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Sub-Hilbert relation for Fock–Sobolev
type spaces

Setareh Eskandari, Ali Abkar, Per Åhag
and Antti Perälä

Abstract. In this paper, two speci�c sub-Hilbert spaces are studied. They
arise from the action of a Toeplitz operator on Fock–Sobolev type spaces, in-
duced by a generalGaussian typeweight. The argument is based on analysing
the reproducing kernel of the corresponding sub-Hilbert space.
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1. Introduction
This paper is concerned with sub-Hilbert functional spaces of analytic func-
tions on planar domains. Suppose T is a bounded operator on a given Hilbert
space H. We denote by ℳ(T) the range of T, which is equipped with the fol-
lowing inner product:

⟨Tx, Ty⟩ℳ(T) = ⟨x, y⟩H x, y ∈ H ⊖ ker T.

Then ℳ(T) is a Hilbert space. If, in addition, T is a contraction operator, the
Hilbert space

ℳ((I − TT∗)1∕2)
is called the complemented space toℳ(T) is denoted byℋ(T) and is called a
sub-Hilbert space.
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The pioneering work on sub-Hilbert spaces was done by L. de Branges,
J. Rovnyak andD. Sarason [8, 9, 10, 18]. For further reading on the spaces intro-
duced by de Branges and Rovnyak, their equivalent formulations, and their ap-
plications in function theory and operator theory, see [3]. Sarason’smonograph
[18] contains extensive investigation of sub-Hilbert spaces arising fromToeplitz
operators Tf acting on the Hardy space on the unit circle; in this context, it is
customary to agree on the notationℳ(Tf) = ℳ(f) andℋ(Tf) = ℋ(f).

Later, continuing Sarason’swork, KeheZhu introduced sub-BergmanHilbert
spaces on the unit disk [21, 22]. To provide a brief account on this issue, we re-
call that the standard weighted Bergman space A2

�, for � > −1, consists of all
analytic functions on the unit disk for which the integral

∫
D
|f(z)|2(1 − |z|2)�dxdy

is �nite. The norm of a function in the weighted Bergman space is given by

‖f‖2 = � + 1
� ∫

D
|f(z)|2(1 − |z|2)�dxdy.

We shall at times write

dA�(z) =
� + 1
� (1 − |z|2)�dxdy,

for normalized weighted area measure in the unit disk. Note thatA2
� is a repro-

ducing kernel functional Hilbert space whose kernel is given by

K�
z (w) =

∞∑

n=0

Γ(n + � + 2)
n! Γ(� + 2)

(zw)n = 1
(1 − wz)�+2

, (z, w) ∈ D × D.

The Bergman projection

P� ∶ L2(D, dA�) → A2
�(D)

is de�ned by

P�f(z) = ∫
D
f(w)K�

z (w)dA�(w).

Now, let ' be an analytic function in the unit disk satisfying ‖f‖∞ ≤ 1. For
� ≥ 0, we consider the Toeplitz operator

T�'(f) = P�('f), f ∈ A2
�.

For � = 0, the unweighted Bergman space, Kehe Zhu [21, 22] studied the sub-
Bergman Hilbert spacesℋ�(') ∶= ℋ(T�') andℋ�(') ∶= ℋ(T�'). He proved
that these sub-Bergman Hilbert spaces coincide as sets, moreover, both spaces
contain the Banach space of all bounded analytic functions on the unit disk.
Zhu further showed that for the symbol zm, and more generally, for a �nite
Blaschke product B, we have

ℋ(B) = ℋ(B) = H2,
whereH2 denotes the Hardy space of analytic functions on the unit disk.
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Later, in 2010, Abkar and Jafarzade [1] extended Zhu’s results to the standard
weighted Bergman spaces A2

� where � ≥ 0. They proved that H∞ ⊂ ℋ�(') =
ℋ�('), and for a �nite Blaschke product B,

H∞ ⊂ ℋ�(B) = ℋ�(B) = A2
�−1.

In 2014, this line of investigation was adapted by Nowak and Rososzczuk in
[15] where the authors extended the latter result for −1 < � < 0. They proved
that

ℋ�(B) = ℋ�(B) = D�+1,

where the Dirichlet space D� consists of all analytic functions f in the unit
disk such that f′ ∈ L2(D, dA�). See also [20], and [16] where in the latter
the authors studied similar problems in the unit ball of n-dimensional complex
space ℂn.

Inspired by the aforementioned works, we will study the concept of a sub-
Hilbert space in the context of Fock-type spacesF2�,�,s, where the indices� and�
appear in the exponential part of theweight, and s can be thought of as the order
of the fractional derivative; see the next section. However, on these spaces,
multiplication by an entire non-constant function is never bounded, let alone
contractive. We will therefore focus our attention to the symbols of the type
f(z) = (z∕|z|)m. We prove

Theorem 1. Let �, � > 0, s ∈ ℝ and m ∈ ℕ, and let T�,�,sf be the Toeplitz
operator on F2�,�,s induced by the symbol f(z) = (z∕|z|)m. We then have

ℋ(f) = ℋ(f) = F2�,�,s+�∕2.

2. Fock-Sobolev type spaces
Let ℂ denote the complex plane, H(ℂ) the space of entire functions, and

dA(z) the Lebesgue area measure on ℂ;

dA(z) = 1
�dxdy, z = x + iy.

For �, � > 0 and s ∈ ℝ, we consider the weight

d��,�,s(z) = |z|2se−�|z|�dA(z).

In the literature, it is common to normalize d��,�,s into a probability mea-
sure. However, when s ≤ −1, this weight is no longer integrable, and cannot
be normalized in an obvious way. We refrain from normalizing the weight al-
together because of this.
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2.1. Case s > −1. We de�ne the generalized Fock-Sobolev type space F2�,�,s as
those elements inH(ℂ) that are square integrable overℂwith respect to d��,�,s.
That is,

F2�,�,s = L2�,�,s ∩ H(ℂ).

It is easy to see that F2�,�,s is a closed subspace of L2�,�,s = L2(ℂ, d��,�,s), and
a Hilbert space with the inner product.

⟨f, g⟩�,�,s = ∫
ℂ
f(z)g(z)d��,�,s(z).

2.2. Case s ≤ −1. The spaces F2�,�,s also make sense for s ≤ −1, but in that
case, following the de�nition above would require the members F2�,�,s to have a
deep enough zero at the origin. In [6] two ways to overcome this are presented.
First, one could replace the term |z|2s in d��,�,s by (1 + |z|)2s. However, the
other approach from [6] �ts our calculations better. Given

f(z) =
∞∑

k=0
fkzk,

let us denote by pN(f) the degree N Maclaurin polynomial of f;

pN(f)(z) =
N∑

k=0
fkzk.

Then, denote by RN(f) = f − pN(f) the remainder, which in our case is going
to determine the membership in F2�,�,s.

By using the ceiling function, we de�neN = −⌈s⌉−1 and introduce the inner
product

⟨f, g⟩�,�,s = ∫
ℂ
RN(f)(z)RN(g)(z)d��,�,s(z) +

N∑

k=0
fkgk.

The space F2�,�,s consists of entire functions f with

‖f‖2�,�,s ∶= ⟨f, f⟩�,�,s < ∞,

and by the virtue of the above de�nition, always contains all polynomials. In
practice, we will not need to worry about this de�nition, as we are only inter-
ested in RN(f) for large enough N.

2.3. Relation to other Fock spaces. For particular choice of parameters, the
spaces F2�,�,s reduce to more well-known spaces. The choice (�, �, s) = (�, 2, 0)
gives rise to classical Fock spaces, where standard references include the book
of Folland [11] and the more recent book of Zhu [23].

Adding the parameter s is known to be equivalent to themembership of (frac-
tional) derivatives in the standard Fock space. This motivates the terminology
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Fock-Sobolev space, which corresponds to the choice (�, �, s) = (�, 2, s) stud-
ied in [7, 6, 5]. These references do not always contain � as a parameter, but
passage to this more general case is easy for most purposes of this paper.

In [4], Bommier-Hato, Engliš and Youss� studied the so-called Fock-type
spaces. These correspond to changing the Gaussian in the weight: (�, �, s) =
(1, �, 0). Here again, slightly more general parameters do not cause much of an
obstacle.

Finally, there are several generalization of the Fock-spaces to the case where
the weight is non-radial; we mention [12], [14] and [19], but there are many
more. These spaces are often called generalized Fock spaces, but we refrain
from studying them, because having a radial weight is essential for our ap-
proach.

3. Gamma function and reproducing kernels
3.1. Gamma function. The Euler Gamma function (or simply the Gamma
function) is a well-known special function that generalizes the concept of a
factorial to non-integer values. As we have already seen, it appears naturally
in the context of exponential weights.

The Gamma function can be de�ned by a convergent improper integral:

Γ(z) = ∫
∞

0
tz−1e−tdt, R(z) > 0.

TheGamma function satis�es the crucial recurrence relation: Γ(z+1) = zΓ(z),
and the following standard estimate for �xed complex numbers a and b

Γ(z + a)
Γ(z + b)

≍ za−b, z → ∞.

In this paper, we will need a more re�ned variant of the latter. The following
formula can be found in [13].

Γ(z + a)
Γ(z + b)

= za−b
[
1 + (a − b)(a + b − 1)

2z + (a − b)(a − b − 1)
24z2

× {3(a + b − 1)2 − a + b − 1}
]
[1 + O(z−3)], z → ∞. (1)

Lemma 2. The Gamma function satis�es

1 −
(Γ(z + a+b

2
))2

Γ(z + a)Γ(z + b)
= (a − b)2

4z + O(z−2), z → ∞.

Proof. Byusing the equation (1)we can obtain estimates for
Γ(z+ a+b

2
)

Γ(z+a)
and

Γ(z+ a+b
2
)

Γ(z+b)
,

so that we have

Γ(z + a+b
2
)

Γ(z + a)
= z

b−a
2 [1 + (b − a)(3a + b − 2)

8z + O(z−2)]
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and
Γ(z + a+b

2
)

Γ(z + b)
= z

a−b
2 [1 + (a − b)(a + 3b − 2)

8z + O(z−2)]

as z → ∞. Multiplying these completes the proof. �

The equation (1) can also be used to partially re�ne the recurrence relation:

Lemma 3. For any complex number � the Gamma function satis�es

Γ(z + �) ≍ z�Γ(z), z → ∞.

Proof. The proof is easy and we omit the details. �

3.2. Reproducing kernels and projections. The approach of this paper is
based on identifying the sub-Hilbert space by calculating its reproducing ker-
nel. This is a well-known approach, see [1, 18, 21, 22]. The theory of reproduc-
ing kernels is a fascinating �eld in its own right, extending far beyond what is
needed here. Some classical references include [2] and [17].

Since theweightd��,�,s is radial, the Fock-type spaceF2�,�,s possesses amono-

mial Schauder basis. If s ≤ −1 and n ≤ −⌈s⌉ − 1, we set e�,�,sn (z) = zn and
observe that ‖e�,�,sn ‖�,�,s = 1. Otherwise, we compute in polar coordinates and
using the change of variables t = �r�:

‖zn‖2�,�,s = ∫
ℂ
|z|2n|z|2se−�|z|�dA(z)

= 1
� ∫

∞

0
∫

2�

0
r2n+2s+1e−�r�d�dr

= 2

��
2n+2s+2

�

∫
∞

0
t
2n+2s+2

�
−1e−tdt

= 2

��
2n+2s+2

�

Γ (2n + 2s + 2
� ) .

So, for n > −⌈s⌉ − 1, we observe that then the functions

e�,�,sn =

√
√√√√√√

��
2n+2s+2

�

2Γ ( 2n+2s+2
�

)
zn

are unit vectors, and (e�,�,sn )∞n=0 forms the basis of F2�,�,s.
Let K�,�,s

z denote the reproducing kernel of F2�,�,s – that is, the unique func-
tion in F2�,�,s with the property

f(z) = ⟨f, K�,�,s
z ⟩�,�,s, f ∈ F2�,�,s.
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By a well-known identity, we obtain

K�,�,s
z (�) =

∞∑

n=0

��
2n+2s+2

�

2Γ ( 2n+2s+2
�

)
(�z)n,

when s > −1. When s ≤ −1, we obtain

K�,�,s
z (�) =

∞∑

n=0
e�,�,sn (�)e�,�,sn (z)

= 1 − (�z)−⌈s⌉

1 − �z
+

∞∑

n=−⌈s⌉

��
2n+2s+2

�

2Γ ( 2n+2s+2
�

)
(�z)n.

In either case, we are only interested the asymptotics of the general term in the
sum as n is large; that is

��
2n+2s+2

�

2Γ ( 2n+2s+2
�

)
≍ �

2n
�

Γ ( 2n+2s+2
�

)
. (2)

In general, these power series can be understood in terms of the generalized
Mittag-Le�er functions; see [4]. Of course, it is well-known (there are many
references, see for instance [23]) that

K�,2,0
z (�) = �e��z.

Finally, we are now able to write the orthogonal projection (the Bergman
projection) P�,�,s ∶ L2�,�,s → F2�,�,s as

P�,�,sf(z) = ∫
ℂ
f(�)K�,�,s

z (�)d��,�,s(�).

By the standard theory of orthogonal projections, P�,�,s is bounded; in fact the
norm of P�,�,s is one.

4. The main results
4.1. Toeplitz operators. Before proving the main result, a short discussion
on Toeplitz operators in in order. Given an essentially bounded function f on
the complex plane, letMf denote the multiplication induced by f. It is clearly
bounded from F2�,�,s → L2�,�,s. The Toeplitz operator

T�,�,sf ∶ F2�,�,s → F2�,�,s
is then de�ned as

T�,�,sf = P�,�,sMf.



SUB-FOCK–SOBOLEV HILBERT SPACES 965

Observe that T�,�,sf is contractive, whenever ‖f‖∞ ≤ 1. Since orthogonal pro-
jections are self-adjoint, it is easy to see that the adjoint of T�,�,sf equals T�,�,s

f
.

In particular, if ‖f‖∞ ≤ 1, the operators

I − T�,�,sf T�,�,s
f

and I − T�,�,s
f

T�,�,sf

are positive.
In [1, 18, 21, 22] the authors study function spaces on the unit disk, and

problem of sub-Hilbert spaces induced by a Toeplitz operator (given by the or-
thogonal projection of the respective space). Special focus is given to symbols
f(z) = zm and f being a �nite Blaschke product. Neither option seems to work
directly for our setting. Instead we take:

f(z) = ( z
|z|)

m
and f(z) = ( z

|z|)
m

,

where the contractivity requirement is automatically satis�ed.

4.2. Proof of themain result. Wewillmakeuse of the following result, which
can be found in [18] (it is proven for the unit disk, but the exact same argument
works for any reproducing kernel Hilbert space).

Lemma 4. Let H be a reproducing kernel Hilbert space over a domain Ω, Kz its
reproducing kernel and T ∶ H → H a contraction. Then the reproducing kernel
ofℋ(T) is given by (I − TT∗)Kz.

Note that everyF2�,�,s is isometrically isomorphic to aweightedl2 space, with
the weight coming from the moments of the weight d��,�,s(z). On the other
hand, also the reproducing kernel is related to these moments. Therefore, in
order to determineℋ(T) andℋ(T∗), it su�ces to study the asymptotic of the
power series expansion of the reproducing kernel.

We are now in position to prove the main theorem. Let �, � > 0 and s ∈ ℝ,
and let T�,�,sf be the Toeplitz operator on F2�,�,s induced by the symbol f(z) =
(z∕|z|)m. We then have

ℋ(f) = ℋ(f) = F2�,�,s+�∕2.

We now prove this.

Proof. Supposem is a natural number. We will calculate the reproducing ker-
nels of sub-Fock-Sobolev Hilbert spaces. The formula

(I − T( z
|z|
)mT( z

|z|
)m)K

�,�,s
z

gives the reproducing kernels of these spaces. So, we consider the Toeplitz op-
erator induced by ( z

|z|
)m in Fock-Sobolev spaces F2�,�,s. By using the de�nition
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of Toeplitz operator and the formula (2), we have

2
��

−2s−2
� T( z

|z|
)mzn = ∫

ℂ
( �
|�|

)m�n
∑

k≥0

1

Γ (2k + 2s + 2
� )

(�2∕�z�̄)k|�|2se−�|�|�dA(�)

= 1
Γ( 2

�
(n + m + s + 1))

�
2
�
(m+n)zm+n ∫

ℂ
|�|2n+2s+me−�|�|�dA(�)

= �
2
�
(m+n)

Γ( 2
�
(n + m + s + 1))

zm+n2 ∫
∞

0
r2n+2s+m+1e−�r�dr

= �
2
�
(m+n)

Γ( 2
�
(n + m + s + 1))

zm+n 2
�� ∫

∞

0
( t� )

1
�
(2n+m+2s+2)−1

e−tdt

= �
1
�
(m−2s−2)

Γ( 2
�
(n + m + s + 1))

zm+n 2� Γ( 2� (n + s + 1) + m
� )

=
Γ( 2

�
(n + s + 1) + m

�
)

Γ( 2
�
(n + m + s + 1))

2
� z

m+n�
1
�
(m−2s−2).

By a similar calculation for T( z̄
|z|
)mz

n, using (2) we have

2
��

−2s−2
� T( z̄

|z|
)mz

n = ∫
ℂ
( �̄
|�|

)m�n
∑

k≥0

1
Γ( 2

�
(k + s + 1))

(�2∕�z�̄)k|�|2se−�|�|�dA(�)

= �
2
�
(n−m)

Γ( 2
�
(n − m + s + 1))

zn−m ∫
ℂ
|�|2n+2s−me−�|�|�dA(�)

= �
2
�
(n−m)

Γ( 2
�
(n + m + s + 1))

zn−m2 ∫
∞

0
r2n+2s−m+1e−�r�dr

= �
2
�
(n−m)

Γ( 2
�
(n − m + s + 1))

zn−m 2
�� ∫

∞

0
( t� )

1
�
(2n−m+2s+2)−1

e−tdt

= �
1
�
(−m−2s−2)

Γ( 2
�
(n − m + s + 1))

zn−m 2� Γ( 2� (n + s + 1) − m
� )
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=
Γ( 2

�
(n + s + 1) − m

�
)

Γ( 2
�
(n − m + s + 1))

2
� z

n−m�
1
�
(−m−2s−2).

It follows that

(I − T( z̄
|z|
)mT( z

|z|
)m) zn =

⎛
⎜
⎜
⎝

1 −
Γ( 2

�
(n + s + 1) + m

�
)Γ( 2

�
(n + s + 1) + m

�
)

Γ( 2
�
(s + m + n + 1))Γ( 2

�
(s + n + 1))

⎞
⎟
⎟
⎠

zn.

From Lemma (2), we conclude that

1 −
Γ ( 2

�
(n + s + 1) + m

�
) Γ ( 2

�
(n + s + 1) + m

�
)

Γ ( 2
�
(s + m + n + 1)) Γ ( 2

�
(s + n + 1))

≍ 1
n ,

therefore

(I − T( z
|z|
)mT( z

|z|
)m)K

�,�,s
z (�) =

∞∑

n=0

1
n

1

Γ ( 2n+2s+2
�

)
(�2∕��z)n. (3)

For large enough n, we have

n Γ (2n + 2s + 2
� ) ≍ (2n + 2s + 2

� ) Γ (2n + 2s + 2
� )

= Γ(
2n + 2(s + �

2 ) + 2

� ), (4)

Substituting (4) into (3), we get the reproducing kernel of Fock-Sobolev space

of order (s + �
2 ), which completes the proof. �

As a consequence of themain theorem, we obtain the following corollary for
the Fock-Sobolev space F2�,2,s.

Corollary 5. Let f(z) = (z∕|z|)m, and let us consider Toeplitz operators acting
on F2�,2,s. Then

ℋ(f) = ℋ(f) = F2�,2,s+1.

Note that this is in line with the well-known Bergman space results of Zhu
[21, 22] and Abkar-Jafarzadeh [1].
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