhenG0 is connected, then the previous discussion establishes the for-
mula in the following way. Letting I = I(P,V), then the calculations on the Lie
algebra homology groups determine the Harish-Chandra modules of the geo-
metric �bers of the analytic localization L∆Y,�−wl�((I

∨)min) of (I∨)min to Y with
respect to the abstract in�nitesimal character �−wl�. Hence

L∆Y,�−wl�((I
∨)min) ≅ O(Pop, (V∨)min) ∣Sop [q]

where O(P, (V∨)min) ∣Sop is the extension by zero of O(P, (V∨)min) on Sop to all
ofY. Thus the hypercohomology of the of the analytic localization provides the
isomorphism

(I∨)min ≅ Hq
c (S,O(Pop, (V∨)min)).

For the general case, let (G0)e, (L0)e be the respective identity components for
G0 and L0. Then (G0)e ∩ P = (L0)e so that (K0)e ∩ P = (K0 ∩ L0)e. In particular,
we have a natural inclusion

K0 ∩ L0∕(K0 ∩ L0)e → K0∕(K0)e.

TheHarish-ChandraV is a �nite sum of irreducible l-modulesVm so we can
choose a (�nite) set of representatives {kj} for the coclases of (K0∩L0)e inK0∩L0
and

V = ⊕Vm
where the K0 ∩ L0-action is characterized by the (K0 ∩ L0)e-action on the irre-
ducible l-modules Vm and by the way the operators corresponding to the ele-
ments kj permute the irreducible modules Vm. Thus

Γ(P,V)∨ = Γ(P,⊕Vm)∨ ≅ ⊕ Γ(P,Vm)∨

where theK0-action on⊕ Γ(P,Vm)∨ is characterized by the (K0)e-action on the
irreducible l-modules Γ(P,Vm)∨ and by the way the operators kj permute these
l-modules.

Similarly,

Γ(Pop, V∨) = Γ(Pop, ⊕(Vm)∨) ≅ ⊕ Γ((Pop, (Vm)∨).

Hence the theorem is true, since

Γ((Pop, (Vm)∨) ≅ Γ(P,Vm)∨. �



TOPOLOGICAL FROBENIUS RECIPROCITY 1083

Theorem 4.2. Suppose G0 is a real form of a connected complex reductive group
G. Let P be a nice parabolic subgroup andVmin be an irreducible minimal global-
ization for L0 with an antidominant and regular in�nitesimal character. Then a
nondegenerate continuous invariant Hermitian form on Vmin naturally induces
a a nondegenerate continuous invariant Hermitian form onHq(S,O(P,Vmin)).

Proof. We can choose a maximal compact subgroup K0 of G0 such that P is a
very nice parabolic subgroup. Let I = I(P,V) be the Harish-Chandra module
ofHq(S,O(P,Vmin)). From our previous work we have

V∨ ≅ Hq(uop, I(Pop, V∨))�∨ ≅ Hq(uop, I∨)�∨ .

Using the result in [4], we have

Hq(uop, I∨) ≅ Hq(uop, I)∨ ⇒ V∨ ≅ (Hq(uop, I)�)∨.

Hence,
V ≅ Hq(uop, I)�

and therefore,

(Vmin)ℎ ≅ (Hq(uop, Imin)�)ℎ ≅ Hq(u, (Imin)ℎ)�ℎ .

It follows that a nondegenerate Hermitian form (in fact a nonzero Hermitian
form) induces a nonzero morphism

Vmin → Hq(u, (Imin)ℎ).

By the Frobenius reciprocity, we obtain a nonzero morphism

Imin → (Imin)ℎ

which is injective, since Imin is irreducible. The result follows since the space
of continuous invariant Hermitian forms on Imin is a real form of the space of
continuous invariant sesqulinear forms. �
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