New York Journal of Mathematics

New York J. Math. 28 (2022) 800-823.

Isolated points of the Zariski space

Dario Spirito

ABSTRACT. Let *D* be an integral domain and *L* be a field containing *D*. We study the isolated points of the Zariski space Zar(L|D), with respect to the constructible topology. In particular, we completely characterize when *L* (as a point) is isolated and, under the hypothesis that *L* is the quotient field of *D*, when a valuation domain of dimension 1 is isolated; as a consequence, we find all isolated points of Zar(D) when *D* is a Noetherian domain and, under the hypothesis that *D* and *D'* are Noetherian, local and countable, we characterize when Zar(D) and Zar(D') are homeomorphic. We also show that if *V* is a valuation domain and *L* is transcendental over *V* then the set of extensions of *V* to *L* has no isolated points.

CONTENTS

1.	Introduction	800
2.	Notation and preliminaries	802
3.	General results	804
4.	Dimension 0	806
5.	Dimension 1	808
6.	The Noetherian case	809
7.	When <i>D</i> is a field	814
8.	Extensions of valuations	818
Acknowledgments		821
References		821

1. Introduction

Let *D* be an integral domain with quotient field *K*, and let *L* be a field containing *K*. The Zariski space of *L* over *D*, denoted by Zar(L|D), is the set of all valuation rings containing *D* and having quotient field *L*. O. Zariski introduced this set (under the name abstract Riemann surface) and endowed it with a natural topology (later called the Zariski topology) during its study of resolution of singularities; in particular, he used the compactness of the Zariski space to reduce the problem of gluing infinitely many projective models to the gluing of only

Received February 2, 2021.

²⁰¹⁰ Mathematics Subject Classification. 13F30; 13A15; 13A18; 54D99.

Key words and phrases. Zariski space; constructible topology; Cantor space; isolated points; perfect spaces; extensions of valuations.

finitely many of them [30, 31]. Later on, it was showed that Zar(L|D) enjoys even deeper topological properties: in particular, it is a *spectral space*, meaning that there is always a ring *R* such that Spec(R) (endowed with the Zariski topology) is homeomorphic to Zar(L|D), and an example of such an *R* can be found using the Kronecker function ring construction [5, 6, 8]. Beyond being a very natural example of a spectral space "occurring in nature", the Zariski topology can also be used, for example, to study representation of integral domains as intersection of overrings [19, 20, 21], or in real and rigid algebraic geometry [15, 24].

As a spectral space, two other topologies can be constructed on Zar(L|D) starting from the Zariski topology: the *inverse* and the *constructible* (or *patch*) topology. Both of them give rise to spectral spaces (in particular, they are compact); furthermore, the constructible topology gains the property of being Hausdorff, and plays an important role in the topological characterization of spectral spaces (see for example Hochster's article [14]). The constructible topology can also be studied through ultrafilters [7], and this point of view allows to give many examples of spectral spaces, for example by finding them inside other spectral spaces (see [21, Example 2.2(1)] for some very general constructions, [27] for examples in the overring case, and [10, 9] for examples in the setting of semistar operations).

In this paper, we want to study the points of $\operatorname{Zar}(L|D)$ that are isolated, with respect to the constructible topology. Our starting point is a new interpretation of a result about the compactness of spaces in the form $\operatorname{Zar}(K|D) \setminus \{V\}$ [26, Theorem 3.6], where *K* is the quotient field of *D*: in particular, we show that if *V* is isolated in $\operatorname{Zar}(L|D)$, where *L* is a field containing *V*, then *V* is the integral closure of $D[x_1, \dots, x_n]_M$ for some $x_1, \dots, x_n \in L$, where *M* is a maximal ideal of $D[x_1, \dots, x_n]$ (Theorem 3.4). Through this result, we characterize when *L* is an isolated point of $\operatorname{Zar}(L|D)^{\operatorname{cons}}$ (i.e., $\operatorname{Zar}(L|D)$ endowed with the constructible topology; Proposition 4.1) and, under the hypothesis that L = K is the quotient field of *D*, when the one-dimensional valuation overrings are isolated (Theorem 5.2).

In Section 6, we study the isolated points of the constructible topology when D is a Noetherian domain and L = K is its quotient field. Theorem 6.3 gives a complete characterization: $V \in \text{Zar}(K|D) = \text{Zar}(D)$ is isolated if and only if the center P of V on D has height at most 1 and P is contained in only finitely many prime ideals; in particular, this cannot happen if D is local and of dimension at least 3. In the countable case, we also give a complete characterization of when $\text{Zar}(D)^{\text{cons}} \simeq \text{Zar}(D')^{\text{cons}}$ under the hypothesis that D and D' are Noetherian and local (Theorem 6.11).

The last two sections of the paper explore the case of extension of valuations. Section 7 studies the case where *D* itself is a field: in particular, we show that if the transcendence degree of *L* over *D* is at least 2 then $Zar(L|D)^{cons}$ has no isolated points, improving [3, Theorem 4.45]. In Section 8, we show that if *V* is a valuation domain that is not a field and K(X) is the field of rational functions

in one indeterminate, then the set of extensions of *V* to K(X) has no isolated points (Theorem 8.2), and as a consequence we further extend [3, Theorem 4.45] to $\text{Zar}(L|D)^{\text{cons}}$ when *D* is an arbitrary integral domain (Theorem 7.3 and Corollary 8.6).

2. Notation and preliminaries

Throughout the paper, all rings will be commutative, unitary and will have no zero-divisors (that is, they are integral domains). We usually denote by Dsuch a domain and by K its quotient field; we use \overline{D} to denote the integral closure of D in K.

2.1. Spectral spaces. A topological space *X* is *spectral* if it is homeomorphic to the prime spectrum of a ring, endowed with the Zariski topology; spectral spaces can also be characterized in a purely topological way (see [14] and [4]). Among their properties, spectral spaces are always compact and have a basis of open and compact sets. If $\Delta \subseteq X$, we denote by $Cl(\Delta)$ the closure of Δ . The topology of *X* induces an order such that $x \leq y$ if and only if $y \in Cl(x)$. If $Y \subseteq X$, the *closure under generization* of *Y* if the set $Y^{gen} := \{x \in X \mid x \leq y \text{ for some } y \in Y\}$, where \leq is the order induced by the topology, and *Y* is *closed by generizations* if $Y = Y^{gen}$.

If X is a spectral space, the *inverse topology* on X is the coarsest topology such that the open and compact subsets of X are closed. We denote by X^{inv} the space X, endowed with the inverse topology. A subset $Y \subseteq X$ is closed in the inverse topology if and only if it is compact in the starting topology and closed by generizations; in particular, if Y is compact in the starting topology then its closure in the inverse topology is Y^{gen} .

If X is a spectral space, the *constructible topology* (or *patch topology*) on X is the coarsest topology such that the open and compact subsets of X are both open and closed. We denote by X^{cons} the space X, endowed with the constructible topology; if $Y \subseteq X$, we denote by Y^{cons} the subset Y considered with respect to the constructible topology, and by $\text{Cl}^{\text{cons}}(Y)$ the closure of Y in X^{cons} . If Y = $\text{Cl}^{\text{cons}}(Y)$, then Y is compact in the starting topology; conversely, if Y is closed in the starting topology or in the inverse topology, then it is closed also in the constructible topology.

Both X^{inv} and X^{cons} are spectral spaces, and in particular compact spaces; moreover, X^{cons} is Hausdorff and zero-dimensional.

A map $f : X \longrightarrow Y$ of spectral spaces is a *spectral map* if $f^{-1}(\Omega)$ is open and compact for every open and compact subset Ω of Y; in particular, a spectral map is continuous. If f is both spectral and closed, then it is also proper, and in particular $f^{-1}(\Omega)$ is compact for every compact subset Ω of Y [4, 5.3.7(i)]. If $f : X \longrightarrow Y$ is a spectral map, then it is spectral also when X and Y are both endowed with the inverse topology, and when they are both endowed with the constructible topology [4, Theorem 1.3.21]. In the latter case, f is also closed, since it is a continuous map between Hausdorff compact spaces.

2.2. Isolated points. If *X* is a topological space, a point $p \in X$ is *isolated* in *X* if $\{p\}$ is an open set. If *X* has no isolated points, then *X* is said to be *perfect*. The set of points that are not isolated in *X* is a closed set, called the *derived set* of *X*.

If $\Omega \subseteq X$ and $p \in \Omega$ is isolated in *X*, then *p* is also isolated in Ω ; if Ω is open, then *p* is isolated in *X* if and only if *p* is isolated in Ω .

2.3. Valuation domains. A *valuation domain* is an integral domain *V* such that, for every $x \neq 0$ in the quotient field of *V*, at least one of *x* and x^{-1} is in *V*. Any valuation domain is local; we denote the maximal ideal of *V* by \mathfrak{m}_V . If *L* is a field containing the quotient field *K* of *V*, an *extension* of *V* to *L* is a valuation domain *W* having quotient field *L* such that $W \cap K = V$. We denote the set of extension of *V* to *L* by $\mathcal{E}(L|V)$; this set is always nonempty (see e.g. [12, Theorem 20.1]).

If *D* is an integral domain and *L* is a field containing *D*, the *Zariski space* (or *Zariski-Riemann space*) of *L* over *D*, denoted by Zar(L|D), is the set of all valuation domains containing *D* and having quotient field *L*. The Zariski space Zar(L|D) is always nonempty. When *L* is the quotient field of *D*, we denote Zar(L|D) simply by Zar(D), and we call its elements the *valuation overrings* of *D*.¹ If *D'* is the integral closure of *D* in *L*, then Zar(L|D) = Zar(L|D'); in particular, $Zar(D) = Zar(\overline{D})$. A valuation ring in Zar(L|D) is *minimal* if it is minimal with respect to containment.

The Zariski-Riemann space Zar(L|D) can be endowed with a natural topology, called the *Zariski topology*, which is the topology generated by the basic open sets

$$\mathcal{B}(x_1, \dots, x_n) := \{ V \in \operatorname{Zar}(L|D) \mid x_1, \dots, x_n \in V \},\$$

as $x_1, ..., x_n$ range among the elements of L; we use the notation $\mathcal{B}^L(x_1, ..., x_n)$ if we need to underline the field L. Under this topology, $\operatorname{Zar}(L|D)$ is a spectral space whose order is the opposite of the containment order [6, 5]; in particular, the minimal valuation rings in $\operatorname{Zar}(L|D)$ are maximal with respect to the order induced by the Zariski topology. As a spectral space, we can define the inverse and the constructible topology on $\operatorname{Zar}(L|D)$; a set $\Delta \subseteq \operatorname{Zar}(L|D)$ is closed with respect to the inverse topology if and only if it is compact with respect to the Zariski topology and $\Delta = \{W \in \operatorname{Zar}(L|D)| W \supseteq V \text{ for some } V \in \Delta\}$ [8, Remark 2.2 and Proposition 2.6].

Since $\mathcal{B}(z_1, ..., z_n) = \mathcal{B}(z_1) \cap \cdots \cap \mathcal{B}(z_n)$ for every $z_1, ..., z_n \in L$, a basis of the constructible topology of $\operatorname{Zar}(L|D)$ is the family of the sets in the form $\mathcal{B}(x_1, ..., x_n) \cap \mathcal{B}(y_1)^c \cap \cdots \cap \mathcal{B}(y_m)^c$, as $x_1, ..., x_n, y_1, ..., y_m$ range in *L*. In particular, *V* is isolated in $\operatorname{Zar}(L|D)^{\operatorname{cons}}$ if and only if

$$\{V\} = \mathcal{B}(x_1, \dots, x_n) \cap \mathcal{B}(y_1)^c \cap \dots \cap \mathcal{B}(y_m)^c =$$

= Zar(L|D[x_1, \dots, x_n]) \cap \mathcal{B}(y_1)^c \cap \dots \cap \mathcal{B}(y_m)^c

for some $x_1, \ldots, x_n, y_1, \ldots, y_m \in L$.

¹An *overring* of *D* is, more generally, a ring contained between *D* and its quotient field.

If $L' \subseteq L$ is a field extension and $D \subseteq L'$, we have a restriction map

$$\rho: \operatorname{Zar}(L|D) \longrightarrow \operatorname{Zar}(L'|D),$$
$$V \longmapsto V \cap L'.$$

The map ρ is surjective due to Chevalley's extension theorem (see e.g. [1, Theorem 5.21] or [12, Theorem 19.5]), and is a spectral map since $\rho^{-1}(\mathcal{B}^{L'}(x)) = \mathcal{B}^{L}(x)$. Therefore, it is spectral and closed with respect to the constructible topology (on both sets). In particular, if $V \in \operatorname{Zar}(L'|D)$, then $\mathcal{E}(L|V) = \rho^{-1}(V)$; hence, $\mathcal{E}(L|V)$ is always closed in $\operatorname{Zar}(L|D)^{\text{cons}}$, and in particular it is compact both in the Zariski and the constructible topology.

Since, by definition, the spectrum Spec(D) is a spectral space (when endowed with the Zariski topology), we can define the inverse and the constructible topology also on Spec(D). For every ideal *I* of *D*, set $\mathcal{V}(I) := \{P \in \text{Spec}(D) \mid I \subseteq P\}$ and $\mathcal{D}(I) := \text{Spec}(D) \setminus \mathcal{V}(I)$: then, a basis of $\text{Spec}(D)^{\text{cons}}$ is given by the intersections $\mathcal{D}(aD) \cap \mathcal{V}(I)$, as *a* ranges in *D* and *I* among the finitely generated ideals of *D* [4, Theorem 12.1.10(iv)].

For every field *L*, we can define a map

$$\gamma: \operatorname{Zar}(L|D) \longrightarrow \operatorname{Spec}(D),$$
$$V \longmapsto \mathfrak{m}_V \cap D,$$

which is called the *center map*. When $\operatorname{Zar}(L|D)$ and $\operatorname{Spec}(D)$ are endowed with the Zariski topology, γ is spectral (in particular, continuous; see [32, Chapter VI, §17, Lemma 1] or [5, Theorem 4.1]), surjective (this follows, for example, from [1, Theorem 5.21] or [12, Theorem 19.6]) and closed [5, Theorem 2.5], so in particular it is proper. Therefore, γ is a spectral map also when $\operatorname{Zar}(L|D)$ and $\operatorname{Spec}(D)$ are endowed with their respective constructible topologies.

3. General results

We begin by establishing some general criteria to determine which valuation domains are isolated in Zar(D).

Let *D* be an integral domain: a prime ideal is called *essential* if D_P is a valuation domain, and D_P is said to be an *essential valuation overring* of *D*. We shall need the following weaker notion: we say that a prime ideal *P* of *D* is *almost essential* if there is a unique valuation overring of *D* having center *P*; equivalently, *P* is almost essential if and only if the integral closure of D_P is a valuation domain *V*. When this happens, we say that *V* is an *almost essential valuation overring* of *D*.

In the context of almost essential primes and valuation overrings, isolated valuation rings correspond to isolated prime ideals.

Proposition 3.1. Let D be an integral domain, and let P be an almost essential prime ideal of D; let V be the valuation overring with center P. Then, V is isolated in $Zar(D)^{cons}$ if and only if P is isolated in $Spec(D)^{cons}$.

Proof. Let γ : Zar(D) \longrightarrow Spec(D) be the center map. If P is isolated in Spec(D)^{cons}, then {P} is open and thus, as γ is continuous, {V} = $\gamma^{-1}({P})$ is open in Zar(D)^{cons}, i.e., V is isolated. Conversely, if V is isolated then Zar(D) \{V} is closed, with respect to the constructible topology, and thus $\gamma(Zar(D) \setminus {V}) =$ Spec(D) \{P} is closed in Spec(D)^{cons}. Hence, {P} is open and P is isolated in Spec(D)^{cons}, as claimed.

Corollary 3.2. Let *D* be a Prüfer domain, and let *V* be a valuation overring of *D* with center *P*. Then, *V* is isolated in $Zar(D)^{cons}$ if and only if *P* is isolated in $Spec(D)^{cons}$. In particular, $Zar(D)^{cons}$ is perfect if and only if $Spec(D)^{cons}$ is perfect.

Proof. Since *D* is a Prüfer domain, every valuation overring is essential. The claim follows from Proposition 3.1. \Box

In general, almost essential valuation overrings are rare; for example, if *D* is Noetherian, no prime ideal of height 2 or more can be almost essential. For this reason, we need more general results; the first step is connecting isolated valuation rings with compactness.

Proposition 3.3. Let *X* be a spectral space, and let *x* be a maximal element with respect to the order induced by the topology. Then, the following are equivalent:

(i) x is isolated in X^{cons} ;

(ii) $X \setminus \{x\}$ is compact, with respect to the starting topology;

(iii) $X \setminus \{x\}$ is closed, with respect to the inverse topology.

Proof. Let $Y := X \setminus \{x\}$.

The equivalence of (ii) and (iii) follows from the fact that *Y* is closed by generizations.

If (i) holds, then $\{x\}$ is an open set in the constructible topology, and thus *Y* is closed; since X^{cons} is compact, it follows that *Y* is compact in the constructible topology and thus also in the Zariski topology (which is coarser). Thus, (ii) holds.

Conversely, if (iii) holds, then Y is closed also in the constructible topology; hence, $\{x\}$ is open and x is isolated. Thus, (i) holds.

In particular, the previous proposition applies when X = Zar(L|D) and V is a minimal element of Zar(L|D), with respect to containment. In this case, the fact that $\text{Zar}(L|D) \setminus \{V\}$ is compact has very strong consequences.

Theorem 3.4. Let D be an integral domain and let $V \in \text{Zar}(L|D)$. Then, the following are equivalent.

- (i) V is isolated in $\operatorname{Zar}(L|D)^{\operatorname{cons}}$;
- (ii) there are $x_1, ..., x_n \in L$ and a maximal ideal M of $D[x_1, ..., x_n]$ such that V is the integral closure of $D[x_1, ..., x_n]_M$ and M is isolated in

Spec $(D[x_1, \ldots, x_n])^{\text{cons}};$

DARIO SPIRITO

(iii) there are $x_1, ..., x_n \in L$ and a prime ideal P of $D[x_1, ..., x_n]$ such that V is the integral closure of $D[x_1, ..., x_n]_P$ and P is isolated in

$$\operatorname{Spec}(D[x_1, \dots, x_n])^{\operatorname{cons}}.$$

Proof. Let *X* be an indeterminate over *D*, and let R := D + XL[[X]]. By the reasoning in the proof of [28, Proposition 3.3] (or by Lemma 4.2 below) the Zariski space $Zar(L|D)^{cons}$ is homeomorphic to $(Zar(R) \setminus \{L((X))\})^{cons}$, which is open in $Zar(R)^{cons}$; in particular, a $W \in Zar(L|D)$ is isolated with respect to the constructible topology if and only if W + XL[[X]] is isolated in $Zar(R)^{cons}$. Therefore, without loss of generality we can suppose that *L* is the quotient field of *D*.

(i) \Longrightarrow (iii) Since *V* is isolated, there are $x_1, ..., x_k, y_1, ..., y_m \in L$ such that $\{V\} = \operatorname{Zar}(D[x_1, ..., x_k]) \cap \mathcal{B}(y_1)^c \cap \cdots \cap \mathcal{B}(y_m)^c$. In particular, *V* is a minimal valuation overring of $D[x_1, ..., x_k]$. By Proposition 3.3, $\operatorname{Zar}(D[x_1, ..., x_k]) \setminus \{V\}$ is compact, with respect to the Zariski topology; therefore, by [26, Theorem 3.6], there are $x_{k+1}, ..., x_n \in L$ such that *V* is the integral closure of

$$D[x_1, ..., x_k][x_{k+1}, ..., x_n]_M = D[x_1, ..., x_n]_M$$

for some maximal ideal *M* of $D[x_1, ..., x_n]$. Hence, *M* is almost essential in $D[x_1, ..., x_n]$, and by Proposition 3.1, *M* is isolated in $\text{Spec}(D[x_1, ..., x_n])^{\text{cons}}$. Thus (ii) holds.

(ii) \Longrightarrow (iii) is obvious.

(iii) \implies (i) The set $\operatorname{Zar}(D[x_1, \dots, x_n]) = \mathcal{B}(x_1, \dots, x_n)$ is open in the constructible topology, and thus *V* is isolated in $\operatorname{Zar}(D)^{\operatorname{cons}}$ if and only if it is isolated in $\operatorname{Zar}(D[x_1, \dots, x_n])^{\operatorname{cons}}$. By hypothesis, *P* is almost essential for $D[x_1, \dots, x_n]$, and thus by Proposition 3.1 the integral closure *V* of $D[x_1, \dots, x_n]_P$ is isolated, as claimed.

4. Dimension 0

In this section, we study when the field *L* is isolated in $Zar(L|D)^{cons}$. If *L* is the quotient field of *D*, then *L* is an essential valuation overring of *D*, and thus one can reason through Proposition 3.1; however, it is possible to use a more general approach.

A domain *D* with quotient field *K* is said to be a *Goldman domain* (or a *G*domain) if *K* is a finitely generated *D*-algebra, or equivalently if K = D[u] for some $u \in K$.

Proposition 4.1. Let *D* be an integral domain with quotient field *K*, and let *L* be a field extension of *K*. Then, *L* is isolated in $\text{Zar}(L|D)^{\text{cons}}$ if and only if *D* is a Goldman domain and $K \subseteq L$ is an algebraic extension.

Proof. Suppose first that the two conditions hold. Then, K = D[u] for some $u \in K$; since $K \subseteq L$ is algebraic, it follows that $\mathcal{B}(u) = \text{Zar}(L|K) = \{L\}$. Hence, *L* is isolated in $\text{Zar}(L|D)^{\text{cons}}$.

Conversely, suppose that *L* is isolated. By Theorem 3.4, there are $x_1, ..., x_n \in L$ such that *L* is the integral closure of $D[x_1, ..., x_n]_M$ for some maximal ideal

M; since *M* must have height 0, $F := D[x_1, ..., x_n]$ must be a field such that $F \subseteq L$ is algebraic.

Suppose that *F* is transcendental over *K*: then, we can take a transcendence basis $y_1, ..., y_k$ of *F* over *K*. By construction, *F* is algebraic over the quotient field of $D[y_1, ..., y_k]$; since *F* is a field, it is a Goldman domain, and thus by [16, Theorem 22] so should be $D[y_1, ..., y_k]$, against [16, Theorem 21]. Thus, *F* is algebraic over *K*. Applying again [16, Theorem 22] to the extension $D \subset F$, we see that *D* is a Goldman domain; furthermore, *L* is algebraic over *F* and thus over *K*. The claim is proved.

The previous result can be used to give some necessary conditions for V to be isolated. We premise a lemma.

Lemma 4.2. Let *D* be an integral domain, *L* be a field containing *D*, and let $W \in \text{Zar}(L|D)$. Let $\pi : W \longrightarrow W/\mathfrak{m}_W$ be the quotient map. Then, the map

$$\overline{\pi}: \{Z \in \operatorname{Zar}(L|D) \mid Z \subseteq W\} \longrightarrow \operatorname{Zar}(W/\mathfrak{m}_W|D/(\mathfrak{m}_W \cap D)),$$
$$Z \longmapsto \pi(Z)$$

is a homeomorphism, when both sets are endowed with either the Zariski or the constructible topology.

Proof. Let $Z \in \text{Zar}(L|D)$: then, ker $\pi = \mathfrak{m}_W \subseteq Z$ since Z and W are valuation domains with the same quotient field and $Z \subseteq W$. Hence, $\pi(Z) = Z/\mathfrak{m}_W$ is a valuation ring containing $D/(\mathfrak{m}_W \cap D)$; moreover, since W is a localization of $Z, W/\mathfrak{m}_W$ is a localization of Z/\mathfrak{m}_W and thus W/\mathfrak{m}_W is the quotient field of $\pi(Z)$. Hence, $\overline{\pi}$ is well-defined.

Moreover, if $Z' \in \operatorname{Zar}(W/\mathfrak{m}_W|D/(\mathfrak{m}_W \cap D))$, then $Z := \pi^{-1}(Z')$ is the pullback of Z' along the quotient $W \longrightarrow W/\mathfrak{m}_W$. Thus, Z is a valuation domain by [11, Proposition 1.1.8(1)], and its quotient field is L by [11, Lemma 1.1.4(10)]. Hence $\overline{\pi}$ is surjective. Furthermore, if $Z \in \operatorname{Zar}(L|D)$ and $Z \subseteq W$, then ker $\pi \subseteq Z$ and thus $\pi^{-1}(\pi(Z)) = Z$; hence, $\overline{\pi}$ is bijective.

Let now $x \in W/\mathfrak{m}_W$. Then, $Z \in \overline{\pi}^{-1}(\mathcal{B}(x))$ if and only if $x \in \pi(Z)$. Since ker $\pi \subseteq Z$, this happens if and only if Z contains all of $\pi^{-1}(x)$; thus, for every $y \in \pi^{-1}(x)$, we have $\overline{\pi}^{-1}(\mathcal{B}(x)) = \mathcal{B}(y)$, and likewise $\overline{\pi}(\mathcal{B}(x)) = \mathcal{B}(\pi(x))$ for every $x \in L$. Hence, $\overline{\pi}$ is continuous and open when both $\{Z \in \operatorname{Zar}(L|D) \mid Z \subseteq W\}$ and $\operatorname{Zar}(W/\mathfrak{m}_W|D/(\mathfrak{m}_W \cap D))$ are endowed with the Zariski topology, and thus it is a homeomorphism. It follows that it is also a homeomorphism when both sets are endowed with the constructible topology, as claimed. \Box

Proposition 4.3. Let $V \in \text{Zar}(D)$ be a valuation domain with center P on D. If V is isolated in $\text{Zar}(D)^{\text{cons}}$, then the field extension $D_P/PD_P \subseteq V/\mathfrak{m}_V$ is algebraic.

Proof. Consider $\Delta := \{W \in \operatorname{Zar}(D) \mid W \subseteq V\}$. Since $\mathfrak{m}_V \cap D = P$, by Lemma 4.2, the quotient map $V \longrightarrow V/\mathfrak{m}_V$ induces a homeomorphism between $\Delta^{\operatorname{cons}}$ and $\operatorname{Zar}(V/\mathfrak{m}_V|D/P)^{\operatorname{cons}}$, and thus V/\mathfrak{m} is isolated in $\operatorname{Zar}(V/\mathfrak{m}_V|D/P)^{\operatorname{cons}}$. Let F be the quotient field of D/P: then, $F = (D/P)_{P/P} = D_P/PD_P$. By Proposition 4.1, $F \subseteq V/\mathfrak{m}_V$ must be algebraic, as claimed.

Corollary 4.4. Let D be an integral domain, let γ : Zar(D) \longrightarrow Spec(D) be the center map and let $V \in \text{Zar}(D)$. If V is isolated in Zar(D)^{cons}, then V is minimal in $\gamma^{-1}(\gamma(V))$.

Proof. Let $P := \gamma(V)$. If *V* is not minimal, then V/\mathfrak{m}_V is not minimal in $\operatorname{Zar}(V/\mathfrak{m}_V|D_P/PD_P)$; hence, the extension $D_P/PD_P \subseteq V/\mathfrak{m}_V$ cannot be algebraic, against Proposition 4.3.

5. Dimension 1

We now analyze the case where the valuation ring *V* has (Krull) dimension 1; however, the methods we use only work when *V* is a valuation overring of *D*, i.e., only for the space Zar(D) = Zar(K|D), where *K* is the quotient field of *D*. Unlike in the proof of Theorem 3.4, we cannot use [28, Proposition 3.3] to extend these results to arbitrary Zariski spaces Zar(L|D), because that construction changes the dimension of the valuation domains involved.

The idea of this section is to study the maximal ideals of the finitely generated algebras $D[x_1, ..., x_n]$.

Proposition 5.1. Let (D, \mathfrak{m}) be an integrally closed local domain, and let $T \neq D$ be a finitely generated D-algebra contained in the quotient field K of D. If $\mathfrak{m}T \neq T$, then no maximal ideal of T above \mathfrak{m} has height 1.

Proof. Let $T := D[x_1, ..., x_n]$; we proceed by induction on *n*.

Suppose n = 1, and let $x := x_1$; then, $x \notin D$. If $x^{-1} \in D$, then $x \in \mathfrak{m}$, and thus $\mathfrak{m}T = T$, a contradiction. Hence, $x, x^{-1} \notin D$. By [25, Theorem 6], the ideal $\mathfrak{p} := \mathfrak{m}T$ is prime but not maximal; since every maximal ideal of T above \mathfrak{m} must contain \mathfrak{p} , it follows that no such maximal ideal can have height 1.

Suppose that the claim holds up to n - 1; let $A := D[x_1, ..., x_{n-1}]$, so that $T = A[x_n]$; without loss of generality, $A \neq D$ and $x_n \notin A$. Let M be a maximal ideal of T above \mathfrak{m} . If x_n is integral over A, then T is integral over A, and thus the height of M is equal to the height of $M \cap A$, which is not equal to 1 by induction.

Suppose that x_n is not integral over A. Let A' be the integral closure of A; then, $T \subseteq A'[x_n]$ is an integral extension, and since x_n is not integral over Ait follows that $A' \subsetneq A'[x_n]$. Take a maximal ideal M' of $A'[x_n]$ above M. Let $N := M' \cap A'$; then, N is a nonzero prime ideal of A', and thus $A'' := (A')_N$ is a local integrally closed domain with maximal ideal $N(A')_N \neq (0)$. Then, the ring $A''[x_n]$ is the quotient ring of $A'[x_n]$ with respect to the multiplicatively closed set $A'[x_n] \setminus N$, the set $M'' := M'A''[x_n]$ is a maximal ideal, and $N(A')_N \subseteq M''$. Applying the case n = 1 to A'' and $A''[x_n]$, it follows that the height of M' is not 1; since the height of M'' is the same of the height of M' and of M, it follows that the height of M is not 1, as claimed.

Theorem 5.2. Let D be an integral domain, and let $V \in \text{Zar}(D)$ be a valuation overring of dimension 1. Then, V is isolated in $\text{Zar}(D)^{\text{cons}}$ if and only if V is a localization of \overline{D} and its center on \overline{D} is isolated in $\text{Spec}(\overline{D})^{\text{cons}}$.

Proof. Since $\operatorname{Zar}(D) = \operatorname{Zar}(\overline{D})$, we can suppose without loss of generality that *D* is integrally closed.

If the two conditions hold, then *V* is isolated by Proposition 3.1.

Suppose that *V* is isolated in $Zar(D)^{cons}$. Let *P* be the center of *V* on *D*, and suppose that $V \neq D_P$. Since *V* is also isolated in $Zar(D_P)^{cons}$, by Theorem 3.4 there are $x_1, ..., x_n \in K \setminus D_P$ such that *V* is the integral closure of $D_P[x_1, ..., x_n]_M$, where *M* is a maximal ideal of $D_P[x_1, ..., x_n]$. However, $\mathfrak{m}_V \cap D_P[x_1, ..., x_n] =$ *M*, and thus $M \cap D_P = PD_P$, so that $PD_P \cdot D_P[x_1, ..., x_n] \neq D_P[x_1, ..., x_n]$; by Proposition 5.1, *M* cannot have height 1. However, the dimension of the integral closure of $D_P[x_1, ..., x_n]_M$ is exactly the height of *M*; hence, this contradicts the fact that *V* has dimension 1. Thus, $V = D_P$. The fact that *P* is isolated in $Zar(D)^{cons}$ now follows from Proposition 3.1.

Corollary 5.3. Let D be an integral domain, and let $V \in \text{Zar}(D)$ be a minimal valuation overring of D. If dim(V) = 1 and V is isolated in $\text{Zar}(D)^{\text{cons}}$, then the center of V on D has height 1.

Proof. The claim is a direct consequence of Theorem 5.2.

Theorem 5.2 does not work when V has dimension 2 or more, as the next example shows.

Example 5.4. Let *F* be a field, take two independent indeterminates *X* and *Y*, and consider D := F + XF(Y)[[X]], i.e., *D* is the ring of all power series with coefficients in F(Y) such that the 0-degree coefficient belongs to *F*. Then, *D* is a one-dimensional local integrally closed domain (its maximal ideal is XF(Y)[[X]]), and its valuation overrings are its quotient field, F(Y)[[X]] and the rings in the form W+XF(Y)[[X]], where *W* belongs to $Zar(F(Y)|F) \setminus \{F(Y)\}$, i.e., *W* is either $F[Y]_{(f)}$ for some irreducible polynomial $f \in F[Y]$ or $W = F[Y^{-1}]_{(Y^{-1})}$.

Each of these W + XF(Y)[[X]] is isolated in $Zar(D)^{cons}$, since each W is isolated in Zar(F(Y)|F) (this follows, for example, by applying Theorem 6.3 below to F[Y] or to $F[Y^{-1}]$). However, since every W + XF(Y)[[X]] has dimension 2, it can't be a localization of $D = \overline{D}$.

6. The Noetherian case

In this section, we want to characterize the isolated points of $Zar(D)^{cons}$ when D is a Noetherian domain. If D is integrally closed, this is a straightforward consequence of Theorem 5.2; to extend it to the non-integrally closed case, we need a few lemmas. (Note that the integral closure of a Noetherian domain is not necessarily Noetherian; see e.g. [18, Example 5, page 209].)

Lemma 6.1. Let *D* be an integral domain. Let *P* be a prime ideal of *D* and let $\Delta \subseteq \text{Spec}(D)$. If $P = \bigcap \{Q \mid Q \in \Delta\}$, then $P \in \text{Cl}^{\text{cons}}(\Delta)$.

Proof. Let $\Omega = \mathcal{D}(aD) \cap \mathcal{V}(J)$ be a basic subset of $\text{Spec}(D)^{\text{cons}}$ containing *P*, where $a \in D$ and *J* is a finitely generated ideal. We claim that $\Omega \cap \Delta \neq \emptyset$.

 \square

Indeed, $\Delta \subseteq \mathcal{V}(J)$ since $J \subseteq P$ and $P \subseteq Q$ for every $Q \in \Delta$. Moreover, since $a \notin P$, there must be a $\overline{Q} \in \Delta$ such that $a \notin \overline{Q}$; thus, $\overline{Q} \in \mathcal{D}(aD) \cap \mathcal{V}(J) \cap \Delta = \Omega \cap \Delta$. In particular, $\Omega \cap \Delta \neq \emptyset$ and $P \in Cl^{cons}(\Delta)$.

Lemma 6.2. Let $A \subseteq B$ be an integral extension, and let $P \in \text{Spec}(A)$, $Q \in \text{Spec}(B)$ be such that $Q \cap A = P$. If $\bigcap \{P' \in \text{Spec}(A) \mid P' \supseteq P\} = P$, then $\bigcap \{Q' \in \text{Spec}(B) \mid Q' \supseteq Q\} = Q$.

Proof. Let $I := \bigcap \{Q' \in \text{Spec}(B) \mid Q' \supseteq Q\}$, and suppose $I \neq Q$; then, $Q \subseteq I$ and $\mathcal{V}(I) = \mathcal{V}(Q) \setminus \{Q\}$. Consider the canonical map of spectra ϕ : Spec $(B) \longrightarrow$ Spec(A): then, ϕ is closed (with respect to the Zariski topology) [2, Chapter V, §2, Remark (2)], and thus $\phi(\mathcal{V}(I))$ is closed in Spec(A).

By the lying over and the going up theorems, every $P' \supseteq P$ belongs to $\phi(\mathcal{V}(I))$, while $P \notin \phi(\mathcal{V}(I))$; hence, $\phi(\mathcal{V}(I)) = \mathcal{V}(P) \setminus \{P\}$. However, the condition $\bigcap \{P' \in \text{Spec}(A) \mid P' \supseteq P\} = P$ shows that $\mathcal{V}(P) \setminus \{P\}$ is not closed (its closure is $\mathcal{V}(P)$), a contradiction. Hence, I = Q, as claimed.

Theorem 6.3. Let D be a Noetherian domain, and let $V \in \text{Zar}(D)$; let P be the center of V on D. Then, V is isolated in $\text{Zar}(D)^{\text{cons}}$ if and only if $h(P) \le 1$ and $\mathcal{V}(P)$ is finite.

Proof. Suppose first that V is isolated in $Zar(D)^{cons}$.

If dim(*V*) > 1, then *V* is not Noetherian. By Theorem 3.4, *V* is the integral closure of $D[x_1, ..., x_n]_M$, for some $x_1, ..., x_n \in V$ and some maximal ideal *M*. However, $D[x_1, ..., x_n]$ is Noetherian, and thus so is $D[x_1, ..., x_n]_M$; hence, its integral closure is a Krull domain, which can't be a non-Noetherian valuation domain, a contradiction.

If dim(V) = 0, then V = K. By Proposition 4.1, D must be a Goldman domain; by [16, Theorem 146], $\mathcal{V}(P)$ is finite.

If dim(V) = 1, then by Theorem 5.2 V is the localization of \overline{D} at a prime ideal of Q of height 1; hence, V is an essential prime ideal of \overline{D} and thus Q is isolated in Spec(\overline{D})^{cons} by Proposition 3.1.

Let $P := Q \cap D$. If $\mathcal{V}(P)$ is infinite, then *P* is the intersection of all the prime ideals properly containing it (since D/P is not a Goldman domain); by Lemma 6.2, the same property holds for *Q*, and thus by Lemma 6.1, *Q* is not isolated in Spec $(D)^{\text{cons}}$. This is a contradiction, and thus $\mathcal{V}(P)$ must be finite.

Conversely, suppose the two conditions hold and let $\mathcal{V}(P) = \{P, Q_1, \dots, Q_n\}$. For each *i*, let $y_i \in Q_i \setminus P$ and let $x_i := 1/y_i$: then, $A := D[x_1, \dots, x_n]$ is a Noe-therian domain such that *PA* is a maximal ideal of *A* of height ≤ 1 ; moreover, since $\mathfrak{m}_V \cap D = P$, each x_i belongs to *V*, and thus $V \in \text{Zar}(A)$ and $\mathfrak{m}_V \cap A = PA$.

The subspace $\operatorname{Zar}(A) = \mathcal{B}(x_1, \dots, x_n)$ is an open set of $\operatorname{Zar}(D)^{\operatorname{cons}}$: therefore, all isolated points of $\operatorname{Zar}(A)^{\operatorname{cons}}$ are also isolated in $\operatorname{Zar}(D)^{\operatorname{cons}}$.

If *P* has height 0, then A = K = V and thus *V* is isolated. Suppose that h(P) = 1.

Since A is Noetherian, $\{PA\} = \mathcal{V}(PA)$ is an open subset of $\text{Spec}(A)^{\text{cons}}$; hence, $\gamma_A^{-1}(PA)$ is an open subset of $\text{Zar}(A)^{\text{cons}}$, where $\gamma_A : \text{Zar}(A) \longrightarrow \text{Spec}(A)$

is the center map relative to *A*. However, $\gamma_A^{-1}(PA)$ is the set of valuation overrings of $A_{PA} = D_P$ centered on $(PA)A_{PA} = PD_P$; since *P* has height 1, D_P has dimension 1, and thus $\gamma_A^{-1}(PA)$ is in bijective correspondence with the maximal ideals of the integral closure *B* of D_P , which is Noetherian by [16, Theorem 93]. The Jacobson radical of *B* is nonzero (since it contains *P*), and thus *B* has only finitely many maximal ideal; thus, $\gamma_A^{-1}(PA)$ is an open finite set of the Hausdorff space Zar(*A*)^{cons}, and so it is discrete. Since $V \in \gamma_A^{-1}(PA)$, we have that *V* is isolated in Zar(*A*)^{cons} and thus in Zar(*D*)^{cons}, as claimed.

Corollary 6.4. Let (D, \mathfrak{m}) be a Noetherian local domain of dimension at least 3. *Then*, $Zar(D)^{cons}$ is perfect.

Proof. Suppose *V* is isolated in $Zar(D)^{cons}$. By Theorem 6.3, its center *P* must have height 1 and $\mathcal{V}(P)$ must be finite. However, since *P* has height 1 and the maximal ideal \mathfrak{m} of *D* has height at least 3, there is at least one prime ideal between *P* and \mathfrak{m} , and since *D* is Noetherian there must be infinitely many of them [16, Theorem 144], a contradiction. Hence, no *V* can be isolated, and $Zar(D)^{cons}$ is perfect.

We now want to show that, when *D* is countable, there are few possible topological structures for $Zar(D)^{cons}$. The one-dimensional case is very easy.

Proposition 6.5. Let (D, \mathfrak{m}) and (D', \mathfrak{m}') be two Noetherian local domains of dimension 1. The following are equivalent:

(i) $|\operatorname{Max}(\overline{D})| = |\operatorname{Max}(\overline{D'})|;$

(*ii*)
$$\operatorname{Zar}(D) \simeq \operatorname{Zar}(D');$$

(iii) $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$.

Proof. Since *D* is Noetherian and one-dimensional, \overline{D} is a principal ideal domain with finitely many maximal ideals; hence, $\operatorname{Zar}(D) = \operatorname{Zar}(\overline{D}) \simeq \operatorname{Spec}(\overline{D})$, and the homeomorphism holds both in the Zariski and in the constructible topology.

Hence, if $|\operatorname{Max}(\overline{D})| = |\operatorname{Max}(\overline{D'})|$ then $\operatorname{Spec}(\overline{D}) \simeq \operatorname{Spec}(\overline{D'})$ and thus $\operatorname{Zar}(D)$ and $\operatorname{Zar}(D')$ are homeomorphic in both the Zariski and the constructible topology. Conversely, if $\operatorname{Zar}(D) \simeq \operatorname{Zar}(D')$ (in any of the two topologies) then in particular they have the same cardinality, which is equal to $|\operatorname{Max}(\overline{D})| + 1 = |\operatorname{Max}(\overline{D'})| + 1$; thus, $|\operatorname{Max}(\overline{D})| = |\operatorname{Max}(\overline{D'})|$. The claim is proved. \Box

For larger dimension, we need to join the previous theorems with the topological characterization of the Cantor set. We isolate a lemma.

Lemma 6.6. Let D be a countable domain. Then, $\operatorname{Zar}(D)^{\operatorname{cons}}$ is metrizable.

Proof. The space $Zar(D)^{cons}$ is compact and Hausdorff, hence normal [29, Theorem 17.10] and, in particular, regular. Furthermore, the family of sets $\mathcal{B}(t)$ and $\mathcal{B}(t)^c$ (as *t* ranges in the quotient field of *D*) form a subbasis of $Zar(D)^{cons}$, and thus $Zar(D)^{cons}$ is second countable. By Urysohn's metrization theorem (see e.g. [29, Theorem 23.1]), $Zar(D)^{cons}$ is metrizable.

Proposition 6.7. Let (D, \mathfrak{m}) and (D', \mathfrak{m}') be two countable Noetherian local domains of dimension at least 3. Then, $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$.

Proof. Both $Zar(D)^{cons}$ and $Zar(D')^{cons}$ are Boolean spaces, hence totally disconnected and compact; they are also perfect by Corollary 6.4 and metrizable by Lemma 6.6.

By [29, Theorem 30.3], any two spaces with these properties are homeomorphic; hence, $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$.

To study the case of dimension 2, we need two further lemmas.

Lemma 6.8. Let (D, \mathfrak{m}) be a local Noetherian domain with dim(D) > 1. If D is countable, then D has exactly countably many prime ideals of height 1.

Proof. By [16, Theorem 144], there are infinitely many prime ideals between (0) and \mathfrak{m} , and thus *D* has infinitely many prime ideals of height 1.

Moreover, every prime ideal is generated by a finite set, and thus the number of prime ideals of height 1 is at most equal to the number of finite subsets of *D*. Since *D* is countable, so is the set of its finite subsets; the claim is proved. \Box

Lemma 6.9. Let (D, \mathfrak{m}) be a local Noetherian domain of dimension 2 with quotient field *K*, and let *X* be the set of isolated points of $\operatorname{Zar}(D)^{\operatorname{cons}}$. Then:

- (a) a valuation overring of D belongs to X if and only if its center has height 1;
- (b) *X* is nonempty and compact, with respect to the Zariski topology;
- (c) if *D* is countable, then *X* is countable;
- (d) $\operatorname{Cl}^{\operatorname{cons}}(X) = X \cup \{K\};$
- (e) the only isolated point of $(\operatorname{Zar}(D) \setminus X)^{\operatorname{cons}}$ is K;
- (f) $\operatorname{Zar}(D) \setminus (X \cup \{K\})$ is closed and perfect, with respect to the constructible topology.

Proof. (a) Let $V \in \text{Zar}(D)$. If *V* is isolated, then its center has height at most 1 by Theorem 6.3, but the height can't be 0 since $\mathcal{V}((0))$ is infinite. Conversely, if $P := \mathfrak{m}_V \cap D$ has height 1, then $\mathcal{V}(P) = \{P, \mathfrak{m}\}$ is finite, and thus $V \in X$, by Theorem 6.3.

(b) Let X_1 be the set of all height 1 prime ideals of D: by the previous point, $X = \gamma^{-1}(X_1)$. Since γ is surjective, and X_1 is nonempty, also X is nonempty. Furthermore, since D is a Noetherian ring, Spec(D) is a Noetherian space with respect to the Zariski topology (i.e., all its subsets are compact; see [4, Theorem 12.4.3] or [1, Chapter 6, Exercises 5–8]). Since γ is a spectral closed map, it is proper, and thus the counterimage of any compact subset of Spec(D) is compact; therefore, $X = \gamma^{-1}(X_1)$ is compact with respect to the Zariski topology, as claimed.

(c) By Lemma 6.8, X_1 is countable; furthermore, $\gamma^{-1}(P)$ is finite for every $P \in X_1$, since it is in bijective correspondence with the set of maximal ideals of the integral closure of D_P . Since $X = \gamma^{-1}(X_1)$, it follows that X is countable.

(d) Since X is compact, the set $X^{\text{gen}} = \{W \in \text{Zar}(D) \mid W \supseteq V \text{ for some } V \in X\}$ is closed in the inverse topology, and thus in the constructible topology; since

every element of X is a one-dimensional valuation ring, furthermore, $X^{\text{gen}} = X \cup \{K\}$. Hence, $\text{Cl}^{\text{cons}}(X) \subseteq X \cup \{K\}$.

If they are not equal, then $\operatorname{Cl}^{\operatorname{cons}}(X) = X$. However, X is infinite (since X_1 is infinite, by Lemma 6.8) and discrete (by definition, all its points are isolated) and thus it is not compact with respect to the constructible topology; this is a contradiction, since a closed set of a compact set is compact. Thus, $\operatorname{Cl}^{\operatorname{cons}}(X) = X \cup \{K\}$, as claimed.

(e) The set $\operatorname{Zar}(D) \setminus (X \cup \{K\})$ is open, with respect to the constructible topology (by part (d)), and its elements are not isolated in $\operatorname{Zar}(D)^{\operatorname{cons}}$; therefore, none of its elements can be isolated in $(\operatorname{Zar}(D) \setminus X)^{\operatorname{cons}}$. On the other hand, let $x \in \mathfrak{m}, x \neq 0$: then, $D[x^{-1}]$ is a Noetherian domain of dimension 1, and its maximal ideals are extensions of prime ideals of *D* of height 1. Therefore, if $V \in \operatorname{Zar}(D[x^{-1}])$ has dimension 1 then the center of *V* on *D* has height 1, and thus it is an isolated point of $\operatorname{Zar}(D)$, i.e., $\mathcal{B}(x^{-1}) = \operatorname{Zar}(D[x^{-1}]) \subseteq X \cup \{K\}$, and $\mathcal{B}(x^{-1}) \cap (\operatorname{Zar}(D) \setminus X) = \{K\}$. Since $\mathcal{B}(x^{-1})$ is open in $\operatorname{Zar}(D)^{\operatorname{cons}}$, it follows that *K* is isolated in $(\operatorname{Zar}(D) \setminus X)^{\operatorname{cons}}$.

(f) is a direct consequence of (e).

Note that the set *X* of the previous proposition is *not* compact with respect to the constructible topology, as it is discrete and infinite.

Proposition 6.10. Let (D, \mathfrak{m}) and (D', \mathfrak{m}') be two countable Noetherian local domains of dimension 2. Then, $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$.

Proof. Denote by K, K' the quotient fields of D and D', respectively.

Let X be the set of isolated points of $Zar(D)^{cons}$, and let $C := Zar(D) \setminus (X \cup \{K\})$: then, C is closed in $Zar(D)^{cons}$. Define in the same way X' and C' inside Zar(D'); then, C' is closed.

As in the proof of Proposition 6.7, by Lemma 6.9(f) C^{cons} and $(C')^{\text{cons}}$ are totally disconnected, perfect, compact and metrizable (with respect to the constructible topology), and thus they are homeomorphic. Let $\phi_C : C^{\text{cons}} \longrightarrow (C')^{\text{cons}}$ be a homeomorphism.

The set *X* is discrete and countable, and the unique nonisolated point of $X \cup \{K\}$ is *K*; since the same holds for *X'* and *K'*, any bijection $X \longrightarrow X'$ extends to a homeomorphism $\phi_X : (X \cup \{K\})^{\text{cons}} \longrightarrow (X' \cup \{K'\})^{\text{cons}}$ by setting $\phi_X(K) = K'$. Define

$$\phi: \operatorname{Zar}(D)^{\operatorname{cons}} \longrightarrow \operatorname{Zar}(D')^{\operatorname{cons}},$$
$$V \longmapsto \begin{cases} \phi_C(V) & \text{if } V \in C, \\ \phi_X(V) & \text{if } V \in X \cup \{K\}. \end{cases}$$

By construction, ϕ is bijective, and ϕ is a homeomorphism when restricted to *C* and to $X \cup \{K\}$. Since these two sets are closed, by [29, Theorem 7.6] ϕ is a homeomorphism. In particular, $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$.

We summarize the previous results in the following theorem.

Theorem 6.11. Let (D, \mathfrak{m}) and (D', \mathfrak{m}') be two countable Noetherian local domains. Then, $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$ if and only if one of the following conditions hold:

(a) $\dim(D) = \dim(D') = 1$ and $|\operatorname{Max}(\overline{D})| = |\operatorname{Max}(\overline{D'})|$;

(b) $\dim(D) = \dim(D') = 2;$

(c) $\dim(D) \ge 3$ and $\dim(D') \ge 3$.

Proof. If *D* and *D'* satisfy one of the conditions, then $Zar(D)^{cons} \simeq Zar(D')^{cons}$ by, respectively, Proposition 6.5, Proposition 6.10 and Proposition 6.7.

Suppose now that $\operatorname{Zar}(D)^{\operatorname{cons}} \simeq \operatorname{Zar}(D')^{\operatorname{cons}}$.

If dim(D) = 1, then Zar(D) is finite, and thus so must be Zar(D'); hence, dim(D') = 1, and $|Max(\overline{D})| = |Max(\overline{D'})|$ by Proposition 6.5.

Suppose dim(*D*), dim(*D'*) \geq 2. By Corollary 6.4 and Lemma 6.8, Zar(*D*)^{cons} has isolated points if and only if dim(*D*) = 2; therefore, dim(*D*) = 2 if and only if dim(*D'*) = 2, and dim(*D*) \geq 3 if and only if dim(*D'*) \geq 3. The claim is proved.

7. When *D* is a field

In this section we analyze the isolated points Zariski space $Zar(L|D)^{cons}$ when D = K is a field. Note that, if *L* is algebraic over *K*, then Zar(L|K) is just a point (*L* itself); thus, the only interesting case is when $trdeg(L/K) \ge 1$.

We start by connecting the isolated points of $\operatorname{Zar}(L|D)^{\operatorname{cons}}$ and of $\operatorname{Zar}(L'|D)^{\operatorname{cons}}$, where $L' \subseteq L$ is an algebraic extension.

Proposition 7.1. Let V be a valuation domain, and $L' \subseteq L$ be an algebraic extension such that $V \subseteq L'$. Let $\rho : \operatorname{Zar}(L|V) \longrightarrow \operatorname{Zar}(L'|V)$ be the restriction map, and let $\mathcal{X} \subseteq \operatorname{Zar}(L|V)$ be a subset such that $\rho^{-1}(\rho(\mathcal{X})) = \mathcal{X}$. Then, the following hold.

(a) If W is isolated in $\mathcal{X}^{\text{cons}}$, then $\rho(W)$ is isolated in $\rho(\mathcal{X})^{\text{cons}}$.

(b) If $\rho(\mathcal{X})$ is perfect and $|\rho(\mathcal{X})| > 1$, then \mathcal{X} is perfect.

In particular, the previous statements apply to $\mathcal{X} = \operatorname{Zar}(L|V)$ and $\mathcal{X} = \mathcal{E}(L|V)$.

Proof. (a) Let W be an isolated point of $\mathcal{X}^{\text{cons}}$, and let $W' := W \cap L' = \rho(W)$.

Suppose first that *L* is finite and normal over *L'*. Let *G* be the group of *L'*-automorphisms of *L*: then, every $\sigma \in G$ is continuous when seen as a map from $\operatorname{Zar}(L|V)^{\operatorname{cons}}$ to itself. Moreover, $\rho(\sigma(Z)) = \rho(Z)$ for every $Z \in \operatorname{Zar}(L|V)$, and thus σ restricts to a self-homeomorphism of \mathcal{X} .

Since *G* acts transitively on $\rho^{-1}(W')$ (see e.g. [12, Corollary 20.2]) and $W \in \rho^{-1}(W')$ is isolated, all points of $\rho^{-1}(W')$ are isolated in \mathcal{X} ; hence, $\rho^{-1}(W')$ is open in $\mathcal{X}^{\text{cons}}$. Since ρ : $\operatorname{Zar}(L|V) \longrightarrow \operatorname{Zar}(L'|V)$ is a closed map (with respect to the constructible topology), it is also closed when seen as a map $\mathcal{X} \longrightarrow \rho(\mathcal{X})$; therefore, $\rho(\mathcal{X} \setminus \rho^{-1}(W')) = \rho(\mathcal{X}) \setminus \{W'\}$ is closed in $\rho(\mathcal{X})$, with respect to the constructible topology, and thus W' is an isolated point of $\rho(\mathcal{X})^{\text{cons}}$, as claimed.

Suppose now that *L* is finite over *L'*, and let *F* be the normal closure of *L'*. Let ρ_0 : Zar(*F*|*V*) \longrightarrow Zar(*L*|*V*) be the restriction map. Since *W* is isolated

in \mathcal{X} , the set $\rho_0^{-1}(W)$ is open in $\rho_0^{-1}(\mathcal{X})^{\text{cons}}$; moreover, $\rho_0^{-1}(W)$ is finite since $[F : L] < \infty$. Therefore, $\rho_0^{-1}(W)$ is a discrete subspace of $\rho_0^{-1}(\mathcal{X})^{\text{cons}}$, and in particular each $Z \in \rho_0^{-1}(W)$ is isolated. Applying the previous part of the proof to the extension $L' \subseteq F$ and to any such Z, we obtain that $Z \cap L' = W \cap L' = \rho(W)$ is isolated, as claimed.

Suppose now that $L' \subseteq L$ is arbitrary. Since *W* is isolated in \mathcal{X} , there are $x_1, \ldots, x_n, y_1, \ldots, y_m \in L$ such that $\{W\} = \mathcal{B}(x_1, \ldots, x_n) \cap \mathcal{B}(y_1)^c \cap \cdots \cap \mathcal{B}(y_m)^c \cap \mathcal{X}$. Let $F := L'(x_1, \ldots, x_n, y_1, \ldots, y_m)$: then, $W \cap F$ is isolated in $\{Z \cap F \mid Z \in \mathcal{X}\}$. Since $[F : L'] < \infty$, we can apply the previous part of the proof, obtaining that $W \cap F \cap L' = W \cap L' = \rho(W)$ is isolated in $\rho(\mathcal{X})^{\text{cons}}$, as claimed.

(b) Suppose that \mathcal{X} is not perfect: then, there is a $W \in \mathcal{X}$ that is isolated. By the previous part of the proof, it would follow that $W \cap L'$ is isolated in $\rho(X)^{\text{cons}}$. Since $\rho(\mathcal{X})$ has more than one point, this is impossible, and so \mathcal{X} is perfect.

The "in particular" statement follows from the fact that $\operatorname{Zar}(L|V)$ and $\mathcal{E}(L|V)$ satisfy the hypothesis on \mathcal{X} .

Corollary 7.2. Let V be a valuation domain and $L' \subseteq L$ be an algebraic extension; suppose that $V \subseteq L'$ and that L' is transcendental over the quotient field of V. If $\operatorname{Zar}(L'|V)^{\operatorname{cons}}$ (respectively, $\mathcal{E}(L'|V)^{\operatorname{cons}}$) is perfect, then $\operatorname{Zar}(L|V)^{\operatorname{cons}}$ (resp., $\mathcal{E}(L|V)^{\operatorname{cons}}$) is perfect.

Proof. It is enough to apply Proposition 7.1(b) to $\mathcal{X} = \text{Zar}(L|V)$ or $\mathcal{X} = \mathcal{E}(L|V)$, using the hypothesis that L' is transcendental over the quotient field of V to guarantee that |Zar(L'|V)| > 1 and $|\mathcal{E}(L'|V)| > 1$.

The following result completely settles the problem of finding the isolated points when $\operatorname{trdeg}(L/K) \ge 2$, generalizing [3, Theorem 4.45] and solving the authors' Conjecture A (in an even more general formulation). Note that the first case in the proof is exactly [3, Theorem 4.45], but we give a new proof of it using Theorem 6.3.

Theorem 7.3. Let $K \subseteq L$ be a field extension with $\operatorname{trdeg}(L/K) \geq 2$. Then, $\operatorname{Zar}(L|K)^{\operatorname{cons}}$ is perfect.

Proof. Suppose first that $L = K(x_1, ..., x_n)$ is a finitely generated purely transcendental extension of K, with transcendence basis $x_1, ..., x_n$. Suppose there exists an isolated point W of $Zar(L|K)^{cons}$. By Proposition 4.1, $W \neq L$.

For each *i*, at least one of x_i and x_i^{-1} belongs to *W*; let it be t_i . Then, $W \in Zar(K[t_1, ..., t_n])$, and so *W* is isolated in $Zar(K[t_1, ..., t_n])^{cons}$. Let *P* be the center of *W* on $K[t_1, ..., t_n]$; since $K[t_1, ..., t_n]$ is Noetherian, by Theorem 6.3 *P* has height 1 and $\mathcal{V}(P)$ is finite.

Since $K[t_1, ..., t_n]$ is isomorphic to a polynomial ring, every maximal ideal of $K[t_1, ..., t_n]$ has height n > 1 [16, Section 3.2, Exercise 3], and thus *P* is not maximal. However, $K[t_1, ..., t_n]$ is an Hilbert ring, and thus every non-maximal prime ideal is the intersection of the maximal ideals containing it [16, Theorem

147]; in particular, this happens for *P*, and thus $\mathcal{V}(P)$ must be infinite. This is a contradiction, and so $\operatorname{Zar}(L|K)^{\operatorname{cons}}$ is perfect.

Suppose now that *L* has finite transcendence degree over *K*, let $x_1, ..., x_n$ be a transcendence basis of *L* and let $L' := K(x_1, ..., x_n)$. By the previous part of the proof, $\operatorname{Zar}(L'|K)^{\operatorname{cons}}$ is perfect; since $L' \subseteq L$ is algebraic, by Corollary 7.2 also $\operatorname{Zar}(L|K)^{\operatorname{cons}}$ is perfect.

Take now any extension *L* of *K*, and suppose that *W* is an isolated point of $\operatorname{Zar}(L|K)^{\operatorname{cons}}$. Then, there are $x_1, \ldots, x_n, y_1, \ldots, y_m \in L$ such that $\{W\} = \mathcal{B}(x_1, \ldots, x_n) \cap \mathcal{B}(y_1)^c \cap \cdots \cap \mathcal{B}(y_m)^c$. Take two elements $a, b \in L$ that are algebraically independent over *K*, and let $L' := K(a, b, x_1, \ldots, x_n, y_1, \ldots, y_m)$: then, $2 \leq \operatorname{trdeg}(L'/K) < \infty$. Set $V := W \cap L'$: then, $\{V\} = \mathcal{B}^{L'}(x_1, \ldots, x_n) \cap \mathcal{B}^{L'}(y_1)^c \cap \cdots \cap \mathcal{B}^{L'}(y_m)^c$, and thus *V* is isolated in $\operatorname{Zar}(L'|V)^{\operatorname{cons}}$. However, by the previous part of the proof, $\operatorname{Zar}(L'|V)^{\operatorname{cons}}$ is perfect, a contradiction. Hence, $\operatorname{Zar}(L|K)^{\operatorname{cons}}$ is perfect.

When the transcendence degree of *L* over *K* is 1, the picture is very different, because it may even happen that all elements of $Zar(L|K)^{cons}$ (except *L* itself) are isolated. Compare the next results with [26, Corollary 5.5(a)] and [28, Proposition 4.2].

Proposition 7.4. Let K be a field. Then all points of Zar(K(X)|K), except K(X), are isolated with respect to the constructible topology.

Proof. The points of Zar(K(X)|K) are K(X), $K[X^{-1}]_{(X^{-1})}$, and the rings $K[X]_{(f(X))}$, where f(X) is an irreducible polynomial of K[X]. The first one is not isolated by Proposition 4.1; on the other hand, $\{K[X]_{(f(X))}\} = \mathcal{B}(f(X)^{-1})^c$ and $\{K[X^{-1}]_{(X^{-1})}\} = \mathcal{B}(X)^c$, and thus these domains are isolated, as claimed. \Box

Lemma 7.5. Let D be an integral domain with quotient field K, and let $L' \subseteq L$ be two extensions of K. Let $V \in \text{Zar}(L'|D)$. If V is isolated in $\text{Zar}(L'|D)^{\text{cons}}$ and $\mathcal{E}(L|V)$ is finite, then every $W \in \mathcal{E}(L|V)$ is isolated in $\text{Zar}(L|D)^{\text{cons}}$.

Proof. Let ρ : Zar(L|D) \longrightarrow Zar(L'|D) be the restriction map. Then, $\mathcal{E}(L|V) = \rho^{-1}(V)$ is open in Zar(L'|D)^{cons} since V is isolated. Moreover, $\mathcal{E}(L|V)$ is finite by hypothesis, and, since the constructible topology is Hausdorff, all its points are isolated in Zar(L|D)^{cons}.

Proposition 7.6. Let *K* be a field and let *L* be an extension of *K* with trdeg(L/K) = 1. Let $V \in Zar(L|K)$, $V \neq L$. Then the following are equivalent:

- (*i*) V is isolated in $\operatorname{Zar}(L|K)^{\operatorname{cons}}$;
- (ii) there exists a finitely generated extension L' of K such that $L' \subseteq L$ and $\mathcal{E}(L|V \cap L') = \{V\};$
- (iii) there exists a finitely generated extension L' of K such that $L' \subseteq L$ and $\mathcal{E}(L|V \cap L')$ is finite.

Proof. (i) \Longrightarrow (ii) Since V is isolated, we have

 $\{V\} = \Omega := \mathcal{B}(x_1, \dots, x_n) \cap \mathcal{B}(y_1)^c \cap \dots \cap \mathcal{B}(y_m)^c$

for some $x_1, ..., x_n, y_1, ..., y_m \in L$. Let $L' = K(x_1, ..., x_n, y_1, ..., y_m)$. Then every extension of $V \cap L'$ to L belongs to Ω , and thus it is equal to V. Hence, L' is the required field.

(ii) \Longrightarrow (iii) is obvious.

(iii) \Longrightarrow (i) Since $\mathcal{E}(L|V \cap L')$ is finite, $L' \subseteq L$ must be algebraic and so $K \subseteq L'$ is transcendental; take any $X \in L'$ that is transcendental over K. Since $K \subseteq L'$ is finitely generated, $K(X) \subseteq L'$ must be a finite extension.

Since $V \neq L$, we have $V \cap K(X) \neq K(X)$; by Proposition 7.4, $V \cap K(X)$ is isolated in $\operatorname{Zar}(K(X)|K)$. Moreover, since $K(X) \subseteq L'$ is a finite extension, $\mathcal{E}(L'|V \cap K(X))$ is finite; by Lemma 7.5, all points of $\mathcal{E}(L'|V \cap K(X))$ are isolated in $\operatorname{Zar}(L'|K)^{\operatorname{cons}}$, and in particular this happens for $V \cap L'$. We can now apply Lemma 7.5 to $V \cap L'$ and L, obtaining that all elements of $\mathcal{E}(L|V \cap L')$ (in particular, V) are isolated in $\operatorname{Zar}(L|K)^{\operatorname{cons}}$.

Proposition 7.7. Let *K* be a field and let *L* be an extension of *K* with trdeg(L/K) = 1. Let $\mathcal{X} := Zar(L|K) \setminus \{L\}$. Then, the following are equivalent:

- (i) all points of \mathcal{X} are isolated in $\operatorname{Zar}(L|K)^{\operatorname{cons}}$;
- (ii) for every $X \in L$, transcendental over K, the set $\mathcal{E}(L|V)$ is finite for every $V \in \text{Zar}(K(X)|K)$;
- (iii) there is an $X \in L$, transcendental over K, such that the set $\mathcal{E}(L|V)$ is finite for every $V \in \text{Zar}(K(X)|K)$.

Proof. (i) \Longrightarrow (ii) Take any $X \in L$ that is transcendental over K, and let $V \in Zar(K(X)|K)$. The space $\mathcal{E}(L|V)$ is closed in $Zar(L|V)^{cons}$, and thus it is compact. Since all its points are isolated, it is also discrete; hence, $\mathcal{E}(L|V)$ is finite.

(ii) \Longrightarrow (iii) is obvious.

(iii) \Longrightarrow (i) Apply Proposition 7.6, (iii) \Longrightarrow (i) with L' = K(X) to each $V \in \mathcal{X}$.

Corollary 7.8. Let K be a field and let L be a finitely generated extension of K such that trdeg(L/K) = 1. Then, all points of $Zar(L|K) \setminus \{L\}$ are isolated in $Zar(L|K)^{cons}$.

Proof. It is enough to apply Proposition 7.7.

Remark 7.9. Let $K \subseteq L$ be a transcendental extension of degree 1, and let $V \in \text{Zar}(L|K)$. Let $X \in L$ be transcendental over K. By Proposition 7.6, if $\mathcal{E}(L|V \cap K(X))$ is finite, then V is isolated in $\text{Zar}(L|K)^{\text{cons}}$; however, unlike in Proposition 7.7, the converse does not hold, i.e., $\mathcal{E}(L|V \cap K(X))$ may be infinite even if V is isolated.

For example, let $W = K[X]_{(X)}$ (or more generally, we can take any $W \in Zar(K(X)|K)$, $W \neq K(X)$). Since W is a discrete valuation ring, using [17] (see also [13, Section 3]), it is possible to construct a chain $K(X) \subset F_0 \subset F_1 \subset \cdots$ of extensions of K(X) such that:

- the extensions $K(X) \subset F_0$ and $F_i \subset F_{i+1}$ are finite, for each i > 0;
- W has two extensions to F_0 , say W_1 and W_2 ;
- W_1 has only one extension to F_i , for each i > 0;

 if W' is an extension of W₂ to F_i, then W' has more than one extension to F_{i+1}.

Let $L := \bigcup_{i\geq 0} F_i$. Then, W_1 has a unique extension V to L, while W_2 has infinitely many extensions; in particular, the set \mathcal{X} of extensions of W to L is infinite. Let $y \in W_1 \setminus W_2$: then, $\mathcal{B}(y) \cap \mathcal{X} = \{V\}$, and thus $\mathcal{B}(y) \cap \mathcal{B}(X^{-1})^c = \{V\}$. Hence, V is isolated in $\operatorname{Zar}(L|K)^{\operatorname{cons}}$, despite $V \cap K(X) = W$ having infinitely many extensions to L.

The reason why the proof of Proposition 7.7 fails in this context is that we are not requiring the *other* extensions of *W* to *L* to be isolated.

8. Extensions of valuations

In this section, we extend the results of the previous section from the case where D = K is a field to the case where D = V is a valuation domain. In particular, we want to study the set $\mathcal{E}(L|V)$ of extensions of V to L.

The most important case is when L = K(X) is the field of rational functions. If *V* is a valuation domain with quotient field *K* and $s \in K$, we set

$$V_s := \{ \phi \in K(X) \mid \phi(s) \in V \}.$$

Then, V_s is an extension of V to K(X), and it is possible to analyze quite thoroughly its algebraic properties (see for example [22, Proposition 2.2] for a description when V has dimension 1).

The following lemma is a partial generalization of [22, Theorem 3.2], of which we follow the proof.

Lemma 8.1. Let V be a valuation domain with quotient field K, and let U be an extension of V to the algebraic closure \overline{K} . Let $s, t \in \overline{K}$. Then, $U_s \cap K(X) = U_t \cap K(X)$ if and only if s and t are conjugated over K.

Proof. If *s*, *t* are conjugated, there is a *K*-automorphism σ of \overline{K} sending *s* to *t*. Setting $\tilde{\sigma}(\sum_i a_i X^i) := \sum_i \sigma(a_i) X^i$, we can extend σ to a *K*(*X*)-automorphism $\tilde{\sigma}$ of $\overline{K}(X)$ such that $\tilde{\sigma}(\phi)(t) = \sigma(\phi(s))$ for every $\phi \in \overline{K}(X)$; in particular, if $\phi \in K(X)$ then $\tilde{\sigma}(\phi) = \phi$ and thus $\phi(s) \in V$ if and only if $\phi(t) \in V$, i.e., $\phi \in U_s \cap K(X)$ if and only if $\phi \in U_t \cap K(X)$. Therefore, $U_s \cap K(X) = U_t \cap K(X)$.

Conversely, suppose that *s* and *t* are not conjugate, and let p(X) be the minimal polynomial of *s* over *K*: then, $p(t) \neq 0$, and thus there is a $c \in K$, $c \neq 0$, such that v(c) > u(p(t)) (where *v* and *u* are, respectively, the valuations with respect to *V* and *U* and $u|_K = v$). Then, $q(X) := \frac{p(X)}{c} \in K(X)$ belongs to U_s (since $q(s) = 0 \in V$) but not to U_t (since u(q(t)) = u(p(t)) - v(c) < 0). Hence, $U_s \cap K(X) \neq U_t \cap K(X)$, as claimed.

Theorem 8.2. If V is a valuation domain that is not a field, then $\mathcal{E}(K(X)|V)^{\text{cons}}$ is perfect.

Proof. Suppose first that *K* is algebraically closed. By [23, Theorem 7.2], for all extensions *W* of *V* to *K*(*X*) there is a sequence $E = \{s_{\nu}\}_{\nu \in \Lambda}$ (where Λ is a

well-ordered set without maximum) such that

$$W = V_E = \{ \phi \in K(X) \mid \phi(s_\nu) \in V \text{ for all large } \nu \}$$

and $W \neq V_{s_{\nu}}$ for every ν . In particular, the elements $\phi(s_{\nu})$ are either eventually in *V* or eventually out of *V* (by [23, Proposition 3.2]; see also the proof of Theorem 3.4 therein). Take $\psi \in K(X)$: then, if $W \in \mathcal{B}(\psi)$ then it must be $\psi(s_{\nu}) \in V$ eventually, and thus $\mathcal{B}(\psi)$ contains $V_{s_{\nu}}$ for all large ν ; on the other hand, if $W \in \mathcal{B}(\psi)^c$ then $\psi(s_{\nu}) \notin V$ eventually, and thus $\mathcal{B}(\psi)^c$ contains $V_{s_{\nu}}$ for all large ν .

Now let

$$\Omega := \mathcal{B}(\psi_1, \dots, \psi_n) \cap \mathcal{B}(\phi_1)^c \cap \dots \cap \mathcal{B}(\phi_m)^c \cap \mathcal{E}(K(X)|V)$$

be a basic open set of $\mathcal{E}(K(X)|V)^{\text{cons}}$ containing W. For every i, there is an index N_i such that $\psi_i(s_v) \in V$ for all $v \ge N_i$; likewise, for every j there is a M_j such that $\phi_j(s_v) \notin V$ for all $v \ge M_j$. Therefore, for every

$$\nu \geq \max\{N_1, \dots, N_n, M_1, \dots, M_m\},\$$

we have $V_{s_{\nu}} \in \Omega$. Hence *W* belongs to the closure of $\{V_{s_{\nu}}\}_{\nu \in \Lambda} \subseteq \mathcal{E}(K(X)|V)$, with respect to the constructible topology. It follows that *W* is not isolated in $\mathcal{E}(K(X)|V)^{\text{cons}}$ and, since *W* was arbitrary, $\mathcal{E}(K(X)|V)^{\text{cons}}$ is perfect.

Suppose now that *K* is any field. Let $W \in \mathcal{E}(K(X)|V)$, and suppose that *W* is isolated in $\mathcal{E}(K(X)|V)^{\text{cons}}$. Let $\rho : \mathcal{E}(\overline{K}(X)|V) \longrightarrow \mathcal{E}(K(X)|V)$ be the restriction map. Since *W* is isolated and ρ is continuous, $\rho^{-1}(W)$ is open. Let $W' \in \rho^{-1}(W)$ and let $U := W' \cap \overline{K}$: then, *U* is an extension of *V* to \overline{K} .

By the previous part of the proof, for every open neighborhood Ω of W'there is an $s \in \overline{K}$ such that $U_s \neq W'$ and $U_s \in \Omega$; since $\rho^{-1}(W)$ is open, it follows that for every such Ω there is a $U_s \in \rho^{-1}(W)$ with these properties. Therefore, the set $\Delta := \{U_s \in \rho^{-1}(W) \mid s \in \overline{K}\}$ is dense in $\rho^{-1}(W)$. Since $U_s \cap K(X) = U_t \cap K(X) = W$ for every $U_s, U_t \in \Delta$, by Lemma 8.1 Δ is finite; since $\mathcal{E}(K(X)|V)^{\text{cons}}$ is Hausdorff, it follows that $\Delta = \rho^{-1}(W)$, and in particular $\rho^{-1}(W)$ is finite. Hence, all its points are isolated. However, this contradicts the fact that $\mathcal{E}(\overline{K}(X)|V)^{\text{cons}}$ is perfect; thus, also $\mathcal{E}(K(X)|V)^{\text{cons}}$ must be perfect. \Box

The theorem above allows to determine the isolated points of $Zar(K(X)|D)^{cons}$ for every integral domain *D*.

Proposition 8.3. Let *D* be an integral domain that is not a field, and let *J* be the intersection of the nonzero prime ideals of *D*.

- (i) If J = (0), then $Zar(K(X)|D)^{cons}$ is perfect.
- (ii) If $J \neq (0)$, then the only isolated points of $\operatorname{Zar}(K(X)|D)^{\operatorname{cons}}$ are $K[X]_{(f(X))}$ (where f(X) is an irreducible polynomial of K[X]) and $K[X]_{(X^{-1})}$.

Proof. Let $W \in \text{Zar}(K(X)|D)$. If $W \cap K \neq K$, then $\mathcal{E}(K(X)|W \cap K)$ is perfect (when endowed with the constructible topology) by Theorem 8.2. Since *W* belongs to this set, it is not isolated in $\text{Zar}(K(X)|D)^{\text{cons}}$.

Suppose that $W \cap K = K$. If W = K(X), then W is not isolated by Proposition 4.1, since K(X) is not algebraic over K. Thus let $W \neq K(X)$.

Suppose that J = (0), and suppose that W is isolated in $Zar(K(X)|D)^{cons}$. Since $K \subseteq W$, we have $\mathfrak{m}_W \cap D = (0)$; by Lemma 4.2, the quotient map of W onto its residue field induces a homeomorphism between the spaces $\Delta := \{Z \in Zar(K(X)|D) \mid Z \subseteq W\}$ and $Zar(W/\mathfrak{m}_W|D)$, where W is sent to W/\mathfrak{m}_W . Since W is isolated in $Zar(K(X)|D)^{cons}$, it is also isolated in Δ^{cons} , and thus W/\mathfrak{m}_W must be an isolated point of $Zar(W/\mathfrak{m}_W|D)^{cons}$. By Proposition 4.1, D must be a Goldman domain, against the hypothesis J = (0). Therefore, W is not isolated and $Zar(K(X)|D)^{cons}$ is perfect.

Suppose now that $J \neq (0)$, and let $j \in J$, $j \neq 0$. Then, $D[j^{-1}] = K$, and thus $\mathcal{B}(j^{-1}) = \mathcal{E}(K(X)|K) = \operatorname{Zar}(K(X)|K)$ is a clopen subset of $\operatorname{Zar}(K(X)|D)^{\operatorname{cons}}$; in particular, $W \in \mathcal{E}(K(X)|K)$ is isolated in $\operatorname{Zar}(K(X)|D)^{\operatorname{cons}}$ if and only if it is isolated in $\operatorname{Zar}(K(X)|K)^{\operatorname{cons}}$. The claim now follows from Proposition 7.4. \Box

To conclude the paper, we extend Theorem 7.3 to valuation domains.

Theorem 8.4. Let V be a valuation domain with quotient field K, and let L be a field extension of K such that $\operatorname{trdeg}(L/K) \ge 2$. Then, $\mathcal{E}(L|V)^{\operatorname{cons}}$ and $\operatorname{Zar}(L|V)^{\operatorname{cons}}$ are perfect.

Proof. We first show that $\mathcal{E}(L|V)^{\text{cons}}$ is perfect: suppose that is not, and let *W* be an isolated point.

Suppose that $L = K(x, z_2, ...)$ is purely transcendental over K, where $x, z_2, ...$, is a transcendence basis. Take an $m \in \mathfrak{m}_V \subseteq \mathfrak{m}_W$: then, at least one of mx and x^{-1} belongs to \mathfrak{m}_W . Let z_1 be that element. Then, $z_1, z_2, ...$ is also a transcendence basis of L.

Let $L' := K(z_1, z_3, ...,)$ be the extension of K obtained adjoining all the element of this basis except z_2 . Then, $z_1^{-1} \in L' \setminus W$, and thus $W \cap L' \neq L'$; since, by construction, $L \simeq L'(X)$, by Theorem 8.2 $\mathcal{E}(L|W \cap L')^{\text{cons}}$ is perfect. Since $\mathcal{E}(L|W \cap L') \subseteq \mathcal{E}(L|W)$, all the elements of $\mathcal{E}(L|W \cap L')$ (in particular, W) are not isolated in $\mathcal{E}(L|V)^{\text{cons}}$. This is a contradiction, and thus $\mathcal{E}(L|V)^{\text{cons}}$ is perfect.

Suppose now that *L* is arbitrary: then, we can find a purely transcendental extension *L'* of *K* such that $L' \subseteq L$ is algebraic. By the previous part of the proof, $\mathcal{E}(L'|V)^{\text{cons}}$ is perfect; by Corollary 7.2, also $\mathcal{E}(L|V)^{\text{cons}}$ is perfect. Therefore, $\mathcal{E}(L|V)^{\text{cons}}$ is always perfect.

Finally, $\operatorname{Zar}(L|V)$ is the union of $\mathcal{E}(L|V_0)$, as V_0 ranges among the valuation overrings of V; since each of these is perfect with respect to the constructible topology (by the previous part of the proof), then also $\operatorname{Zar}(L|V)^{\operatorname{cons}}$ is perfect, as claimed.

Corollary 8.5. Let V be a valuation domain with quotient field K, suppose $V \neq K$, and let L be a transcendental field extension of K. Then, $\mathcal{E}(L|V)^{\text{cons}}$ is perfect.

Proof. If $\operatorname{trdeg}(L/K) \ge 2$ the claim follows from Theorem 8.4. If $\operatorname{trdeg}(L/K) = 1$, let $X \in L$ be transcendental over K. By Theorem 8.2, $\mathcal{E}(K(X)|V)^{\operatorname{cons}}$ is perfect; by Corollary 7.2, also $\mathcal{E}(L|V)^{\operatorname{cons}}$ is perfect.

Corollary 8.6. Let *D* be an integral domain, and let *L* be a transcendental extension of the quotient field *K* of *D*. If $trdeg(L/K) \ge 2$, then $Zar(L|D)^{cons}$ is perfect.

Proof. Any $W \in \text{Zar}(L|D)$ belongs to $\mathcal{E}(L|V)$ for some $V \in \text{Zar}(D)$. By Theorem 8.4, all $\mathcal{E}(L|V)^{\text{cons}}$ are perfect and thus no *W* is isolated. Hence, $\text{Zar}(L|D)^{\text{cons}}$ is perfect.

Acknowledgments

I would like to thank the referee for pointing out several problems in the first version of the paper and for his or her patience in pointing them out.

References

- ATIYAH, MICHAEL F.; MACDONALD, IAN G. Introduction to commutative algebra. Addison-Wesley Publishing Co.; Reading, Mass.-London-Don Mills, Ont. 1969. ix+128 pp. MR0242802, Zbl 0175.03601. 804, 812
- [2] BOURBAKI, NICOLAS. Commutative algebra. Chapters 1–7. Translated from the French. Reprint of the 1972 edition. Elements of Mathematics (Berlin). *Springer-Verlag, Berlin*, 1989. xxiv+625 pp. ISBN: 3-540-19371-5. MR0979760, Zbl 0902.13001. 810
- [3] DECAUP, JULIE; ROND, GUILLAUME. Preordered groups and valued fields. Preprint, 2019. arXiv:1912.03928. 801, 802, 815
- [4] DICKMANN, MAX; SCHWARTZ, NIELS; TRESSL, MARCUS. Spectral spaces. New Mathematical Monographs, 35. Cambridge University Press, Cambridge, 2019. xvii+633 pp. ISBN: 978-1-107-14672-3. MR3929704, Zbl 1455.54001, doi: 10.1017/9781316543870. 802, 804, 812
- [5] DOBBS, DAVID E.; FEDDER, RICHARD; FONTANA, MARCO. Abstract Riemann surfaces of integral domains and spectral spaces. *Ann. Mat. Pura Appl.* (4) 148 (1987), 101–115. MR0932760, Zbl 0646.13008, doi: 10.1007/BF01774285 801, 803, 804
- [6] DOBBS, DAVID E.; FONTANA, MARCO. Kronecker function rings and abstract Riemann surfaces. J. Algebra 99 (1986), no. 1, 263–274. MR0836646, Zbl 0597.13004, doi: 10.1016/0021-8693(86)90067-0. 801, 803
- [7] FINOCCHIARO, CARMELO A. Spectral spaces and ultrafilters. Comm. Algebra 42 (2014), no. 4, 1496–1508. MR3169645, Zbl 1310.14005, arXiv:1309.5190, doi:10.1080/00927872.2012.741875.801
- [8] FINOCCHIARO, CARMELO A.; FONTANA, MARCO; LOPER, K. ALAN. The constructible topology on spaces of valuation domains. *Trans. Amer. Math. Soc.* 365 (2013), no. 12, 6199–6216. MR3105748, Zbl 1297.13007, arXiv:1206.3521, doi: 10.1090/S0002-9947-2013-05741-8. 801, 803
- [9] FINOCCHIARO, CARMELO A.; FONTANA, MARCO; SPIRITO, DARIO. Spectral spaces of semistar operations. J. Pure Appl. Algebra 220 (2016), no. 8, 2897–2913. MR3471195, Zbl 1341.13003, arXiv:1601.03522, doi: 10.1016/j.jpaa.2016.01.008. 801
- [10] FINOCCHIARO, CARMELO A.; SPIRITO, DARIO. Some topological considerations on semistar operations. J. Algebra 409 (2014), 199–218. MR3198840, Zbl 1302.13003, arXiv:1404.3570, doi:10.1016/j.jalgebra.2014.04.002. 801
- [11] FONTANA, MARCO; HUCKABA, JAMES A.; PAPICK, IRA J. Prüfer domains. Monographs and Textbooks in Pure and Applied Mathematics, 203. *Marcel Dekker Inc.; New York*, 1997. x+328 pp. ISBN: 0-8247-9816-3. MR1413297, Zbl 0861.13006. 807
- [12] GILMER, ROBERT. Multiplicative ideal theory. Pure and Applied Mathematics, 12. Marcel Dekker Inc.; New York, 1972. x+609 pp. MR0427289, Zbl 0248.13001. 803, 804, 814
- [13] GILMER, ROBERT. Prüfer domains and rings of integer-valued polynomials. J. Algebra 129 (1990), no. 2, 502–517. MR1040951, Zbl 0689.13009, doi:10.1016/0021-8693(90)90233-E. 817

DARIO SPIRITO

- [14] HOCHSTER, MELVIN. Prime ideal structure in commutative rings. *Trans. Amer. Math. Soc.* 142 (1969), 43–60. MR0251026, Zbl 0184.29401, doi: 10.1090/S0002-9947-1969-0251026-X. 801, 802
- [15] HUBER, ROLAND; KNEBUSCH, MANFRED. On valuation spectra. Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), 167–206. Contemp. Math., 155, Amer. Math. Soc., Providence, RI, 1994. MR1260707, Zbl 0799.13002, doi: dx.doi.org/10.1090/conm/155. 801
- [16] KAPLANSKY, IRVING. Commutative rings. Revised edition. University of Chicago Press, Chicago, Ill.-London, 1974. ix+182 pp. MR0345945, Zbl 0296.13001. 807, 810, 811, 812, 815, 816
- [17] KRULL, WOLFGANG Über einen Existenzsatz der Bewertungstheorie. Abh. Math. Sem. Univ. Hamburg 23 (1959), 29–35. MR0104653, Zbl 0087.26702, doi: 10.1007/BF02941023. 817
- [18] NAGATA, MASAYOSHI. Local rings. Interscience Tracts in Pure and Applied Mathematics, No. 13. Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. xiii+234 pp. MR0155856, Zbl 0123.03402. 809
- [19] OLBERDING, BRUCE. Noetherian spaces of integrally closed rings with an application to intersections of valuation rings. *Comm. Algebra* 38 (2010), no. 9, 3318–3332. MR2724221, Zbl 1203.13027, doi: 10.1080/00927870903114979. 801
- [20] OLBERDING, BRUCE. Affine schemes and topological closures in the Zariski–Riemann space of valuation rings. J. Pure Appl. Algebra 219 (2015), no. 5, 1720–1741. MR3299704, Zbl 1320.13002, arXiv:1409.5113, doi: 10.1016/j.jpaa.2014.07.009. 801
- [21] OLBERDING, BRUCE. Topological aspects of irredundant intersections of ideals and valuation rings. *Multiplicative ideal theory and factorization theory*, 277–307. Springer Proc. Math. Stat., 170, *Springer, [Cham]*, 2016. MR3565813, Zbl 1349.13045, arXiv:1510.02000, doi: 10.1007/978-3-319-38855-7_12. 801
- [22] PERUGINELLI, GIULIO Transcendental extensions of a valuation domain of rank one. Proc. Amer. Math. Soc. 145 (2017), no. 10, 4211–4226. MR3690607, Zbl 1406.16041, arXiv:1611.00177, doi: 10.1090/proc/13574. 818
- [23] PERUGINELLI, GIULIO; SPIRITO, DARIO. Extending valuations to the field of rational functions using pseudo-monotone sequences. J. Algebra 586 (2021), 756–786. MR4293698, Zbl 07385179, arXiv:1905.02481, doi: 10.1016/j.jalgebra.2021.07.004. 818, 819
- [24] SCHWARTZ, NIELS. Compactification of varieties. Ark. Mat. 28 (1990), no. 2, 333–370.
 MR1084021, Zbl 0724.14036, doi: 10.1007/BF02387386. 801
- [25] SEIDENBERG, ABRAHAM. A note on the dimension theory of rings. Pacific J. Math. 3 (1953), 505–512. MR0054571, Zbl 0052.26902, doi: 10.2140/pjm.1953.3.505. 808
- [26] SPIRITO, DARIO. Non-compact subsets of the Zariski space of an integral domain. *Illinois J. Math.* 60 (2016), no. 3-4, 791–809. MR3705445, Zbl 1390.13064, arXiv:1705.01301, doi:10.1215/ijm/1506067291.801, 806, 816
- [27] SPIRITO, DARIO. Topological properties of localizations, flat overrings and sublocalizations. J. Pure Appl. Algebra 223 (2019), no. 3, 1322–1336. MR3862680, Zbl 1402.13022, arXiv:1805.10901, doi:10.1016/j.jpaa.2018.06.008. 801
- [28] SPIRITO, DARIO. When the Zariski space is a Noetherian space. *Illinois J. Math.* 63 (2019), no. 2, 299–316. MR3987498, Zbl 1420.13049, arXiv:1807.08645, doi:10.1215/00192082-7773701. 806, 808, 816
- [29] WILLARD, STEPHEN. General Topology. Reprint of the 1970 original. *Dover Publications, Inc.; Mineola, NY*, 2004. xii+369 pp. ISBN: 0-486-43479-6 MR2048350, Zbl 1052.54001. 811, 812, 813
- [30] ZARISKI, OSCAR. The reduction of the singularities of an algebraic surface. *Ann. of Math.* (2) 40 (1939), 639–689. MR0000159, Zbl 0021.25303, doi: 10.2307/1968949. 801
- [31] ZARISKI, OSCAR. The compactness of the Riemann manifold of an abstract field of algebraic functions. *Bull. Amer. Math. Soc.* **50** (1944), 683–691. MR0011573, Zbl 0063.08390, doi: 10.1090/S0002-9904-1944-08206-2. 801

[32] ZARISKI, OSCAR; SAMUEL, PIERRE. Commutative algebra. II. Reprint of the 1960 edition. Graduate Texts in Mathematics, 29. Springer-Verlag, New York-Heidelberg, 1975. x+414 pp. MR0389876, Zbl 0322.13001. 804

(Dario Spirito) DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA", UNIVERSITÀ DEGLI STUDI DI PADOVA, PADOVA, ITALY; CURRENT ADDRESS: DIPARTIMENTO DI SCIENZE MATEM-ATICHE, INFORMATICHE E FISICHE, UNIVERSITÀ DEGLI STUDI DI UDINE, UDINE, ITALY spirito@math.unipd.it; dario.spirito@uniud.it

This paper is available via http://nyjm.albany.edu/j/2022/28-32.html.