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Generating sets for the Kauffman skein
module of a family of Seifert fibered spaces
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ABSTRACT. We study spanning sets for the Kauffman bracket skein module
8(M, Q(A)) of orientable Seifert fibered spaces with orientable base and non-
empty boundary. As a consequence, we show that the KBSM of such mani-
folds is a finitely generated S(6M, Q(A))-module.
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Skein modules are a useful tool to study 3-manifolds. Roughly speaking, a
skein module captures the space of links in a given 3-manifold, modulo certain
local (skein) relations between the links. The choice of skein relations must
strike a careful balance between providing interesting structure and ensuring
that the structure is manageable [13]. The most studied skein module is the
Kauffman bracket skein module, so named because the skein relations are the
same relations used in the construction of the Kauffman bracket polynomial.

Let R be aring containing an invertible element A. The Kauffman bracket
skein module of a 3-manifold M is defined as the R-module S(M, R) spanned
by all framed links in M, modulo isotopy and the skein relations

(K1): \K = A) ( +A‘1/\< (K2): LU Q =(-A2-A7?)L.

Throughout this note, when R is unspecified, S(M) = S(M, Q(A)). Since its
introduction by Przytycki [12] and Turaev [15], S(M, R) has been studied and
computed for various 3-manifolds. It is difficult to describe S(M, R) for a given
3-manifold, although some results have been found'.

o 8(S3,Z[AF)]) = Z[AF].
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S(S' x 82, Z[A*1]) = Z[A*'] @ (@;j L Z[AF/(1 - A2i+4)) 8],
S(L(p, q), Z[ A*']) is a free module with | p/2]| + 1 generators [7, 3].
8(Z x [0,1], Z[A*']) is a freely generated by multicurves in T [13, 14].
8(Z x S',Q(A)) has dimension 228*! + 2g — 1if 9% = ¢, [4, 2].

In 2019, Gunningham, Jordan and Safronov proved that, for closed 3-manifolds,
S(M, C(A)) is finite dimensional [5]. However, for 3-manifolds with non-empty
boundary, this problem is still open. In [1], Detcherry asked versions of a finite-
ness conjecture for the skein module of knot complements and general 3-mani-
folds (see Section 3 of [1] for a detailed exposition).

Conjecture 0.1 (Finiteness conjecture for manifolds with boundary [1]). Let M
be a compact oriented 3-manifold. Then S(M) is a finitely generated S(6M, Q(A))-
module.

This paper studies the finiteness conjecture for a large family of Seifert fibered
spaces (SFS). Let X be an orientable surface of genus g with N boundary com-
ponents. Let n, b be non-negative integers with N = n+b. Foreachi =1, ..., n,
pick pairs of relatively prime integers (g;, p;) satisfying 0 < gq; < |p;|. The 3-
manifold £xS? has torus boundary components with horizontal meridians y; C
% x {pt} and vertical longitudes A; = {pt} x S'. Denote by M (g; b, {(q;» p)}",)
the result of Dehn filling the first n tori of 8 (£ x S') with slopes q;u; + p;4;.
Every SFS with orientable base orbifold is of the form M (g; b, {(q;, pi)}-,) [6].
The main result of this paper is to establish Conjecture 0.1 for such SFS.

Theorem 3.11. Let X be an orientable surface with non-empty boundary. Then
S(Z x SY) is a finitely generated S(OZ x S*, Q(A))-module of rank 28.

Theorem 4.1. Let M = M (g;b,{(q;, p)},) be an orientable Seifert fibered
space with non-empty boundary. Suppose M has orientable orbifold base. Then,

S(M) is a finitely generated S(OM, Q(A))-module of rank at most 2%8 H?zl(qu- -
1).

The following is a more general formulation of the finiteness conjecture.

Conjecture 0.2 (Strong finiteness conjecture for manifolds with boundary [1]).
Let M be a compact oriented 3-manifold. Then there exists a finite collection
%, ..., 2 of essential subsurfaces ¥; C M such that:

« for each i, the dimension of H,(Z;, Q) is half of H,(0M, Q);
« the skein module S(M) is a sum of finitely many subspaces Fj, ..., Fy,
where F; is a finitely generated S(Z;, Q(A))-module.

We are able to show this conjecture for a subclass of SFS.

Theorem 4.2. Seifert fibered spaces of the form M (g; 1,{(1, pi)};"zl) satisfy Con-
Jecture 0.2. In particular, Conjecture 0.2 holds for Zg 1 X St

The techniques in this work are based on the ideas of Detcherry and Wolff
in [2]. For simplicity, we set R = Q(A) by default, even though our statements
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work for any ring R such that 1 — A?™ is invertible for all m > 0. It would be
interesting to see if the generating sets in this work can be upgraded to verify
Conjecture 0.2 for all Seifert fibered spaces. Although there is no reason to
expect the generating sets to be minimal for general Seifert fibered spaces, we
wonder if the work of Gilmer and Masbaum in [4] could yield similar lower
bounds.

Outline of the work. The sections in this paper build-up to the proof of
Theorems 4.1 and 4.2 in Section 4. Section 1 introduces the arrowed diagrams
which describe links in = x S'. We show basic relations among arrowed dia-
grams in Section 1.1. Section 2 proves that (2 5 XS*) is generated by boundary
parallel diagrams. Section 3 studies the positive genus case 8(Z, y XS 1); we find
a generating set over (Q(A) in Proposition 3.10. In Section 4, we describe global
and local relations between links in the skein module of Seifert fibered spaces.
We use this to build generating sets in Section 4.2.

Acknowledgments. This work is the result of a course at and funding from
Colby College. The authors are grateful to Puttipong Pongtanapaisan for help-
ful conversations and Scott Taylor for all his valuable advice. In addition, the
authors want to thank the referee for suggesting ideas that improved the results
of this work.

1. Preliminaries

Most of the arguments in this paper will focus on finding relations among
links in £ x S! for some compact orientable surface =. The main technique is
the use of arrow diagrams introduced by Dabkowski and Mroczkowski [9].
An arrow diagram in X is a generically immersed 1-manifold in X with finitely
many double points, together with crossing data on the double points, and
finitely many arrows in the embedded arcs. Such diagrams describe links in
T x St as follows: Write S = [0,1]/ (0 ~ 1). Lift the knot diagram in = x {1/2}
away from the arrows to a union of knotted arcs in £ x [1/4, 3/4], and interpret
the arrows as vertical arcs intersecting X X {1} in the positive direction. We can
use the surface framing on arrowed diagrams to describe framed links in £x S*.

FIGURE 1. Example of arrowed diagram.
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Arrowed diagrams have been used to study the skein module of £y X S*
[9], prism manifolds [10], the connected sum of two projective spaces [11], and
>, x ST [2].

g

Proposition 1.1 ([9]). Two arrowed diagrams of framed links in £ x S* corre-
spond to isotopic links if and only if they are related by standard Reidemeister
moves Ri, R,, R; and the moves

|
R4): 1 ~ | ~ (R5): + ~ e | —.

From relation R,, we only need to focus on the total number of the arrows
between crossings. We will keep track of them by writting a number n € Z
next to an arrow. Negative values of n correspond to |n| arrows in the opposite
direction.

Throughout this work, a simple arrowed diagram (or arrowed multicurve)
will denote an arrowed diagram with no crossings. A simple closed curve in
will be said to be trivial if it bounds a disk. We will sometimes refer to trivial
curves bounding disks disjoint from a given diagram as unknots. Loops parallel
to the boundary will not be considered trivial. A simple closed curve will be
essential if it does not bound a disk nor is parallel to the boundary in X.

We can always resolve the crossings of an arrowed diagram via skein rela-
tions. Thus, every element in 8(Z x S!) can be written a Z[A*!]-linear com-
bination of arrowed diagrams with no crossings. The following equation will
permit us to disregard arrowed unknots, since we can merge them with other

loops.
n n-2 n-1
O-{ AT

{ n-1 n
= p = A # + A1
n
Proposition 1.2 ([2]). The skein module S(=x S') is spanned by arrowed multi-

Equation (1) implies Proposition 1.2.

curves containing no trivial component, and by the arrowed multicurves consist-
ing of just one arrowed unknot with some number of boundary parallel arrowed
curves.

Definition 1.3 (Dual tree [2]). Lety C X be an arrowed multicurve. Let ¢ be the
multicurve consisting of one copy of each isotopy class of separating essential
loop in y. Let V be the set of connected components of £ —c. Forv € V,
denote by X(v) C X the corresponding connected component of  — c. Two
distinct vertices share an edge (v;,v,) € E if the subsurfaces Z(v;) and Z(v,)
have a common boundary component. Define the dual tree of y to be the graph
I'(y) = (V,E). Since every loop in c is separating in X, the subsurfaces Z(v; ) and
%(v,) have at most one common boundary. Thus, I'(y) is a tree.



48 JOSE ROMAN ARANDA AND NATHANIEL FERGUSON

1.1. Relations between skeins. We now study some operations among ar-
rowed multicurves in 8(Z x S!) that change the number of arrows in a con-
trolled way. Although one can observe that all relations happen on a three-
holed sphere, we write them separately for didactical purposes.

In practice, a vertical strand will be part of a concentric circle. Lemma 1.4
states that we can change the sign of the arrows in an unknot at the expense of
adding skeins with fewer arrows. Lemma 1.5 allows us to ‘break’ and ‘merge’
the arrows in between two unknots. Lemma 1.6 states that we can ‘pop-out’
the arrows from a loop with the desired sign (of y and x) without increasing
the number of arrows in the diagrams. Lemma 1.7 lets us pass arrows between
parallel (or nested), and Lemma 1.8 is an explicit case of Equation (1). The
symbol % in Lemmas 1.5 and 1.7 will correspond to any subsurface of surface X.
In practice, % will correspond to a boundary component of T or an exceptional
fiber in Section 4.

Lemma 1.4 (Proposition 4.2 of [2]). Let Sy be an unknotin X with k € Z arrows
oriented counterclockwise. The following holds forn > 1,

(i) S; = A%S_;
(i) S_, = A~C"*9S, modulo Q(A){So, ..., Sp_1}-
(iii) S, = A*"*S_, modulo Q(AXS_¢,—1), ..., So}-

Lemma 1.5. Leta,b € Z with ab > 0. Then

(UQ@ A'“@ ®x:0$ax,0$|x|<

lal + |bl}.

(ii) Q@ eZ[AiH{@ £ 0 < |x| <lal}

Proof. Suppose first that a, b > 0. Using R5 we obtain

a X+1 a-1 X
a+x+1 a-1 a+x-1
SIOMOROIONON

By setting x = 0, the statement follows for b = 1 and all a > 1. For general
b > 1, we proceed by induction on a > 1 setting x = b in the equation above.
The proof of case a, b < 0 uses the equation above after the change of variable
a =—a’ +1and x = —x/. Part (ii) follows from Equation (1) withn =a. O

Thus,

Lemma 1.6. Foranym € Z — {0},
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m y X
@) ‘ e Z[Ai]{ ‘ Q Cmx >0,y €01}y + x| < |m|}.

y X

(i) ‘m eZ[A’—']{ Q :mxzo,ye{o,—1},|y|+|x|5|m|}.

Proof. Add one arrow pointing upwards at the top end of the arcs in Equation
(1) and set n = m — 1. We obtain the following equation

m m-1 m-2 m-2
A1 +A‘1)© =A‘1‘ +A O 3)

m
If m > 0, we can solve for ‘ and use it inductively to show Part (i). If m < 0,

m-2
we can instead solve for 1 and set m’ = m — 2. This new equation can be

use to prove Part (i) for m’ < 0.

m
Part (ii) is similar. Start with Equation (1) with m = n and solve for T to

prove Part (ii) for m > 0. If m < 0, set m = n — 2 in Equation (1). O

Lemma1.7. Foralla,b € Z,

b b+1 b-a+2 b-a
(lu)‘=A2‘+@ _Az@
b b-1 b-a-2 b-a
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Proof. One can use (K1) on the LHS of each equation to create a new crossing.

The result follows from (R5). O
Lemma 1.8.

1
Proof. Rotate Equation (1) by 180 degrees and setn = 1. O

2. Planar case

Fix a planar subsurface £’ C X with at least 4 boundary components. The
goal of this section is to prove Proposition 2.8 which states that (X’ xS!) is gen-
erated by arrowed diagrams with d-parallel arrowed curves only. In particular,
the rank of 8(Z’ x S') as a module over its boundary is at most one; generated
by the empty link.

We will study diagrams in linear pants decompositions. These are pants de-
compositions for ¥’ with dual tree isomorphic to a line. See Figure 2 for a con-
crete picture. Linear decompositions have N = |y(Z')| > 2 pairs of pants. By
fixing a linear pants decomposition, there is a well-defined notion of left and
right ends of £’. We denote the specific curves of a linear pants decomposition
as in Figure 2. We think of such decomposition as the planar analogues for the
sausage decompositions of positive genus surfaces in [2].

FIGURE 2. Linear pants decomposition for spheres with holes.

The main idea of Proposition 2.8 is to ‘push’ loops parallel to [; in a linear
pants decomposition towards the boundary of 0% in both directions. We do this
with the help of the A-maps from Definition 2.4; A ‘pushes’ loops towards the
left and A_ towards the right (see Lemma 2.5). This idea is based on Section 3.3
of [2] where the authors proved a version of Proposition 2.8 for closed surfaces.
The following definition helps us to keep track of the arrowed curves in the
boundary.
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Definition 2.1 (Diagrams in linear pants decompositions). Fix a linear pants
decomposition of ' and integers m > 0, k, € {1,...,N — 1}. For each k €
{0,...,N} —{ko},a € Z,and v € {0,1,@}", we define the arrowed multicurves
DL‘,U in X/ as follows: D’g’v has one copy of [, with a arrows, m copies of [, with
no arrows, and one copy of ¢; with v; arrows if v; = 0,1 and no curve ¢; ifv; = .
Notice that the positive direction of the arrows of the curves ¢; depends on the
(left/right) position of ¢; with respect to ; (see Figure 3). If k = k,, we define

IDZ?U (resp. rDl;f’D) as before with the condition that the left-most (resp. right-
most) copy of [ contains a arrows.

. k k
FIGURE 3. Definition of D¥ , D,’, and ,D",.

Lemma 2.2 (Lemma 3.11 of [2]). The following holds for any two parallel curves,

b ' —
‘a7 a1 _ 4 a )P 4 4m o a-b-1
— : —

In particular, foranya € Z, m > 0, and v € {0, 1, @}, we have

ko
a, v’

lDlz;?v = AzmarD
modulo Z[ A*']-linear combinations of diagrams with fewer non-trivial loops.

Lemma 2.3 allows us to change the location of the a arrows in the diagram
D at the expense of changing the vector v. Its proof follows from Proposition
3.50f [2].
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Lemma 2.3. The following equations hold fork € {1, ... ,N — 1}.
M) Ifk > ky, then

k - _ k+1 —1pk+1
ADa( )_A Da+2( WiesB,) ADa+1( 2Ue,1,0,...) -4 Da( WUk,0,0,...)"
(i) Ifk =k, then
_ ko+1 _ A—1pnketl
A’Da( U.0,...) —A™ Da+2( U0, ADa+1,(...,vk,1,ﬂ,,..) A Da,(...,vk,O,ﬂ,...)'
(iii) Ifk = ky, then
_ _ —1yko—1
AlDa+2 (....9, Vg - ) A7 lDa (., Uk o+ ) ADa e ﬂ 0,Ukg - ) —A Da+1,(...,ﬂ,1,vk0,... )
(iv) Ifk < kg, then
k -1k _ k—1 1 k-1
ADa+2( B,0k50) —A” Da( B0k, ADa( B,0,0k5... ) — AT Da+1( B,1,0k,..)°

Definition 2.4 (A-maps). Following [2], let V9% be the subspace of S(=’ x S1)
generated by arrowed diagrams with trivial loops and boundary parallel curves
in¥’. Consider V to be the formal vector space over Q(A) spanned by the dia-

grams DX, lDav and D ,foralla € Z,v €{0,1, ﬂ}N andk € {0, .. N}\{ko}
Define the linear map s : V — V given by s(Da,v) =

and rD’;?v). Define the maps A_,A,,and A, ,, by
A_=A-A"'s, A,=As—A"', A ,=A"ls— A"

D; +2 , (similarly for lD

Combinations of A-maps, together with Lemmas 2.5 and 2.6, will show that
the image of V in § (2’ x S') is a subset of V%',

Lemma 2.5. Let o(e) and z(e) be the number of ones and zeros of a vector e €
{0,1}".
(i) The following equation holds forall1 < n < k.

An (lD e )) Z (- 1)o(e)Az(e) o(e)D

a+o(e) (...0,e0,.)° (4)
e€{0,1}n

where e = (ey, ..., ,) is located so that vy, = ep,.
(ii) The following equation holds forall1 <n < N — k.

A" ( D Z (_l)z(e)Ao(e)—z(e)Dko‘l'” (5)

a,(eeor ... )) a+o(e),(....0,e,0,...)’
e€{0,1}n

where e = (eq, ..., e,) is located so that Uk, = €1-

Proof. We now prove Equation (4). The proof of Equation (5) is symmetric and
it is left to the reader. Lemma 2.3 with k = kj is the statement of case n = 1.
We proceed by induction on n and suppose that Equation (4) holds for some
1 <n <ky—1. Using Lemma 2.3 with k < kg, we show the inductive step as
follows,

A ( DZ’ ) (As — A71) oA (ID’;?Q,)
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— _1Y0(e) g1+z(e)—o(e) ko—n
- Z (=174 Da+2+o(e),(...,ﬂ,e,ﬂ,...)

e€{0,1}"
— (=1)0© g=1+2()-0(@) Dl;i;?e),(..., bedy
= ee{zo;l}n(—1)°(e)AZ(e>—°(e) [ADEOJ(Z)+2,(,,,,g,e,g,,,_) - A‘lD'Si_o?@,(...,g,e,@,...>
= ee{ZQ:l}n(_l)O(e)AZ(E)_O(e) [ADl;i;’gf;,l(_,,,g,o,e,g,,..) - A™'D s?i-_o?e_)il,(...,ﬂ,l,e,ﬂ,... )]

— _1Y0(e) g1+z(e)—o(e) ko—n-1
_ee{gl}"( 1) A Da+o(e),(...,ﬂ,0,e,ﬂ,...)

__1yo(e)+1 gz(e)—o(e)—1 yko—n—1
+( 1) A Da+o(e)+1,(...,ﬁ,l,e,ﬂ,...)

— __1y0(e) 4z(e)—o(e) nko—(n+1)
- Z (=D)7A Da+o(e),(...,ﬂ,e,ﬂ,...)'

e€{0,1}n+1
O
Lemma 2.6. Forany a € Z, we have Alfr" (IDZOﬂ) , N—=ko (rD’;"g) e V. Fur-
ko ( ko \ s 1 o ' o
thermore, A (,Da,ﬂ) is a linear combination of elements of the form Dal,’(v1 ..... by )

N—kq ( ko ) . N
and AZ ,Da’(/J is a sum of elements Da’,(ﬂ,...,ﬂ,vk0+1 ..... o)

Proof. Setting n = k, in Equation (4) yields the first half of the statement and
the condition Ai" (IDI;"@) € V%' The second conclusion follows by setting
n = N — k, in Equation (5). O

Proposition 2.7. The multicurves ZDS?U and rD’;

v eio,1,\N.

° liein V¥ forany a € Z and

Proof. By pushing the boundary parallel curves ‘outside’ ¥/, it is enough to
show the proposition for v = (J. Using Lemma 2.2, modulo arrowed multic-
urves with fewer non-trivial loops, we get that

ko

ko '\ _ ~ A2m(a+2) ko
s (lDa,ﬂ) =D ;= AP p

a+2,0°
Thus,
A, (iDfy,) =as (iDy,) — A™1Dg,

ko

~ A4m+1 A2ma
=ATTATND g

—1 g2ma ko
— AT ATD
— A2 4m+1 -1 ko
—A2ma [A mtls— A ] (VDa,ﬂ)
— A2ma ko
=A2map, . (D).
Hence, up to sums of curves with less non-trivial loops in ', Lemma 2.6 implies

Ak (,D’j’), N=k (erj?ﬂ)er’E’.

+,m X/}
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Finally, observe that A™'A, ,,, + A¥"*1A_ = (A%"+2 — A=2) Idy,. This yields

k k 1 N k
D* =1dY(,D° )= AN+ AIA ) (D).
r¥ap 4 (r a,ﬂ) (a2 — g2y ( +m ) (r a,ﬂ)
The result follows since Aljim (FDSO@) and AN (rDl;(’ﬂ) are both elements of
voX, 0

We are ready to describe an explicit generating set for S(Zx S*) for any planar
surface X.

Proposition 2.8. Let T be a N-holed sphere with N > 1. Then 8(Z x S') is
generated by arrowed unknots and d-parallel arrowed multicurves.

Proof. Proposition 2.8 is equivalent to the statement that S(ZxS!) is generated
by arrowed multicurves with dual trees isomorphic to a point. Let y be an ar-
rowed multicurve in X with I'(y) # {pt}. Lete = (v;, v,) be a fixed edge of T'(y),
and let T’ C T be the subsurface Z(v;) U Z(v,). By Lemma 2.2, up to curves of
smaller degree, we can arrange the arrows in the loops corresponding to e so
that only one loop (the closest to £(v,)) may have arrows. By construction, yn%’
has one isotopy class of separating non d-parallel curve in ¥’. Thus, there exists
a linear pants decomposition for ¥’ and integers a € Z, k, € {1, ..., | x(Z')| — 1}

so thaty = rDzoﬁ (we focus on the non d-parallel components of y N Z’). Propo-

sition 2.7 states that VDZOQ € V' Therefore, y is a Q(A)-linear combination of

arrowed multicurves with dual trees isomorphic to I'(y)/e; with fewer vertices
than T'(y). O

3. Non-planar case

This section further exploits the proofs in [2] to give a finiteness result for
8(=xS?1) for all orientable surfaces with boundary (Proposition 3.10). Through-
out this section, X will be a compact orientable surface of genus g > 0 with
N > 0 boundary components.

3.1. Properties of stable multicurves.

Definition 3.1 (Complexity). Let y be an arrowed multicurve. Denote by n
the number of non-separating circles of y, m the number of non-trivial non 9J-
parallel separating circles in y, and b the number of vertices in the dual tree of y
intersecting 0. We define the complexity of a multicurvey as (b, n + 2m,n + m)
and order them with the lexicographic order. An arrowed multicurve is said to
be stable if it is not a linear combination of diagrams with lower complexity.

Proposition 3.2, Proposition 3.3, and Lemma 3.4 restate properties of stable
curves from [2]. Fix a stable arrowed multicurve y in Z.

Proposition 3.2 (Proposition 3.7 of [2]). Let ¥’ = Z(v) be a vertex of T with
|0Z'| > 1 and g(Z') > 1. Theny N X contains at most one non-separating curve.
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Proposition 3.3 (From proof of Proposition 3.8 of [2]). Ife = (v, V) is an edge
of T with g(v") > 1, then the valence of v is at most two.

Lemma 3.4 (Lemma 3.9 of [2]). For a vertex v with g(v) > 1 and valence two,
y N Z(v) contains no non-separating curves.

Proposition 3.5 shows that stable arrowed multicurves satisfy b(y) = 1.

Proposition 3.5. Stable arrowed multicurves have dual trees isomorphic to lines.
Moreover, they are Q(A)-linear combinations of arrowed unknots and the two
types of arrowed multicurves depicted in Figure 4.

FIGURE 4. Type 1 multicurves contain only one isotopy class
of non-separating simple curve and type 2 at most two non-
separating loops.

Proof. Suppose b(y) > 1; i.e., there exist two distinct vertices v;,v, € T con-
taining boundary components of . We will show that y is not stable. There
exists a path P C X connecting v; and v,. For each vertex x € P, we define
a subsurface X/(x) C Z(x) as follows: If Z(x) is planar, define '(x) := Z(x).
Suppose now that g(x) > 1 and x & {v;, v,}. Proposition 3.2 states that y N Z(x)
contains at most one non-separating loop. Thus, we can find a planar surface
¥/(x) € Z(x) disjoint from the non-separating loop such that d%'(x) contains
the two boundaries of X(x) participating in the path P (see Figure 5). Suppose
now g(x) > 1 and x = v;. Using Proposition 3.2 again, we can find a subsurface
¥/(x) € Z(x) with 8%/(x) containing the Z(x) N 4 and the one loop of dZ(x)
participating in the path P (see Figure 5). Define &' C X to be the connected
surface obtained by gluing the subsurfaces ¥'(x) for all x € P. Since I'is a tree,
¥/ must be planar.

By construction y N X’ can be thought of as an element of (=’ X S*). Proposi-
tion 2.8 states that y N X/ can be written as Q(A)-linear combination of arrowed
diagrams with only trivial and d-parallel curves in ¥’. In particular, y can be
written as a linear combination of arrowed diagrams y’ in = with b(y") < b(y),
and so y is not stable.

Let y be an stable arrowed multicurve. Since b(y) = 1, there is a unique ver-
tex x, € I' with X C Z(x,). Notice that any vertex v € T of valence two either
has positive genus or is equal to x,. This assertion, together with Proposition
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FIGURE 5. Building the subsurface ¥’'.

3.3, implies that I is isomorphic to a line where every vertex different than x,
has positive genus.

The graph T\ {x,} is the disjoint union of at most two linear graphs I'; and
[',; T; might be empty. For each I'; # fJ, the subsurface %(T;) is a surface of
positive genus with one boundary component. If each I'; has at most one vertex
then y looks like curves in Figure 4 and the proposition follows. Suppose then
that I'; has two or more vertices and pick an edge e of T';. By Proposition 3.2 and
Lemma 3.4, ynX(e) contains at most one isotopy class of non-separating curves.
Denote such a curve by o ; observe that « is empty unless e is has an endpoint on
aleaf of T. Let =" be the complement of an open neighborhood of & in Z(e). By
construction, y N T contains one isotopy class of non-trivial separating curves
in £”. Note that £ has between 2 and 4 boundary components, since Z(e)
has one or two. Thus, by Proposition 3.12 of [2] we can ‘push’ the separating
arrowed loops in y N X" towards the boundary of £”. Thus, we can write y as a
linear combination of diagrams with dual tree I'/e. We can repeat this process
until we obtain only summands with each I'; having at most one vertex. O

Proposition 3.6. Let X be an orientable surface of genus g > 0 and N > 0 bound-
ary components. Then S(X x S') is generated by arrowed unknots and arrowed
multicurves with d-parallel components and at most one non-separating simple
closed curve.

Proof. Proposition 3.5 implies that S(Z x S') is generated by the arrowed di-
agrams in Figure 4. Using Proposition 3.12 of [2] with ¥’ being the shaded
surfaces in Figures 4 and 6, we obtain that S(Zx S!) is generated by arrowed di-
agrams as in the bottom left side of Figure 6 where l+1" = n; and m, n,, n, > 0.
Observe that, ignoring the m curves, the [ and I’ curves are parallel. Therefore,
by a slight generalization of Lemma 2.2, we can still pass arrows among the [
and I’ curves modulo linear combinations of diagrams of the same type with
lower n; but higher m. Thus, if we only focus on the complexity n; + n,, we
can follow the proof of Proposition 3.16 in [2] and conclude that 8(= x S?) is
generated by arrowed diagrams with n; + n, < 1.

The rest of this proof focuses on making m = 0. In order to do this, we
combine techniques in Section 2 of this paper and Proposition 3.12 of [2].
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FIGURE 6. One needs to apply Proposition 3.12 of [2] twice for
diagrams of type 2.

Case 1: n; + n, = 0. Fix m > 0. Let c be a separating curve cutting X into
a sphere with N + 1 holes and one connected surface of genus g > 0 with one
boundary component. The diagrams in this case contain only boundary parallel
curves and copies of ¢. Define V97 to be the formal vector space defined by such
pictures with at most m parallel separating curves. For each a € Z, define the
diagram ,D, (resp. ;D,) to be given by m + 1 copies of ¢, m of which have no
arrows and where the closest to the positive genus surface (resp. to the holed
sphere) has a arrows. By Lemma 2.2, in order to conclude this case, we only
need to check ,D, € V2%,
Define A, A_and A, ,, as in Section 2. First, observe that Lemma 2.6 implies
that Af 1Dy € anz. Using the computation in the proof of Proposition 2.7,

we conclude that AN 1 (,D,) € VoZ.

On the other hand, let &’ be the surface of genus g on the right side of ¢ with
one small disk removed. ¥’ has two boundary components, one parallel to ¢c and
the other curve ¢/ bounding a disk in =. Here, we can choose a sausage decom-
position for ¥’ so that ¢ and ¢’ are on the left and right, respectively. Using the
notation in Section 3.3 of [2], the arrowed diagram ,D, inside ¥’ corresponds

to the diagram ,Dg o With k = ko = 0. Thus, by repeated iterations of Lemma

3.13 of [2], we have A% (Do) = Aig (D), where D is a diagram with m copies of
¢, some boundary parallel curves, and one copy of ¢’ with a arrows. In Z, ¢’ is
an arrowed unknot which can be ‘merged’ to the rest of D using Equation (1).

Thus D € Vo= and so A% (,D,) € V9. Hence,
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2g+N-1
rDa =

1 _
G (AT A+ AT (:Dg) € VEE.

Case 2: n; +n, = 1. Fix m > 0. The diagrams in this case contain boundary
parallel curves, some copies of ¢, and exactly one non-separating curve denoted
by a. Define Vo7 to be the formal vector space defined by such pictures with at
most m copies of c. For a € Z, define ;D,, ,D, as in Case 1 with the addition of
one copy of a. In order to conclude this case, it is enough to show ,D, € V=,
Suppose that « has x € Z arrows. For a,b € Z, define ,E,; and |E,; to be
m copies of ¢ with no arrows and three copies of a with arrows arranged as in
Figure 7. We can define the map s on the diagrams ,E, , and |E, , by s(.E, ;) =
«Eq1p+1- Thisway, the mapsA_, A, A, , are defined on the diagrams D, and
Eyp. Define A_; = A — A73s. Using Lemma 2.2, up to linear combinations of
diagrams in V92, we obtain the following:

A_(+Eap) =ArEq0 — A Eata
S AP E, ) — AXD-LE
=A™ [AE,0 = A7 1Bgi1,]
=A¥A_; (iEqy)-

FIGURE 7. |E,p, and ,E,p -

Let =" be the subsurface of £ with three boundary components correspond-
ing to a copy of ¢ and two copies of a. As suggested in Figure 7, we can get
a sausage decomposition for £ such that the c is on the left end and both
copies of a lie on the right end. Using the notation of Section 3.3 of [2], the
diagrams D, and ,E, , inside =" correspond to the diagrams ng,o and Di‘?o_z
with kg = k = 0, respectively. After repeated iterations of Lemma 3.13 of [2],

we have A%7'(,D,) = A% (E).

Similarly, we can consider a sausage decomposed 3-holed sphere in X with
boundaries corresponding with two copies of « on left and one trivial curve on
the right. By Lemma 3.13 of [2] we obtain that A_ (,E,,) = A, (E) where E isa
diagram with m copies of ¢, one copy of a, some boundary parallel curves and
one arrowed trivial circle. We can merge the trivial circle to the rest of E using
Equation (1) and conclude that E € VSZ. Thus A_ (,E,) € V2.
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Putting everything together we conclude that
Ay (iBao) €Virs A_10A%7'(,D,) € VY.

Finally, notice that the argument in Case 1 implies that Aﬂ\r’;nl (+Dy) € V,ff. We
also have the following relations between A-maps.

144m+3A_,1 + A—1A+’m — (A4m+4 _ A—Z) IdV

A4m+1A_ 4 A_1A+,m — (A4m+2 _ A—Z)Idv

(A3 A‘1A+,m)N o (A 1A + A_1A+,m)2g_1

(A%m+4 — A-2IN(A4m+2 — A-2)28—1
When expanding the last expression, we see that every summand has a factor of

the form A_,loAzg_1 or Aﬂ\r’ :nl Hence, by evaluating ,D,, we obtain ,D, € anz
as desired. g

IdV=

3.2. A generating set for S(Z x S). To conclude the proof of finiteness for
the Kauffman Bracket Skein Module of trivial S'-bundles over surfaces with
boundary, this section studies relations among non-separating simple closed
curves.

Lemma 3.7. Any arrowed non-separating simple closed curve in Z can be written
as follows in 8(X x S*)

n n-1 n
(A-AHY)x] =4 —A7!
{ n-1
Proof. Using the R5 relation, we obtain * A = « X} - Thus,
( n
n n-2 n-1 n
Ax ]| —A7lx =A —A

Proposition 4.1 of [2] states that non-separating curves with n and n — 2 ar-
rows are the same in 8(= x S1). Thus, the result follows. O

Remark 3.8. [Application of Lemma 3.7] Let y be a non-separating simple
closed curve in X and let c € d%. Let ¥ be an arrowed diagram with one copy
of y and some copies of c¢; think of y to be ‘on the right side’ of c. Lemma 3.7
states that, at the expense of adding more copies of ¢ and arrows, y is a linear
combination of two diagrams where y is on the other side of c.
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Lemma 3.9. Let c be a non-separating curve in . Fix an orientation on c and
denote by c; the arrowed diagram given by one copy of ¢ with k arrows. If 3% # (,
then the submodule S(0Z x S') - {c; : k € Z} is generated by c,.

Proof. By Proposition 4.1 of [2], S(3Z x S!) - {c; }x is generated by ¢, and c;.
Therefore, it is enough to give a relation in 8(Z x S') between them. Denote by
U, an small unknot with one arrow oriented counterclockwise. We can draw
isotope U, so that U; - ¢y looks like the LHS of Lemma 1.8. By the lemma, we
obtain that U; - ¢, = —A%c; — A%c_,. Proposition 4.1 of [2] states that¢; = c_;,
giving us the desired relation

U

cl = —_A4 _A2 .

Co-
O

Proposition 3.10. Let X be an orientable surface of genus g > 0O and N > 0
boundary components. Let D C X be a (N + 1)-holed sphere containing 9%, and
let F be a collection of 2°6 — 1 non-separating simple closed curves in = — D such
that each curve in F represents a unique non-zero element of H{(Z\D; Z /27). Let
B be the collection {y Ua, U U a}, where y is a curve in F with zero or one arrows,
U is an arrowed unknot, and «a is any collection of boundary parallel arrowed
circles. Then B is a generating set for S(Z x S*) over Q(A).

Proof. By Proposition 3.6, we only need to focus on the non-separating curves.
Let ¥ be a non-separating simple closed curve in X. After using Lemma 3.7
repeatedly, we can write ¥ as a linear combination of arrowed diagrams of the
form y U a where y is a non-separating curve in X \ D and « is a collection of
boundary parallel curves. Observe that the work on Section 5 of [2] holds for
surfaces with connected boundary since generators for 7,(S,, *) and Mod(S,)
also work for Sg ;. Thus, by Proposition 5.5 of [2], two non-separating curves
71,72 C Z\D with the same number of arrows are equal in S(ExS1)if [y;] = [7,]
in H{(Z\ D; Z/27Z). The condition on the number of arrows for non-separating
curves follows from Proposition 4.1 of [2]. O

Theorem 3.11. Let X be an orientable surface with non-empty boundary. Then
S(Z x SY) is a finitely generated S(OZ x S*, Q(A))-module of rank 2.

Proof. Asamodule over S(0M), we can overlook d-parallel subdiagrams. Thus
Proposition 3.10 implies that S(M) is generated by the empty diagram @ and
diagrams in # with at most one arrow. By Lemma 3.9, the curves in & with one
arrow are S(6M)-multiples of curves with no arrows. Thus, S(M) = S(OM) -
(F uidh.

We now prove that the rank of (M) over 8(OM) is at least 228, For an ori-
ented simple closed curve c, denote by ¢, the diagram corresponding to ¢ with
k arrows. Following the argument of Gilmer and Masbaum in [4], S(M) has a
natural grading by H,(M, Z/27), thus it is also graded by H,(M,0M, Z /27).
The non-zero gradings correspond to the submodules S(0M)-y, foreachy € F,
and the zero grading is generated by the empty diagram S(6M) - @. In order to
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prove the proposition, it is enough to see that each S(6M) - y, and S(OM) - @ are
non-zero.

Let 2 be the closed surface of genus g obtained by capping of the boundaries
of T with disks, and let M = £ x S'. We think of the collection ¥ as a subset of
both X and 3. The main result of [2] states that the set {y,,7;, U, : ¥y € F,0 <
n < 2g}isa Q(A)-basis for S(M). By Proposition 2.2 of [13], there is a surjective
Q(A)-linear map f : S(M) — S(M) induced by the embedding M < M. In
particular, for each y € F, f restricts to the graded subspaces as follows

2g
8(BM) - yo = Q(A) - o ® Q(A) - 71, S(OM)- ¥ — EB@(A) U
n=0

The first restriction is onto since f(y,) = yoand f (_Ai]iAz . yo) = y; by Lemma

3.9. The second restriction is onto since each unknot U,, can be thought to be
inside S(0M). We conclude that S(OM) - y, and S(OM) - @ are non-zero since
their images are non-zero by [2]. So the rank of S(M) over S(OM) is 228. O

4. Seifert fibered spaces

Seifert manifolds with orientable base orbifold can be built as Dehn fillings of
~xS! where X is a compact orientable surface. A result of Przytycki [13] implies
that their Kauffman bracket skein modules are isomorphic to the quotient of
8(Z x S') by the subspace generated by all slide relations L — L’ where L is a
link in ©x S* and L/ is obtained by connected sum of L with a curve ¢ C X x S?
that bounds a disk after filling. In this section, we use these new relations to
show the finiteness conjectures for a large family of Seifert fibered spaces. For
details on the notation see next subsection.

Theorem 4.1. Let M = M (g;b,{(q;, p)},) be an orientable Seifert fibered
space with non-empty boundary. Suppose M has orientable orbifold base. Then,
S(M) is a finitely generated S(OM, Q(A))-module of rank at most 2?8 H?zl(qu' -
1).

Theorem 4.2. Seifert fibered spaces of the form M (g; 1,{(1, pi)};"zl) satisfy Con-
Jecture 0.2. In particular, Conjecture 0.2 holds for Zg | X St

4.1. Links in Seifert manifolds. Let £ be a compact orientable surface of
genus g > 0 with N > 0 boundary components. Fix non-negative integers
n, b with N = n + b. Denote the boundary components of X by d;, ..., dy and
the isotopy class of a circle fiber in £x S by 4 = {pt}x S'. Foreachi =1,...,n,
let (g;, p;) be pairs of relatively prime integers satisfying 0 < gq; < |p;|. Let
M (g;b,{(q;, pi)}?zl) be the result of gluing n solid tori to £ x S* in such way
that the curve p;[1] + q;[9;] € H,(3; x S') bounds a disk. In summary, X is the
base orbifold of the Seifert manifold, n counts the number of exceptional fibers,
and is b the number of boundary components of the 3-manifold.

Let M be an orientable Seifert manifold with orientable orbifold base. It is
a well known fact that M is homeomorphic to some M (g; b,{(q;, p,-)}l.=1) [6].
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Links in M can be isotoped to lie inside = x S*. Thus, we can represent links in
M as arrowed diagrams in X with some extra Reidemester moves. By Proposi-
tion 2.2 of [13] and Proposition 3.10, S(M) is generated by the family of simple
diagrams B ={yua,U U a}.

Definition 4.3. Let D € B. Let [; > 0 be the number of parallel copies of J;
in D. Let g; > 0 be the number of arrows (regardless of orientation) among all
components of D parallel to d;. If D contains an unknot U, denote by u > 0
the number of arrows in U. If D contains a non-separating loop, let u = 0. The
absolute arrow sum of D is the total number of arrows among its separating
loops s :=u+ 2} €. Disstandard if0 < ¢; < 1foreveryi = 1,...,N;and such

arrows (if exist) lie in the loop furthest from the boundary.

Remark 4.4 (Moving arrows). We think of Lemma 1.7 as a set of moves that
change the arrows between consecutive circles at the expense of adding ‘debris’
terms. Observe that [b —a + 2| < |a| + |b| aslongasb < Oora > 0. In
particular, the debris terms in the equations of Lemma 1.7 parts (i) and (iii)
will have absolute arrow sums bounded above by the LHS whenever b < 0 or
a > 0. The same happens with parts (ii) and (iv) when b > 0 or a < 0. This can
be summarized as follows: “We can move arrows between consecutive nested
loops without increasing the arrow sum nor [;."

Lemma 4.5. Every diagram D in B is a Z[ A*']-linear combination of standard
diagrams D’ satisfying s’ < s and I <1, Vi.

Proof. Let o be a collection of boundary parallel arrowed circles in X. It is
enough to write o as a Z[A*]-linear combination of standard diagrams D’ =
a’ U U’ with s < sand Il < ;. The result will follow since we can merge U’
with U or y using Lemma 1.5, without increasing the arrow sum, and then use
Proposition 4.1 of [2] to make the arrows in the new y-curves be one or zero.
Given such «, one can use Lemma 1.7 to push the arrows in a towards the inte-
rior of the surface. By Remark 4.4, we know which relation in Lemma 1.7 to use
in order to control the arrow sum in the debris terms. This process will eventu-
ally end, yielding diagrams a’ with only the most interior curve parallel to each
component of 0% having arrows. We can ‘pop’ the arrows from such curves us-
ing Lemma 1.6 without increasing the arrow sum. We then use Lemma 1.5 to
merge all the resulting arrowed unknots into one arrowed unknot U’. (|

The rest of this section is devoted to understand how the quantities s and [;
behave under certain relations in B. We use Lemma 4.5 implicitly to rewrite
any relation in terms of standard diagrams with bounded sums s and .

4.1.1. Local moves around an exceptional fiber. Fixanindexi € {1, ...,n}.
By construction, there is a loop f; in the torus d; x S! bounding a disk B; in M;
B; homologous to (p;[A] + ¢;[9;]) € H,(8; xS!, Z). Following [10], we can slide
arcs in T x S! over the disk B; and get new Reidemeister moves for arrowed
projections in £ x S1. We obtain a new move, denoted by Q(g;, p;) (see Figure
8).
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o35 =

-

FIGURE 8. Q(g;, p;) is obtained by drawing g; concentric circles
and p; arrows equidistributed. Notice that the orientation of the
arrows in the RHS is determined by the sign of p;.

We can perform the Q(g;, p;)-move on an unknot near the boundary J; and
resolve the g; — 1 crossings with K1 relations. Since 0 < g; < |p;|, there is only
one state with orientations of the arrows not cancelling. This unique state has
exactly g; concentric loops while the other states have strictly fewer loops and
no more than |p;| — 2 arrows. We then obtain an equation in S(M) called the
Q(q;, pi)-relation. Figure 9 shows a concrete example of this equation.

Remark 4.6 (The Q(g;, p;)-relation). The Q(g;, p;)-relation lets us write a dia-
gram with g; concentric loops and |p;| arrows arranged in a particular way as
a Z|A*]-linear combination of diagrams with 0 < I; < g; concentric circles
and 0 < ¢; < |p;| arrows (see Figure 9). The LHS has |p;| arrows oriented in
the same direction depending on the sign of p;; counterclockwise if p; > 0 and
clockwise otherwise. Notice that the condition 0 < g; < |p;| implies that every
parallel loop in the LHS has at least one arrow.

(@)t

FIGURE 9. Q(3, 5)-relation.

The special arrangement of arrows in the LHS of the Q(gq;, p;)-relation is im-
portant and depends on the pair (g;, p;). In practice, we rearrange the arrows
around the outer g; copies of 9; to match with the LHS of the Q(gq;, p;)-relation.
Lemma 4.7 uses this idea in a particular setup.

Lemma 4.7. The following equation in S(M) relates identical diagrams outside
a neighborhood of ;. Let D € B and x > |p,|. Suppose thatl, > q, the
loop furthest from 0, has x arrows with the same orientation as in the LHS of the
Q(q,, p;)-relation, and no other loop in D parallel to 3, has arrows. Then D is a

sum of diagrams D' € B with l; < l; and at most x arrows.
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Proof. Rearrange the arrows to prepare for the Q(q,, p;)-relation using Lemma
1.7. Remark 4.4 explains that the debris terms in this procedure will have arrow
sum at most x and l{ < I;. After performing the Q(q;, p;)-move, we obtain dia-
grams with lesser loops I/ < I;. Observe that the lower arrow sum is explained
due to at least one pair of arrows getting cancelled; this always happens since
0 < g; < |p1l- In particular, we lose at least two arrows when performing the
move. (]

4.1.2. Global relations. We now discuss relations among elements in B of
the form U U a. Lemma 4.8 permits us to add new loops around each 9J; all of
which have one arrow of the same direction. This move is valid as long as we
have enough arrows on the unknot U;i.e. u > 4g + 2N. The debris terms are
Z[A*!]-linear combinations of standard diagrams with fewer arrow sum and
ll.’ < I; + 1. This move is key to prove Theorem 4.2.

Consider the decomposition 2P, of ¥ described in Figure 10. Set d, to be the
left-most unknot in P, oriented counterclockwise. As we did in Definition 2.1,
if v; € Z we will draw one copy of 9; with v; arrows oriented as in P, and do
nothing if v; = @. Forv € (Zu {(/)})NH, denote by E,, the diagram obtained
by drawing 0; with v; arrows on it. For example, E g g corresponds to the
arrowed unknot S.

We define the A-maps from Definition 2.4 on the family of diagrams E,, with

.....

Z“

FIGURE 10. 2, induces linear pants decompositions on X"/ and
sausage decompositions on X'.

exactly one of v, and vy being empty. If vy = @ and vy € Z, define s(E,) =
.......... UN_1,UN)"

Lemma 4.8. Let a > 0. The following equation in 8(X x S') holds modulo
Z[A*')-linear combinations of diagrams E. g0y ANd Egn o o) oo . g) Where
a’,d’ > 0ande; € {0,1} are integers with a’ and a”" + )] e; inside the inter-
val [0,a + 4g + 2N — 2).

~ N—1 p—4g—2N+2
Eg. ga+agron—2) = (1N AT TNTE (g NC 110,10
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Proof. Observe first that 2, induces a linear pants decomposition on £’ as in
Section 2. Here, a copy of 0y with x € Z arrows, E g ), corresponds to the
diagram DxN, (_glﬂ) Equation (4) of Lemma 2.5 with n = k; = N — 1 states the
following

N-1 N-1 _ __1Y0(e) gz(e)—o(e) 10
A+ <Da,(ﬂ ,,,,, Q’)) - Z (=1)"A* Da+o(e),e
e€f{0,1}N-1

For any x € Z and v € {0, 1} 1, the diagram DY , contains a copy of the curve
c (see Figure 10) with x arrows. Now, observe that . also induces a sausage
decomposition of ¥’ (see [2]). Using the notation in Section 3.3 of [2], the part
of the diagram ng,v inside the subsurface ¥’ C ¥ is denoted by Dig . Proposition
S . 28 /2 2 .
3.13 of [2] implies the equation A +g (D:%) = AZ(DY), where DY is a copy of the
left-most unknot d, (red loop) in P, with x arrows. Putting everything together,
we obtain the following relation in §(Z x S!):
2g+N-1 _ 2
A+g (E(ﬂ ..... ﬂ,a)) = Z (_1)0(6)‘42(6) O(e)A—g(E(a+o(e),el ..... eN_l,ﬁ))'
e€f0,1}N-1

The result follows by taking the summands on each side with the most number
of arrows. u

4.2. Proofs of Theorems 4.1 and 4.2. Recall that S(M) is generated by all
standard diagrams, and such diagrams are filtered by the complexity (s, Zi 1)
in lexicographic order. Here, s = u + ;. ¢; is the absolute arrow sum and ). I;
is the number of boundary parallel loops. Throughout the argument we will
have debris terms with lower complexity (s, Zl. llf ); on each of those terms, we
can perform a series of combinations of Lemmas 1.6, 1.4, 1.5, and 1.7 in order to
write them in terms of standard diagrams with complexities s” < s"and Il < I.

Let D € B be a diagram. Suppose that D is of the form D = y U a, where
y is an non-separating simple closed curve with at most one arrow and « is a
collection of arrowed boundary parallel loops. We can rewrite D in S(M) as

= (Az:q_z)(D U U) where U is a small unknot with no arrows. Proposition

4.9 focuses on the subdiagram U U « near a fixed boundary component.

Proposition 4.9. Let D € B be a standard diagram with l;, > gq;, for some
iy € {1,...,n}. Then D is a linear combination of some standard diagrams D’
identical to D outside a neighborhood of d; , satisfying

1y’

llfO <l,andu’ + Elfo <2(u+ |p;,D-

Proof. For simplicity, set i, = 1. We assume that p; > 0 so that the arrows in
the LHS of the Q(q,, p;)-relation are oriented counterclockwise; the other case
is analogous. We can assume that if e; = 1, then the orientation of the arrow
in the loop furthest from 9, agrees with the LHS of the Q(q;, p;)-relation. This
is true since Lemma 1.8 lets us flip the orientation at the expense of having one
debris diagram with I = I;, €] = 0, and 4’ = u + 1. By Lemma 1.4, we can also
assume that the arrows in U are oriented counterclockwise. The finitely many
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debris terms will have all 0 < u’ < u arrows in U’ oriented counterclockwise.
We then apply the argument below to each of them.

Denote by D, the standard diagram in B, identical to D away from a neigh-
borhood of d; with [; copies of d;, having x arrows oriented counterclockwise
in the loop furthest from J,. Recall that S, denotes a small unknot with a € Z
arrows oriented counterclockwise. We have that D = D, U S, where the dis-
joint union of the diagrams is made so that S,, lies inside a small disk away from
the diagram D, .

Merge the arrows on U with the outer loop around J; using Lemma 1.5.
Thus, D is a linear combination of diagrams D, with no unknots (U = #). If
g, = 1, since the arrows in U and the outer loop are oriented counterclock-
wise, the condition ab > 0 in Lemma 1.5(i) is satisfied and we get diagrams
with 0 < x < u + ¢;. If ; = 0, we obtain diagrams with 0 < |x| < u. We focus
on each D,. Use the relation around 0,

\XH P X X+ X+2
2 - () (Fo (@

to write D,, as a linear combination of D,,; U S; and D,,,. Thus, at the ex-
pense of getting a cluster of 1-arrowed unknots S, ;, we can increase/decrease
the arrows in the outermost loop around J;. Hence, the original diagram D is
a linear combination of diagrams of the form D, U (U,S;) where x > p;,y > 0
and x +y < 2(u + p;). To see the upper bound for x + y, observe that if we start
with D_,,, one might need to add a copy of S; (u + p;) times in order to reach
X > p;. Lemma 4.7 implies that each D, U (Uysl) is a linear combination of
diagrams with Il < I; and at most x + y arrows. After making such diagrams
standard and merging the arrowed unknots, we obtain diagrams with l; <L
and u’ + ¢} < 2(u + p;) as desired. O

Proof of Theorem 4.1. LetM = M (g; b, {(q;, p;)}\",) be a Seifert fibered space
with non-empty boundary. Proposition 3.10 and Lemma 4.5 imply that S(M)
is generated over Q(A) by standard diagrams in B. Furthermore, it follows
from Lemmas 1.5, 1.7, and 1.8 that it is enough to consider standard diagrams
with all arrows on separating loops oriented counterclockwise. Notice that the
standard condition allow us to overlook the numbers [, j for j =1,...,b since
they correspond to coefficients of the ring S(OM, Q(A)).

Divide the collection B into two sets B, = {y Ua} and By = {U Ua}. Using
Proposition 4.9, we obtain that Q(A) - B, is generated by standard diagrams
D =y U a withy € F has at most one arrow, 0 < [; < q; fori € {1,...,n}, and
all arrows in copies of d-parallel loops oriented counterclockwise. Since M has
non-empty boundary, we can run the argument in Lemma 3.9 with an unknot
near 0,,, C 0 to write y,; U « as a scalar multiple of yo U a. Here y, denotes
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a copy of y with k arrows. Hence, Q(A) - B, is generated as a S(OM, Q(A))-
module by a set of cardinality

n
ras < (22 -1 [ g — D).
i=1
Proposition 4.9 implies that Q(A) - By is generated over Q(A) by standard dia-
grams satisfying 0 < [; < g; foralli = 1, ..., n. Therefore, since U can be pushed
towards the boundary, Q(A) - By is generated over S(0M, Q(A)) by a finite set
of cardinality

n
ro < [Jai -1,
i=1

Hence, S(M) is a finitely generated S(OM, Q(A))-module. O

Proof of Theorem 4.2. Let 1 C dM be a S!-fiber and let uy = dy X {pt} be a
meridian of M. Fori = 1, ..., n, the Q(1, p;)-move turns loops parallel to J; into
arrowed unknots. Thus, Proposition 3.10, Lemma 4.5, and Equation (1) imply
that S(M) is generated over Q(A) by standard diagramsin B = {yUa, UUa}with
no parallel loops around the exceptional fibers. In particular, o only contains
loops around dy. Hence Q(A) - B, is generated over Q(A)[uy] by elements of
the form y and y U @ where y € & has at most one arrow and « is a copy of dy
with one arrow.

Let UUa € By and suppose that U has u # 0 arrows. Using Equation (6) of
Proposition 4.9, we can assume that the loop of « furthest to the boundary has
at least one arrow. Then, using Lemmas 1.4 and 1.5, we can write any diagram
in By; as a Q(A)-linear combination of diagrams with only d-parallel curves and
such that the loop furthest to dy has x > 0 arrows oriented clockwise. In other
words, Q(A) - By = Q(AXU, /,Lllf] - oty |k, x > 0), where a, denotes a copy of uy
with x arrows.

We will see that it is enough to consider 0 < x < 4g + 2n. Take ,u’li, o

with k > 0 and x > 4g + 2n. By Lemma 4.8, ,uf, - a, is a Z[A*!]-linear
combination of diagrams of the form U U /xﬁ, and /,t]’% ca, with0 <y < x.

We can proceed as in the previous paragraph and write the diagrams U U ,uﬁ,

as Z[A*!']-linear combinations of /,anx(o’k_l) - ot for some x’ > 0. Hence,

Q(A) - By = Q(AXU, /,Lllf, -0, |0 <k,0 < x <4g+ 2n).
To end the proof, consider F, the subspace

Q(A) - By + QA - a,]0 < x < 4g + 2n),

and F, the Q(A)-subspace generated by arrowed unknots. By Proposition 3.10,
S(M) = F; + F,. Let ¥; and X, be neighborhoods of yy and 1 in dM, re-
spectively. We have shown that F; is a 8(Z;, @Q(A))-module of rank at most
2(2%*1 —2) + 4g + 2n. Also, since every arrowed unknot can be pushed inside
a neighborhood of Z,, F, is generated over S(Z,, Q(A)) by the empty link. So
F,isa 8(Z,, Q(A))-module of rank at most one. O
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