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Isolated points of the Zariski space

Dario Spirito

Abstract. Let D be an integral domain and L be a �eld containing D. We
study the isolated points of the Zariski space Zar(L|D), with respect to the
constructible topology. In particular, we completely characterize when L (as
a point) is isolated and, under the hypothesis that L is the quotient �eld of
D, when a valuation domain of dimension 1 is isolated; as a consequence,
we �nd all isolated points of Zar(D) when D is a Noetherian domain and,
under the hypothesis that D and D′ are Noetherian, local and countable, we
characterize when Zar(D) and Zar(D′) are homeomorphic. We also show
that if V is a valuation domain and L is transcendental over V then the set of
extensions of V to L has no isolated points.
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1. Introduction
LetD be an integral domainwith quotient �eldK, and let L be a �eld contain-

ing K. The Zariski space of L over D, denoted by Zar(L|D), is the set of all valu-
ation rings containingD and having quotient �eld L. O. Zariski introduced this
set (under the name abstract Riemann surface) and endowed it with a natural
topology (later called the Zariski topology) during its study of resolution of sin-
gularities; in particular, he used the compactness of the Zariski space to reduce
the problem of gluing in�nitely many projective models to the gluing of only
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�nitely many of them [30, 31]. Later on, it was showed that Zar(L|D) enjoys
even deeper topological properties: in particular, it is a spectral space, meaning
that there is always a ring R such that Spec(R) (endowed with the Zariski topol-
ogy) is homeomorphic to Zar(L|D), and an example of such an R can be found
using the Kronecker function ring construction [5, 6, 8]. Beyond being a very
natural example of a spectral space “occurring in nature”, the Zariski topology
can also be used, for example, to study representation of integral domains as
intersection of overrings [19, 20, 21], or in real and rigid algebraic geometry
[15, 24].

As a spectral space, two other topologies can be constructed on Zar(L|D)
starting from the Zariski topology: the inverse and the constructible (or patch)
topology. Both of them give rise to spectral spaces (in particular, they are com-
pact); furthermore, the constructible topology gains the property of beingHaus-
dor�, and plays an important role in the topological characterization of spec-
tral spaces (see for example Hochster’s article [14]). The constructible topology
can also be studied through ultra�lters [7], and this point of view allows to give
many examples of spectral spaces, for example by �nding them inside other
spectral spaces (see [21, Example 2.2(1)] for some very general constructions,
[27] for examples in the overring case, and [10, 9] for examples in the setting of
semistar operations).

In this paper, we want to study the points of Zar(L|D) that are isolated, with
respect to the constructible topology. Our starting point is a new interpretation
of a result about the compactness of spaces in the form Zar(K|D) ⧵ {V} [26,
Theorem 3.6], where K is the quotient �eld of D: in particular, we show that if
V is isolated in Zar(L|D), where L is a �eld containing V, then V is the integral
closure of D[x1,… , xn]M for some x1,… , xn ∈ L, where M is a maximal ideal
of D[x1,… , xn] (Theorem 3.4). Through this result, we characterize when L is
an isolated point of Zar(L|D)cons (i.e., Zar(L|D) endowed with the constructible
topology; Proposition 4.1) and, under the hypothesis that L = K is the quotient
�eld ofD, when the one-dimensional valuation overrings are isolated (Theorem
5.2).

In Section 6, we study the isolated points of the constructible topology when
D is a Noetherian domain and L = K is its quotient �eld. Theorem 6.3 gives a
complete characterization: V ∈ Zar(K|D) = Zar(D) is isolated if and only if the
center P ofV onD has height at most 1 and P is contained in only �nitely many
prime ideals; in particular, this cannot happen if D is local and of dimension at
least 3. In the countable case, we also give a complete characterization of when
Zar(D)cons ≃ Zar(D′)cons under the hypothesis that D and D′ are Noetherian
and local (Theorem 6.11).

The last two sections of the paper explore the case of extension of valuations.
Section 7 studies the case where D itself is a �eld: in particular, we show that
if the transcendence degree of L over D is at least 2 then Zar(L|D)cons has no
isolated points, improving [3, Theorem 4.45]. In Section 8, we show that if V is
a valuation domain that is not a �eld and K(X) is the �eld of rational functions
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in one indeterminate, then the set of extensions of V to K(X) has no isolated
points (Theorem 8.2), and as a consequence we further extend [3, Theorem
4.45] to Zar(L|D)cons when D is an arbitrary integral domain (Theorem 7.3 and
Corollary 8.6).

2. Notation and preliminaries
Throughout the paper, all rings will be commutative, unitary and will have

no zero-divisors (that is, they are integral domains). We usually denote by D
such a domain and by K its quotient �eld; we use D to denote the integral clo-
sure of D in K.

2.1. Spectral spaces. A topological space X is spectral if it is homeomorphic
to the prime spectrum of a ring, endowed with the Zariski topology; spectral
spaces can also be characterized in a purely topological way (see [14] and [4]).
Among their properties, spectral spaces are always compact and have a basis
of open and compact sets. If ∆ ⊆ X, we denote by Cl(∆) the closure of ∆. The
topology of X induces an order such that x ≤ y if and only if y ∈ Cl(x). If
Y ⊆ X, the closure under generization of Y if the set Ygen ∶= {x ∈ X ∣ x ≤ y for
some y ∈ Y}, where ≤ is the order induced by the topology, and Y is closed by
generizations if Y = Ygen.

If X is a spectral space, the inverse topology on X is the coarsest topology
such that the open and compact subsets of X are closed. We denote by Xinv the
space X, endowed with the inverse topology. A subset Y ⊆ X is closed in the
inverse topology if and only if it is compact in the starting topology and closed
by generizations; in particular, if Y is compact in the starting topology then its
closure in the inverse topology is Ygen.

If X is a spectral space, the constructible topology (or patch topology) on X is
the coarsest topology such that the open and compact subsets ofX are both open
and closed. We denote by Xcons the space X, endowed with the constructible
topology; if Y ⊆ X, we denote by Ycons the subset Y considered with respect to
the constructible topology, and by Clcons(Y) the closure of Y in Xcons. If Y =
Clcons(Y), then Y is compact in the starting topology; conversely, if Y is closed
in the starting topology or in the inverse topology, then it is closed also in the
constructible topology.

Both Xinv and Xcons are spectral spaces, and in particular compact spaces;
moreover, Xcons is Hausdor� and zero-dimensional.

Amap f ∶ X ⟶ Y of spectral spaces is a spectral map if f−1(Ω) is open and
compact for every open and compact subset Ω of Y; in particular, a spectral
map is continuous. If f is both spectral and closed, then it is also proper, and
in particular f−1(Ω) is compact for every compact subsetΩ of Y [4, 5.3.7(i)]. If
f ∶ X ⟶ Y is a spectral map, then it is spectral also when X and Y are both
endowed with the inverse topology, and when they are both endowed with the
constructible topology [4, Theorem 1.3.21]. In the latter case, f is also closed,
since it is a continuous map between Hausdor� compact spaces.
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2.2. Isolated points. If X is a topological space, a point p ∈ X is isolated in X
if {p} is an open set. If X has no isolated points, then X is said to be perfect. The
set of points that are not isolated in X is a closed set, called the derived set of X.

IfΩ ⊆ X and p ∈ Ω is isolated in X, then p is also isolated inΩ; ifΩ is open,
then p is isolated in X if and only if p is isolated in Ω.

2.3. Valuation domains. A valuation domain is an integral domain V such
that, for every x ≠ 0 in the quotient �eld of V, at least one of x and x−1 is in
V. Any valuation domain is local; we denote the maximal ideal of V by mV .
If L is a �eld containing the quotient �eld K of V, an extension of V to L is a
valuation domainW having quotient �eld L such thatW ∩ K = V. We denote
the set of extension of V to L by ℰ(L|V); this set is always nonempty (see e.g.
[12, Theorem 20.1]).

If D is an integral domain and L is a �eld containing D, the Zariski space (or
Zariski-Riemann space) of L over D, denoted by Zar(L|D), is the set of all val-
uation domains containing D and having quotient �eld L. The Zariski space
Zar(L|D) is always nonempty. When L is the quotient �eld of D, we denote
Zar(L|D) simply by Zar(D), and we call its elements the valuation overrings of
D.1 If D′ is the integral closure of D in L, then Zar(L|D) = Zar(L|D′); in partic-
ular, Zar(D) = Zar(D). A valuation ring in Zar(L|D) isminimal if it is minimal
with respect to containment.

The Zariski-Riemann space Zar(L|D) can be endowed with a natural topol-
ogy, called the Zariski topology, which is the topology generated by the basic
open sets

ℬ(x1,… , xn) ∶= {V ∈ Zar(L|D) ∣ x1,… , xn ∈ V},
as x1,… , xn range among the elements of L; we use the notation ℬL(x1,… , xn)
if we need to underline the �eld L. Under this topology, Zar(L|D) is a spectral
space whose order is the opposite of the containment order [6, 5]; in particular,
the minimal valuation rings in Zar(L|D) are maximal with respect to the order
induced by the Zariski topology. As a spectral space, we can de�ne the inverse
and the constructible topology on Zar(L|D); a set ∆ ⊆ Zar(L|D) is closed with
respect to the inverse topology if and only if it is compact with respect to the
Zariski topology and ∆ = {W ∈ Zar(L|D)|W ⊇ V for some V ∈ ∆} [8, Remark
2.2 and Proposition 2.6].

Since ℬ(z1,… , zn) = ℬ(z1) ∩ ⋯ ∩ ℬ(zn) for every z1,… , zn ∈ L, a basis
of the constructible topology of Zar(L|D) is the family of the sets in the form
ℬ(x1,… , xn) ∩ℬ(y1)c ∩⋯ ∩ℬ(ym)c, as x1,… , xn, y1,… , ym range in L. In par-
ticular, V is isolated in Zar(L|D)cons if and only if

{V} = ℬ(x1,… , xn) ∩ℬ(y1)c ∩⋯ ∩ℬ(ym)c =
= Zar(L|D[x1,… , xn]) ∩ℬ(y1)c ∩⋯ ∩ℬ(ym)c

for some x1,… , xn, y1,… , ym ∈ L.

1An overring of D is, more generally, a ring contained between D and its quotient �eld.
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If L′ ⊆ L is a �eld extension and D ⊆ L′, we have a restriction map

�∶ Zar(L|D)⟶ Zar(L′|D),
V ⟼ V ∩ L′.

The map � is surjective due to Chevalley’s extension theorem (see e.g. [1, The-
orme 5.21] or [12, Theorem 19.5]), and is a spectral map since �−1(ℬL′(x)) =
ℬL(x). Therefore, it is spectral and closed with respect to the constructible
topology (on both sets). In particular, if V ∈ Zar(L′|D), then ℰ(L|V) = �−1(V);
hence, ℰ(L|V) is always closed in Zar(L|D)cons, and in particular it is compact
both in the Zariski and the constructible topology.

Since, by de�nition, the spectrum Spec(D) is a spectral space (when endowed
with the Zariski topology), we can de�ne the inverse and the constructible
topology also on Spec(D). For every ideal I of D, set V(I) ∶= {P ∈ Spec(D) ∣
I ⊆ P} andD(I) ∶= Spec(D) ⧵V(I): then, a basis of Spec(D)cons is given by the
intersectionsD(aD)∩V(I), as a ranges inD and I among the �nitely generated
ideals of D [4, Theorem 12.1.10(iv)].

For every �eld L, we can de�ne a map


∶ Zar(L|D)⟶ Spec(D),
V ⟼mV ∩ D,

which is called the center map. When Zar(L|D) and Spec(D) are endowed with
the Zariski topology, 
 is spectral (in particular, continuous; see [32, Chapter
VI, §17, Lemma 1] or [5, Theorem 4.1]), surjective (this follows, for example,
from [1, Theorem 5.21] or [12, Theorem 19.6]) and closed [5, Theorem 2.5], so
in particular it is proper. Therefore, 
 is a spectral map also when Zar(L|D) and
Spec(D) are endowed with their respective constructible topologies.

3. General results
We begin by establishing some general criteria to determine which valuation

domains are isolated in Zar(D).
Let D be an integral domain: a prime ideal is called essential if DP is a val-

uation domain, and DP is said to be an essential valuation overring of D. We
shall need the following weaker notion: we say that a prime ideal P of D is
almost essential if there is a unique valuation overring of D having center P;
equivalently, P is almost essential if and only if the integral closure of DP is a
valuation domain V. When this happens, we say that V is an almost essential
valuation overring of D.

In the context of almost essential primes and valuation overrings, isolated
valuation rings correspond to isolated prime ideals.

Proposition 3.1. Let D be an integral domain, and let P be an almost essential
prime ideal ofD; letV be the valuation overring with center P. Then,V is isolated
in Zar(D)cons if and only if P is isolated in Spec(D)cons.
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Proof. Let 
 ∶ Zar(D) ⟶ Spec(D) be the center map. If P is isolated in
Spec(D)cons, then {P} is open and thus, as 
 is continuous, {V} = 
−1({P}) is open
in Zar(D)cons, i.e., V is isolated. Conversely, if V is isolated then Zar(D) ⧵ {V} is
closed, with respect to the constructible topology, and thus 
(Zar(D) ⧵ {V}) =
Spec(D) ⧵ {P} is closed in Spec(D)cons. Hence, {P} is open and P is isolated in
Spec(D)cons, as claimed. �

Corollary 3.2. Let D be a Prüfer domain, and let V be a valuation overring of
D with center P. Then, V is isolated in Zar(D)cons if and only if P is isolated in
Spec(D)cons. In particular, Zar(D)cons is perfect if and only if Spec(D)cons is per-
fect.

Proof. Since D is a Prüfer domain, every valuation overring is essential. The
claim follows from Proposition 3.1. �

In general, almost essential valuation overrings are rare; for example, if D
is Noetherian, no prime ideal of height 2 or more can be almost essential. For
this reason, we need more general results; the �rst step is connecting isolated
valuation rings with compactness.

Proposition 3.3. Let X be a spectral space, and let x be a maximal element with
respect to the order induced by the topology. Then, the following are equivalent:

(i) x is isolated in Xcons;
(ii) X ⧵ {x} is compact, with respect to the starting topology;
(iii) X ⧵ {x} is closed, with respect to the inverse topology.

Proof. Let Y ∶= X ⧵ {x}.
The equivalence of (ii) and (iii) follows from the fact thatY is closed by gener-

izations.
If (i) holds, then {x} is an open set in the constructible topology, and thusY is

closed; since Xcons is compact, it follows that Y is compact in the constructible
topology and thus also in the Zariski topology (which is coarser). Thus, (ii)
holds.

Conversely, if (iii) holds, then Y is closed also in the constructible topology;
hence, {x} is open and x is isolated. Thus, (i) holds. �

In particular, the previous proposition applies when X = Zar(L|D) and V is
a minimal element of Zar(L|D), with respect to containment. In this case, the
fact that Zar(L|D) ⧵ {V} is compact has very strong consequences.

Theorem 3.4. Let D be an integral domain and let V ∈ Zar(L|D). Then, the
following are equivalent.

(i) V is isolated in Zar(L|D)cons;
(ii) there are x1,… , xn ∈ L and a maximal idealM of D[x1,… , xn] such that

V is the integral closure of D[x1,… , xn]M andM is isolated in

Spec(D[x1,… , xn])cons;
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(iii) there are x1,… , xn ∈ L and a prime ideal P of D[x1,… , xn] such that V
is the integral closure of D[x1,… , xn]P and P is isolated in

Spec(D[x1,… , xn])cons.

Proof. Let X be an indeterminate over D, and let R ∶= D + XL[[X]]. By the
reasoning in the proof of [28, Proposition 3.3] (or by Lemma 4.2 below) the
Zariski space Zar(L|D)cons is homeomorphic to (Zar(R) ⧵ {L((X))})cons, which
is open in Zar(R)cons; in particular, aW ∈ Zar(L|D) is isolated with respect to
the constructible topology if and only ifW + XL[[X]] is isolated in Zar(R)cons.
Therefore, without loss of generality we can suppose that L is the quotient �eld
of D.

(i) ⟹ (iii) Since V is isolated, there are x1,… , xk, y1,… , ym ∈ L such that
{V} = Zar(D[x1,… , xk]) ∩ ℬ(y1)c ∩⋯ ∩ ℬ(ym)c. In particular, V is a minimal
valuation overring ofD[x1,… , xk]. By Proposition 3.3, Zar(D[x1,… , xk])⧵{V} is
compact, with respect to the Zariski topology; therefore, by [26, Theorem 3.6],
there are xk+1,… , xn ∈ L such that V is the integral closure of

D[x1,… , xk][xk+1,… , xn]M = D[x1,… , xn]M
for some maximal ideal M of D[x1,… , xn]. Hence, M is almost essential in
D[x1,… , xn], and by Proposition 3.1, M is isolated in Spec(D[x1,… , xn])cons.
Thus (ii) holds.

(ii)⟹ (iii) is obvious.
(iii) ⟹ (i) The set Zar(D[x1,… , xn]) = ℬ(x1,… , xn) is open in the con-

structible topology, and thusV is isolated inZar(D)cons if and only if it is isolated
in Zar(D[x1,… , xn])cons. By hypothesis, P is almost essential for D[x1,… , xn],
and thus by Proposition 3.1 the integral closure V of D[x1,… , xn]P is isolated,
as claimed. �

4. Dimension 0
In this section, we study when the �eld L is isolated in Zar(L|D)cons. If L is

the quotient �eld of D, then L is an essential valuation overring of D, and thus
one can reason through Proposition 3.1; however, it is possible to use a more
general approach.

A domain D with quotient �eld K is said to be a Goldman domain (or a G-
domain) if K is a �nitely generated D-algebra, or equivalently if K = D[u] for
some u ∈ K.

Proposition 4.1. Let D be an integral domain with quotient �eld K, and let L
be a �eld extension of K. Then, L is isolated in Zar(L|D)cons if and only if D is a
Goldman domain and K ⊆ L is an algebraic extension.

Proof. Suppose �rst that the two conditions hold. Then, K = D[u] for some
u ∈ K; since K ⊆ L is algebraic, it follows that ℬ(u) = Zar(L|K) = {L}. Hence,
L is isolated in Zar(L|D)cons.

Conversely, suppose that L is isolated. By Theorem 3.4, there are x1,… , xn ∈
L such that L is the integral closure of D[x1,… , xn]M for some maximal ideal
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M; since M must have height 0, F ∶= D[x1,… , xn] must be a �eld such that
F ⊆ L is algebraic.

Suppose that F is transcendental over K: then, we can take a transcendence
basis y1,… , yk of F over K. By construction, F is algebraic over the quotient
�eld of D[y1,… , yk]; since F is a �eld, it is a Goldman domain, and thus by [16,
Theorem 22] so should be D[y1,… , yk], against [16, Theorem 21]. Thus, F is
algebraic over K. Applying again [16, Theorem 22] to the extension D ⊂ F, we
see that D is a Goldman domain; furthermore, L is algebraic over F and thus
over K. The claim is proved. �

The previous result can be used to give some necessary conditions for V to
be isolated. We premise a lemma.

Lemma 4.2. Let D be an integral domain, L be a �eld containing D, and let
W ∈ Zar(L|D). Let � ∶W ⟶W∕mW be the quotient map. Then, the map

�∶ {Z ∈ Zar(L|D) ∣ Z ⊆ W}⟶ Zar(W∕mW|D∕(mW ∩ D)),
Z ⟼ �(Z)

is a homeomorphism, when both sets are endowed with either the Zariski or the
constructible topology.

Proof. Let Z ∈ Zar(L|D): then, ker� = mW ⊆ Z since Z andW are valuation
domains with the same quotient �eld and Z ⊆ W. Hence, �(Z) = Z∕mW is a
valuation ring containing D∕(mW ∩ D); moreover, sinceW is a localization of
Z, W∕mW is a localization of Z∕mW and thusW∕mW is the quotient �eld of
�(Z). Hence, � is well-de�ned.

Moreover, if Z′ ∈ Zar(W∕mW|D∕(mW ∩ D)), then Z ∶= �−1(Z′) is the
pullback ofZ′ along the quotientW ⟶W∕mW . Thus,Z is a valuation domain
by [11, Proposition 1.1.8(1)], and its quotient �eld is L by [11, Lemma 1.1.4(10)].
Hence � is surjective. Furthermore, if Z ∈ Zar(L|D) and Z ⊆ W, then ker� ⊆
Z and thus �−1(�(Z)) = Z; hence, � is bijective.

Let now x ∈ W∕mW . Then, Z ∈ �
−1
(ℬ(x)) if and only if x ∈ �(Z). Since

ker� ⊆ Z, this happens if and only if Z contains all of �−1(x); thus, for every
y ∈ �−1(x), we have �

−1
(ℬ(x)) = ℬ(y), and likewise �(ℬ(x)) = ℬ(�(x)) for

every x ∈ L. Hence, � is continuous and open when both {Z ∈ Zar(L|D) ∣ Z ⊆
W} and Zar(W∕mW|D∕(mW ∩D)) are endowed with the Zariski topology, and
thus it is a homeomorphism. It follows that it is also a homeomorphism when
both sets are endowed with the constructible topology, as claimed. �

Proposition 4.3. Let V ∈ Zar(D) be a valuation domain with center P on D. If
V is isolated inZar(D)cons, then the �eld extensionDP∕PDP ⊆ V∕mV is algebraic.

Proof. Consider ∆ ∶= {W ∈ Zar(D) ∣W ⊆ V}. SincemV ∩ D = P, by Lemma
4.2, the quotient map V ⟶ V∕mV induces a homeomorphism between ∆cons
andZar(V∕mV|D∕P)cons, and thusV∕m is isolated inZar(V∕mV|D∕P)cons. Let
F be the quotient �eld of D∕P: then, F = (D∕P)P∕P = DP∕PDP. By Proposition
4.1, F ⊆ V∕mV must be algebraic, as claimed. �
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Corollary 4.4. Let D be an integral domain, let 
 ∶ Zar(D) ⟶ Spec(D) be the
center map and let V ∈ Zar(D). If V is isolated in Zar(D)cons, then V is minimal
in 
−1(
(V)).

Proof. Let P ∶= 
(V). If V is not minimal, then V∕mV is not minimal in
Zar(V∕mV|DP∕PDP); hence, the extension DP∕PDP ⊆ V∕mV cannot be alge-
braic, against Proposition 4.3. �

5. Dimension 1
We now analyze the case where the valuation ring V has (Krull) dimension

1; however, the methods we use only work when V is a valuation overring of
D, i.e., only for the space Zar(D) = Zar(K|D), where K is the quotient �eld of
D. Unlike in the proof of Theorem 3.4, we cannot use [28, Proposition 3.3] to
extend these results to arbitrary Zariski spaces Zar(L|D), because that construc-
tion changes the dimension of the valuation domains involved.

The idea of this section is to study themaximal ideals of the �nitely generated
algebras D[x1,… , xn].

Proposition 5.1. Let (D,m) be an integrally closed local domain, and let T ≠ D
be a�nitely generatedD-algebra contained in the quotient �eldK ofD. IfmT ≠ T,
then no maximal ideal of T abovem has height 1.

Proof. Let T ∶= D[x1,… , xn]; we proceed by induction on n.
Suppose n = 1, and let x ∶= x1; then, x ∉ D. If x−1 ∈ D, then x ∈ m, and

thus mT = T, a contradiction. Hence, x, x−1 ∉ D. By [25, Theorem 6], the
ideal p ∶=mT is prime but not maximal; since every maximal ideal of T above
mmust contain p, it follows that no such maximal ideal can have height 1.

Suppose that the claim holds up to n − 1; let A ∶= D[x1,… , xn−1], so that
T = A[xn]; without loss of generality, A ≠ D and xn ∉ A. LetM be a maximal
ideal of T abovem. If xn is integral over A, then T is integral over A, and thus
the height of M is equal to the height of M ∩ A, which is not equal to 1 by
induction.

Suppose that xn is not integral over A. Let A′ be the integral closure of A;
then, T ⊆ A′[xn] is an integral extension, and since xn is not integral over A
it follows that A′ ⊊ A′[xn]. Take a maximal ideal M′ of A′[xn] above M. Let
N ∶= M′∩A′; then,N is a nonzero prime ideal ofA′, and thusA′′ ∶= (A′)N is a
local integrally closed domainwithmaximal idealN(A′)N ≠ (0). Then, the ring
A′′[xn] is the quotient ring ofA′[xn]with respect to the multiplicatively closed
setA′[xn]⧵N, the setM′′ ∶= M′A′′[xn] is a maximal ideal, andN(A′)N ⊆ M′′.
Applying the case n = 1 to A′′ and A′′[xn], it follows that the height ofM′′ is
not 1; since the height ofM′′ is the same of the height ofM′ and ofM, it follows
that the height ofM is not 1, as claimed. �

Theorem 5.2. Let D be an integral domain, and let V ∈ Zar(D) be a valuation
overring of dimension 1. Then, V is isolated in Zar(D)cons if and only if V is a
localization of D and its center on D is isolated in Spec(D)cons.
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Proof. Since Zar(D) = Zar(D), we can suppose without loss of generality that
D is integrally closed.

If the two conditions hold, then V is isolated by Proposition 3.1.
Suppose that V is isolated in Zar(D)cons. Let P be the center of V on D, and

suppose that V ≠ DP. Since V is also isolated in Zar(DP)cons, by Theorem 3.4
there arex1,… , xn ∈ K⧵DP such thatV is the integral closure ofDP[x1,… , xn]M ,
whereM is a maximal ideal of DP[x1,… , xn]. However,mV ∩ DP[x1,… , xn] =
M, and thus M ∩ DP = PDP, so that PDP ⋅ DP[x1,… , xn] ≠ DP[x1,… , xn]; by
Proposition 5.1,M cannot have height 1. However, the dimension of the inte-
gral closure ofDP[x1,… , xn]M is exactly the height ofM; hence, this contradicts
the fact that V has dimension 1. Thus, V = DP. The fact that P is isolated in
Zar(D)cons now follows from Proposition 3.1. �

Corollary 5.3. Let D be an integral domain, and let V ∈ Zar(D) be a minimal
valuation overring of D. If dim(V) = 1 and V is isolated in Zar(D)cons, then the
center of V on D has height 1.

Proof. The claim is a direct consequence of Theorem 5.2. �

Theorem 5.2 does not work when V has dimension 2 or more, as the next
example shows.

Example 5.4. Let F be a �eld, take two independent indeterminates X and
Y, and consider D ∶= F + XF(Y)[[X]], i.e., D is the ring of all power se-
ries with coe�cients in F(Y) such that the 0-degree coe�cient belongs to F.
Then, D is a one-dimensional local integrally closed domain (its maximal ideal
isXF(Y)[[X]]), and its valuation overrings are its quotient �eld, F(Y)[[X]] and
the rings in the formW+XF(Y)[[X]], whereW belongs toZar(F(Y)|F)⧵{F(Y)},
i.e., W is either F[Y](f) for some irreducible polynomial f ∈ F[Y] or W =
F[Y−1](Y−1).

Each of theseW +XF(Y)[[X]] is isolated in Zar(D)cons, since eachW is iso-
lated in Zar(F(Y)|F) (this follows, for example, by applying Theorem 6.3 below
to F[Y] or to F[Y−1]). However, since everyW+XF(Y)[[X]] has dimension 2,
it can’t be a localization of D = D.

6. The Noetherian case
In this section, wewant to characterize the isolated points ofZar(D)conswhen

D is a Noetherian domain. If D is integrally closed, this is a straightforward
consequence of Theorem 5.2; to extend it to the non-integrally closed case, we
need a few lemmas. (Note that the integral closure of a Noetherian domain is
not necessarily Noetherian; see e.g. [18, Example 5, page 209].)

Lemma 6.1. Let D be an integral domain. Let P be a prime ideal of D and let
∆ ⊆ Spec(D). If P =

⋂
{Q ∣ Q ∈ ∆}, then P ∈ Clcons(∆).

Proof. Let Ω = D(aD) ∩ V(J) be a basic subset of Spec(D)cons containing P,
where a ∈ D and J is a �nitely generated ideal. We claim that Ω ∩ ∆ ≠ ∅.
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Indeed, ∆ ⊆ V(J) since J ⊆ P and P ⊆ Q for every Q ∈ ∆. Moreover, since
a ∉ P, there must be a Q ∈ ∆ such that a ∉ Q; thus, Q ∈ D(aD) ∩ V(J) ∩ ∆ =
Ω ∩ ∆. In particular, Ω ∩ ∆ ≠ ∅ and P ∈ Clcons(∆). �

Lemma 6.2. Let A ⊆ B be an integral extension, and let P ∈ Spec(A), Q ∈
Spec(B) be such that Q ∩ A = P. If

⋂
{P′ ∈ Spec(A) ∣ P′ ⊋ P} = P, then⋂

{Q′ ∈ Spec(B) ∣ Q′ ⊋ Q} = Q.

Proof. Let I ∶=
⋂
{Q′ ∈ Spec(B) ∣ Q′ ⊋ Q}, and suppose I ≠ Q; then, Q ⊊ I

andV(I) = V(Q)⧵ {Q}. Consider the canonical map of spectra � ∶ Spec(B)⟶
Spec(A): then, � is closed (with respect to the Zariski topology) [2, Chapter V,
§2, Remark (2)], and thus �(V(I)) is closed in Spec(A).

By the lying over and the going up theorems, everyP′ ⊋ P belongs to�(V(I)),
while P ∉ �(V(I)); hence, �(V(I)) = V(P) ⧵ {P}. However, the condition⋂
{P′ ∈ Spec(A) ∣ P′ ⊋ P} = P shows that V(P) ⧵ {P} is not closed (its closure

is V(P)), a contradiction. Hence, I = Q, as claimed. �

Theorem 6.3. Let D be a Noetherian domain, and let V ∈ Zar(D); let P be the
center of V on D. Then, V is isolated in Zar(D)cons if and only if ℎ(P) ≤ 1 and
V(P) is �nite.

Proof. Suppose �rst that V is isolated in Zar(D)cons.
If dim(V) > 1, then V is not Noetherian. By Theorem 3.4, V is the integral

closure of D[x1,… , xn]M , for some x1,… , xn ∈ V and some maximal ideal M.
However, D[x1,… , xn] is Noetherian, and thus so is D[x1,… , xn]M ; hence, its
integral closure is a Krull domain, which can’t be a non-Noetherian valuation
domain, a contradiction.

If dim(V) = 0, then V = K. By Proposition 4.1, D must be a Goldman
domain; by [16, Theorem 146], V(P) is �nite.

If dim(V) = 1, then by Theorem 5.2V is the localization ofD at a prime ideal
of Q of height 1; hence, V is an essential prime ideal of D and thus Q is isolated
in Spec(D)cons by Proposition 3.1.

Let P ∶= Q ∩D. If V(P) is in�nite, then P is the intersection of all the prime
ideals properly containing it (since D∕P is not a Goldman domain); by Lemma
6.2, the same property holds for Q, and thus by Lemma 6.1, Q is not isolated in
Spec(D)cons. This is a contradiction, and thus V(P)must be �nite.

Conversely, suppose the two conditions hold and let V(P) = {P,Q1,… , Qn}.
For each i, let yi ∈ Qi ⧵ P and let xi ∶= 1∕yi: then, A ∶= D[x1,… , xn] is a Noe-
therian domain such that PA is a maximal ideal of A of height ≤ 1; moreover,
sincemV∩D = P, each xi belongs toV, and thusV ∈ Zar(A) andmV∩A = PA.

The subspace Zar(A) = ℬ(x1,… , xn) is an open set of Zar(D)cons: therefore,
all isolated points of Zar(A)cons are also isolated in Zar(D)cons.

If P has height 0, then A = K = V and thus V is isolated. Suppose that
ℎ(P) = 1.

Since A is Noetherian, {PA} = V(PA) is an open subset of Spec(A)cons;
hence, 
−1A (PA) is an open subset ofZar(A)cons, where 
A ∶ Zar(A)⟶ Spec(A)
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is the center map relative to A. However, 
−1A (PA) is the set of valuation over-
rings of APA = DP centered on (PA)APA = PDP; since P has height 1, DP has
dimension 1, and thus 
−1A (PA) is in bijective correspondencewith themaximal
ideals of the integral closure B ofDP, which is Noetherian by [16, Theorem 93].
The Jacobson radical of B is nonzero (since it contains P), and thus B has only
�nitely many maximal ideal; thus, 
−1A (PA) is an open �nite set of the Haus-
dor� space Zar(A)cons, and so it is discrete. Since V ∈ 
−1A (PA), we have that V
is isolated in Zar(A)cons and thus in Zar(D)cons, as claimed. �

Corollary 6.4. Let (D,m) be a Noetherian local domain of dimension at least 3.
Then, Zar(D)cons is perfect.

Proof. Suppose V is isolated in Zar(D)cons. By Theorem 6.3, its center P must
have height 1 and V(P) must be �nite. However, since P has height 1 and the
maximal ideal m of D has height at least 3, there is at least one prime ideal
between P andm, and since D is Noetherian there must be in�nitely many of
them [16, Theorem 144], a contradiction. Hence, no V can be isolated, and
Zar(D)cons is perfect. �

Wenowwant to show that, whenD is countable, there are few possible topo-
logical structures for Zar(D)cons. The one-dimensional case is very easy.

Proposition 6.5. Let (D,m) and (D′,m′) be two Noetherian local domains of
dimension 1. The following are equivalent:

(i) |Max(D)| = |Max(D′)|;
(ii) Zar(D) ≃ Zar(D′);
(iii) Zar(D)cons ≃ Zar(D′)cons.

Proof. Since D is Noetherian and one-dimensional, D is a principal ideal do-
main with �nitely many maximal ideals; hence, Zar(D) = Zar(D) ≃ Spec(D),
and the homeomorphism holds both in the Zariski and in the constructible
topology.

Hence, if |Max(D)| = |Max(D′)| then Spec(D) ≃ Spec(D′) and thus Zar(D)
and Zar(D′) are homeomorphic in both the Zariski and the constructible topol-
ogy. Conversely, if Zar(D) ≃ Zar(D′) (in any of the two topologies) then in
particular they have the same cardinality, which is equal to |Max(D)| + 1 =
|Max(D′)| + 1; thus, |Max(D)| = |Max(D′)|. The claim is proved. �

For larger dimension, we need to join the previous theorems with the topo-
logical characterization of the Cantor set. We isolate a lemma.

Lemma 6.6. Let D be a countable domain. Then, Zar(D)cons is metrizable.

Proof. The spaceZar(D)cons is compact andHausdor�, hence normal [29, The-
orem 17.10] and, in particular, regular. Furthermore, the family of setsℬ(t) and
ℬ(t)c (as t ranges in the quotient �eld of D) form a subbasis of Zar(D)cons, and
thus Zar(D)cons is second countable. By Urysohn’s metrization theorem (see
e.g. [29, Theorem 23.1]), Zar(D)cons is metrizable. �
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Proposition 6.7. Let (D,m) and (D′,m′) be two countable Noetherian local do-
mains of dimension at least 3. Then, Zar(D)cons ≃ Zar(D′)cons.

Proof. Both Zar(D)cons and Zar(D′)cons are Boolean spaces, hence totally dis-
connected and compact; they are also perfect by Corollary 6.4 and metrizable
by Lemma 6.6.

By [29, Theorem 30.3], any two spaces with these properties are homeomor-
phic; hence, Zar(D)cons ≃ Zar(D′)cons. �

To study the case of dimension 2, we need two further lemmas.

Lemma 6.8. Let (D,m) be a local Noetherian domain with dim(D) > 1. If D is
countable, then D has exactly countably many prime ideals of height 1.

Proof. By [16, Theorem 144], there are in�nitely many prime ideals between
(0) andm, and thus D has in�nitely many prime ideals of height 1.

Moreover, every prime ideal is generated by a �nite set, and thus the number
of prime ideals of height 1 is at most equal to the number of �nite subsets of D.
Since D is countable, so is the set of its �nite subsets; the claim is proved. �

Lemma 6.9. Let (D,m) be a local Noetherian domain of dimension 2 with quo-
tient �eld K, and let X be the set of isolated points of Zar(D)cons. Then:

(a) a valuation overring of D belongs to X if and only if its center has height
1;

(b) X is nonempty and compact, with respect to the Zariski topology;
(c) if D is countable, then X is countable;
(d) Clcons(X) = X ∪ {K};
(e) the only isolated point of (Zar(D) ⧵ X)cons is K;
(f) Zar(D) ⧵ (X ∪ {K}) is closed and perfect, with respect to the constructible

topology.

Proof. (a) Let V ∈ Zar(D). If V is isolated, then its center has height at most
1 by Theorem 6.3, but the height can’t be 0 since V((0)) is in�nite. Conversely,
if P ∶= mV ∩ D has height 1, then V(P) = {P,m} is �nite, and thus V ∈ X, by
Theorem 6.3.

(b) Let X1 be the set of all height 1 prime ideals of D: by the previous point,
X = 
−1(X1). Since 
 is surjective, and X1 is nonempty, also X is nonempty.
Furthermore, since D is a Noetherian ring, Spec(D) is a Noetherian space with
respect to the Zariski topology (i.e., all its subsets are compact; see [4, Theorem
12.4.3] or [1, Chapter 6, Exercises 5–8]). Since 
 is a spectral closed map, it is
proper, and thus the counterimage of any compact subset of Spec(D) is com-
pact; therefore, X = 
−1(X1) is compact with respect to the Zariski topology, as
claimed.

(c) By Lemma 6.8, X1 is countable; furthermore, 
−1(P) is �nite for every
P ∈ X1, since it is in bijective correspondence with the set of maximal ideals of
the integral closure of DP. Since X = 
−1(X1), it follows that X is countable.

(d) Since X is compact, the set Xgen = {W ∈ Zar(D) ∣ W ⊇ V for some V ∈
X} is closed in the inverse topology, and thus in the constructible topology; since
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every element of X is a one-dimensional valuation ring, furthermore, Xgen =
X ∪ {K}. Hence, Clcons(X) ⊆ X ∪ {K}.

If they are not equal, then Clcons(X) = X. However, X is in�nite (since X1
is in�nite, by Lemma 6.8) and discrete (by de�nition, all its points are isolated)
and thus it is not compact with respect to the constructible topology; this is a
contradiction, since a closed set of a compact set is compact. Thus, Clcons(X) =
X ∪ {K}, as claimed.

(e) The set Zar(D)⧵ (X∪{K}) is open, with respect to the constructible topol-
ogy (by part (d)), and its elements are not isolated in Zar(D)cons; therefore,
none of its elements can be isolated in (Zar(D) ⧵ X)cons. On the other hand,
let x ∈ m, x ≠ 0: then, D[x−1] is a Noetherian domain of dimension 1, and
its maximal ideals are extensions of prime ideals of D of height 1. Therefore, if
V ∈ Zar(D[x−1]) has dimension 1 then the center of V on D has height 1, and
thus it is an isolated point of Zar(D), i.e.,ℬ(x−1) = Zar(D[x−1]) ⊆ X ∪ {K}, and
ℬ(x−1)∩ (Zar(D)⧵X) = {K}. Sinceℬ(x−1) is open in Zar(D)cons, it follows that
K is isolated in (Zar(D) ⧵ X)cons.

(f) is a direct consequence of (e). �

Note that the set X of the previous proposition is not compact with respect
to the constructible topology, as it is discrete and in�nite.

Proposition 6.10. Let (D,m) and (D′,m′) be two countable Noetherian local
domains of dimension 2. Then, Zar(D)cons ≃ Zar(D′)cons.

Proof. Denote by K,K′ the quotient �elds of D and D′, respectively.
Let X be the set of isolated points of Zar(D)cons, and let C ∶= Zar(D) ⧵ (X ∪

{K}): then, C is closed in Zar(D)cons. De�ne in the same way X′ and C′ inside
Zar(D′); then, C′ is closed.

As in the proof of Proposition 6.7, by Lemma 6.9(f) Ccons and (C′)cons are
totally disconnected, perfect, compact and metrizable (with respect to the con-
structible topology), and thus they are homeomorphic. Let �C ∶ Ccons ⟶
(C′)cons be a homeomorphism.

The set X is discrete and countable, and the unique nonisolated point of X ∪
{K} isK; since the same holds forX′ andK′, any bijectionX ⟶ X′ extends to a
homeomorphism �X ∶ (X ∪ {K})cons ⟶ (X′ ∪ {K′})cons by setting �X(K) = K′.
De�ne

�∶ Zar(D)cons ⟶ Zar(D′)cons,

V ⟼ {
�C(V) if V ∈ C,
�X(V) if V ∈ X ∪ {K}.

By construction, � is bijective, and � is a homeomorphism when restricted to
C and to X ∪ {K}. Since these two sets are closed, by [29, Theorem 7.6] � is a
homeomorphism. In particular, Zar(D)cons ≃ Zar(D′)cons. �

We summarize the previous results in the following theorem.
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Theorem 6.11. Let (D,m) and (D′,m′) be two countable Noetherian local do-
mains. Then, Zar(D)cons ≃ Zar(D′)cons if and only if one of the following condi-
tions hold:

(a) dim(D) = dim(D′) = 1 and |Max(D)| = |Max(D′)|;
(b) dim(D) = dim(D′) = 2;
(c) dim(D) ≥ 3 and dim(D′) ≥ 3.

Proof. If D and D′ satisfy one of the conditions, then Zar(D)cons ≃ Zar(D′)cons
by, respectively, Proposition 6.5, Proposition 6.10 and Proposition 6.7.

Suppose now that Zar(D)cons ≃ Zar(D′)cons.
If dim(D) = 1, then Zar(D) is �nite, and thus so must be Zar(D′); hence,

dim(D′) = 1, and |Max(D)| = |Max(D′)| by Proposition 6.5.
Suppose dim(D), dim(D′) ≥ 2. By Corollary 6.4 and Lemma 6.8, Zar(D)cons

has isolated points if and only if dim(D) = 2; therefore, dim(D) = 2 if and
only if dim(D′) = 2, and dim(D) ≥ 3 if and only if dim(D′) ≥ 3. The claim is
proved. �

7. When D is a �eld
In this sectionwe analyze the isolated points Zariski spaceZar(L|D)conswhen

D = K is a �eld. Note that, if L is algebraic over K, then Zar(L|K) is just a point
(L itself); thus, the only interesting case is when trdeg(L∕K) ≥ 1.

We start by connecting the isolated points ofZar(L|D)cons andofZar(L′|D)cons,
where L′ ⊆ L is an algebraic extension.

Proposition 7.1. Let V be a valuation domain, and L′ ⊆ L be an algebraic ex-
tension such thatV ⊆ L′. Let � ∶ Zar(L|V)⟶ Zar(L′|V) be the restrictionmap,
and let X ⊆ Zar(L|V) be a subset such that �−1(�(X)) = X. Then, the following
hold.

(a) IfW is isolated inXcons, then �(W) is isolated in �(X)cons.
(b) If �(X) is perfect and |�(X)| > 1, thenX is perfect.

In particular, the previous statements apply toX = Zar(L|V) andX = ℰ(L|V).

Proof. (a) LetW be an isolated point of Xcons, and letW′ ∶=W ∩ L′ = �(W).
Suppose �rst that L is �nite and normal over L′. Let G be the group of L′-

automorphisms of L: then, every � ∈ G is continuous when seen as amap from
Zar(L|V)cons to itself. Moreover, �(�(Z)) = �(Z) for every Z ∈ Zar(L|V), and
thus � restricts to a self-homeomorphism of X.

Since G acts transitively on �−1(W′) (see e.g. [12, Corollary 20.2]) andW ∈
�−1(W′) is isolated, all points of �−1(W′) are isolated in X; hence, �−1(W′) is
open in Xcons. Since � ∶ Zar(L|V)⟶ Zar(L′|V) is a closed map (with respect
to the constructible topology), it is also closed when seen as amapX ⟶ �(X);
therefore, �(X ⧵ �−1(W′)) = �(X) ⧵ {W′} is closed in �(X), with respect to the
constructible topology, and thusW′ is an isolated point of �(X)cons, as claimed.

Suppose now that L is �nite over L′, and let F be the normal closure of L′.
Let �0 ∶ Zar(F|V) ⟶ Zar(L|V) be the restriction map. Since W is isolated



ISOLATED POINTS OF THE ZARISKI SPACE 815

in X, the set �−10 (W) is open in �−10 (X)cons; moreover, �−10 (W) is �nite since
[F ∶ L] < ∞. Therefore, �−10 (W) is a discrete subspace of �−10 (X)cons, and in
particular each Z ∈ �−10 (W) is isolated. Applying the previous part of the proof
to the extension L′ ⊆ F and to any such Z, we obtain that Z ∩ L′ = W ∩ L′ =
�(W) is isolated, as claimed.

Suppose now that L′ ⊆ L is arbitrary. Since W is isolated in X, there are
x1,… , xn, y1,… , ym ∈ L such that {W} = ℬ(x1,… , xn)∩ℬ(y1)c∩⋯∩ℬ(ym)c∩X.
Let F ∶= L′(x1,… , xn, y1,… , ym): then,W ∩ F is isolated in {Z ∩ F ∣ Z ∈ X}.
Since [F ∶ L′] <∞, we can apply the previous part of the proof, obtaining that
W ∩ F ∩ L′ =W ∩ L′ = �(W) is isolated in �(X)cons, as claimed.

(b) Suppose thatX is not perfect: then, there is aW ∈ X that is isolated. By
the previous part of the proof, it would follow thatW∩L′ is isolated in �(X)cons.
Since �(X) has more than one point, this is impossible, and so X is perfect.

The “in particular” statement follows from the fact that Zar(L|V) and ℰ(L|V)
satisfy the hypothesis on X. �

Corollary 7.2. Let V be a valuation domain and L′ ⊆ L be an algebraic exten-
sion; suppose that V ⊆ L′ and that L′ is transcendental over the quotient �eld of
V. If Zar(L′|V)cons (respectively, ℰ(L′|V)cons) is perfect, then Zar(L|V)cons (resp.,
ℰ(L|V)cons) is perfect.

Proof. It is enough to apply Proposition 7.1(b) toX = Zar(L|V) orX = ℰ(L|V),
using the hypothesis that L′ is transcendental over the quotient �eld of V to
guarantee that |Zar(L′|V)| > 1 and |ℰ(L′|V)| > 1. �

The following result completely settles the problem of �nding the isolated
points when trdeg(L∕K) ≥ 2, generalizing [3, Theorem 4.45] and solving the
authors’ Conjecture A (in an even more general formulation). Note that the
�rst case in the proof is exactly [3, Theorem 4.45], but we give a new proof of it
using Theorem 6.3.

Theorem 7.3. Let K ⊆ L be a �eld extension with trdeg(L∕K) ≥ 2. Then,
Zar(L|K)cons is perfect.

Proof. Suppose �rst that L = K(x1,… , xn) is a �nitely generated purely tran-
scendental extension of K, with transcendence basis x1,… , xn. Suppose there
exists an isolated pointW of Zar(L|K)cons. By Proposition 4.1,W ≠ L.

For each i, at least one of xi and x−1i belongs to W; let it be ti. Then, W ∈
Zar(K[t1,… , tn]), and soW is isolated in Zar(K[t1,… , tn])cons. Let P be the cen-
ter ofW on K[t1,… , tn]; since K[t1,… , tn] is Noetherian, by Theorem 6.3 P has
height 1 and V(P) is �nite.

Since K[t1,… , tn] is isomorphic to a polynomial ring, every maximal ideal
of K[t1,… , tn] has height n > 1 [16, Section 3.2, Exercise 3], and thus P is not
maximal. However,K[t1,… , tn] is an Hilbert ring, and thus every non-maximal
prime ideal is the intersection of themaximal ideals containing it [16, Theorem
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147]; in particular, this happens for P, and thus V(P) must be in�nite. This is
a contradiction, and so Zar(L|K)cons is perfect.

Suppose now that L has �nite transcendence degree overK, let x1,… , xn be a
transcendence basis of L and let L′ ∶= K(x1,… , xn). By the previous part of the
proof, Zar(L′|K)cons is perfect; since L′ ⊆ L is algebraic, by Corollary 7.2 also
Zar(L|K)cons is perfect.

Take now any extension L of K, and suppose that W is an isolated point
of Zar(L|K)cons. Then, there are x1,… , xn, y1,… , ym ∈ L such that {W} =
ℬ(x1,… , xn) ∩ ℬ(y1)c ∩ ⋯ ∩ ℬ(ym)c. Take two elements a, b ∈ L that are
algebraically independent over K, and let L′ ∶= K(a, b, x1,… , xn, y1,… , ym):
then, 2 ≤ trdeg(L′∕K) < ∞. Set V ∶= W ∩ L′: then, {V} = ℬL′(x1,… , xn) ∩
ℬL′(y1)c ∩⋯ ∩ ℬL′(ym)c, and thus V is isolated in Zar(L′|V)cons. However, by
the previous part of the proof, Zar(L′|V)cons is perfect, a contradiction. Hence,
Zar(L|K)cons is perfect. �

When the transcendence degree of L over K is 1, the picture is very di�er-
ent, because it may even happen that all elements of Zar(L|K)cons (except L
itself) are isolated. Compare the next results with [26, Corollary 5.5(a)] and
[28, Proposition 4.2].

Proposition 7.4. Let K be a �eld. Then all points of Zar(K(X)|K), except K(X),
are isolated with respect to the constructible topology.

Proof. The points of Zar(K(X)|K) are K(X), K[X−1](X−1), and the rings
K[X](f(X)), wheref(X) is an irreducible polynomial ofK[X]. The �rst one is not
isolated by Proposition 4.1; on the other hand, {K[X](f(X))} = ℬ(f(X)−1)c and
{K[X−1](X−1)} = ℬ(X)c, and thus these domains are isolated, as claimed. �

Lemma 7.5. Let D be an integral domain with quotient �eld K, and let L′ ⊆ L
be two extensions of K. Let V ∈ Zar(L′|D). If V is isolated in Zar(L′|D)cons and
ℰ(L|V) is �nite, then everyW ∈ ℰ(L|V) is isolated in Zar(L|D)cons.

Proof. Let � ∶ Zar(L|D)⟶ Zar(L′|D) be the restrictionmap. Then, ℰ(L|V) =
�−1(V) is open in Zar(L′|D)cons since V is isolated. Moreover, ℰ(L|V) is �nite
by hypothesis, and, since the constructible topology is Hausdor�, all its points
are isolated in Zar(L|D)cons. �

Proposition 7.6. LetK be a�eld and letL be an extension ofKwith trdeg(L∕K) =
1. Let V ∈ Zar(L|K), V ≠ L. Then the following are equivalent:

(i) V is isolated in Zar(L|K)cons;
(ii) there exists a �nitely generated extension L′ of K such that L′ ⊆ L and

ℰ(L|V ∩ L′) = {V};
(iii) there exists a �nitely generated extension L′ of K such that L′ ⊆ L and

ℰ(L|V ∩ L′) is �nite.

Proof. (i)⟹ (ii) Since V is isolated, we have
{V} = Ω ∶= ℬ(x1,… , xn) ∩ℬ(y1)c ∩⋯ ∩ℬ(ym)c
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for some x1,… , xn, y1,… , ym ∈ L. Let L′ = K(x1,… , xn, y1,… , ym). Then every
extension of V ∩ L′ to L belongs toΩ, and thus it is equal to V. Hence, L′ is the
required �eld.

(ii)⟹ (iii) is obvious.
(iii)⟹ (i) Since ℰ(L|V∩L′) is �nite, L′ ⊆ Lmust be algebraic and soK ⊆ L′

is transcendental; take any X ∈ L′ that is transcendental over K. Since K ⊆ L′
is �nitely generated, K(X) ⊆ L′ must be a �nite extension.

Since V ≠ L, we have V ∩ K(X) ≠ K(X); by Proposition 7.4, V ∩ K(X)
is isolated in Zar(K(X)|K). Moreover, since K(X) ⊆ L′ is a �nite extension,
ℰ(L′|V ∩ K(X)) is �nite; by Lemma 7.5, all points of ℰ(L′|V ∩ K(X)) are iso-
lated in Zar(L′|K)cons, and in particular this happens for V ∩ L′. We can now
apply Lemma 7.5 to V ∩ L′ and L, obtaining that all elements of ℰ(L|V ∩ L′) (in
particular, V) are isolated in Zar(L|K)cons. �

Proposition 7.7. LetK be a�eld and letL be an extension ofKwith trdeg(L∕K) =
1. LetX ∶= Zar(L|K) ⧵ {L}. Then, the following are equivalent:

(i) all points ofX are isolated in Zar(L|K)cons;
(ii) for every X ∈ L, transcendental over K, the set ℰ(L|V) is �nite for every

V ∈ Zar(K(X)|K);
(iii) there is anX ∈ L, transcendental overK, such that the set ℰ(L|V) is �nite

for every V ∈ Zar(K(X)|K).

Proof. (i)⟹ (ii) Take any X ∈ L that is transcendental over K, and let V ∈
Zar(K(X)|K). The space ℰ(L|V) is closed in Zar(L|V)cons, and thus it is com-
pact. Since all its points are isolated, it is also discrete; hence, ℰ(L|V) is �nite.

(ii)⟹ (iii) is obvious.
(iii)⟹ (i) Apply Proposition 7.6, (iii)⟹ (i) with L′ = K(X) to each V ∈

X. �

Corollary 7.8. Let K be a �eld and let L be a �nitely generated extension of K
such that trdeg(L∕K) = 1. Then, all points of Zar(L|K) ⧵ {L} are isolated in
Zar(L|K)cons.

Proof. It is enough to apply Proposition 7.7. �

Remark 7.9. Let K ⊆ L be a transcendental extension of degree 1, and let
V ∈ Zar(L|K). Let X ∈ L be transcendental over K. By Proposition 7.6, if
ℰ(L|V ∩ K(X)) is �nite, then V is isolated in Zar(L|K)cons; however, unlike in
Proposition 7.7, the converse does not hold, i.e., ℰ(L|V ∩K(X))may be in�nite
even if V is isolated.

For example, let W = K[X](X) (or more generally, we can take any W ∈
Zar(K(X)|K),W ≠ K(X)). SinceW is a discrete valuation ring, using [17] (see
also [13, Section 3]), it is possible to construct a chain K(X) ⊂ F0 ⊂ F1 ⊂⋯ of
extensions of K(X) such that:

∙ the extensions K(X) ⊂ F0 and Fi ⊂ Fi+1 are �nite, for each i > 0;
∙ W has two extensions to F0, sayW1 andW2;
∙ W1 has only one extension to Fi, for each i > 0;
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∙ ifW′ is an extension ofW2 to Fi, thenW′ has more than one extension
to Fi+1.

Let L ∶=
⋃

i≥0 Fi. Then, W1 has a unique extension V to L, while W2 has
in�nitely many extensions; in particular, the set X of extensions of W to L is
in�nite. Let y ∈W1⧵W2: then,ℬ(y)∩X = {V}, and thusℬ(y)∩ℬ(X−1)c = {V}.
Hence, V is isolated in Zar(L|K)cons, despite V ∩ K(X) = W having in�nitely
many extensions to L.

The reason why the proof of Proposition 7.7 fails in this context is that we
are not requiring the other extensions ofW to L to be isolated.

8. Extensions of valuations
In this section, we extend the results of the previous section from the case

where D = K is a �eld to the case where D = V is a valuation domain. In
particular, we want to study the set ℰ(L|V) of extensions of V to L.

The most important case is when L = K(X) is the �eld of rational functions.
If V is a valuation domain with quotient �eld K and s ∈ K, we set

Vs ∶= {� ∈ K(X) ∣ �(s) ∈ V}.

Then, Vs is an extension of V to K(X), and it is possible to analyze quite thor-
oughly its algebraic properties (see for example [22, Proposition 2.2] for a de-
scription when V has dimension 1).

The following lemma is a partial generalization of [22, Theorem3.2], ofwhich
we follow the proof.

Lemma 8.1. Let V be a valuation domain with quotient �eld K, and let U be
an extension of V to the algebraic closure K. Let s, t ∈ K. Then, Us ∩ K(X) =
Ut ∩ K(X) if and only if s and t are conjugated over K.

Proof. If s, t are conjugated, there is a K-automorphism � of K sending s to t.
Setting �̃(

∑
i aiX

i) ∶=
∑

i �(ai)X
i, we can extend � to a K(X)-automorphism

�̃ of K(X) such that �̃(�)(t) = �(�(s)) for every � ∈ K(X); in particular, if
� ∈ K(X) then �̃(�) = � and thus �(s) ∈ V if and only if �(t) ∈ V, i.e.,
� ∈ Us ∩K(X) if and only if � ∈ Ut ∩K(X). Therefore,Us ∩K(X) = Ut ∩K(X).

Conversely, suppose that s and t are not conjugate, and let p(X) be the min-
imal polynomial of s over K: then, p(t) ≠ 0, and thus there is a c ∈ K, c ≠ 0,
such that v(c) > u(p(t)) (where v and u are, respectively, the valuations with
respect to V and U and u|K = v). Then, q(X) ∶= p(X)

c
∈ K(X) belongs to Us

(since q(s) = 0 ∈ V) but not to Ut (since u(q(t)) = u(p(t)) − v(c) < 0). Hence,
Us ∩ K(X) ≠ Ut ∩ K(X), as claimed. �

Theorem 8.2. If V is a valuation domain that is not a �eld, then ℰ(K(X)|V)cons
is perfect.

Proof. Suppose �rst that K is algebraically closed. By [23, Theorem 7.2], for
all extensions W of V to K(X) there is a sequence E = {s�}�∈Λ (where Λ is a
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well-ordered set without maximum) such that

W = VE = {� ∈ K(X) ∣ �(s�) ∈ V for all large �}

and W ≠ Vs� for every �. In particular, the elements �(s�) are either eventu-
ally in V or eventually out of V (by [23, Proposition 3.2]; see also the proof of
Theorem 3.4 therein). Take  ∈ K(X): then, if W ∈ ℬ( ) then it must be
 (s�) ∈ V eventually, and thus ℬ( ) contains Vs� for all large �; on the other
hand, ifW ∈ ℬ( )c then  (s�) ∉ V eventually, and thusℬ( )c containsVs� for
all large �.

Now let

Ω ∶= ℬ( 1,… ,  n) ∩ℬ(�1)c ∩⋯ ∩ℬ(�m)c ∩ ℰ(K(X)|V)

be a basic open set of ℰ(K(X)|V)cons containingW. For every i, there is an index
Ni such that  i(s�) ∈ V for all � ≥ Ni; likewise, for every j there is aMj such
that �j(s�) ∉ V for all � ≥ Mj. Therefore, for every

� ≥ max{N1,… , Nn,M1,… ,Mm},

we have Vs� ∈ Ω. Hence W belongs to the closure of {Vs� }�∈Λ ⊆ ℰ(K(X)|V),
with respect to the constructible topology. It follows thatW is not isolated in
ℰ(K(X)|V)cons and, sinceW was arbitrary, ℰ(K(X)|V)cons is perfect.

Suppose now that K is any �eld. Let W ∈ ℰ(K(X)|V), and suppose that
W is isolated in ℰ(K(X)|V)cons. Let � ∶ ℰ(K(X)|V) ⟶ ℰ(K(X)|V) be the
restriction map. SinceW is isolated and � is continuous, �−1(W) is open. Let
W′ ∈ �−1(W) and let U ∶=W′ ∩ K: then, U is an extension of V to K.

By the previous part of the proof, for every open neighborhood Ω of W′

there is an s ∈ K such that Us ≠ W′ and Us ∈ Ω; since �−1(W) is open, it
follows that for every such Ω there is a Us ∈ �−1(W) with these properties.
Therefore, the set ∆ ∶= {Us ∈ �−1(W) ∣ s ∈ K} is dense in �−1(W). Since
Us ∩ K(X) = Ut ∩ K(X) = W for every Us, Ut ∈ ∆, by Lemma 8.1 ∆ is �nite;
since ℰ(K(X)|V)cons is Hausdor�, it follows that ∆ = �−1(W), and in particular
�−1(W) is �nite. Hence, all its points are isolated. However, this contradicts the
fact that ℰ(K(X)|V)cons is perfect; thus, also ℰ(K(X)|V)consmust be perfect. �

The theoremabove allows to determine the isolated points ofZar(K(X)|D)cons
for every integral domain D.

Proposition 8.3. Let D be an integral domain that is not a �eld, and let J be the
intersection of the nonzero prime ideals of D.

(i) If J = (0), then Zar(K(X)|D)cons is perfect.
(ii) If J ≠ (0), then the only isolated points of Zar(K(X)|D)cons areK[X](f(X))

(where f(X) is an irreducible polynomial of K[X]) and K[X](X−1).

Proof. Let W ∈ Zar(K(X)|D). If W ∩ K ≠ K, then ℰ(K(X)|W ∩ K) is per-
fect (when endowed with the constructible topology) by Theorem 8.2. SinceW
belongs to this set, it is not isolated in Zar(K(X)|D)cons.
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Suppose thatW ∩ K = K. IfW = K(X), thenW is not isolated by Proposi-
tion 4.1, since K(X) is not algebraic over K. Thus letW ≠ K(X).

Suppose that J = (0), and suppose that W is isolated in Zar(K(X)|D)cons.
Since K ⊆ W, we havemW ∩ D = (0); by Lemma 4.2, the quotient map ofW
onto its residue �eld induces a homeomorphism between the spaces∆ ∶= {Z ∈
Zar(K(X)|D) ∣ Z ⊆ W} and Zar(W∕mW|D), whereW is sent toW∕mW . Since
W is isolated in Zar(K(X)|D)cons, it is also isolated in ∆cons, and thus W∕mW
must be an isolated point of Zar(W∕mW|D)cons. By Proposition 4.1, D must be
aGoldman domain, against the hypothesis J = (0). Therefore,W is not isolated
and Zar(K(X)|D)cons is perfect.

Suppose now that J ≠ (0), and let j ∈ J, j ≠ 0. Then, D[j−1] = K, and thus
ℬ(j−1) = ℰ(K(X)|K) = Zar(K(X)|K) is a clopen subset of Zar(K(X)|D)cons;
in particular,W ∈ ℰ(K(X)|K) is isolated in Zar(K(X)|D)cons if and only if it is
isolated in Zar(K(X)|K)cons. The claim now follows from Proposition 7.4. �

To conclude the paper, we extend Theorem 7.3 to valuation domains.

Theorem 8.4. Let V be a valuation domain with quotient �eld K, and let L be a
�eld extension ofK such that trdeg(L∕K) ≥ 2. Then,ℰ(L|V)cons andZar(L|V)cons
are perfect.

Proof. We �rst show that ℰ(L|V)cons is perfect: suppose that is not, and letW
be an isolated point.

Suppose that L = K(x, z2,…) is purely transcendental overK, where x, z2,… ,
is a transcendence basis. Take anm ∈mV ⊆mW : then, at least one ofmx and
x−1 belongs tomW . Let z1 be that element. Then, z1, z2,… is also a transcen-
dence basis of L.

Let L′ ∶= K(z1, z3,… , ) be the extension of K obtained adjoining all the ele-
ment of this basis except z2. Then, z−11 ∈ L′ ⧵W, and thusW ∩ L′ ≠ L′; since,
by construction, L ≃ L′(X), by Theorem 8.2 ℰ(L|W ∩ L′)cons is perfect. Since
ℰ(L|W∩L′) ⊆ ℰ(L|W), all the elements ofℰ(L|W∩L′) (in particular,W) are not
isolated in ℰ(L|V)cons. This is a contradiction, and thus ℰ(L|V)cons is perfect.

Suppose now that L is arbitrary: then, we can �nd a purely transcendental
extension L′ ofK such that L′ ⊆ L is algebraic. By the previous part of the proof,
ℰ(L′|V)cons is perfect; by Corollary 7.2, also ℰ(L|V)cons is perfect. Therefore,
ℰ(L|V)cons is always perfect.

Finally, Zar(L|V) is the union of ℰ(L|V0), as V0 ranges among the valuation
overrings of V; since each of these is perfect with respect to the constructible
topology (by the previous part of the proof), then also Zar(L|V)cons is perfect,
as claimed. �

Corollary 8.5. Let V be a valuation domain with quotient �eld K, suppose V ≠
K, and let L be a transcendental �eld extension of K. Then, ℰ(L|V)cons is perfect.

Proof. If trdeg(L∕K) ≥ 2 the claim follows from Theorem 8.4. If trdeg(L∕K) =
1, letX ∈ L be transcendental overK. By Theorem8.2,ℰ(K(X)|V)cons is perfect;
by Corollary 7.2, also ℰ(L|V)cons is perfect. �
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Corollary 8.6. LetD be an integral domain, and let L be a transcendental exten-
sion of the quotient �eld K of D. If trdeg(L∕K) ≥ 2, then Zar(L|D)cons is perfect.

Proof. AnyW ∈ Zar(L|D) belongs to ℰ(L|V) for some V ∈ Zar(D). By Theo-
rem8.4, allℰ(L|V)cons are perfect and thus noW is isolated. Hence,Zar(L|D)cons
is perfect. �
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