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Extensions of symmetric operators that are
invariant under scaling and applications

to indicial operators

Thomas Krainer

Abstract. Indicial operators are model operators associated to an elliptic
di�erential operator near a corner singularity on a strati�ed manifold. These
model operators are de�ned on generalized tangent cone con�gurations and
exhibit a natural scaling invariance property with respect to dilations of the
radial variable. In this paper we discuss extensions of symmetric indicial op-
erators from a functional analytic point of view. In the �rst, purely abstract
part of this paper, we consider a general unbounded symmetric operator that
exhibits invariance with respect to an abstract scaling action on a Hilbert
space, and we describe its extensions in terms of generalized eigenspaces of
the in�nitesimal generator of this action. Among others, we obtain a Green
formula for the adjoint pairing, an algebraic formula for the signature, and in
the semibounded case explicit descriptions of the Friedrichs andKrein exten-
sions. In the second part we consider di�erential operators of Fuchs type on
the half axis with unbounded operator coe�cients that are invariant under
dilation, and show that under suitable ellipticity assumptions on the indi-
cial family these operators �t into the abstract framework of the �rst part,
which in this case furnishes a description of extensions in terms of polyho-
mogeneous asymptotic expansions. We also obtain an analytic formula for
the signature of the adjoint pairing in terms of the spectral �ow of the indi-
cial family for such operators.
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1. Introduction
We begin by describing in informal terms the setting for the problems that this
paper addresses. LetM be a singular manifold. A corner singularity is a point
p with an open neighborhood U(p) ⊂ M that is modeled on a neighborhood

U(p0) ⊂
(
ℝ+ × Y

)
∕
(
{0} × Y

)

of p0 =
(
{0} × Y

)
∕
(
{0} × Y

)
, where the link manifold Y is generally also a

manifold with singularities. If Y is closed and compact this is the setting of
a conical singularity. The inferred splitting of variables can be thought of as
generalized polar coordinates, where themanifoldY represents the domain for
the spherical variables, and the variable x > 0 is the radial (distance) variable
from the corner point. The spaceℝ+×Y is a generalized tangent cone equipped
with a model cone metric dx2 + x2gY for some metric gY on Y, and locally the
map

U(p0) ⧵ {p0}→ U(p) ⧵ {p}

may be thought of as a generalized exponential map centered at p0 from the
tangent cone to the manifold. In particular, an elliptic di�erential operator A
near p onM can be pulled-back via this map to an elliptic di�erential operator
near p0 on the tangent cone ℝ+ × Y, also denoted by A for the moment. Write

A = x−m
m∑

j=0

aj(x, y, Dy)(xDx)
j

near p0, where m > 0, and aj(x, y, Dy) is a di�erential operator on Y of order
m − j. We assume that the coe�cients aj(x, y, Dy) depend continuously on x
up to x = 0. The tangent cone admits an ℝ+-action by scaling the variable x,
and pull-back of functions with respect to this action gives rise to

(
�%u

)
(x, y) = u(%x, y), % > 0, (1.1)

for functions u(x, y) on ℝ+ × Y. De�ne

A∧u = lim
%→∞

%−m�−1% A�%u,

where u has compact support in x. In this way we obtain the indicial oper-
ator A∧, the model operator associated with A at the corner singularity. The
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operator A∧ is invariant under scaling in the sense that

A∧ = %m�%A∧�
−1
% , % > 0, (1.2)

by the limit construction; we have

A∧ = x−m
m∑

j=0

aj(xDx)
j, (1.3)

where aj = aj(0, y, Dy).
Our objective here is to describe L2-extensions of the operator A∧. The geo-

metric L2-space on ℝ+ × Y subject to the model metric dx2 + x2gY identi�es
with the weighted space x−�L2

b
(ℝ+;L

2(Y; gY)) for � =
dimY+1

2
, where L2

b
de-

notes the L2-space on ℝ+ with respect to Haar measure dx

x
. Multiplication by

x� ∶ x−�L2
b
→ L2

b
is a unitary equivalence, and because the class of operators

A considered here and the construction leading toA∧ are preserved under con-
jugation by arbitrary powers x� we can base all considerations on the Hilbert
space L2

b
(ℝ+;L

2(Y; gY)). Observe that the scaling action (1.1) is unitary on this
space.

If Y is a strati�ed manifold with boundary/singular set Σ ⊂ Y, generalized
ideal boundary conditions along the lateral boundaryℝ+ ×Σ are required. Ab-
stractly these are vanishing conditions in the form T∧u = 0, where T∧ ought
to be thought of as the lateral model boundary condition for A∧ associated to a
lateral boundary condition Tu = 0 forA. The development of a robust analytic
theory of elliptic ideal boundary conditions associated with singular sets at the
implied level of generality remains the subject of ongoing investigations by the
community of researchers working on singular PDEs, and as of yet only exists
for certain con�gurations or certain speci�c geometric operators and boundary
conditions (references are discussed below). We will forego this problem by
treating the lateral boundary condition in functional analytic terms and con-
sider the operator (1.3) abstractly as an ordinary di�erential operator of Fuchs
type on ℝ+ as

A∧ = x−m
m∑

j=0

aj(xDx)
j ∶ C∞c (ℝ+;E1) ⊂ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E0), (1.4)

where E0 and E1 are Hilbert spaces such that E1 ↪ E0 is continuous and dense,
and the aj ∶ E1 → E0 are bounded. This matches the setting above with E0 =
L2(Y; gY), and E1 the common domain of the indicial family

p(�) =

m∑

j=0

aj�
j ∶ E1 ⊂ E0 → E0, (1.5)
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considered here a family of unbounded operators in E0. The space E1 encodes
the (lateral) boundary condition1 along Σ ⊂ Y.

The closed extensions of the operator (1.4) in L2
b
(ℝ+;E0) are then expected to

encode boundary conditions as x → 0 at the corner point p0 that are associated
with realizations of themodel operatorA∧ onℝ+×Y subject to previously cho-
sen lateral boundary conditions, and it is those extensions thatwe are interested
in here.

We will assume that (1.4) is symmetric. The general case can often be re-
duced to this situation by considering instead

A∧ = [
0 A∧

A
♯

∧ 0
] ∶ C∞c

⎛

⎜

⎝

ℝ+;

Ẽ1
⊕

E1

⎞

⎟

⎠

⊂ L2
b

⎛

⎜

⎝

ℝ+;

E0
⊕

E0

⎞

⎟

⎠

→ L2
b

⎛

⎜

⎝

ℝ+;

E0
⊕

E0

⎞

⎟

⎠

,

where

A
♯

∧ = x−m
m∑

j=0

bj(xDx)
j ∶ C∞c (ℝ+; Ẽ1) ⊂ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E0)

is the formal adjoint operator to A∧ with indicial family

p(�⋆)∗ =

m∑

j=0

bj�
j ∶ Ẽ1 ⊂ E0 → E0,

where �⋆ = � − im is re�ection about the line ℑ(�) = −
m

2
, and Ẽ1 ↪ E0 is

assumed to be the common domain of the adjoints of (1.5).
LetDmin be the domain of the closure of (1.4), andDmax be the domain of the

adjoint. The expectation from known cases (particularly conical singularities)
is that each u ∈ Dmax has a �nite polyhomogeneous asymptotic expansion of
the form

u ∼
∑

�0,j

e�0,j log
j
(x)xi�0 mod Dmin as x → 0 (1.6)

with certain e�0,j ∈ E1 and characteristic values �0 ∈ spec
b
(A∧) ⊂ ℂ, the

boundary spectrum ofA∧, and the domains of extensionsDmin ⊂ D ⊂ Dmax of
A∧ then correspond to placing vanishing conditions on these asymptotic terms
which establishes an explicit correspondence for such operators between their
functional analytic extensions on the one hand, and an analytic notion of gen-
eralized boundary conditions by prescribing conditions on the asymptotic be-
havior of functions on the other hand.

1As we consider the space E1 to be �xed this does not include all relevant boundary con-
ditions. For example, if Y is a smooth, compact manifold with boundary, the general notion
of lateral boundary conditions ought to include classical Shapiro-Lopatinsky elliptic boundary
conditions onℝ+×)Y, but �xing the spaceE1 in this casemeans that the lateral model boundary
condition T∧u = 0 cannot di�erentiate in the x-direction.
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The asymptotic expansion (1.6) is to be understood as

u − !
∑

�0,j

e�0,j log
j
(x)xi�0 ∈ Dmin,

where ! ∈ C∞c (ℝ+) is a cut-o� function with ! ≡ 1 near x = 0. Here

spec
b
(A∧) = {� ∈ ℂ; p(�) ∶ E1 → E0 is not invertible},

and the exponents �0 ∈ spec
b
(A∧) that appear in the expansion (1.6) are those

located in the strip −m < ℑ(�0) < 0; moreover,

� ↦ p(�)M
[
!

∑

�0,j

e�0,j log
j
(x)xi�0

]
(�)

is entire, where
(
Mv

)
(�) = ∫

∞

0

x−i�v(x)
dx

x

is the Mellin transform. Observe that the functions that constitute the asymp-
totic expansion (1.6) for each �0 are generalized eigenfunctions of g = xDx with
eigenvalue �0, the in�nitesimal generator of the radial scaling action �% = %ig

from (1.1) in L2
b
(ℝ+;E0). More precisely, aftermultiplying by!, these functions

render generalized eigenfunctions of gmodulo C∞c in L2
b
(ℝ+;E0).

In the present paper we investigate indicial operators (1.4) from two points of
view. As only model operators are studied, we are going to shorten notation
and write A instead of A∧ in the main body of the paper, but stay with A∧ for
the remainder of the introduction.

In the �rst, purely abstract part of this paper which spans Sections 2 through
5, we consider a general unbounded symmetric operatorA∧ that exhibits an in-
variance property (1.2) with respect to an abstract unitaryℝ+-action �% = %ig on
a Hilbert space. Assuming �nite de�ciency indices, we describe its extensions
in terms of generalized eigenspaces of the in�nitesimal generator g of this ac-
tion (modulo Dmin), which furnishes a correspondence between closed exten-
sions of A∧ on the one hand, and invariants of the underlying dynamics of �%
in relation to the operator A∧ on the other hand, which can be seen as a gener-
alization of the notion of boundary conditions via asymptotic expansions (1.6).
Among others, we obtain a Green formula for the adjoint pairing, an algebraic
formula for its signature, and if A∧ is semibounded we �nd explicit descrip-
tions of the Friedrichs and Krein extensions. Moreover, for extensions that are
invariant under �%, we �nd an equivalent characterization of the order relation
for semibounded extensions solely in terms of the boundary condition. Much
of the analysis in the �rst part occurs on the quotient space Êmax = Dmax∕Dmin,
which is �nite-dimensional by assumption. The scaling action �% induces an
action �̂% = %iĝ on Êmax , and the invariance relation (1.2) implies that ĝ+ i

m

2
is

selfadjoint with respect to the inde�nite Hermitian sesquilinear form on Êmax
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that is induced by the adjoint pairing. Linear algebra for such spaces, in par-
ticular the Canonical Form Theorem in this setting [26], is then applied. We
note that our results for semibounded A∧ require the sign condition, a tech-
nical property pertaining to the invariants of the canonical form of ĝ on Êmax
and the adjoint pairing; for semibounded indicial operators the sign condition
is satis�ed, see Section 9.

In the second part we consider operators A∧ that are slight generalizations
of the di�erential operators of Fuchs type (1.4) in L2

b
(ℝ+;E0) in that the power

of the singular factor and the order of di�erentiation are allowed to be decou-
pled, and the dilation action �%u(x) = u(%x) is considered on L2

b
(ℝ+;E0). The

precise assumptions on A∧ and the indicial family (1.5) are formulated in Sec-
tion 6. Our goal has been to impose minimal ellipticity assumptions. Aside
from symmetry, all assumptions on A∧ are invariant with respect to conjugat-
ing the operator by arbitrary powers x�. In particular, we are not imposing
invertibility assumptions on (1.5) along lines ℑ(�) =  for speci�c values of
, but Fredholmness of (1.5) and invertibility for large |ℜ(�)| ≫ 0 with esti-
mates are needed. The objective is to show that these operators then directly �t
into the abstract framework of the �rst part, which con�rms that extensions are
characterized by the asymptotic behavior (1.6) of functions as x → 0. In par-
ticular, all results of the �rst part apply and have a direct equivalent in terms
of asymptotic expansions as x → 0. The starting point for the analysis are von
Neumann’s formulas

Dmax = Dmin ⊕ ker(A∧,max + i)⊕ ker(A∧,max − i).

One of the key arguments is proving that functions u ∈ ker(A∧,max ± i) are de-
creasing rapidly as x →∞ (intuitively, this implies that describingDmax∕Dmin

can only be about the behavior of functions as x → 0, as is expected). To achieve
this, left-parametrices for A∧,max ± i are needed modulo remainders that pro-
duce the required rapid decay as x →∞, and we will obtain these parametrices
by constructing in actuality right-parametrices for A∧,min ∓ i and then passing
to adjoints. The parametrix construction requires a pseudodi�erential calculus
whichwe develop in Appendix A. In Section 7we lay groundwork for weighted
function spaces associated with A∧, in particular in relation toDmin, while the
main result for indicial operators that explicitly describes Dmax modulo Dmin

in terms of asymptotic expansions is proved in Section 8 (see Theorem 8.1).
Finally, in Section 9 we prove that the signature of the adjoint pairing of the

indicial operator A∧ is given by the spectral �ow of the indicial family (1.5)
along the lineℑ(�) = −

m

2
, where p(�) is selfadjoint and Fredholm by assump-

tion. More precisely, each indicial root along ℑ(�) = −
m

2
contributes a term

to the signature that is described algebraically in the �rst part of the paper in
terms of invariants of the canonical form for the generator ĝ of the induced
scaling action �̂% on Êmax = Dmax∕Dmin and the adjoint pairing, and this term
is shown to coincide with the contribution of the spectral �ow of p(�) across
that indicial root. The proof is based on local arguments in analytic Fredholm
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and perturbation theory to bring p(�) into a normal form near an indicial root
�0 with ℑ(�0) = −

m

2
from which these relations follow. The details of these

arguments are relegated to Appendix B and C. As previously mentioned, we
also prove here that semibounded indicial operators A∧ always satisfy the sign
condition.

This paper addresses problems that have a long history, going back to seminal
contributions byKondrat’ev [31], who investigated Fredholm solvability of clas-
sical boundary value problems in domainswith isolated conical singularities on
the boundary, and Cheeger [15, 16] who initiated geometric and global analysis
on singular manifolds. Both contributions seeded independent developments
(e.g. [18, 33, 48] are rooted in Kondrat’ev’s theory, [3, 4, 14] draw their inspi-
ration from Cheeger’s works), which have increasingly been merging since the
1990s [7, 6, 12, 24, 36, 37, 39, 43, 44, 47, 45, 50, 51, 52, 53], in�uenced by Mel-
rose and Schulze. An analytic theory of solvability, regularity in Sobolev spaces
with weights, and asymptotics for di�erential equations with unbounded op-
erator coe�cients with applications to partial di�erential equations in general-
ized cones and cylinders is developed in [32].

This paper is motivated by recent works [2, 4, 27, 28, 37, 38, 44] that con-
tribute towards developing elliptic theory for operators on incomplete strati-
�ed manifolds. The long-term goal is a robust elliptic theory of ideal boundary
conditions associated with the singular strata, and the model operator level is
essential for this. Speci�cally, our goals for this paper align with Lesch’s book
[39], and with the papers by Gil and Mendoza [24] and Coriasco, Schrohe, and
Seiler [17]. Both [24, 39] investigate extensions of elliptic operators on com-
pact manifolds with isolated conical singularities, and both consider fully gen-
eral elliptic operators of any order which distinguish them from other investi-
gations that center on operators of Dirac or Laplace type that near singulari-
ties are amenable to separation of variables and special function methods; [17]
extends these ideas to conic manifolds with boundary and classical boundary
value problems that satisfy the Shapiro-Lopatinsky condition. In [24, 39] meth-
ods from functional analysis, operator theory, andmicrolocal analysis rooted in
the Mellin transform are systematically used and developed. One of the main
results in [24] is an explicit description of the domain of the Friedrichs exten-
sion for general semibounded cone operators on compact manifolds, and we
obtain an analogous result for the Friedrichs extension for indicial operators
here, but with a di�erent approach.

Compactness of the manifold and harnessing the standard local elliptic the-
ory away from the singularities are essential in both [24, 39]; arguments near
the singularities are local as x → 0 and generally do not transfer to noncom-
pact tangent cone con�gurations ℝ+ × Y as x → ∞. However, for conical
singularities where Y is closed and compact it is easy to see that uniform el-
liptic estimates on complete manifolds [54] are applicable to A∧ as x → ∞

(and likewise is elliptic theory for scattering manifolds [46, 49]), and therefore
no contributions to the extensions of A∧ can originate from x → ∞, and the
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results from [24, 39] apply in this setting. This point of view does not easily
generalize to more complicated link manifolds Y, and since analyzing the be-
havior as x → ∞ is essential for understanding general operators we take a
di�erent approach to this problem that leads to the pseudodi�erential calculus
in Appendix A.

Our approach towards extensions in the �rst part is rooted in operator the-
ory. Scaling invariance of unbounded operators under sets of unitary transfor-
mations has been used for example in singular perturbation theory; we refer to
[1, 29, 42] for additional information.

The spectral �ow formula for the signature of the adjoint pairing for indi-
cial operators appears to be new also for conical singularities. Generally, the
spectral �ow is related to the signature of crossing forms, and for real-analytic
crossings this relationship has been investigated in [19, 22, 23]. Our proofs in
Appendix B and C are not reliant on these references.

2. Preliminaries
LetH be a separable complex Hilbert space, and let

A ∶ Dc ⊂ H → H

be unbounded, densely de�ned, and symmetric. Then A is closable with clo-
sureA = A∗∗. LetDmin denote the domain of the closure. LetA∗ be the adjoint
of A, and let Dmax be its domain. The closed extensions of A are the closed
unbounded operators given by

A∗
|||||D
∶ D ⊂ H → H

with domainsDmin ⊂ D ⊂ Dmax that are closed with respect to the graph norm
induced by the graph inner product

⟨u, v⟩A = ⟨u, v⟩H + ⟨A∗u,A∗v⟩H , u, v ∈ Dmax .

In the sequel we will abuse notation and write

Amax = A∗ ∶ Dmax ⊂ H → H,

Amin = A ∶ Dmin ⊂ H → H,

AD = A∗
|||||D
∶ D ⊂ H → H

for these operators. When the domain is not explicitly speci�ed we will simply
write A. While this does not align with standard functional analytic conven-
tions, it is consistent with de�ning extensions of (formally) symmetric di�er-
ential operators A in L2, initially given on a space of test functions2. We will

2From a functional analytic point of view, we could have instead started from a densely de-
�ned closed operator A = Amax ∶ Dmax → H such that A∗ ⊂ A, and de�ned Amin = A∗. Then
Amin is symmetric with A∗

min
= A, and all intermediate closed operators arise as restrictions of

A.
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assume throughout that A has �nite de�ciency indices, which is equivalent to
dimDmax∕Dmin <∞.

In particular AD is closed for every domainDmin ⊂ D ⊂ Dmax .

We furthermore assume that H is equipped with a scaling action, namely, a
strongly continuous and unitary ℝ+-action �% ∶ H → H, % > 0. Speci�cally:

(1) For every % > 0 we have �% ∈ L (H) with �−1% = �∗% .
(2) We have �%%′ = �%�%′ for all %, %′ > 0, and �1 = Id.
(3) We have lim

%→1
�%u = u for all u ∈ H.

Moreover, A is supposed to be invariant under the scaling action in the follow-
ing sense:

(4) �% ∶ Dc → Dc for all % > 0;
(5) there existsm > 0 such that

A = %m�%A�
−1
% ∶ Dc → H

for all % > 0.

Lemma 2.1. The group action �% ∶ H → H restricts to strongly continuous group
actions �% ∶ Dmax → Dmax and �% ∶ Dmin → Dmin. We have

Amax = %m�%Amax�
−1
% ∶ Dmax → H, % > 0, (2.1)

and likewise for Amin. Moreover, we have

‖�%‖L (Dmax)
≤ max{1, %m}, % > 0.

Proof. Let u ∈ Dc and w ∈ Dmax be arbitrary. Then
⟨Au, �%w⟩ = ⟨�−1% Au,w⟩ = %m⟨A�−1% u,w⟩

= %m⟨�−1% u,A∗w⟩ = ⟨u, %m�%A
∗w⟩.

This proves that �%w ∈ Dmax , andA∗�%w = %m�%A
∗w for % > 0. Consequently,

if v ∈ Dmax , then w = �−1% v = �1∕%v ∈ Dmax , and

A∗v = A∗�%w = %m�%A
∗w = %m�%A

∗�−1% v.

This proves (2.1). We next prove the strong continuity of �% on Dmax . To that
end, let v ∈ Dmax be arbitrary. Then �%v → v in H as % → 1 because of the
strong continuity of �% onH. Likewise,

Amax�%v = %m�%Amaxv → Amaxv

as % → 1 inH, again because of the strong continuity of �% onH. Both combined
now imply that �%v → v as % → 1 in the graph norm on Dmax , proving strong
continuity of �% onDmax . For u ∈ Dmax we have

‖�%u‖
2
A
= ‖�%u‖

2
H
+ ‖Amax�%u‖

2
H
= ‖�%u‖

2
H
+ %2m‖�%Amaxu‖

2
H

= ‖u‖2
H
+ %2m‖Amaxu‖

2
H
≤ max{1, %m}2‖u‖2

A

which implies the asserted norm estimate for �%.
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Finally, starting from the invariance of Dmax under �% and (2.1), we obtain
with the same reasoning as in the �rst part of this proof that the domain of the
functional analytic adjointA∗

max = Amin is invariant under the action of �%, and
that Amin satis�es the analogue of (2.1). �

De�nition 2.2. A closed extension AD ∶ D ⊂ H → H withDmin ⊂ D ⊂ Dmax

is called stationary or invariant (with respect to �%) if �% ∶ D→ D for all % > 0.
In that case

AD = %m�%AD�
−1
% ∶ D→ H, % > 0.

By Lemma 2.1, both Amax and Amin are invariant.

Let g ∶ D(g) ⊂ H → H be the in�nitesimal generator of the group action �% on
H. We will make the convention here that

�% = %ig ∶ H → H, % > 0,

where

D(g) = {u ∈ H; ℝ+ ∋ % ↦ �%u ∈ H is di�erentiable},

g(u) = (%D%)�%u
|||||%=1

for u ∈ D(g).

Note that references about 1-parameter semigroups, including [20] referenced
below, generally consider additive rather than multiplicative semigroups, and,
in our notation, these references generally consider ig to be the generator rather
than g.

Since �% is unitary, g∗ = g is selfadjoint by Stone’s Theorem. In particular,
spec(g) ⊂ ℝ. The restrictions

�% ∶ Dmax → Dmax , and �% ∶ Dmin → Dmin

are generated by the part of g in Dmax or Dmin, respectively, i.e., the operators
that act like g with domains

{u ∈ D(g) ∩Dmax ; gu ∈ Dmax} and {u ∈ D(g) ∩Dmin; gu ∈ Dmin},

see [20, II.2.3].
The norm estimate for �% in Lemma 2.1 (both for 1 ≤ % < ∞ and for 0 <

% ≤ 1) in conjunction with the Hille-Yosida Generation Theorem (see [20, II.3])
implies conclusions about the resolvent of the parts of the generator g in various
subspaces ofH. In particular, we get the following:

Remark 2.3. (1) For every � ∈ ℂ with ℑ(�) ≠ 0 and every v ∈ H the
equation (g − �)u = v has a unique solution u ∈ D(g).

(2) For every � ∈ ℂ with ℑ(�) ∉ [−m, 0] and every v ∈ Dmax the unique
solution u ∈ D(g) to the equation (g−�)u = v belongs toDmax . More-
over, if v ∈ Dmin then so is u.

Let
Êmax = Dmax∕Dmin = {û = u +Dmin; u ∈ Dmax}
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be the quotient space. We will generally utilize hat-notation for objects that
are associated with the quotient space. This is a Hilbert space, canonically iso-
metric to the orthogonal complement Emax ofDmin inDmax with respect to the
graph inner product induced by Amax . The group �% induces an ℝ+-action on
the quotient

�̂% ∶ Êmax → Êmax , % > 0,

�̂%[u +Dmin] = �%u +Dmin.

The action �̂% is strongly continuous on Êmax with generator

ĝ(u +Dmin) = gu +Dmin for u +Dmin ∈ D(ĝ),

D(ĝ) = {u +Dmin; u ∈ D(g) ∩Dmax , gu ∈ Dmax},

see [20, II.2.4]. Because we assume dim Êmax <∞we in fact haveD(ĝ) = Êmax ,
and �̂% = %iĝ ∶ Êmax → Êmax is uniformly continuous.

Proposition 2.4. We have spec(ĝ) ⊂ {� ∈ ℂ; −m ≤ ℑ(�) ≤ 0}. If �0 ∈ spec(ĝ)

withℑ(�0) = 0 orℑ(�0) = −m, then �0 is semisimple.
Moreover, if �% ∶ H → H is such that

lim
%→0

⟨�%u, v⟩H = 0

for all3 u, v ∈ H, then spec(ĝ) ⊂ {� ∈ ℂ; −m < ℑ(�) < 0}.

Proof. Let �min ∈ L (Dmax) be the A-orthogonal projection onto Dmin, and
let �max = 1 − �min be the A-orthogonal projection onto Emax = D⟂

min
. For

û = u +Dmin ∈ Êmax we have

‖�̂%û‖Êmax
= ‖�max�%�maxu‖A

≤ ‖�%‖L (Dmax)
‖�maxu‖A ≤ max{1, %m}‖û‖Êmax

by Lemma 2.1. Thus ‖�̂%‖ ≤ max{1, %m}, which implies the �rst claim regarding
the eigenvalues of ĝ.

We next prove the second claim regarding the absence of eigenvalues of ĝ on
the lines ℑ(�) = 0 and ℑ(�) = −m under the stated additional assumption on
�%. To this end, observe that the unitarity of �% implies that in fact both

lim
%→0

⟨�%u, v⟩H = lim
%→∞

⟨�%u, v⟩H = 0

3It su�ces to check that lim
%→0

⟨�%u, u⟩H = 0 for u in a dense subspace ofH, e.g., for u ∈ Dc. To

see this note that T ∶ H×H ∋ (u, v)↦
{
ℝ+ ∋ % ↦

1

2

[
⟨�%u, v⟩H+ ⟨u, �%v⟩H

]}
∈ (Cb(ℝ+), ‖ ⋅‖∞) is

sesquilinear, Hermitian, and continuous. We have T(u, u) ∈ C0(ℝ+) for u ∈ Dc by assumption
and the unitarity of �%, and by polarization T(u, v) ∈ C0(ℝ+) for all u, v ∈ Dc. BecauseC0(ℝ+) ⊂

(Cb(ℝ+), ‖ ⋅ ‖∞) is closed we obtain T(u, v) ∈ C0(ℝ+) for all u, v ∈ H by density and continuity.
The same argument shows that L(u, v) = 1

2i

[
⟨�%u, v⟩H − ⟨u, �%v⟩H

]
∈ C0(ℝ+) for all u, v ∈ H,

and so ⟨�%u, v⟩H = T(u, v) + iL(u, v) ∈ C0(ℝ+) for all u, v ∈ H.
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for all u, v ∈ H. Moreover, for u, v ∈ Dmax we have

lim
%→0

⟨�%u, v⟩A = lim
%→0

[
⟨�%u, v⟩H + ⟨Amax�%u,Amaxv⟩H

]

= lim
%→0

[
⟨�%u, v⟩H + %m⟨�%Amaxu,Amaxv⟩H

]
= 0,

lim
%→∞

%−m⟨�%u, v⟩A = lim
%→∞

[
%−m⟨�%u, v⟩H + ⟨�%Amaxu,Amaxv⟩H

]
= 0.

For û = u +Dmin and v̂ = v +Dmin in Êmax we have

⟨�̂%û, v̂⟩Êmax
= ⟨�max�%�maxu, �maxv⟩A = ⟨�%�maxu, �maxv⟩A,

and thus
lim
%→0

⟨�̂%û, v̂⟩Êmax
= 0 and lim

%→∞
%−m⟨�̂%û, v̂⟩Êmax

= 0.

Consequently, if ĝû = �û with ℑ(�) = 0, then �̂%û = %i�û and thus

‖û‖2
Êmax

=
||||⟨�̂%û, û⟩Êmax

|||| → 0 as % → 0.

Likewise, if ĝû = �û with ℑ(�) = −m, then �̂%û = %i�û and

‖û‖2
Êmax

=
||||%
−m⟨�̂%û, û⟩Êmax

|||| → 0 as % →∞.

�

3. A Green formula for the adjoint pairing
We next consider the adjoint pairing

[⋅, ⋅]A ∶ Dmax ×Dmax → ℂ,

[u, v]A =
1

i

[
⟨Amaxu, v⟩H − ⟨u,Amaxv⟩H

]
.

This is a Hermitian sesquilinear form (the extra 1

i
-term renders it Hermitian

rather than skew-Hermitian), and [u, v]A = 0 for all v ∈ Dmax if and only if
u ∈ Dmin. Thus [⋅, ⋅]A induces a nondegenerate Hermitian sesquilinear form

[⋅, ⋅]Êmax
∶ Êmax × Êmax → ℂ,

[û, v̂]Êmax
= [u, v]A

for û = u + Dmin and v̂ = v + Dmin. Every domain Dmin ⊂ D ⊂ Dmax is
determined by its projection

ÊD = {û = u +Dmin; u ∈ D} ⊂ Êmax . (3.1)

We have
(
AD

)∗
= AD[⟂] , where

ÊD[⟂] = Ê
[⟂]

D
= {v̂ ∈ Êmax ; [û, v̂]Êmax = 0 ∀û ∈ ÊD}.

In particular, AD = A∗

D
is selfadjoint if and only if

Ê
[⟂]

D
= ÊD ⊂

(
Êmax , [⋅, ⋅]Êmax

)
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is a Lagrangian subspace.

Remark 3.1. Wewill use several results about �nite-dimensional complex vec-
tor spaces (V, [⋅, ⋅]) equippedwith inde�niteHermitian sesquilinear forms [⋅, ⋅] ∶
V ×V → ℂ below. We refer to [11, 21, 26] as general references. The invariants
of (V, [⋅, ⋅]) are (m0, m+, m−) ∈ ℕ3

0
, where

m0 = dim{v ∈ V; [v, w] = 0 ∀w ∈ V},

m+ = max
[
{dimU+; U+ ⊂ V, [u, u] > 0 ∀0 ≠ u ∈ U+} ∪ {0}

]
,

m− = max
[
{dimU−; U− ⊂ V, [u, u] < 0 ∀0 ≠ u ∈ U−} ∪ {0}

]
.

We havem0 +m+ +m− = dimV. The signature of (V, [⋅, ⋅]) is
sgn(V, [⋅, ⋅]) = m+ −m−.

For any basis {v1,… , vn} of V consider the matrix G =
(
[vi, vj]

)n

i,j=1
∈ Mn(ℂ).

ThenG∗ = G, andm0 is themultiplicity of the eigenvalue 0 ofG, whilem± is the
total number (includingmultiplicities) of the positive and negative eigenvalues
of G, respectively. (V, [⋅, ⋅]) is nondegenerate ifm0 = 0.

A subspace U ⊂ (V, [⋅, ⋅]) is isotropic if U ⊂ U[⟂], where

U[⟂] = {v ∈ V; [v, u] = 0 ∀u ∈ U},

and Lagrangian if U = U[⟂]. If (V, [⋅, ⋅]) is nondegenerate then Lagrangian
subspaces U exist if and only if sgn(V, [⋅, ⋅]) = 0. In particular, V must then be
even-dimensional and dimU =

dimV

2
.

Lemma 3.2. We have

[�̂%û, �̂%v̂]Êmax
= %m[û, v̂]Êmax

, % > 0,

and
[(ĝ + i

m

2
)û, v̂]Êmax

= [û, (ĝ + i
m

2
)v̂]Êmax

.

Proof. We have
i[�̂%û, �̂%v̂]Êmax

= ⟨Amax�%u, �%v⟩ − ⟨�%u,Amax�%v⟩

= %m
[
⟨�%Amaxu, �%v⟩ − ⟨�%u, �%Amaxv⟩

]

= %m
[
⟨Amaxu, v⟩ − ⟨u,Amaxv⟩

]

= i%m[û, v̂]Êmax
,

proving the �rst claim. Consequently,

[û, v̂]Êmax
= [%−m∕2�̂%û, %

−m∕2�̂%v̂]Êmax
, % > 0,

and thus
0 = (%D%)[û, v̂]Êmax

=

[(ĝ + i
m

2
)%−m∕2�̂%û,%

−m∕2�̂%v̂]Êmax
− [%−m∕2�̂%û, (ĝ + i

m

2
)%−m∕2�̂%v̂]Êmax

.

Evaluation at % = 1 proves the second claim. �
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iℝ

ℝ

ℑ(�) = −m

ℑ(�) = −
m

2

�⋆

�

Figure 1. Eigenvalues of ĝ

By Lemma 3.2,
ĥ = ĝ + i

m

2
∶ Êmax → Êmax

is selfadjoint with respect to the (inde�nite) inner product [⋅, ⋅]Êmax on Êmax ,
and consequently the triple

(
Êmax , [⋅, ⋅]Êmax , ĥ

)
has a canonical form (see [26,

Theorem 5.1.1]) that furnishes a complete description of the adjoint pairing in
terms of the generalized eigenspaces of ĝ as stated below. We will refer to these
statements as the Canonical Form Theorem in the sequel, and it plays the role
of an abstract Green formula for the adjoint pairing:

(1) The eigenvalues of ĝ are symmetric about the line ℑ(�) = −
m

2
. Let

ℂ ∋ � ↦ �⋆ = � − im ∈ ℂ (3.2)

denote the re�ection about the line ℑ(�) = −
m

2
. Then

spec(ĝ) ∋ � ↦ �⋆ ∈ spec(ĝ),

see Figure 1.
(2) For � ∈ spec(ĝ) let Ê� be the generalized eigenspace for the eigenvalue

�. Then

Êmax =
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

Ê� ⊕
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

[
Ê� ⊕ Ê�⋆

]
,

and this direct sum is orthogonal with respect to [⋅, ⋅]Êmax . More pre-
cisely, if û ∈ Ê�0 and v̂ ∈ Ê�1 with �1 ≠ �⋆

0
then [û, v̂]Êmax = 0, and

[⋅, ⋅]Êmax
∶ Ê�0 × Ê�⋆

0
→ ℂ

is nondegenerate.
(3) For every � ∈ spec(ĝ) with ℑ(�) < −

m

2
there exist decompositions

Ê� =

m�⨁

j=1

Ê�,j and Ê�⋆ =

m�⨁

j=1

Ê�⋆,j
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such that for every ûj ∈ Ê�,j and v̂k ∈ Ê�⋆,k we have [ûj, v̂k]Êmax = 0

whenever j ≠ k. Furthermore, for each j ∈ {1,… , m�}, both spaces Ê�,j
and Ê�⋆,j are invariant under ĝ, and there exist ordered bases {û1,… , ûnj }
of Ê�,j and {v̂1,… , v̂nj } of Ê�⋆,j such that the matrix representation of ĝ
in these bases is given by a single Jordan block of size nj×nj with eigen-
value � and �⋆, respectively, and we have4

[û�, v̂�]Êmax
= ��,nj+1−� = {

1 � + � = nj + 1,

0 otherwise.

(4) For every � ∈ spec(ĝ) with ℑ(�) = −
m

2
there exists a decomposition

Ê� =

m�⨁

j=1

Ê�,j

such that for every ûj ∈ Ê�,j and v̂k ∈ Ê�,k we have [ûj, v̂k]Êmax = 0

whenever j ≠ k. Furthermore, for each j ∈ {1,… , m�}, Ê�,j is invariant
under ĝ, and there exists an ordered basis {û1,… , ûnj } of Ê�,j such that
the matrix representation of ĝ is given by a single Jordan block of size
nj × nj with eigenvalue �, and we either have

[û�, û�]Êmax
= ��,nj+1−� = {

1 � + � = nj + 1,

0 otherwise,
(3.3)

or

[û�, û�]Êmax
= −��,nj+1−� = {

−1 � + � = nj + 1,

0 otherwise.
(3.4)

The resulting collection of signs +1, associated to the canonical form
(3.3), or −1, associated to the canonical form (3.4), for Ê� is unique
in the sense that di�erent decompositions of Ê� into subspaces Ê�,j as
above that result in Jordan blocks for ĝ, are orthogonal with respect to
[⋅, ⋅]Êmax

, and furnish the canonical forms (3.3) or (3.4) for [⋅, ⋅]Êmax asso-
ciatedwith each Jordan block, yield the same total collection of plus and
minus signs for Jordan blocks of equal sizes. Following [26], this col-
lection of signs is referred to as the sign characteristic of ĝ with respect
to [⋅, ⋅]Êmax . Note that the sign characteristic is associated to eigenvalues
with ℑ(�) = −

m

2
only.

4Thematrix
(
��,N+1−�

)N

�,�=1
is called SIPmatrix in [26], where the acronym stands for standard

involutary permutation.
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We further elaborate on the sign characteristic for eigenvalues located on the
lineℑ(�) = −

m

2
and proceed to describe it invariantly: Let n� ∈ ℕ be such that

Ê� = ker
(
ĝ − �

)n�
⊋ ker

(
ĝ − �

)n�−1
⊋ … ⊋ ker

(
ĝ − �

)
⊋ {0}.

For each l ∈ {1,… , n�} consider

[⋅, ⋅]l ∶ ker
(
ĝ − �

)l
× ker

(
ĝ − �

)l
→ ℂ,

[û, v̂]l = [(ĝ − �)l−1û, v̂]Êmax
.

(3.5)

This is a Hermitian sesquilinear form. Let (m0, m+, m−) be its invariants.

Proposition 3.3. We have

m0 = dimker
(
ĝ − �

)l+1
− dimker

(
ĝ − �

)l
+ dimker

(
ĝ − �

)l−1
,

and

m+ +m− = Number of Jordan blocks of size l × l for the eigenvalue �.

The sign characteristic associated with the eigenvalue � and Jordan blocks of size
l × l is then given by (m+, m−), wherem+ is the number of +1 signs, andm− is
the number of −1 signs.

Proof. The proposition can be deduced from [26, Theorem 5.8.1], but we will
give a direct proof here.

We �rst show the claim regarding m0. To that end, we are going to prove
that if v̂ ∈ ker

(
ĝ − �

)l
such that [û, v̂]l = 0 for all û ∈ ker

(
ĝ − �

)l
then

v̂ ∈ ker
(
ĝ − �

)l−1
+ ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l
, and vice versa. Indeed, if

[û, v̂]l = [(ĝ − �)l−1û, v̂]Êmax
= [û, (ĝ − �)l−1v̂]Êmax

= 0

for all û ∈ ker
(
ĝ − �

)l
, then (ĝ − �)l−1v̂ ∈

[
ker

(
ĝ − �

)l][⟂]
= ran

(
ĝ − �

)l
.

Consequently, there exists ŵ ∈ Êmax such that (ĝ − �)l−1v̂ = (ĝ − �)lŵ, so
v̂ − (ĝ − �)ŵ = û0 ∈ ker

(
ĝ − �

)l−1
. Thus

v̂ = û0 + (ĝ − �)ŵ ∈ ker
(
ĝ − �

)l−1
+ ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l
.

Conversely, if

v̂ = û0 + (ĝ − �)ŵ ∈ ker
(
ĝ − �

)l−1
+ ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l
,

then (ĝ − �)l−1v̂ = (ĝ − �)lŵ and so

[û, v̂]l = [û, (ĝ − �)l−1v̂]Êmax
= [û, (ĝ − �)lŵ]Êmax

= [(ĝ − �)lû, ŵ]Êmax
= 0

for all û ∈ ker
(
ĝ − �

)l
. Now

dim
[
ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l]
= dimker

(
ĝ − �

)l+1
− dimker(ĝ − �)
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as ĝ − � ∶ ker
(
ĝ − �

)l+1
→ ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l
is surjective. So

m0 = dim
[
ker

(
ĝ − �

)l−1
+ ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l]

= dimker
(
ĝ − �

)l−1
+ dim

[
ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l]

− dim
[
ran

(
ĝ − �

)
∩ ker

(
ĝ − �

)l−1]

= dimker
(
ĝ − �

)l+1
− dimker

(
ĝ − �

)l
+ dimker

(
ĝ − �

)l−1
.

Furthermore,

m+ +m− = dimker
(
ĝ − �

)l
−m0

=
[
dimker

(
ĝ − �

)l
− dimker

(
ĝ − �

)l−1]

−
[
dimker

(
ĝ − �

)l+1
− dimker

(
ĝ − �

)l]

= Number of Jordan blocks of size l × l for the eigenvalue �.

Now apply the Canonical Form Theorem from [26, Theorem 5.1.1] as previ-
ously described, and write

m++m−⨁

j=1

Ê l
�,j

⊂ ker
(
ĝ − �

)l
,

where this direct sum is orthogonal with respect to [⋅, ⋅]Êmax , and the Ê l
�,j

are as-
sociated tol×l Jordan blocks for ĝwith eigenvalue�. Moreover, let ûj,1,… , ûj,l
be a Jordan basis of Ê l

�,j
for each j = 1,… , (m++m−) as described in the canon-

ical form, such that for each j we either have [ûj,l, ûj,l]l = 1 or [ûj,l, ûj,l]l =
−1. Let

U+ = span{ûj,l; [ûj,l, ûj,l]l = 1},

U− = span{ûj,l; [ûj,l, ûj,l]l = −1}.

Because [ûj,l, ûk,l]l = 0 for j ≠ k we then have [û, û]l > 0 for all 0 ≠ û ∈

U+, and [û, û]l < 0 for all 0 ≠ û ∈ U−. Thus m± ≥ dimU±, but because
m+ +m− = dimU+ + dimU− we havem± = dimU±, proving the claim about
the sign characteristic associated to Jordan blocks of sizel×l for the eigenvalue
�. �

In the sequel we will also writem0(�,l) andm±(�,l) for the invariants of the
Hermitian sesquilinear form (3.5) when the context warrants speci�c reference
to the eigenvalue � and the size l. The Canonical Form Theorem implies the
following algebraic signature formula and results about the existence of selfad-
joint extensions of the operator A (see also [26, Corollary 5.2.1]).
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Theorem 3.4. (1) The signature of
(
Êmax , [⋅, ⋅]Êmax

)
is given by

sgn
(
Êmax , [⋅, ⋅]Êmax

)
=

∑

�∈spec(ĝ)

ℑ(�)=−
m

2

∑

l odd

(
m+(�,l) −m−(�,l)

)
.

In particular, the operator A admits selfadjoint extensions AD = A∗

D
if

and only if
∑

�∈spec(ĝ)

ℑ(�)=−
m

2

∑

l odd

(
m+(�,l) −m−(�,l)

)
= 0.

(2) The operator A admits an invariant selfadjoint extensions if and only if
∑

l odd

(
m+(�,l) −m−(�,l)

)
= 0

for every � ∈ spec(ĝ) withℑ(�) = −
m

2
.

Proof. Let (0,M+,M−) be the invariants of the form [⋅, ⋅]Êmax
. We have

Êmax =
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

Ê� ⊕
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

[
Ê� ⊕ Ê�⋆

]
,

where this direct sum is orthogonal with respect to [⋅, ⋅]Êmax , and the restriction
of [⋅, ⋅]Êmax to each of the direct summands is nondegenerate by the Canonical
Form Theorem [26, Theorem 5.1.1]. Consequently,

M+ −M− =
∑

�∈spec(ĝ)

ℑ(�)=−
m

2

(
M+(Ê�) −M−(Ê�)

)
+

∑

�∈spec(ĝ)

ℑ(�)<−
m

2

(
M+(Ê� ⊕ Ê�⋆) −M−(Ê� ⊕ Ê�⋆)

)
,

whereM±(Û) are the invariants of the restriction [⋅, ⋅]Êmax ∶ Û × Û → ℂ to the
indicated subspace Û. For each � ∈ spec(ĝ) with ℑ(�) < −

m

2
the Canonical

Form Theorem implies that Ê� ⊂
(
Ê� ⊕ Ê�⋆ , [⋅, ⋅]Êmax

)
is Lagrangian, and thus

M+(Ê� ⊕ Ê�⋆) −M−(Ê� ⊕ Ê�⋆) = 0.

For � ∈ spec(ĝ) with ℑ(�) = −
m

2
we prove next that

M+(Ê�) −M−(Ê�) =
∑

l odd

(
m+(�,l) −m−(�,l)

)
.

By the Canonical Form Theorem we have

Ê� =

m�⨁

j=1

Ê�,j
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which is orthogonal with respect to [⋅, ⋅]Êmax , the restriction of [⋅, ⋅]Êmax to each of
the direct summands is nondegenerate, and each Ê�,j is associated to a Jordan
block that either contributes a +1 or a −1 to the sign characteristic. We have

M+(Ê�) −M−(Ê�) =
m�∑

j=1

(
M+(Ê�,j) −M−(Ê�,j)

)
.

If dim Ê�,j is even and spanned by {û1,… , û2k} with either (3.3) or (3.4), then

Û = span{û1,… , ûk} ⊂
(
Ê�,j, [⋅, ⋅]Êmax

)

is Lagrangian and consequentlyM+(Ê�,j)−M−(Ê�,j) = 0. If dim Ê�,j is odd and
spanned by {û1,… , û2k+1} with either (3.3) or (3.4), then

M+(Ê�,j) −M−(Ê�,j) = {
1 in case of (3.3),
−1 in case of (3.4).

This is because the matrix
(
��,2k+2−�

)2k+1

�,�=1
has (k + 1)-times the eigenvalue +1

and k-times the eigenvalue −1. Consequently,

M+(Ê�) −M−(Ê�) =
∑

l odd

(
m+(�,l) −m−(�,l)

)

as desired, proving the �rst claim.
We next prove the second claim regarding the existence of invariant selfad-

joint extensions. Note thatAD = A∗

D
is an invariant selfadjoint extension if and

only if Û = ÊD ⊂
(
Êmax , [⋅, ⋅]Êmax

)
from (3.1) is Lagrangian and invariant under

ĝ. We thus have to show that invariant Lagrangian subspaces exist if and only
if

∑

l odd

(
m+(�,l) −m−(�,l)

)
= 0

holds for every � ∈ spec(ĝ) with ℑ(�) = −
m

2
.

Suppose �rst that Û ⊂ Êmax is Lagrangian and invariant under ĝ. Then

Û =
⨁

�∈spec(ĝ)

[
Ê� ∩ Û

]

=
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

[
Ê� ∩ Û

]
⊕

⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

([
Ê� ∩ Û

]
⊕

[
Ê�⋆ ∩ Û

])
.

Every subspace
[
Ê� ∩ Û

]
⊂

(
Ê�, [⋅, ⋅]Êmax

)
, ℑ(�) = −

m

2
,

[
Ê� ∩ Û

]
⊕

[
Ê�⋆ ∩ Û

]
⊂

(
Ê� ⊕ Ê�⋆ , [⋅, ⋅]Êmax

)
, ℑ(�) < −

m

2
,
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is isotropic, and for dimensional reasons must be Lagrangian. In particular, for
every � ∈ spec(ĝ) with ℑ(�) = −

m

2
we must have

M+(Ê�) −M−(Ê�) =
∑

l odd

(
m+(�,l) −m−(�,l)

)
= 0.

Conversely, assume that M+(Ê�) − M−(Ê�) = 0 for every � ∈ spec(ĝ) with
ℑ(�) = −

m

2
. We proceed to prove that each space admits a Lagrangian subspace

Û� ⊂ Ê� that is invariant under ĝ. Then

Û =
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

Û� ⊕
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

Ê�

is a Lagrangian subspace of
(
Êmax , [⋅, ⋅]Êmax

)
that is invariant under ĝ as desired.

Write

Ê� =

m�⨁

j=1

Ê�,j

according to the Canonical Form Theorem with mutually [⋅, ⋅]Êmax -orthogonal
direct summands, where each Ê�,j is associated to a single Jordan block, and
pick bases for each Ê�,j with either (3.3) or (3.4). By assumption, the odd-
dimensional blocks (if any) equally distribute among the signs+1 and−1. Now
divide the odd-dimensional spaces Ê�,j up in pairs of the form (V̂, Ŵ), where V̂
contributes +1 and Ŵ contributes −1, and set

Û(V̂,Ŵ) = span
{
v̂ dim V̂+1

2

+ ŵ dim Ŵ+1

2

}
,

where the two vectors v̂ dim V̂+1

2

and ŵ dim Ŵ+1

2

are the middle vectors in the Jordan

bases for V̂ and Ŵ, respectively, and de�ne

Û� =

m�⨁

j=1

[
Ê�,j ∩ ker

(
ĝ − �

)
⌊
dim Ê�,j

2

⌋
]
⊕

⨁

(V̂,Ŵ)

Û(V̂,Ŵ).

Then Û� has the desired properties, and the proof is complete. �

4. Semibounded operators and the Friedrichs extension
Suppose that Amin is semibounded from below in the sense that there exists a
constant c ∈ ℝ such that

⟨Au, u⟩ ≥ c⟨u, u⟩

holds for all u ∈ Dmin. By Lemma 2.1 and Lemma 4.1 below we in fact must
have Amin ≥ 0 which we are going to assume for the remainder of this sec-
tion. Since we assume Amin to have �nite de�ciency indices, we note that ev-
ery selfadjoint extension AD = A∗

D
is semibounded from below, see [10, Theo-

rem 9.3.7].
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Lemma 4.1. Let AD ∶ D ⊂ H → H be invariant and bounded from below, i.e.,

⟨Au, u⟩ ≥ c⟨u, u⟩

for all u ∈ D for some c ∈ ℝ. Then

inf
0≠u∈D

⟨Au, u⟩

⟨u, u⟩
= 0,

i.e., AD has lower bound 0.

Proof. Let
L = inf

0≠u∈D

⟨Au, u⟩

⟨u, u⟩
.

For 0 ≠ u ∈ D we have

⟨Au, u⟩ = %m⟨�%AD�
−1
% u, u⟩ = %m⟨AD�

−1
% u, �−1% u⟩,

and thus
⟨ADu, u⟩

⟨u, u⟩
= %m

⟨AD�
−1
% u, �−1% u⟩

⟨�−1% u, �−1% u⟩
,

using the fact that �% is unitary. Consequently, passing to the in�mum over all
0 ≠ u ∈ D on both sides, we get L = %mL for all % > 0. This leaves only L = 0

or L = −∞, and since L > −∞ by assumption we must have L = 0. �

Proposition 4.2. Let ℋF ↪ H be the completion of Dmin with respect to the
norm

|u|2
F
= ⟨u, u⟩ + ⟨Au, u⟩, u ∈ Dmin.

Then �% restricts to a strongly continuous group action �% ∈ L (ℋF) with

‖�%‖L (ℋF)
≤ max{1, %m∕2}, % > 0.

In particular, the Friedrichs extension

AF = A∗
|||||DF

∶ DF ⊂ H → H,

DF = Dmax ∩ℋF ,

is invariant.

Proof. We show that

�% ∶
(
Dmin, | ⋅ |F

)
→

(
Dmin, | ⋅ |F

)

is continuous, and consequently extends by continuity to a bounded operator
in L (ℋF). BecauseℋF ↪ H and �% ∈ L (H) this bounded extension is nec-
essarily the restriction of �% toℋF . Indeed, for u ∈ Dmin we have

|�%u|
2
F
= ⟨�%u, �%u⟩ + ⟨A�%u, �%u⟩ = ⟨u, u⟩ + %m⟨�%Au, �%u⟩

= ⟨u, u⟩ + %m⟨Au, u⟩ ≤ max{1, %m} ⋅ |u|2
F
,

proving the desired continuity as well as the asserted norm estimate. This im-
plies that AF is invariant.



726 THOMAS KRAINER

It remains to show the strong continuity of �% on the Hilbert spaceℋF . Be-
cause �% is a group and {�%;

1

2
≤ % ≤ 2} ⊂ L (ℋF) is bounded, it su�ces to

show that �%u → u with respect to | ⋅ |F as % → 1 just for u ∈ Dmin (see [20,
I.5.3]). Because �%u → u with respect to ‖ ⋅ ‖H we thus have to prove that

⟨A(�%u − u), �%u − u⟩H → 0 as % → 1.

But this follows becauseA(�%u−u) = %m�%Au−Au → 0 as % → 1with respect
to ‖ ⋅ ‖H . �

The restriction �% ∶ ℋF → ℋF of the group action is generated by the part of
the generator g inℋF , i.e., the operator that acts like g with domain

{u ∈ D(g) ∩ℋF ; gu ∈ℋF},

see [20, II.2.3]. The norm estimate for �% in Proposition 4.2, both for 1 ≤ % <∞

and for 0 < % ≤ 1, in conjunction with the Hille-Yosida Generation Theorem
[20, II.3] now implies that for every� ∈ ℂwithℑ(�) ∉ [−m∕2, 0] and every v ∈
ℋF the unique solution u ∈ D(g) to the equation (g − �)u = v belongs toℋF .
This is in addition to the properties for g previously discussed in Remark 2.3.

Our next goal is to give an explicit description of the domain of the Friedrichs
extension AF in terms of the generalized eigenspaces of ĝ. In this context, con-
sider the following de�nition derived from [26].

De�nition4.3. Wesay thatA satis�es the sign condition if for every� ∈ spec(ĝ)

with ℑ(�) = −
m

2
the following two conditions hold:

∙ m+(�,l) = m−(�,l) = 0 for all odd l ∈ ℕ. Thus ĝ does not have
odd-sized Jordan blocks associated with the eigenvalue �.

∙ Either m+(�,l) = 0 or m−(�,l) = 0 for all even l ∈ ℕ. Thus the sign
characteristic associated with the eigenvalue � is entirely negative or
positive for all Jordan blocks of ĝ.

Here m±(�,l) are the invariants of the Hermitian sesquilinear form (3.5), see
Proposition 3.3. Note that the sign condition is trivially ful�lled if spec(ĝ)∩{� ∈
ℂ; ℑ(�) = −

m

2
} = ∅.

We note that the sign condition holds for semibounded indicial operators
considered in the later sections, see Theorem 9.2.

If the sign condition holds, [26, Theorem 5.12.4] implies that for each � ∈

spec(ĝ) with ℑ(�) = −
m

2
there exists a unique Langrangian subspace Ê

�,
1

2

⊂
(
Ê�, [⋅, ⋅]Êmax

)
that is invariant under ĝ. More precisely, write

Ê� =

m�⨁

j=1

Ê�,j

according to the Canonical Form Theorem with mutually [⋅, ⋅]Êmax -orthogonal
direct summands, where each Ê�,j is associated to a single Jordan block of size
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(2nj) × (2nj). Then

Ê
�,

1

2

=

m�⨁

j=1

[
Ê�,j ∩ ker(ĝ − �)nj

]
,

so Ê
�,

1

2

is spanned by the �rst halves of the Jordan basis elements associated to

each Jordan block in the canonical form for the triple
(
Ê�, [⋅, ⋅]Êmax , ĝ − �

)
.

Theorem 4.4. Let ÊF = {û ∈ Êmax ; û = u +Dmin, u ∈ DF}. Then

ÊF =
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

[
Ê� ∩ ÊF

]
⊕

⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

Ê�.

If A satis�es the sign condition, then Ê� ∩ ÊF = Ê
�,

1

2

for all � ∈ spec(ĝ) with

ℑ(�) = −
m

2
.

Proof. By Proposition 4.2 the Friedrichs extension is invariant. This implies
that ÊF is invariant under �̂%, and consequently ÊF is also invariant under the
generator ĝ. Hence

ÊF =
⨁

�∈spec(ĝ)

[
Ê� ∩ ÊF

]
.

We will next prove that if ℑ(�) < −
m

2
, and û ∈ Êmax with

(
ĝ − �

)
û ∈ ÊF , then

û ∈ ÊF . Indeed, by assumption there exists u ∈ Dmax∩D(g)with û = u+Dmin,
and v ∈ DF such that

(
g−�

)
u = v. Because v ∈ℋF we have u ∈ℋF , and thus

u ∈ ℋF ∩Dmax = DF , so û ∈ ÊF as stated. Consequently, if
(
ĝ − �

)k
û = 0 for

some k ∈ ℕ, we have û ∈ ÊF , showing that Ê� ⊂ ÊF for ℑ(�) < −
m

2
. Because

the adjoint pairing
[⋅, ⋅]Êmax

∶ Ê� × Ê�⋆ → ℂ

is nondegenerate and ÊF is Lagrangian wemust necessarily have Ê�⋆ ∩ ÊF = {0}

for ℑ(�) < −
m

2
.

Finally, note that Ê� ∩ ÊF ⊂
(
Ê�, [⋅, ⋅]Êmax

)
is Lagrangian and invariant under

ĝ for ℑ(�) = −
m

2
. Consequently, if A satis�es the sign condition, we must

necessarily have Ê� ∩ ÊF = Ê
�,

1

2

. The theorem is proved. �

5. The Krein extension and the order relation for invariant
selfadjoint extensions

We continue to assume that Amin ≥ 0. The Friedrichs extension AF and the
Krein extension AK are distinguished in the sense that AK ≤ AD ≤ AF for all
nonnegative selfadjoint extensions AD = A∗

D
≥ 0. Recall that for two selfad-

joint operators Tj = T∗
j
≥ 0 the order relation T1 ≤ T2 holds if and only if
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D(T

1

2

2
) ⊆ D(T

1

2

1
) and ‖T

1

2

1
u‖H ≤ ‖T

1

2

2
u‖H for u ∈ D(T

1

2

2
). The latter is an in-

equality for the quadratic forms associated with the Tj, while the domain of
the nonnegative square root in each case coincides with the domain of the qua-
dratic form. We refer to [5, 9, 8] for information on the Krein-von Neumann
extension (but note that Amin is not strictly positive by Lemma 4.1, which is
compensated for by the invariance of A under scaling in our investigation).

Our goal in this section is to prove the following two theorems.

Theorem 5.1. Let ÊK = {û ∈ Êmax ; û = u +Dmin, u ∈ DK = D(AK)}. Then

ÊK =
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

[
Ê� ∩ ÊK

]
⊕

⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�.

If A satis�es the sign condition, then Ê� ∩ ÊK = Ê
�,

1

2

for all � ∈ spec(ĝ) with

ℑ(�) = −
m

2
.

Theorem 5.2. Suppose A satis�es the sign condition, and let

Ê− =
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

Ê�.

(1) For every subspace Û ⊂ Ê− that is invariant under �̂% there exists a unique
selfadjoint invariant extension AD ∶ D ⊂ H → H of A such that ÊD ∩

Ê− = Û.
(2) LetADj

= A∗

Dj
, j = 1, 2, be invariant selfadjoint extensions. ThenAD1

≤

AD2
if and only if ÊD1

∩ Ê− ⊆ ÊD2
∩ Ê−, or equivalently if and only if

D1 ∩DF ⊆ D2 ∩DF .

We note that the �rst part of Theorem 5.2 is just [26, Theorem 5.12.4] when
applied to the present context.

GivenAD = A∗

D
≥ 0we letℋD ↪ H be the domain of the quadratic form as-

sociated withAD. We haveℋD = D(A

1

2

D
), which equivalently can be described

as the completion ofD with respect to the norm

|u|2
D
= ⟨u, u⟩H + ⟨ADu, u⟩H , u ∈ D.

Because |u|D = |u|F for u ∈ Dmin the embedding
(
ℋF , | ⋅ |F

)
↪

(
ℋD, | ⋅ |D

)

is an isometry. Moreover, the codimension ofℋF inℋD is �nite, where more
precisely dimℋD∕ℋF ≤

1

2
dim Êmax , see [10, Theorem 10.3.7]. We write ℋK

for the domain of the quadratic form associated with the Krein extensionAK =

A∗
K
.

Lemma 5.3. Let AD = A∗

D
≥ 0. ThenℋD = D +ℋF , and this sum is direct

moduloD ∩DF .
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Proof. Because D ⊂
(
ℋD, | ⋅ |D

)
is dense we have that

(
D + ℋF

)
∕ℋF ⊂

ℋD∕ℋF is dense, and by �nite dimensionality we must have
(
D+ℋF

)
∕ℋF =

ℋD∕ℋF . This shows thatℋD = D +ℋF , and because Dmax ∩ℋF = DF the
sum is direct moduloD ∩DF . �

Lemma 5.4. The Krein extension AK ∶ DK ⊂ H → H is invariant.

Proof. This follows from a result by Makarov and Tsekanovskii [42], but we
give an independent proof here. We have AK = A∗

|||||DK

, where the domain of

the Krein extension is given by

DK = {u ∈ Dmax ; ∃uk ∈ Dmin ∶ (A

1

2

F
uk)k ⊂ H is Cauchy,

lim
k→∞

Aminuk = Amaxu},

see Ando and Nishio [8]. We need to show that if u ∈ DK , then also �%u ∈ DK .

Let uk ∈ Dmin such that lim
k→∞

Aminuk = Amaxu, and such that (A
1

2

F
uk)k is a

Cauchy sequence inH. Now �%uk ∈ Dmin, and we have
lim
k→∞

Amin�%uk = lim
k→∞

%m�%Aminuk = %m�%Amaxu = Amax�%u.

Moreover, we have

‖A

1

2

F
�%uk − A

1

2

F
�%ul‖

2
H
= ⟨A

1

2

F
�%(uk − ul), A

1

2

F
�%(uk − ul)⟩H

= ⟨Amin�%(uk − ul), �%(uk − ul)⟩H

= ⟨%m�%Amin(uk − ul), �%(uk − ul)⟩H

= %m⟨Amin(uk − ul), uk − ul⟩H

= %m‖A

1

2

F
uk − A

1

2

F
ul‖

2
H
,

and thus (A
1

2

F
�%uk) ⊂ H is Cauchy. This shows that �%u ∈ DK and �nishes the

proof of the lemma. �

Lemma 5.5. Suppose spec(ĝ) ∩ {� ∈ ℂ; ℑ(�) = −
m

2
} = ∅. Then the inclusion

map Dmax ↪ ℋK is well-de�ned and continuous. We have Dmax = DK + DF ,
and this sum is direct moduloDmin.

Proof. We have DF ⊂ ℋF ⊂ ℋK . Moreover, let Dmin ⊂ D ⊂ Dmax be such
that

ÊD =
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�.

Then AD = A∗

D
is selfadjoint by the Canonical Form Theorem and our present

assumption that ĝ does not have eigenvalues on ℑ(�) = −
m

2
. Moreover, AD

is also invariant, and therefore AD ≥ 0 by Lemma 4.1. Thus AK ≤ AD by the
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fundamental property of theKrein extensionwhich shows thatD ⊂ℋD ⊂ℋK .
Consequently, DF +D = Dmax ⊂ ℋK . Continuity of the embedding Dmax ↪

ℋK follows from the Closed Graph Theorem.
By Lemma 5.3, every u ∈ Dmax now has a representation u = uK + ũ with

uK ∈ DK and ũ ∈ℋF . But ũ = u − uK ∈ Dmax ∩ℋF = DF , which shows that
Dmax = DK +DF . We thus have Êmax = ÊK + ÊF , and for dimensional reasons
this sum must be direct. The lemma is proved. �

Proof of Theorem 5.1. We �rst consider the case that

spec(ĝ) ∩ {� ∈ ℂ; ℑ(�) = −
m

2
} = ∅.

By Lemma 5.5 we have a direct sum Êmax = ÊK ⊕ ÊF . Now let

û ∈
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê� ⊂ Êmax

be arbitrary, and write û = ûK + ûF with ûK ∈ ÊK and ûF ∈ ÊF . Then

ûK = û + (−ûF) ∈ [
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�]⊕ [
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

Ê�],

see Theorem 4.4, but because ÊK is invariant under �̂% by Lemma 5.4 we have

ÊK = [
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

[
Ê� ∩ ÊK

]
]⊕ [

⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

[
Ê� ∩ ÊK

]
].

Consequently both û, ûF ∈ ÊK , and so necessarily ûF = 0 and û = ûK ∈ ÊK .
Thus

⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê� ⊂ ÊK ,

and for dimensional reasons these two spaces must be equal which proves the
theorem in the present case.

We next consider the general case. LetDmin ⊂ D0 ⊂ Dmax be such that

ÊD0
=

⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

[
Ê� ∩ ÊK

]
,

and consider the operator Bmin = AD0
∶ D0 ⊂ H → H. Note that D0 =

D(Bmin) is invariant under �%, Bmin is symmetric, and satis�es all the general
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assumptions imposed on Amin. We have Bmax = A∗

D0
, where

D(A∗

D0
)∕Dmin(A) = [

⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�]⊕ [
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

Ê�]⊕ ÊD0

by the Canonical Form Theorem, and consequently

D(Bmax)∕D(Bmin) ≅ [
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�]⊕ [
⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

Ê�]

is the spectral decomposition of the quotientD(Bmax)∕D(Bmin) associated with
the generator of the induced group action. By what we have shown above, the
Krein extension BK of Bmin has domain given by

D(BK)∕D(Bmin) ≅
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�,

and we have AK = BK as both extend Amin and Bmin, and are each minimal
among the nonnegative selfadjoint extensions of these operators. In conclu-
sion,

ÊK =
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

[
Ê� ∩ ÊK

]
⊕

⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

Ê�

as desired. Lastly, if A satis�es the sign condition, we necessarily must have
Ê� ∩ ÊK = Ê

�,
1

2

for ℑ(�) = −
m

2
because Ê

�,
1

2

⊂
(
Ê�, [⋅, ⋅]Êmax

)
is the unique

Lagrangian subspace that is invariant under �̂%. �

Proof of Theorem 5.2. For every invariant extension AD = A∗

D
we have

ÊD = [
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

[
Ê� ∩ ÊD

]
]⊕ [

⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

[
Ê� ∩ ÊD

]
]⊕ [

⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

[
Ê� ∩ ÊD

]
],

and because A satis�es the sign condition we have Ê� ∩ ÊD = Ê
�,

1

2

for every

� ∈ spec(ĝ) with ℑ(�) = −
m

2
. Thus

⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

Ê
�,

1

2

is part of every invariant

selfadjoint extension. Consequently, by replacing the minimal extension Amin

withAD0
as in the proof of Theorem 5.1 if necessary, where ÊD0

=
⨁

�∈spec(ĝ)

ℑ(�)=−
m

2

Ê
�,

1

2

,

we may without loss of generality assume that

spec(ĝ) ∩ {� ∈ ℂ; ℑ(�) = −
m

2
} = ∅.
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As previously mentioned, the �rst part of Theorem 5.2 follows from [26, The-
orem 5.12.4]. It is in fact an immediate consequence of the Canonical Form
Theorem. Given an invariant subspace Û ⊂ Ê− as stated in the assumptions,
the domainD of the unique selfadjoint extension with ÊD ∩ Ê− = Û must nec-
essarily be

ÊD = [
⨁

�∈spec(ĝ)

ℑ(�)>−
m

2

[
Ê� ∩ Û

[⟂]
]
]⊕ [

⨁

�∈spec(ĝ)

ℑ(�)<−
m

2

[
Ê� ∩ Û

]
].

We now proceed to prove the second part of the theorem. Let AD = A∗

D
be

invariant. According to Lemma 5.3 we haveℋD = D +ℋF , and becauseD is
invariant we conclude fromTheorem 4.4 and Theorem 5.1 thatℋD = D∩DK+

ℋF , and this sum is directmoduloDmin. We also note thatD∩DK ⊂
(
ℋD, |⋅|D

)

is dense. Consequently, for invariant extensions ADj
= A∗

Dj
, j = 1, 2, we have

ℋD2
⊂ ℋD1

if and only ifD2 ∩DK ⊂ D1 ∩DK , which by the Canonical Form
Theorem is equivalent to D1 ∩ DF ⊂ D2 ∩ DF . Moreover, whenever ℋD2

⊂

ℋD1
the embedding

(
ℋD2

, | ⋅ |D2

)
↪

(
ℋD1

, | ⋅ |D1

)
is continuous by the Closed

Graph Theorem, and ‖A

1

2

D1
u‖H = ‖A

1

2

D2
u‖H for u ∈ ℋD2

. To see the latter
norm identity note that it is true for u ∈ D1 ∩D2 ⊃ D2 ∩DK , which is dense in
ℋD2

, and so it extends by continuity to all ofℋD2
. Consequently, AD1

≤ AD2

if and only ifℋD2
⊂ ℋD1

if and only if D1 ∩ DF ⊂ D2 ∩ DF . The theorem is
proved. �

6. Indicial operators
In the remaining sections we will discuss applications of the previous results to
indicial operators. As discussed in the introduction, indicial operators arise as
model operators associated with singularities of corner type. Taking an opera-
tor theoretical point of view, we consider indicial operators of the form

A = x−m
�∑

j=0

aj(xDx)
j ∶ C∞c (ℝ+;E1) ⊂ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E0), (6.1)

wherem,� ∈ ℕ and E0 and E1 are Hilbert spaces such that E1 ↪ E0 is continu-
ous and dense, and the operators aj ∶ E1 → E0 are continuous for j = 0,… , �.
The (vector-valued) space L2

b
is the L2-space with respect to the Haar measure

dx

x
on the half-line. The indicial family of A

p(�) =

�∑

j=0

aj�
j ∶ E1 → E0, � ∈ ℂ

is a holomorphic family of Fredholm operators in L (E1, E0) and satis�es suit-
able ellipticity assumptions, detailed below. When considered an unbounded
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operator acting in E0 with domain E1 we require

p(�⋆)∗ = p(�) ∶ E1 ⊂ E0 → E0

to hold for theHilbert space adjoints for each� ∈ ℂ, where�⋆ = �−im denotes
re�ection about the line ℑ(�) = −

m

2
, see also (3.2). The latter assumption

ensures that the operator A as given in (6.1) is symmetric in H = L2
b
(ℝ+;E0)

with dense domain Dc = C∞c (ℝ+;E1). On H = L2
b
(ℝ+;E0) we consider the

ℝ+-action given by

�%u(x) = u(%x), % > 0, u ∈ L2
b
. (6.2)

This is a strongly continuous and unitary group action on L2
b
that leaves C∞c in-

variant, and we have A = %m�%A�
−1
% ∶ Dc → H for all % > 0. The in�nitesimal

generator of this group action is g = xDx.
For indicial operators associated with cone or corner singularities we typi-

cally have � = m in (6.1), but we allow these parameters to be decoupled here
to include more general singular behavior; this requires anisotropic estimates.
We �x the following notation:

l⃗ = (l1,l2) = (�,m)

⟨�, �⟩
l⃗
=

(
1 + �2l2 + �2l1

) 1

2l1l2 =
(
1 + �2m + �2�

) 1

2m�

(6.3)

for (�, �) ∈ ℝ2, see also Appendix A.
The following standing assumptions are imposed on the indicial familyp(�):

(A-1) p(�) ∶ E1 ⊂ E0 → E0 is closed, densely de�ned, and Fredholm for
� ∈ ℂ, and the map ℂ ∋ � ↦ p(�) ∈ L (E1, E0) is holomorphic.

(A-2) We have p(�⋆)∗ = p(�) ∶ E1 ⊂ E0 → E0 as unbounded operators in E0,
where �⋆ = � − im.

(A-3) For (�, �) ∈ ℝ2 and |�, �| ≥ R ≫ 0 su�ciently large p(�)± i�m ∶ E1 →

E0 is invertible, and the inverse satis�es

sup
|�,�|≥R

{
⟨�, �⟩

m�

l⃗

‖‖‖‖

(
p(�) ± i�m

)−1‖‖‖‖L (E0)
+

‖‖‖‖

(
p(�) ± i�m

)−1‖‖‖‖L (E0,E1)

}
<∞.

(A-4) For (�, �) ∈ ℝ2 and R ≫ 0 as in (A-3) and every k ∈ {1,… , �} we have

sup
|�,�|≥R

⟨�, �⟩mk
l⃗

‖‖‖‖

[
)k�p(�)

](
p(�) ± i�m

)−1‖‖‖‖L (E0)
<∞.

Note that we are not imposing assumptions regarding the de�ciency indices of
the operator (6.1), and neither do we place any assumptions on the invertibil-
ity of p(�) along a line ℑ(�) =  for any speci�c value of  ∈ ℝ, nor on the
embedding of the spaces E1 ↪ E0 other than continuity and density.

Assumptions (A-3) and (A-4) are ellipticity conditions on p(�). To illustrate
this we brie�y discuss conical singularities in Example 6.1 below.
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Example 6.1. Let Y be a closed compact Riemannian manifold and consider
an indicial family of the form

p(�) =

�∑

j=0

aj(y, Dy)�
j ∶ C∞(Y)→ C∞(Y),

where aj(y, Dy) ∈ Dif f
�−j

(Y) for j = 0,… , �. We assume that the parameter-
dependent principal symbol

��(p)(y, �;�) =

�∑

j=0

��(aj)(y, �)�
j

is invertible for (y, �;�) ∈
(
T∗Y ×ℝ

)
⧵ 0, and that

��(p)(y, �;�) = ��(p)(y, �;�)∗.

Then the family p(�) satis�es both assumptions (A-3) and (A-4) with E0 =

L2(Y) and E1 = H�(Y).
To see this note that a(y, �; �, �) ∶= ��(p)(y, �;�) ± i�m satis�es

a(y, %m�; %��, %m�) = %m�a(y, �; �, �), % > 0,

and is invertible for (y, �; �, �) ∈
(
T∗Y × ℝ2

)
⧵ 0 by the symmetry and in-

vertibility assumptions on ��(p)(y, �;�). Thus p(�) ± i�m is an elliptic family
of order m� that depends anisotropically on the parameters (�, �) ∈ ℝ2, and
the standard parametrix construction with anisotropic parameters furnishes a
parametrix b(�, �) of order −m� such that

(
p(�) ± i�m

)
b(�, �) − 1, b(�, �)

(
p(�) ± i�m

)
− 1 ∈ S (ℝ2; Ψ−∞(Y)). (6.4)

Locally, b(�, �) is quantized from symbols b(y, �; �, �) that satisfy anisotropic
symbol estimates of order t = −m� of the form

|D�
y )

�

(�,�,�)
b(y, �; �, �)| ≲

[
(1 + |�|2� + �2m + �2�)

1

2m�
]t−m|�1|−��2−m�3 (6.5)

for � ∈ ℕdimY
0

and � = (�1, �2, �3) ∈ ℕdimY
0

×ℕ0×ℕ0, while p(�)± i�m is based
on such symbols with t = m� and principal symbol a(y, �; �, �) above.

The symbol estimates (6.5) for b(y, �; �, �) with t = −m� imply

⟨�⟩|�1||D�
y )

�1
� b(y, �; �, �)| ≲ ⟨�, �⟩

−m�

l⃗
,

⟨�⟩�+|�1||D�
y )

�1
� b(y, �; �, �)| ≲ 1,

and so

sup
{
⟨�, �⟩

m�

l⃗

‖‖‖‖b(�, �)
‖‖‖‖L (Hs(Y))

+
‖‖‖‖b(�, �)

‖‖‖‖L (Hs(Y),Hs+�(Y))

}
<∞

for every s ∈ ℝ, in particular for s = 0, and because of (6.4) we can replace
b(�, �) by

(
p(�) ± i�m

)−1
for |�, �| ≫ 0 large enough in these estimates, show-

ing (A-3).
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The composition
[
)l
�
)k�

(
p(�) ± i�m

)](
p(�) ± i�m

)−1
∶ C∞(Y)→ C∞(Y)

is an anisotropic family of pseudodi�erential operators depending on (�, �) of
order t = (m� − �l −mk) + (−m�) = −�l −mk by the composition theorem,
and so locally is based on symbols that satisfy the estimates (6.5) with this value
of t. Consequently,

sup
|�,�|≥R≫0

{
⟨�, �⟩

�l+mk

l⃗

‖‖‖‖

[
)l
�
)k�

(
p(�) ± i�m

)](
p(�) ± i�m

)−1‖‖‖‖L (Hs(Y))

}
<∞

for every s ∈ ℝ, showing (A-4).

We proceed to further discuss the assumptions in the abstract setting:
First observe that (A-3) and (A-4) imply that

sup
|�,�|≥R≫0

{
⟨�, �⟩

�l+mk

l⃗

‖‖‖‖

[
)l
�
)k�

(
p(�) ± i�m

)](
p(�) ± i�m

)−1‖‖‖‖L (E0)

}
<∞

holds for all k, l ∈ ℕ0, which at �rst sight may appear stronger than (A-4). In
the abstract setting, assumption (A-4) serves a dual purpose as an ellipticity
assumption and as a replacement for the notion of order for the coe�cients aj
in (6.1).

Next note that for every  ∈ ℝwe can conclude thatp(�+i)±i�m ∶ E1 → E0
is invertible for large enough |�, �| ≫ 0, (�, �) ∈ ℝ2, and the estimates stated
for p(�) in (A-3) and (A-4) are equally valid for p(� + i). This means that the
ellipticity conditions (A-3) and (A-4) are invariant with respect to shifting p(�)
in the complex plane, or, on the operator level, that these conditions are invari-
ant with respect to conjugating the operator A in (6.1) by weights xAx− for
any  ∈ ℝ. Only the symmetry assumption (A-2) depends on weights. More-
over, the lower bound R ≫ 0 for the invertibility, and the estimates in (A-3)
and (A-4) for p(�+ i) in place of p(�), are uniform as  ∈ ℝ varies in compact
intervals5.

In particular, for � = 0, we see that the indicial family p(�) ∶ E1 → E0 is
invertible for su�ciently large |ℜ(�)|, and the lower bounds for invertibility
can be chosen locally uniformly with respect to ℑ(�). Let as usual

spec
b
(A) = {� ∈ ℂ; p(�) ∶ E1 → E0 is not invertible}

be the set of indicial roots of A. Each strip in the complex plane of the form
−T ≤ ℑ(�) ≤ T then contains only �nitely many indicial roots by (A-1) and

5These statements are not immediately obvious. For a proof we refer to Lemma A.7 in
Appendix A. In the terminology of this appendix, assumptions (A-3) and (A-4) imply that
p(�) ± ixm ∈ S

m�;l⃗

O
(ℝ × ℂ;L (E1, E0)) is right-hypoelliptic of order (m�, 0) in the sense of Def-

inition A.6. The symbolic parametrix q(x, �) de�ned there via the kernel cut-o� construction
belongs to S0;l⃗

O
(ℝ × ℂ;L (E0, E1)) ∩ S

−m�;l⃗

O
(ℝ × ℂ;L (E0)). We have (p(�) ± ixm)q(x, �) − 1 ∈

S−∞
O
(ℝ × ℂ;L (E0)) and q(x, �)(p(�) ± ixm) − 1 ∈ S−∞

O
(ℝ × ℂ;L (E1)), and combined with the

estimates for the derivatives in Part (b) of Lemma A.7 we obtain all stated properties.
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analytic Fredholm theory. We also note that spec
b
(A) is symmetrical about the

line ℑ(�) = −
m

2
by (A-2).

In order to describe the extensions ofAwewill use von Neumann’s formulas

Dmax = Dmin ⊕ ker(Amax + i)⊕ ker(Amax − i) (6.6)

as a starting point. One of themain ingredients needed for proving the Classi�-
cation Theorem 8.1 for extensions is showing that the functions in ker(Amax±i)

decay rapidly as x → ∞, which will be accomplished via the construction of
parametrices for both A ± i and is largely relegated to Appendix A. In particu-
lar, we will need to use Mellin pseudodi�erential operators. To �x notation we
are going to write

(
Mu

)
(�) = ∫

∞

0

x−i�u(x)
dx

x
, � ∈ ℝ,

(
M−1v

)
(x) =

1

2�
∫
ℝ

xi�v(�)d�, x > 0,

for the Mellin transform and its inverse. Mellin pseudodi�erential operators,
in most general form, are written as

[
opM(a)u

]
(x) =

1

2�
∫
ℝ

∫

∞

0

( x

x′

)i�
a(x, x′, �)u(x′)

dx′

x′
d�

for a compound symbol a(x, x′, �).

7. The space H (ℝ+;E1) and the minimal domain
Lemma 7.1. (a) Along every line ℑ(�) =  in the complex plane the operator

p(�+i) ∶ E1 → E0, � ∈ ℝ, is invertible for |�| ≫ 0 su�ciently large, and the
corresponding lower bounds for invertibility can be chosen locally uniformly
with respect to  ∈ ℝ. We have

p(� + i)−1 ∈ S−�(ℝ�;L (E0)) ∩ S
0(ℝ�;L (E0, E1))

for |�| ≫ 0 with locally uniform symbol estimates with respect to  ∈ ℝ.
(b) For j ∈ ℝ, j = 1, 2, we have

(
)k�p

)
(� + i2)p

−1(� + i1) ∈ S−k(ℝ�;L (E0))

for |�| ≫ 0, k ∈ ℕ0.
(c) There is a holomorphic family q(�) ∶ ℂ→ L (E0, E1) such that

q(� + i) ∈ S−�(ℝ�;L (E0)) ∩ S
0(ℝ�;L (E0, E1))

with locally uniform symbol estimates with respect to  ∈ ℝ such that

r(�) = p(�)−1 − q(�) ∶ ℂ→ L (E0, E1)

is meromorphic onℂwith at most �nitely many poles in each strip of the form
{� ∈ ℂ; −T ≤ ℑ(�) ≤ T} for every T ∈ ℕ, and if � ∈ C∞(ℂ) is an excision
function for the poles we have (�r)(� + i) ∈ S (ℝ�;L (E0, E1)) with locally
uniform estimates with respect to  ∈ ℝ.
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Proof. This follows from Lemma A.7 in Appendix A. To apply that lemma
observe that

a(x, �) = p(�) ± ixm ∈ S
m�;l⃗

O
(ℝ × ℂ;L (E1, E0))

is right-hypoelliptic of order (m�, 0) by our standing assumptions, and

q(x, �) ∈ S
0;l⃗

O
(ℝ × ℂ;L (E0, E1)) ∩ S

−m�;l⃗

O
(ℝ × ℂ;L (E0)).

All assertions follow when restricting to x = 0. �

De�nition 7.2. Fix 0 ∈ ℝ such that p(� + i0) ∶ E1 → E0 is invertible for all
� ∈ ℝ and de�ne

H (ℝ+;E1) = Range of opM(p(� + i0)
−1) ∶ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E1).

Note that p(� + i0)
−1 ∈ S0(ℝ�;L (E0, E1)), so

opM(p(� + i0)
−1) ∶ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E1)

is bounded. This operator is also injective, and consequently we can describe
H (ℝ+;E1) equivalently as
u ∈ H (ℝ+;E1)⟺ u ∈ L2

b
(ℝ+;E1) and opM(p(� + i0))u ∈ L2

b
(ℝ+;E0).

Note that opM(p(� + i0)) ∶ H−∞

b
(ℝ+;E1) → H−∞

b
(ℝ+;E0) is bijective with

inverse opM(p(� + i0)
−1).

Proposition 7.3. (a) H (ℝ+;E1) is aHilbert spacewith respect to the inner prod-
uct

⟨u, v⟩H = ⟨opM(p(� + i0))u, opM(p(� + i0))v⟩L2
b
(ℝ+;E0)

.

(b) Let  ∈ ℝ be any other value such that p(� + i) ∶ E1 → E0 is invertible for
all � ∈ ℝ. Then H (ℝ+;E1) can equivalently be de�ned as

H (ℝ+;E1) = Range of opM(p(� + i)−1) ∶ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E1),

and the inner product

⟨u, v⟩′
H

= ⟨opM(p(� + i))u, opM(p(� + i))v⟩L2
b
(ℝ+;E0)

induces an equivalent Hilbert space structure on H (ℝ+;E1) (i.e. the norms
‖ ⋅ ‖H and ‖ ⋅ ‖′

H
are equivalent).

(c) C∞c (ℝ+;E1) ⊂ H (ℝ+;E1) is dense and continuously embedded.
(d) H�

b
(ℝ+;E1)↪ H (ℝ+;E1)↪ H

�

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E1), and

H (ℝ+;E1) = H
�

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E1)

if and only if opM(p(� + i0)) ∶ H
�

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E1)→ L2

b
(ℝ+;E0).

Proof. Assertion (a) follows at once from the boundedness and injectivity of
opM(p(� + i0)

−1) ∶ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E1)↪ L2

b
(ℝ+;E0).

As both
p(� + i)p(� + i0)

−1, p(� + i0)p(� + i)−1 ∈ S0(ℝ�;L (E0))
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by Lemma 7.1 we have that
opM(p(� + i)p(� + i0)

−1) ∶ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E0)

is bounded and invertible with inverse opM(p(� + i0)p(� + i)−1). Conse-
quently, the operators opM(p(� + i)−1) ∶ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E1) and

opM(p(� + i0)
−1) = opM(p(� + i)−1)opM(p(� + i)p(� + i0)

−1)

∶ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E1)

have the same range, proving (b).
For (c) note that

opM(p(� + i0)) ∶ T (ℝ+;E1)→ T (ℝ+;E0)

is continuous and invertible with inverse opM(p(� + i0)
−1). Here T denotes

the space of functions u(x) on ℝ+ such that u(et) is a Schwartz function on ℝ.
Thus T (ℝ+;E1) ↪ H (ℝ+;E1), and the density of T (ℝ+;E0) ⊂ L2

b
(ℝ+;E0)

implies the density of T (ℝ+;E1) in H (ℝ+;E1). So (c) follows from the fact
that the embedding C∞c (ℝ+;E1)↪ T (ℝ+;E1) is dense.

Lastly, (d) follows because

opM(p(� + i0)) ∶ H
�

b
(ℝ+;E1)→ L2

b
(ℝ+;E0),

opM(p(� + i0)
−1) ∶ L2

b
(ℝ+;E0)→ H

�

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E1)

are bounded by Lemma 7.1. �

Remark 7.4. A typical situation in applications is that

H (ℝ+;E1) = H
�

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E1). (7.1)

Let Λ ∶ E1 ⊂ E0 → E0 be selfadjoint and invertible6, and de�ne for � ∈ ℝ

r(�) = ⟨�⟩� + iΛ ∶ E1 → E0.

Then r(�) ∈ S�(ℝ;L (E1, E0)) is invertible for all � ∈ ℝ, and by the Spectral
Theorem we have that r(�)−1 ∈ S−�(ℝ;L (E0)) ∩ S

0(ℝ;L (E0, E1)). Thus

opM(r) ∶ H
�

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E1)→ L2

b
(ℝ+;E0)

is an isomorphism with inverse opM(r
−1). It follows from our assumptions on

p(�) and Lemma 7.1 that
r(�)p(� + i0)

−1 = ⟨�⟩�p(� + i0)
−1 + iΛp(� + i0)

−1 ∈ S0(ℝ;L (E0)).

If the latter happens to be an elliptic operator valued symbol then
p(� + i0)r(�)

−1 ∈ S0(ℝ;L (E0)),

and therefore the identity (7.1) holds in this case.

The spaceH (ℝ+;E1) naturally arises from an unbounded operator perspec-
tive.

6For example, we may choose �0 ∈ ℂ with ℑ(�0) = −
m

2
such that Λ = p(�0) ∶ E1 → E0 is

invertible and selfadjoint by (A-2).
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Proposition 7.5. For every  ∈ ℝ the operator

opM(p(� + i)) ∶ C∞c (ℝ+;E1) ⊂ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E0)

is closable, and the closure is opM(p(�+ i)) ∶ H (ℝ+;E1)→ L2
b
(ℝ+;E0). More-

over, the adjoint of this operator as an unbounded operator acting in L2
b
(ℝ+;E0)

is opM(p(� − i( +m))) ∶ H (ℝ+;E1)→ L2
b
(ℝ+;E0).

Proof. We note �rst that opM(p(� + i)) ∶ H (ℝ+;E1) → L2
b
(ℝ+;E0) is well-

de�ned and continuous because p(� + i)p(� + i0)
−1 ∈ S0(ℝ;L (E0)) by

Lemma 7.1. WritingH = L2
b
(ℝ+;E0) we have

‖u‖H + ‖opM(p(� + i))u‖H ≲ ‖opM(p(� + i0))u‖H = ‖u‖H

for u ∈ H (ℝ+;E1) in view of u = opM(p(� + i0)
−1)opM(p(� + i0))u. On the

other hand, with q(�) from Lemma 7.1 we have

p(� + i0) = p(� + i0)q(� + i)p(� + i) − p(� + i0)l(� + i),

where

p(� + i0)q(� + i) ∈ S0(ℝ;L (E0)) and
p(� + i0)l(� + i) ∈ S (ℝ;L (E0)),

and therefore

‖u‖H = ‖opM(p(� + i0))u‖H ≲ ‖opM(p(� + i))u‖H + ‖u‖H

for u ∈ H (ℝ+;E1). This proves the �rst part of the proposition.
To prove the claim about the adjoint we consider

P(�) = [
0 p(� + i)

p(� − i( +m)) 0
] ∶

E1
⊕

E1

⊂

E0
⊕

E0

→

E0
⊕

E0

.

Then P(�) = P(�)
⋆ by (A-2), and

opM(P) ∶

H (ℝ+;E1)

⊕

H (ℝ+;E1)

⊂ L2
b
(ℝ+;

E0
⊕

E0

) → L2
b
(ℝ+;

E0
⊕

E0

)

is symmetric and closed. We need to show that this operator is selfadjoint,
which follows if we show that both

opM(P) ± i ∶

H (ℝ+;E1)

⊕

H (ℝ+;E1)

→ L2
b
(ℝ+;

E0
⊕

E0

)

are invertible. In case  = 0 the operator opM(P0
) is invertible by choice

of 0 and (A-1) with inverse opM(P
−1
0
), and so opM(P0

) is selfadjoint. For
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general  the operators P(�) ± i ∶ E2
1
→ E2

0
are invertible for all � ∈ ℝ, and

‖‖‖‖

[
P(�) ± i

]−1‖‖‖‖L (E2
0
)
≤ 1 by the Spectral Theorem. Writing

[
P(�) ± i

]−1
= P(�)

−1
(
1 ∓ i

[
P(�) ± i

]−1)

for large |�| ≫ 0 and Lemma 7.1 show that
[
P(�) ± i

]−1
∈ S0(ℝ;L (E2

0
, E2

1
)) ∩ S−�(ℝ;L (E2

0
)),

P0
(�)

[
P(�) ± i

]−1
∈ S0(ℝ;L (E2

0
)).

Thus

opM(
[
P(�) ± i

]−1
) ∶ L2

b
(ℝ+;E

2
0
)→ H (ℝ+;E

2
1
)

inverts opM(P) ± i and the proposition is proved. �

We next prove that the space H (ℝ+;E1) allows localization and microlo-
calization and has good approximation properties. The latter is based on the
following familiar continuity criterion for the strong operator topology in L2

b
-

spaces:
Let S0(ℝ+ × ℝ;L (F, G)) denote the space of global operator-valued Mellin

symbols of order 0, where F and G and Hilbert spaces, i.e., a(x, �) ∈ C∞(ℝ+ ×

ℝ;L (F, G)) belongs to S0(ℝ+×ℝ;L (F, G)) if and only if for all �, � ∈ ℕ0 there
exists a constant C�,� ≥ 0 independent of (x, �) such that

‖(xDx)
�)

�
�a(x, �)‖L (F,G) ≤ C�,�⟨�⟩

−� .

The best constants in these estimates give rise to the seminorms for the symbol
topology on S0(ℝ+ ×ℝ;L (F, G)).

If {aj(x, �)}∞j=1 ⊂ S0(ℝ+ × ℝ;L (F, G)) is a sequence that is bounded in the
symbol topology and converges pointwise on ℝ+ × ℝ to a(x, �) ∈ S0(ℝ+ ×

ℝ;L (F, G)), then opM(aj) → opM(a) strongly as j → ∞, i.e., opM(aj)u →

opM(a)u in L2
b
(ℝ+;G) as j →∞ for every u ∈ L2

b
(ℝ+;F).

We quickly review the steps of the proof of this criterion (without loss of
generality assume that a(x, �) ≡ 0):

∙ Let u ∈ T (ℝ+;F) (recall that this means that u(et) ∈ S (ℝ;F)):
– From the boundedness of {aj(x, �)} and dominated convergence
we �rst get that [opM(aj)u](x)→ 0 in G pointwise on ℝ+.

– As S0(ℝ+ × ℝ;L (F, G)) ∋ a ↦ opM(a)u ∈ T (ℝ+;G) is con-
tinuous we can bound any continuous seminorm of opM(aj)u on
T (ℝ+;G) by a constant independent of j. This observation gives
rise to an integrable majorant of the form F(x) = K⟨logx⟩−2 ∈

L1(ℝ+;
dx

x
) such that ‖opM(aj)u(x)‖

2
G
≤ F(x), and in conclusion

opM(aj)u → 0 in L2
b
(ℝ+;G) as j →∞ by dominated convergence.
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∙ Continuity of the map

S0(ℝ+ ×ℝ;L (F, G)) ∋ a ↦ opM(a) ∈ L (L2
b
(ℝ+;F), L

2

b
(ℝ+;G))

shows that {opM(aj)}
∞
j=1

is bounded in L (L2
b
(ℝ+;F), L

2

b
(ℝ+;G)), and

opM(aj)u → 0 as j → ∞ for u in the dense subspace T (ℝ+;F). Thus
opM(aj)→ 0 strongly as j →∞.

The relevant application of this criterion for us are molli�ers in the case F =

G and scalar symbols aj(x, �), where we speci�cally choose

aj(x, �) = �(
j
√
x) exp

(
−

�2

2j2

)
(7.2)

with� ∈ C∞c (ℝ+) such that� ≡ 1nearx = 1. Note thataj(x, �) is holomorphic
in �, {aj(x, � + i); j ∈ ℕ, || ≤ K} ⊂ S0(ℝ+ × ℝ�) is bounded for every
K > 0, and aj(x, �)→ 1 as j →∞ pointwise on ℝ+ × ℂ. An application of the
above continuity criterion combined with the analyticity and estimates on the
symbols with respect to � yield that for every � ∈ ℝ and every u ∈ x�L2

b
(ℝ;F)

we have opM(aj)u → u as j → ∞ in x�L2
b
(ℝ;F). Note that the extensions by

continuity of opM(aj) to weighted L
2

b
-spaces for di�erent values of �, �′ ∈ ℝ are

consistent on the intersection x�L2
b
∩x�

′

L2
b
, and thus opM(aj) is unambiguously

de�ned. Observe also that opM(aj)u ∈ C∞c (ℝ+;F) for every j ∈ ℕ.

Proposition 7.6. Let a(x, �) ∈ S0(ℝ+ × ℝ) be a global scalar Mellin symbol.
Then

opM(a) ∶ H (ℝ+;E1)→ H (ℝ+;E1)

is continuous. Moreover, if {aj(x, �)} ⊂ S0(ℝ+ ×ℝ) is a sequence of such symbols
that is bounded in the global symbol topology, and such that aj(x, �) converges
pointwise to the global Mellin symbol a(x, �) ∈ S0(ℝ+ × ℝ), then opM(aj) →
opM(a) strongly in L (H (ℝ+;E1)), i.e., opM(aj)u → opM(a)u in H (ℝ+;E1) for
each u ∈ H (ℝ+;E1).

Proof. To prove the �rst claim we need to show by de�nition of H (ℝ+;E1)

that

opM(p(� + i0)opM(a)opM(p(� + i0)
−1) ∶ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E0)

is bounded. Now

opM(p(� + i0)opM(a)opM(p(� + i0)
−1) = opM([p(� + i0]#[ap(� + i0)

−1]),

where
[p(� + i0)]#[ap(� + i0)

−1]

=

�∑

k=0

1

k!

(
)k�p(� + i0

)(
[(xDx)

ka]p(� + i0)
−1

)

=

�∑

k=0

1

k!

(
[)k�p(� + i0)]p(� + i0)

−1
)(
(xDx)

ka(x, �)
)
.

(7.3)
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Lemma 7.1 now implies that

[p(� + i0)]#[ap(� + i0)
−1] ∈ S0(ℝ+ ×ℝ;L (E0)),

and consequently the Mellin pseudodi�erential operator

opM
(
[p(� + i0)]#[ap(� + i0)

−1]
)
∶ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E0)

is bounded.
To prove the convergence statement note that boundedness of the aj(x, �)

in the symbol topology implies, in particular, that the {aj} form a bounded se-
quencewith respect to the standard Fréchet topology ofC∞(ℝ+×ℝ). TheMon-
tel property of C∞(ℝ+ × ℝ) together with the pointwise convergence of the aj
then implies that aj → a in C∞(ℝ+ ×ℝ). Then

{[p(� + i0)]#[ajp(� + i0)
−1]}∞

j=1
⊂ S0(ℝ+ ×ℝ;L (E0))

is bounded and

[p(� + i0)]#[ajp(� + i0)
−1]→ [p(� + i0)]#[ap(� + i0)

−1]

pointwise by (7.3), and so

opM
(
[p(� + i0)]#[ajp(� + i0)

−1]
)
→ opM

(
[p(� + i0)]#[ap(� + i0)

−1]
)

strongly in L (L2
b
(ℝ+;E0)), thus proving that opM(aj) → opM(a) strongly in

L (H (ℝ+;E1)). �

Corollary 7.7. C∞c (ℝ+;E1) is dense inxH (ℝ+;E1)∩x
�L2

b
(ℝ+;E0) for all�,  ∈

ℝ.

Proof. Let aj(x, �) be the sequence of mollifying symbols from (7.2). For ev-
ery u ∈ xH (ℝ+;E1) ∩ x

�L2
b
(ℝ+;E0) we have opM(aj)u → u as j → ∞ in

x�L2
b
(ℝ+;E0), and opM(aj)u = xopM(aj(x, � − i))(x−u) → u as j → ∞ in

xH (ℝ+;E1) by Proposition 7.6. �

Theorem 7.8. We have

xmH (ℝ+;E1) ∩ L
2

b
(ℝ+;E0)↪ Dmin,

andDmin = xmH (ℝ+;E1) ∩ L
2

b
(ℝ+;E0) if and only if p(� − im) ∶ E1 → E0 is

invertible for all � ∈ ℝ.

Proof. The operator A ∶ C∞c (ℝ+;E1) ⊂ L2
b
(ℝ+;E0) → L2

b
(ℝ+;E0) extends to a

bounded operator A ∶ xmH (ℝ+;E1)→ L2
b
(ℝ+;E0) via

Au = opM(p(� − im))(x−mu) (7.4)

for u ∈ xmH (ℝ+;E1) by Proposition 7.5. Consequently, withH = L2
b
(ℝ+;E0),

we have
‖u‖H + ‖Au‖H ≲ ‖u‖H + ‖u‖xmH

for u ∈ C∞c (ℝ+;E1) which proves that xmH (ℝ+;E1) ∩ L
2

b
(ℝ+;E0) ↪ Dmin by

Corollary 7.7.
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If p(� − im) ∶ E1 → E0 is invertible for all � ∈ ℝ, Proposition 7.3 and (7.4)
imply that ‖Au‖H is an equivalent norm on xmH (ℝ+;E1). Consequently, the
graph norm ‖u‖H + ‖Au‖H and the norm ‖u‖H + ‖u‖xmH are equivalent on
C∞c (ℝ+;E1), and therefore

Dmin = xmH (ℝ+;E1) ∩ L
2

b
(ℝ+;E0)

by the density of C∞c (ℝ+;E1) in both spaces.
Conversely, if there exists �0 ∈ ℂ with ℑ(�0) = −m such that p(�0) ∶ E1 →

E0 is not invertible, we will show in the proof of Theorem 8.1 in Section 8 that
Dmin contains elements of the form u = !e1x

i�0 , where 0 ≠ e1 ∈ E1 and ! ∈

C∞c (ℝ+) is a functionwith! ≡ 1nearx = 0. Such functionsu are not contained
in xmL2

b
(ℝ+;E0) and thus u ∉ xmH (ℝ+;E1), and so Dmin ≠ xmH (ℝ+;E1) ∩

L2
b
(ℝ+;E0). �

8. The maximal domain
Fix ! ∈ C∞c (ℝ+) with ! ≡ 1 near x = 0. For each �0 ∈ spec

b
(A) let

E�0 = {u = !

k∑

j=0

ej log
j
(x)xi�0 ; k ∈ ℕ0 and ej ∈ E1,

and p(�)(Mu)(�) is holomorphic at � = �0}.

(8.1)

By analytic Fredholm theory this space is �nite-dimensional. Theorem 8.1 de-
scribes the structure of the maximal domain.

Theorem 8.1. We have

Dmax = Dmin ⊕
⨁

�0∈specb(A)

−m<ℑ(�0)<0

E�0 .

In particular, dim Êmax < ∞. For each �0 ∈ spec
b
(A) with −m < ℑ(�0) < 0 the

space Ê�0 =
(
E�0 +Dmin

)
∕Dmin is the generalized eigenspace to the eigenvalue �0

of the generator ĝ of the induced action �̂% from (6.2) on Êmax .
If u�j ∈ E�j for �j ∈ spec

b
(A) with −m < ℑ(�j) < 0 for j = 0, 1, then the

adjoint pairing between these functions is given by

[u�0 , u�1]A = res�=�0⟨p(�)[Mu�0](�), [Mu�1](�
⋆)⟩E0 , (8.2)

where �⋆ = � − im is re�ection about the lineℑ(�) = −
m

2
.

This means that every u ∈ Dmax has an asymptotic expansion of the form

u ∼
∑

�0∈specb(A)

−m<ℑ(�0)<0

k�0∑

j=0

e�0,j log
j
(x)xi�0 as x → 0 mod Dmin,
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and vanishing conditions placed upon these asymptotic terms are boundary
conditions as x → 0 that determine extensions. In particular, the abstract the-
ory of the �rst part of this paper is applicable to the indicial operator (6.1).

The proof of Theorem 8.1 requires some auxiliary results.

Lemma 8.2. We have

H (ℝ+;E1) ∩Dmax = {u ∈ H (ℝ+;E1);

opM(p)u ∈ xmL2
b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E0)},

and Amaxu = x−mopM(p)u for u ∈ H (ℝ+;E1) ∩Dmax .

Proof. Let u ∈ H (ℝ+;E1) and v ∈ C∞c (ℝ+;E1) be arbitrary. Using Plancherel
and our standing assumptions we get

⟨Av, u⟩ = ⟨opM
(
p(⋅ − im)

)
(x−mv), u⟩

=
1

2�
∫
ℝ

⟨p(� − im)[M(x−mv)](�), [Mu](�)⟩E0 d�

=
1

2�
∫
ℝ

⟨[M(x−mv)](�), p(�)[Mu](�)⟩E0 d�

= ⟨x−mv, opM(p)u⟩ = ∫

∞

0

⟨v(x), [x−mopM(p)u](x)⟩E0
dx

x
.

Consequently, if x−mopM(p)u ∈ L2
b
(ℝ+;E0), then u ∈ Dmax and the last in-

tegral can be rewritten as the pairing ⟨v, Amaxu⟩ with Amaxu = x−mopM(p)u.
Conversely, if u ∈ Dmax , we have ⟨Av, u⟩ = ⟨v, Amaxu⟩, and so

∫

∞

0

⟨v(x), [x−mopM(p)u](x)⟩E0
dx

x
= ∫

∞

0

⟨v(x), Amaxu(x)⟩E0
dx

x

for all v ∈ C∞c (ℝ+;E1). This shows x−mopM(p)u = Amaxu ∈ L2loc(ℝ+;E0), and
thus x−mopM(p)u = Amaxu ∈ L2

b
(ℝ+;E0). �

Lemma 8.3. We have E�0 ⊂ H (ℝ+;E1) ∩ Dmax for every �0 ∈ spec
b
(A) with

ℑ(�0) < 0.

Proof. We have E�0 ⊂ H∞

b
(ℝ+;E1) ⊂ H (ℝ+;E1), and for every u ∈ E�0 we

have
opM(p)u ∈ C∞c (ℝ+;E0) ⊂ xmL2

b
(ℝ+;E0) ∩ L

2

b
(ℝ+;E0).

The claim now follows from Lemma 8.2. �

The following proposition is one of themain ingredients for the proof of The-
orem 8.1. It relies on the pseudodi�erential calculus in Appendix A.

Proposition 8.4. We have

ker(Amax ± i) ⊂ H (ℝ+;E1) ∩
⋂

≤0

xH∞

b
(ℝ+;E0).
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Proof. We consider ker(Amax+ i), the case of ker(Amax− i) is analogous. Using
the pseudodi�erential calculus in Appendix A we will show that there exists a
continuous operator Q ∶ L2

b
(ℝ+;E0)→ Dmin ↪ L2

b
(ℝ+;E0) such that

(Amin − i)Q = 1 + G ∶ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E0) (8.3)

with G ∈ Ψ−∞
O

(ℝ+;L (E0)), i.e.,

G, G∗ ∶ x�Hs

b
(ℝ+;E0)→ x�

′

Hs′

b
(ℝ+;E0)

for all �, s, s′ ∈ ℝ, and all �′ ≤ �, where the adjoints refer to the L2
b
(ℝ+;E0)-

inner product. Passing to adjoints in (8.3) then shows that

Q∗(Amax + i) = 1 + G∗ ∶ Dmax ⊂ L2
b
(ℝ+;E0)→ L2

b
(ℝ+;E0).

In particular, if u ∈ ker(Amax + i), then u = −G∗u ∈
⋂

≤0

xH∞

b
(ℝ+;E0) by the

mapping properties of G∗. We proceed with the construction of Q.
Consider

a(x, �) = p(�) − ixm ∈ S
m�;l⃗

O
(ℝ × ℂ;L (E1, E0)),

where the anisotropy vector l⃗ is given by (6.3). By our standing assumptions,
a(x, �) is right-hypoelliptic of order (m�, 0) in the sense of De�nitionA.6. Thus
there exists b(x, �) ∈ S

0;l⃗

O
(ℝ × ℂ;L (E0, E1)) with a#b ∼ 1, see Theorem A.8.

Now de�ne

Q = opM(b(x, �))x
m ∶ Ċ∞(ℝ+;E0)→ Ċ∞(ℝ+;E1),

where as in Appendix A we denote by Ċ∞ the space of functions on ℝ+ that
vanish to in�nite order at x = 0 and are rapidly decreasing as x →∞. Because
Amin ∶ Dmin ⊂ L2

b
(ℝ+;E0)→ L2

b
(ℝ+;E0) is symmetric we have

‖(Amin − i)u‖2
L2
b
(ℝ+;E0)

= ‖Aminu‖
2

L2
b
(ℝ+;E0)

+ ‖u‖2
L2
b
(ℝ+;E0)

, u ∈ Dmin.

Now Q ∶ Ċ∞(ℝ+;E0)→ Ċ∞(ℝ+;E1) and Ċ∞(ℝ+;E1)↪ Dmin with

Aminu = x−mopM(p)u

for u ∈ Ċ∞(ℝ+;E1) by Theorem 7.8. Thus

(Amin − i)Q = x−m(opM(a(x, �))opM(b(x, �))x
m

= x−m(1 + G̃)xm = 1 + G ∶ Ċ∞(ℝ+;E0)→ Ċ∞(ℝ+;E0)

by Theorem A.8, and because this operator extends to a continuous operator
L2
b
(ℝ+;E0) → L2

b
(ℝ+;E0) we obtain that Q ∶ L2

b
(ℝ+;E0) → Dmin is bounded

with (8.3) as asserted.
It remains to prove that ker(Amax + i) ⊂ H (ℝ+;E1). Let u ∈ ker(Amax + i)

be arbitrary. Then

xmAmaxu = −ixmu ∈ L2
b
(ℝ+;E0)
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by what we have already shown. For all v ∈ C∞c (ℝ+;E1) we have

⟨v, xmAmaxu⟩ = ⟨xmv, Amaxu⟩ = ⟨A(xmv), u⟩ = ⟨opM(p(� − im))v, u⟩.

Consequently, u is in the domain of the adjoint of the closure of opM(p(� −
im)) ∶ C∞c (ℝ+;E1) ⊂ L2

b
(ℝ+;E0) → L2

b
(ℝ+;E0), and thus u ∈ H (ℝ+;E1) by

Proposition 7.5. The proposition is proved. �

Lemma 8.5. Let u ∈ ker(Amax ± i). Then there exist u�0 ∈ E�0 , �0 ∈ spec
b
(A)

with −m ≤ ℑ(�0) < 0, such that

u −
∑

�0∈specb(A)

−m≤ℑ(�0)<0

u�0 ∈ Dmin.

Proof. This follows via the standard argument to establish asymptotic expan-
sions utilizing the Mellin transform. Without loss of generality we consider
u ∈ ker(Amax − i) in this proof. By Lemma 8.2 and Proposition 8.4,

opM(p)u = ixmu ∈
⋂

�≥0

xm−�L2
b
(ℝ+;E0) ⊂

⋂

�>0

xm−�L1
b
(ℝ+;E0).

In particular, theMellin transformM(ixmu)(�) extends to an analyticE0-valued
function in the half-planeℑ(�) > −m, and the functionℝ ∋ � ↦ M(ixmu)(�+

i) belongs to L2(ℝ�;E0)∩C0(ℝ�;E0)with continuous dependence on  > −m.
Now

Mu(�) = p(�)−1M(ixmu)(�),

which is a priori analytic in ℑ(�) > 0 and via this identity extends meromor-
phically to ℑ(�) > −m with possible locations of poles at points in spec

b
(A),

and because Mu(�) ∈ L2(ℝ;E0) this function cannot have poles on ℝ. Con-
sequently, there exists " > 0 such that Mu(�) is analytic in ℑ(�) > −" with
Mu(� + i) ∈ L2(ℝ�;E0) ∩ C0(ℝ�;E0) for  > −", so u ∈

⋂

�>0

x"−�L2
b
(ℝ+;E0)

and therefore

opM(p)u = ixmu ∈
⋂

�>0

xm+"−�L2
b
(ℝ+;E0) ⊂

⋂

�>0

xm+"−�L1
b
(ℝ+;E0).

This shows thatMu(�) extendsmeromorphically further toℑ(�) > −m−", and
by choosing " > 0 small enough we can assume that spec

b
(A) ∩ {� ∈ ℂ; −m −

" < ℑ(�) < −m} = ∅, so all possible poles for Mu(�) in ℑ(�) > −m − " are
located in−m ≤ ℑ(�) < 0. Note also thatMu(�) is an E1-valued meromorphic
function inℑ(�) > −m− ". Consequently, there exist u�0 ∈ E�0 , �0 ∈ spec

b
(A)

with −m ≤ ℑ(�0) < 0, such that both

M
[
u −

∑

�0∈specb(A)

−m≤ℑ(�0)<0

u�0

]
(�) and p(�)M

[
u −

∑

�0∈specb(A)

−m≤ℑ(�0)<0

u�0

]
(�)

are holomorphic in ℑ(�) > −m − ", and along every line ℑ(�) =  these func-
tions are L2∩C0 with values in E1 and E0, respectively, with continuous depen-
dence on  > −m − ". Now choose −m − " < 1 < −m < 0 < 2 such that
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p(�) ∶ E1 → E0 is invertible alongℑ(�) = j, j = 1, 2. From the above we then
obtain that

u −
∑

�0∈specb(A)

−m≤ℑ(�0)<0

u�0 ∈ x−1H (ℝ+;E1) ∩ x
−2H (ℝ+;E1)

=
⋂

−2≤≤−1

xH (ℝ+;E1).

Note that the last equality is true because of Proposition 7.6. Thus

u −
∑

�0∈specb(A)

−m≤ℑ(�0)<0

u�0 ∈ xmH (ℝ+;E1) ∩ L
2

b
(ℝ+E0) ⊂ Dmin

by Theorem 7.8. The lemma is proved. �

Proof of Theorem 8.1. By vonNeumann’s formulas (6.6) andLemmas 8.3 and
8.5 we have

Dmax = Dmin +
∑

�0∈specb(A)

−m≤ℑ(�0)<0

E�0 .

In particular dim Êmax < ∞ and A has �nite de�ciency indices, so the abstract
theory from the �rst part of the paper is applicable.

Let g = xDx be the generator of the scaling action �% from (6.2). We have

g ∶ E�0 + C∞c (ℝ+;E1)→ E�0 + C∞c (ℝ+;E1)

for every �0 ∈ spec
b
(A) per the de�ning relation (8.1), and

(g − �0)
N ∶ E�0 + C∞c (ℝ+;E1)→ C∞c (ℝ+;E1)

for N large enough7. This shows that Ê�0 =
(
E�0 + Dmin

)
∕Dmin ⊂ Êmax is

the generalized eigenspace associated with the eigenvalue �0 ∈ spec
b
(A) for

the generator ĝ ∶ Êmax → Êmax . In particular, ĝ has no real eigenvalues, and
by the Canonical Form Theorem from Section 3 then also has no eigenvalue
with ℑ(�) = −m. This shows that E�0 ⊂ Dmin for every �0 ∈ spec

b
(A) with

ℑ(�0) = −m, and we get

Dmax = Dmin +
∑

�0∈specb(A)

−m<ℑ(�0)<0

E�0 . (8.4)

7Note that the action of g corresponds to multiplication by � on the Mellin transform side.
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We next show that this sum is direct. The argument is based on formula (8.2)
for the adjoint pairing. To prove this formula we use Plancherel and write

1

i
⟨Amaxu�0 , u�1⟩ =

1

2�i
∫
ℝ

⟨p(� − im)[Mu�0](� − im), [Mu�1](�)⟩E0 d�

=
1

2�i
∫
ℑ(�)=−m

⟨p(�)[Mu�0](�), [Mu�1](�
⋆)⟩E0 d�

=
1

2�i
∫
ℑ(�)=−m

⟨[Mu�0](�), p(�
⋆)[Mu�1](�

⋆)⟩E0 d�,

1

i
⟨u�0 , Amaxu�1⟩ =

1

2�i
∫
ℝ

⟨[Mu�0](�), p(� − im)[Mu�1](� − im)⟩E0 d�

=
1

2�i
∫
ℝ

⟨[Mu�0](�), p(�
⋆)[Mu�1](�

⋆)⟩E0 d�.

The function ⟨[Mu�0](�), p(�
⋆)[Mu�1](�

⋆)⟩E0 ismeromorphic onℂwith a pos-
sible pole only at � = �0, and it is rapidly decreasing as |ℜ(�)| → ∞ locally
uniformly with respect to ℑ(�). Consequently,

[u�0 , u�1]A =
1

i

[
⟨Amaxu�0 , u�1⟩ − ⟨u�0 , Amaxu�1⟩

]

=
1

2�i
∮
C"(�0)

⟨[Mu�0](�), p(�
⋆)[Mu�1](�

⋆)⟩E0 d�

=
1

2�i
∮
C"(�0)

⟨p(�)[Mu�0](�), [Mu�1](�
⋆)⟩E0 d�

= res�=�0⟨p(�)[Mu�0](�), [Mu�1](�
⋆)⟩E0

after shifting the integration contour from the two lines ℝ and ℑ(�) = −m

to a small positively oriented circle C"(�0) centered at �0, showing (8.2). In
particular, [u�0 , u�1]A = 0 for �1 ≠ �⋆

0
. In case �1 = �⋆

0
consider

P(�) = [
0 p(�0 + �)

p(�⋆
0
+ �) 0

] ∶

E1
⊕

E1

→

E0
⊕

E0

near � = 0. By Theorem B.2 the pairing on the space K (P) of meromorphic
germs at � = 0 that are annihilated by P(�) modulo holomorphic germs dis-
cussed in Appendix B is nondegenerate, but we have K (P) ≅ E�⋆

0
⊕ E�0 and

by what we have just shown the pairing on K (P) under this isomorphism is
expressed by

[
(u�⋆

0
, v�0), (v�⋆0

, u�0)
]
↦ [v�0 , v�⋆0

]A + [u�⋆
0
, u�0]A.

Consequently, [⋅, ⋅]A ∶ E�0 × E�⋆
0
→ ℂ is nondegenerate. Using these pairings

and their nondegeneracy for �1 = �⋆
0
and orthogonality for �1 ≠ �⋆

0
then shows

that the sum (8.4) must be direct. The theorem is proved. �
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9. The signature of the adjoint pairing and the sign condition
By Theorem 8.1 the abstract theory from the �rst part of the paper applies to
indicial operators (6.1). In particular, the Canonical Form Theorem implies
an algebraic Green formula for the pairing [⋅, ⋅]Êmax as discussed in Section 3.
For indicial operators the Mellin transform and indicial family provide an ad-
ditional analytic counterpart that is not available in the operator theoretical
setting of the �rst part of this paper that we can harness to prove an analytic
formula for the signature of the pairing [⋅, ⋅]Êmax in terms of the spectral �ow of
the indicial family p(�) ∶ E1 ⊂ E0 → E0,ℑ(�) = −

m

2
. By our standing assump-

tions this is a family of selfadjoint unbounded Fredholm operators, invertible
everywhere except at �nitely many indicial roots. It therefore makes sense to
consider the spectral �ow across each indicial root separately. We refer to the
survey by Lesch [40] for general information about the spectral �ow, see also
[13] and Appendix B. For an indicial operator we therefore obtain both an alge-
braic formula for the signature of the adjoint pairing as in Theorem 3.4 in terms
of the invariants of the generator on generalized eigenspaces withℑ(�0) = −

m

2
,

and an analytic formula in terms of the indicial family.

Theorem 9.1. The signature of
(
Êmax , [⋅, ⋅]Êmax

)
is given by

sgn
(
Êmax , [⋅, ⋅]Êmax

)
=

∑

�0∈specb(A)

ℑ(�0)=−
m

2

∑

l odd

(
m+(�0,l) −m−(�0,l)

)
.

For every �0 ∈ spec
b
(A) withℑ(�0) = −

m

2
we have

∑

l odd

(
m+(�0,l) −m−(�0,l)

)
= SF�=�0

[
p(�) ∶ E1 ⊂ E0 → E0, ℑ(�) = −

m

2

]
.

In particular,

sgn
(
Êmax , [⋅, ⋅]Êmax

)
= SF

[
p(�) ∶ E1 ⊂ E0 → E0, ℑ(�) = −

m

2

]
.

Proof. The algebraic statement follows from Theorem 3.4. The analytic for-
mula for the signature in terms of the spectral �ow is based on formula (8.2)
and is discussed in the appendix; speci�cally, this is Theorem B.2. Note that
the action of ĝ is transformed to multiplication by � on the Mellin transform
side. �

If ⟨Au, u⟩ ≥ 0 for u ∈ C∞c (ℝ+;E1) we have seen in Sections 4 and 5 that
the sign condition is needed to give satisfactory classi�cations of the Friedrichs
and Krein extensions, see De�nition 4.3. For indicial operators this condition
is satis�ed.

Theorem 9.2. Suppose ⟨Au, u⟩ ≥ 0 for u ∈ C∞c (ℝ+;E1). Then the invariants
m±(�0,l) of

(
Êmax , [⋅, ⋅]Êmax , ĝ

)
for every �0 ∈ spec

b
(A) withℑ(�0) = −

m

2
satisfy

m±(�0,l) = 0 for l odd, andm−(�0,l) = 0 for l even.
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Proof. The assumption ⟨Au, u⟩ ≥ 0 for u ∈ C∞c (ℝ+;E1) is equivalent top(�) ≥
0 for ℑ(�) = −

m

2
. The theorem thus follows from Theorem B.3. �

Appendix A. A pseudodi�erential calculus

Let l⃗ = (l1,l2) ∈ ℕ2, and de�ne

⟨x, �⟩
l⃗
= (1 + x2l2 + �2l1)

1

2l1l2 (A.1)

for (x, �) ∈ ℝ2. Note that Peetre’s inequality

⟨x + x′, � + �′⟩s
l⃗
≤ 2|s|⟨x, �⟩s

l⃗
⟨x′, �′⟩

|s|

l⃗

holds, and there exist c, C > 0 such that

c⟨x, �⟩

1

l1+l2 ≤ ⟨x, �⟩
l⃗
≤ C⟨x, �⟩l1+l2 .

We consider anisotropic symbols a0(x, �) taking values in the bounded opera-
tors between Hilbert spaces that are based on (A.1) such that

‖D�
x)

�
�a0(x, �)‖ ≤ C�,�⟨x, �⟩

�−l1�−l2�

l⃗
(A.2)

for �, � ∈ ℕ0. Write S�;l⃗(ℝ2) for these symbol spaces; the Hilbert spaces are
understood from the context and not included in the notation in this section.
Note that the usual rules of symbol calculus are valid for these symbol classes.
These symbols are such that C∞-functions that are anisotropic homogeneous
of degree � in the large in the sense that

a0(%
l1x, %l2�) = %�a0(x, �)

for % ≥ 1 and large |x, �| belong to S�;l⃗(ℝ2). In particular, for what follows it
will be relevant that the function x ∈ Sl1;l⃗(ℝ2). We also note that ⟨x, �⟩�

l⃗
∈

S�;l⃗(ℝ2).
The estimates (A.2) for a0(x, �) imply that

‖(xDx)
�)

�
�a0(x, �)‖ ≲ ⟨x, �⟩

�−l2�

l⃗
≲ ⟨x⟩

�+

l1 ⟨�⟩

�

l2
−�
, (A.3)

where �+ = max{�, 0}. Consequently, restricting to x > 0, ⟨x⟩
−
�+

l1 a0(x, �) is a

standard global Mellin symbol of class S
�

l2 (ℝ+ ×ℝ).
We will need to work with symbols that depend holomorphically on � ∈ ℂ.

By S�;l⃗
O
(ℝ × ℂ) we denote the symbol class of functions a(x, �) ∈ C∞(ℝ ×

ℂ) taking values in the bounded operators between Hilbert spaces such that
a(x, �) is holomorphic with respect to � ∈ ℂ, and such that for every  ∈ ℝ the
function ℝ2 ∋ (x, �)↦ a(x, � + i) belongs to S�;l⃗(ℝ2) with symbol estimates
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that are locally uniform with respect to , i.e., for every �, � ∈ ℕ0 and R > 0

there are constants C�,�,R ≥ 0 such that

‖D�
x)

�
�a(x, � + i)‖ ≤ C�,�,R⟨x, �⟩

�−l1�−l2�

l⃗

for all (x, �) ∈ ℝ2, and all  ∈ ℝ with || ≤ R.
The (real) symbols obtained by restriction of a(x, �) to di�erent linesℑ(�) =

1 and ℑ(�) = 2 are related by asymptotic expansion

a(x, � + i2) ∼

∞∑

k=0

(i2 − i1)
k

k!

(
)k�a

)
(x, � + i1) ∈ S�;l⃗(ℝ2). (A.4)

This is both an exact pointwise representation via Taylor expansion in view of
analyticity, and an asymptotic expansion with respect to the �ltration by order
in the symbol classes. Taylor’s formula shows that the symbol estimates for the
remainder terms of this asymptotic expansion are locally uniform with respect
to (1, 2) ∈ ℝ2.

Every symbol a0 ∈ S�;l⃗(ℝ2) has a representative a ∈ S
�;l⃗

O
(ℝ × ℂ) modulo

S−∞(ℝ2). This follows by employing the kernel cut-o� construction (this con-
struction is frequently used in the symbol calculus in Schulze’s theory [52]):
Let � ∈ C∞c (ℝ) with � ≡ 1 near t = 0, and F , F−1 be the Fourier trans-
form and its inverse on tempered distributions, respectively. Then a(x, �) =
Ft→��(t)F

−1
�→t

a0. The idea of this construction is that the Schwartz kernel
of the Kohn-Nirenberg quantized pseudodi�erential operator with symbol
a0(x, �) is localized near the diagonal using � (which also explains why a − a0
belongs to S−∞), and analyticity of a(x, �) in � then follows from the Paley-
Wiener Theorem. To analyze the kernel cut-o� operator in more detail it is
convenient to rewrite it as an oscillatory integral in the form

a(x, � + i) =
1

2�
∬ e−it�et�(t)a0(x, � − �)dtd� (A.5)

for real x, �, and . The standard regularization procedure applied to this in-
tegral reveals that a(x, � + i) depends smoothly on (x, � + i) ∈ ℝ × ℂ, that
the Cauchy-Riemann equations hold with respect to � + i ∈ ℂ, and from the
symbol estimates for a0 we obtain the resulting estimates for a. While kernel
cut-o� as an operation on symbols only acts on the variable �, the representa-
tion (A.5) shows that if additional parameters are present for a symbol a0 that
satisfy suitable joint estimates with �, such as the variable x in our case, then
these joint estimates are typically preserved for the resulting analytic symbol a
along lines parallel to the real axis. Finally, from

a0(x, �) − a(x, �) =
1

2�
∬ e−it�(1 − �(t))a0(x, � − �)dtd�

=
ik

2�
∬ e−it�

1 − �(t)

tk
[)k�a0](x, � − �)dtd�, k ∈ ℕ0,
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we obtain that a−a0 ∈ S−∞(ℝ2). Detailed technical proofs of these statements,
albeit for a di�erent symbol class, can be found in [34, Section 3].

Kernel cut-o� allows performing real variable symbolicmanipulations along
one line ℑ(�) = , such as manipulations that utilize excision functions, and
then pass to a holomorphic representative of the resulting symbol modulo
S−∞(ℝ2). An example for this is a proof that asymptotic expansions exist in

the analytic category: Given �j → −∞ and aj ∈ S
�j ;l⃗

O
(ℝ × ℂ), there exists

a(x, �) ∈ S
�;l⃗

O
(ℝ × ℂ), � = max �j, such that a ∼

∞∑

j=1

aj in the sense that for

every R > 0 there exists k0 ∈ ℕ0 such that a−
k∑

j=1

aj ∈ S
−R;l⃗

O
(ℝ×ℂ) for k ≥ k0.

To see this �rst restrict all aj(x, �) to ℝ2. By the standard Borel argument for

real symbols there exists a0(x, �) ∈ S�;l⃗(ℝ2) with a0(x, �) ∼
∞∑

j=1

aj(x, �). Now

use the kernel cut-o� construction and de�ne a ∈ S
�;l⃗

O
(ℝ ×ℂ) via (A.5). Since

a−a0 ∈ S−∞(ℝ2)we still have the asymptotic expansion a(x, �) ∼
∞∑

j=1

aj(x, �)

as real symbols. Consequently,

a(x, �) −

k∑

j=1

aj ∈ S−R;l⃗(ℝ2) ∩ S
�;l⃗

O
(ℝ × ℂ)

for k ≥ k0. But S−R;l⃗(ℝ2) ∩ S
�;l⃗

O
(ℝ × ℂ) = S

−R;l⃗

O
(ℝ × ℂ) by (A.4), thus estab-

lishing the desired result.
The following is another closely related application of the kernel cut-o� con-

struction.

LemmaA.1. Let a ∈ S
�;l⃗

O
(ℝ×ℂ). Then there exists a sequence aj ∈ S−∞

O
(ℝ×ℂ)

such that aj → a in S�
′;l⃗

O
(ℝ × ℂ) as j →∞ for every �′ > �.

Proof. Let � ∈ C∞(ℝ2) be a function with � ≡ 0 for (|x|2l2 + |�|2l1)

1

2l1l2 ≤ 1

and � ≡ 1 for (|x|2l2 + |�|2l1)

1

2l1l2 ≥ 2, and de�ne

bj(x, �) = �
( x

jl1
,
�

jl2

)
a(x, �) ∈ S�;l⃗(ℝ2), j ∈ ℕ.

Then bj → 0 in S�′;l⃗(ℝ2) as j → ∞ for every �′ > �, and a − bj ∈ S−∞(ℝ2).

Now let cj ∈ S
�;l⃗

O
(ℝ × ℂ) be de�ned by applying the kernel cut-o� operator

(A.5) to bj. Then bj − cj ∈ S−∞(ℝ2), and by the continuity of the kernel cut-o�

operator we have cj → 0 in S�
′;l⃗

O
(ℝ × ℂ) for �′ > �. The lemma then follows
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with
aj = a − cj ∈ S

�;l⃗

O
(ℝ × ℂ) ∩ S−∞(ℝ2) = S−∞

O
(ℝ × ℂ)

and (A.4). �

Given a ∈ S
�;l⃗

O
(ℝ × ℂ) we consider the Mellin pseudodi�erential operator

opM(a) ∶ Ċ
∞(ℝ+)→ Ċ∞(ℝ+),

where Ċ∞ is the space of (Hilbert space valued) smooth functions on ℝ+ that
vanish to in�nite order at x = 0 and are Schwartz functions as x → ∞. Ana-
lyticity of the symbol a(x, �) and the estimates (A.3) along lines parallel to the
real axis ensure that the action of opM(a) preserves this space. The map

S
�;l⃗

O
(ℝ × ℂ) × Ċ∞(ℝ+) ∋ (a, u)↦ opM(a)u ∈ Ċ∞(ℝ+)

is continuous.
We assume in the sequel that the reader has some familiarity with standard

(global) Mellin pseudodi�erential calculus (see [25, 35, 41, 52]).

De�nition A.2. By Ψ�;l⃗
O

we denote the operators of the form

opM(a) + G ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+)

with a ∈ S
�;l⃗

O
(ℝ×ℂ), and the operator G ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+) and its formal

adjointG∗ ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+)with respect to the L2b andHilbert space inner
products in the target and range spaces extend to bounded operators

G, G∗ ∶ x�Hs

b
(ℝ+)→ x�

′

Hs′

b
(ℝ+)

for all �, s, s′ ∈ ℝ, and all �′ ≤ �. Thus G and G∗ are smoothing and produce
Schwartz behavior as x → ∞ while maintaining the same order of growth as
x → 0.

Lemma A.3. Let a ∈ S
�;l⃗

O
(ℝ ×ℂ), � ≤ 0. For j ∈ ℕ0 with � + l1j ≤ 0 we have

opM(a), opM(a)
∗ ∶ x�Hs

b
(ℝ+)→ x�−jH

s−
�+l1j

l2

b
(ℝ+)

for all s, � ∈ ℝ, where opM(a)
∗ ∶ Ċ∞(ℝ+) → Ċ∞(ℝ+) is the (formal) adjoint to

opM(a) ∶ Ċ
∞(ℝ+)→ Ċ∞(ℝ+).

Proof. By assumption on � and j, xja(x, �) is a standard global Mellin symbol

of class S
�+l1j

l2 (ℝ+×ℝ), which shows the assertedmapping property for opM(a).
Now
xj[opM(a)]

∗ = [opM(a)x
j]∗ = [xjopM(a(x, � − ij))]∗ ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+),

where xja(x, � − ij) ∈ S

�+l1j

l2 (ℝ+ ×ℝ). Consequently,

xj[opM(a)]
∗ ∶ x�Hs

b
(ℝ+)→ x�H

s−
�+l1j

l2

b
(ℝ+),
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and the lemma is proved. �

Theorem A.4. Let opM(a) +G ∈ Ψ
�;l⃗

O
. Then the formal adjoint of this operator

with respect to the L2
b
inner product belongs to the classΨ�;l⃗

O
, where more precisely

(
opM(a) + G

)∗
= opM(a

♯) + G′ ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+),

and a♯ ∈ S
�;l⃗

O
(ℝ × ℂ) has the asymptotic expansion

a♯(x, �) ∼

∞∑

k=0

1

k!
(xDx)

k)k�[a(x, �)
∗]. (A.6)

Proof. Let �rsta ∈ S−∞
O

(ℝ×ℂ). In particular, a ∈ S−∞(ℝ+×ℝ) and is analytic,
and from the standard global Mellin pseudodi�erential calculus we have an
exact representation of the formal adjoint opM(a)

∗ = opM(b) ∶ Ċ∞(ℝ+) →

Ċ∞(ℝ+), where for every N ∈ ℕ0

b(x, �) =
1

2�
∬ y−i�a(xy, � + �)∗

dy

y
d�

=

N−1∑

k=0

1

k!
(xDx)

k)k�[a(x, �)
∗] + rN(x, �)

= bN(x, �) + rN(x, �)

with

rN(x, �) = ∫

1

0

(1 − �)N−1

2�(N − 1)!
∬ y−i�[(−xDx)

N)N� a](xy, � + ��)∗
dy

y
d�d�.

For j ∈ ℕ0 we take advantage of the analyticity of the symbols to shift the
integration into the complex �-plane and write

xjrN(x, �)=∫

1

0

(1 − �)N−1

2�(N − 1)!
∬ y−i�xj[(−xDx)

N)N� a](xy, � + ��)∗
dy

y
d�d�

= ∫

1

0

(1 − �)N−1

2�(N − 1)!
∬ y−i�(xy)j[(−xDx)

N)N� a](xy, � + �(� + ij))∗
dy

y
d�d�

= ∫

1

0

(1 − �)N−1

2�(N − 1)!
∬ y−i�[xj(−xDx)

N)N� a](xy, � + �(� + ij))∗
dy

y
d�d�.

From these formulas we see that for any given �′ ∈ ℝ, j0 ∈ ℕ0, and �0 < 0

there existsN0 ∈ ℕ such that forN ≥ N0 and 0 ≤ j ≤ j0 themap S−∞
O

(ℝ×ℂ) ∋

a(x, �)↦ xjrN(x, �) extends to a continuousmap S�
′;l⃗

O
(ℝ×ℂ)→ S�0(ℝ+×ℝ),

and the same is true for the map a ↦ xjrN(x, � − ij). For these values of the
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parameters we then have

opM(rN) ∶ x
�Hs

b
(ℝ+)→ x�−jH

s−�0

b
(ℝ+),

opM(rN)
∗ = x−jopM(x

jrN(x, � − ij))∗ ∶ x�Hs

b
(ℝ+)→ x�−jH

s−�0

b
(ℝ+)

for all �, s ∈ ℝ.
Now let a ∈ S

�;l⃗

O
(ℝ × ℂ). By Lemma A.1 there exists a sequence a� ∈

S−∞
O

(ℝ × ℂ) such that a� → a in S�
′;l⃗

O
(ℝ × ℂ) as � →∞ for �′ > �. Then

⟨opM(a)u, v⟩L2b ⟵ ⟨opM(a�)u, v⟩L2b = ⟨u, opM(a�)
∗v⟩L2

b

= ⟨u, (opM(bN,�) + opM(rN,�))v⟩L2b ⟶ ⟨u, (opM(bN) + opM(rN))v⟩L2b

for u, v ∈ C∞c (ℝ+) and N ∈ ℕ large enough, where the extra �-parameter
indicates that we use the previous formulas for a�, while its absence means
that the formulas are applied to the symbol a(x, �). In particular, opM(a)

∗ =

opM(bN) + opM(rN) for N large enough with the above mapping properties for

opM(rN). Consequently, if a
♯ ∈ S

�;l⃗

O
(ℝ×ℂ) has the asymptotic expansion (A.6),

then G0 = opM(a)
∗ − opM(a

♯) satis�es

G0, G
∗
0
∶ x�Hs

b
(ℝ+)→ x�

′

Hs′

b
(ℝ+)

for all �, s, s′ ∈ ℝ, and all �′ ≤ � by Lemma A.3 and the mapping properties of
opM(rN) (as N →∞). The theorem is proved. �

Theorem A.5. Let opM(aj) + Gj ∈ Ψ
�j ;l⃗

O
, j = 1, 2. Then

(opM(a1) + G1)◦(opM(a2) + G2) = opM(a1#a2) + G ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+)

with opM(a1#a2) + G ∈ Ψ
�1+�2;l⃗

O
, and a1#a2 ∈ S

�1+�2;l⃗

O
(ℝ × ℂ) has the asymp-

totic expansion

(a1#a2)(x, �) ∼

∞∑

k=0

1

k!
[)k�a1](x, �)[(xDx)

ka2](x, �). (A.7)

Proof. The composition G1G2 ∈ Ψ−∞
O

in view of the de�ning mapping proper-
ties of the Gj. We next prove that the compositions opM(a1)G2 and G1opM(a2)
belong to Ψ−∞

O
. Let ! ∈ C∞c (ℝ) with ! ≡ 1 near x = 0, and decompose

aj(x, �) = !aj(x, �) + (1 − !)aj(x, �) = aj,0(x, �) + aj,∞(x, �).

The symbols aj,0(x, �) and aj,∞(x, �) no longer satisfy the joint symbol esti-
mates (A.2) in (x, �), but we have

aj,0(x, �), x
−Kaj,∞(x, �) ∈ S

�j

l2 (ℝ+ ×ℝ)
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forK large enough by (A.3). Combined with the analyticity in � this shows that

opM(aj,0) ∶ x
�Hs

b
(ℝ+)→ x�H

s−
�j

l2

b
(ℝ+),

opM(aj,∞) ∶ x
�Hs

b
(ℝ+)→ x�+KH

s−
�j

l2

b
(ℝ+).

Now G1opM(a2,0) ∶ x�Hs

b
(ℝ+) → x�

′

Hs′

b
(ℝ+) for all s, s′, � ∈ ℝ and �′ ≤

� by the mapping properties of G1. Likewise, G1opM(a2,∞) ∶ x�Hs

b
(ℝ+) →

x�
′

Hs′

b
(ℝ+) for all s, s′, � ∈ ℝ and �′ ≤ �+K, and soG1opM(a2) ∶ x

�Hs

b
(ℝ+)→

x�
′

Hs′

b
(ℝ+) for all s, s′, � ∈ ℝ and �′ ≤ �.

We have G2 ∶ x�Hs

b
(ℝ+)→ x�

′

H
s′+

�1

l2

b
(ℝ+), and so

opM(a1,0)G2 ∶ x
�Hs

b
(ℝ+)→ x�

′

Hs′

b
(ℝ+)

for all s, s′, � ∈ ℝ and �′ ≤ �. We likewise have

G2 ∶ x
�Hs

b
(ℝ+)→ x�

′−KH
s′+

�1

l2

b
(ℝ+),

and thus
opM(a1,∞)G2 ∶ x

�Hs

b
(ℝ+)→ x�

′

Hs′

b
(ℝ+),

which shows that

opM(a1)G2 ∶ x
�Hs

b
(ℝ+)→ x�

′

Hs′

b
(ℝ+)

for all s, s′, � ∈ ℝ and �′ ≤ �. For the formal adjoints we have

[G1opM(a2)]
∗ = opM(a2)

∗G∗
1
and [opM(a1)G2]

∗ = G∗
2
opM(a1)

∗,

and because opM(aj)
∗ ∈ Ψ

�j ;l⃗

O
by TheoremA.4 we �nally obtain with the above

that opM(a1)G2, G1opM(a2) ∈ Ψ−∞
O

.
It remains to consider the composition opM(a1)opM(a2). Let us �rst take

aj ∈ S−∞
O

(ℝ × ℂ). Then opM(a1)opM(a2) = opM(c) by the standard Mellin
pseudodi�erential calculus, where for every N ∈ ℕ0

c(x, �) =
1

2�
∬ y−i�a1(x, � + �)a2(xy, �)

dy

y
d�

=

N−1∑

k=0

1

k!
[)k�a1](x, �)[(xDx)

ka2](x, �) + rN(x, �)

= cN(x, �) + rN(x, �)

with

rN(x,�) =

∫

1

0

(1 − �)N−1

2�(N − 1)!
∬ y−i�[)N� a1](x, � + ��)[(xDx)

Na2](xy, �)
dy

y
d�d�.
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Into this formula for rN(x, �) we substitute the splitting a2 = a2,0 + a2,∞ from
before and obtain rN(x, �) = rN,0(x, �) + rN,∞(x, �) which we process sepa-
rately. Let j ∈ ℕ0 be arbitrary. Then xjrN,0(x, �) is given by

∫

1

0

(1 − �)N−1

2�(N − 1)!
∬ y−i�[xj)N� a1](x, � + ��)[(xDx)

Na2,0](xy, �)
dy

y
d�d�,

and from this formula we see that for any given �′
1
, �′

2
∈ ℝ, j0 ∈ ℕ0, and �0 < 0

there exists N0 ∈ ℕ such that for N ≥ N0 and 0 ≤ j ≤ j0 the map

S−∞
O

(ℝ × ℂ) × S−∞
O

(ℝ × ℂ) ∋ (a1, a2)↦ xjrN,0(x, �)

extends to a continuous map

S
�′
1
;l⃗

O
(ℝ × ℂ) × S

�′
2
;l⃗

O
(ℝ × ℂ)→ S�0(ℝ+ ×ℝ),

and the same is true for the map (a1, a2) ↦ xjrN,0(x, � − ij). For these values
of the parameters we then have

opM(rN,0) ∶ x
�Hs

b
(ℝ+)→ x�−jH

s−�0

b
(ℝ+),

opM(rN,0)
∗ = x−jopM(x

jrN,0(x, � − ij))∗ ∶ x�Hs

b
(ℝ+)→ x�−jH

s−�0

b
(ℝ+)

for all �, s ∈ ℝ just as in the proof of Theorem A.4.
To analyze xjrN,∞(x, �) we take advantage of analyticity and shift the inte-

gration in � into the complex plane and obtain

xjrN,∞(x, �) = ∫

1

0

(1 − �)N−1

2�(N − 1)!
⋅

∬ y−i�[xj+K)N� a1](x, � + �(� − iK))[x−K(xDx)
Na2,∞](xy, �)

dy

y
d�d�.

Consequently, given �′
1
, �′

2
∈ ℝ, j0 ∈ ℕ0, and �0 < 0, we �rst choose K ∈ ℕ

large enough such thatx−K(1−!)S
�′
2
;l⃗

O
(ℝ×ℂ)↪ S

�′
2

l2 (ℝ+×ℝ), and can then�nd
N0 ∈ ℕ such that for N ≥ N0 and 0 ≤ j ≤ j0 the map (a1, a2) ↦ xjrN,∞(x, �)

is continuous in

S
�′
1
;l⃗

O
(ℝ × ℂ) × S

�′
2
;l⃗

O
(ℝ × ℂ)→ S�0(ℝ+ ×ℝ),

and the same property holds for the map (a1, a2) ↦ xjrN,∞(x, � − ij). Thus
opM(rN,∞) and opM(rN,∞)

∗ have the same mapping properties as previously
stated for opM(rN,0) and opM(rN,0)

∗ for N large enough, and therefore opM(rN)
and opM(rN)

∗ also have these properties.

Now let aj ∈ S
�j ;l⃗

O
(ℝ × ℂ). By Lemma A.1 there exist sequences aj,� ∈

S−∞
O

(ℝ × ℂ) such that aj,� → aj in S
�′
j
;l⃗

O
(ℝ × ℂ) as � → ∞ for �′

j
> �j. For
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every u ∈ Ċ∞(ℝ+) we then have for N ∈ ℕ large enough

opM(a1)opM(a2)u⟵ opM(a1,�)opM(a2,�)u
= opM(cN,�)u + opM(rN,�)u⟶ opM(cN)u + opM(rN)u,

where the extra �-parameter indicates that we use the previous formulas for
aj,�, while its absence means that the formulas are applied to the symbols
aj(x, �). In particular, opM(a1)opM(a2) = opM(cN)+opM(rN) forN large enough,
and opM(rN) has the mapping properties previously shown. Consequently, if

a1#a2 ∈ S
�1+�2;l⃗

O
(ℝ × ℂ) has the asymptotic expansion (A.7), then

G0 = opM(a1)opM(a2) − opM(a1#a2)

satis�es
G0, G

∗
0
∶ x�Hs

b
(ℝ+)→ x�

′

Hs′

b
(ℝ+)

for all �, s, s′ ∈ ℝ, and all �′ ≤ � by Lemma A.3 and the mapping properties of
opM(rN) as N →∞. The theorem is proved. �

De�nitionA.6. Asymbola(x, �) ∈ S�;l⃗(ℝ2) is right-hypoelliptic of order (�, �′)
if a(x, �) is invertible for su�ciently large |x, �| ≫ 0, and the inverse satis�es

‖a−1(x, �)‖ ≲ ⟨x, �⟩
−�′

l⃗
, (A.8)

and for every �, � ∈ ℕ0 we have

‖[D�
x)

�
�a](x, �)[a(x, �)]

−1‖ ≲ ⟨x, �⟩
−l1�−l2�

l⃗
. (A.9)

We call a(x, �) ∈ S
�;l⃗

O
(ℝ×ℂ) right-hypoelliptic of order (�, �′) if its restriction

to ℝ2 is right-hypoelliptic of order (�, �′).

Suppose a(x, �) ∈ S
�;l⃗

O
(ℝ × ℂ) is right-hypoelliptic of order (�, �′). Let � ∈

C∞(ℝ2) be an excision function such that � ≡ 0 near (0, 0) and � ≡ 1 for large
|x, �| so that �(x, �)a(x, �)−1 is de�ned on ℝ2. The estimates (A.8) and (A.9)
show that�(x, �)a(x, �)−1 ∈ S−�

′;l⃗(ℝ2). We then apply the kernel cut-o� oper-
ator (A.5) to this symbol to obtain a holomorphic symbol q(x, �) ∈ S

−�′;l⃗

O
(ℝ×ℂ)

which has the following properties:

Lemma A.7. (a) We have a(x, �)q(x, �)−1, q(x, �)a(x, �)−1 ∈ S−∞
O

(ℝ×ℂ).
(b) For j ∈ ℝ, j = 1, 2, we have

[D�
x)

�
�a](x, � + i2)[D

�′

x )
�′

� q](x, � + i1) ∈ S
−l1(�+�

′)−l2(�+�
′);l⃗

O
(ℝ × ℂ)

for all �, �′, �, �′ ∈ ℕ0.
(c) a(x, � + i) ∈ S�;l⃗(ℝ2) is right-hypoelliptic of order (�, �′) for every  ∈ ℝ.
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Proof. We have q(x, �) − �(x, �)a(x, �)−1 ∈ S−∞(ℝ2), and so

a(x, �)q(x, �) − 1 ∈ S
(�−�′)+;l⃗

O
(ℝ × ℂ) ∩ S−∞(ℝ2) = S−∞

O
(ℝ × ℂ)

by (A.4); here (� − �′)+ = max{� − �′, 0}. For the same reason we also have
q(x, �)a(x, �) − 1 ∈ S−∞

O
(ℝ × ℂ), proving (a).

To prove (b) we �rst consider 1 = 2 = 0. By (A.9) we have

[D�
x)

�
�a](x, �)[D

�′

x )
�′

� (�a
−1)](x, �) ∈ S−l1(�+�

′)−l2(�+�
′);l⃗(ℝ2),

and because q − �a−1 ∈ S−∞(ℝ2) we can replace �a−1 by q. Taylor expansion
(A.4) then shows that

[D�
x)

�
�a](x, �)[D

�′

x )
�′

� q](x, �) ∈ S
−l1(�+�

′)−l2(�+�
′);l⃗

O
(ℝ × ℂ),

and translation proves (b) for general 1 = 2. For 1 ≠ 2 we �rst use (A.4)
and get

[D�
x)

�
�a](x, � + i2) ∼

∞∑

k=0

(i2 − i1)
k

k!

(
D�
x)

�+k
� a

)
(x, � + i1).

Nowmultiply from the right by [D�′

x )
�′

� q](x, �+ i1). The resulting asymptotic
expansion then shows that (b) also holds in the case 1 ≠ 2.

Finally, (c) follows from (a) and (b). By (a), a(x, � + i) is invertible for suf-
�ciently large |x, �| ≫ 0, (x, �) ∈ ℝ2, and the inverse di�ers from q(x, � + i)

by a rapidly decreasing function in (x, �). Both estimates (A.8) and (A.9) hold
for q(x, � + i) instead of a(x, � + i)−1 and are stable with respect to rapidly
decreasing perturbations. The lemma is proved. �

Theorem A.8. Let opM(a) + G ∈ Ψ
�;l⃗

O
, and suppose that a ∈ S

�;l⃗

O
(ℝ × ℂ) is

right-hypoelliptic of order (�, �′). Then there exists opM(b) ∈ Ψ
−�′;l⃗

O
such that

(
opM(a) + G

)
◦opM(b) = 1 + G̃ ∶ Ċ∞(ℝ+)→ Ċ∞(ℝ+)

with G̃ ∈ Ψ−∞
O

.

Proof. With the symbol q(x, �) ∈ S
−�′;l⃗

O
(ℝ × ℂ) we have

(a#q)(x, �) ∼

∞∑

k=0

1

k!
[)k�a](x, �)[(xDx)

kq](x, �) = 1 + r(x, �)

with r(x, �) ∈ S
−l2;l⃗

O
(ℝ × ℂ) by Lemma A.7. Now apply the formal Neumann

series argument and get r′(x, �) ∈ S
−l2;l⃗

O
(ℝ×ℂ) such that (1+ r)#(1+ r′) ∼ 1.

Let b(x, �) ∈ S
−�′;l⃗

O
(ℝ × ℂ) with b(x, �) ∼ q#(1 + r′). Then a#b ∼ 1, and

Theorem A.5 implies the assertion. �

Analogous considerations apply to left-hypoellipticity, but left-hypoellipticity
is not used in this work.
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Appendix B. An inde�nite space arising in analytic Fredholm
theory

De�nition B.1 ([26, Section 4.5]). Let
(
V, [⋅, ⋅]V

)
and

(
W, [⋅, ⋅]W

)
be �nite-di-

mensional ℂ-vector spaces equipped with Hermitian sesquilinear forms [⋅, ⋅]V
and [⋅, ⋅]W , respectively. Let further g ∈ End(V) and ℎ ∈ End(W). Then the
triples

(
V, [⋅, ⋅]V , g

)
and

(
W, [⋅, ⋅]W , ℎ

)
are unitarily equivalent if there exists an

isomorphism T ∶ V →W such that both

[Tu, Tv]W = [u, v]V ∀u, v ∈ V and ℎ = TgT−1

hold.

The Canonical Form Theorem [26, Theorem 5.1.1] classi�es all the triples
(
V, [⋅, ⋅]V , g

)
for nondegenerate [⋅, ⋅]V and selfadjoint g ∈ End(V), up to uni-

tary equivalence. The generalized eigenspaces E�0 ⊂ V of g associated with
real eigenvalues �0 ∈ ℝ are particularly interesting. By the Canonical Form
Theorem we can localize to

(
E�0 , [⋅, ⋅]V , g − �0

)
to further study these spaces.

In this appendix and Appendix C we discuss an inde�nite space from analytic
Fredholm theory that arises as unitarily equivalent to

(
E�0 , [⋅, ⋅]V , g − �0

)
for

indicial operators. We refer to [19, 22, 23, 24] for related investigations and re-
sults. Information about the general theory of Fredholm operator pencils and
applications to di�erential equations can be found in [32].

Suppose E0 and E1 are separable complex Hilbert spaces such that E1 ↪ E0
is densely and continuously embedded, and let

P ∶ B"(0)→ L (E1, E0)

be a holomorphic operator function de�ned on the open disk B"(0) ⊂ ℂ for
some " > 0. We assume that P(�) is Fredholm for all � ∈ B"(0) and invertible
for all � ≠ 0. We consider each operator P(�) ∶ E1 ⊂ E0 → E0 an unbounded
operator acting in E0 with domain E1. Under the stated assumptions, P(�) is
closed and densely de�ned. We assume that

P(�)∗ = P(�) ∶ E1 ⊂ E0 → E0

holds. In particular, P(�) is selfadjoint for real �. We denote the set of germs
of such operator functions P(�) by Psa(E1, E0).

With every P(�) ∈ Psa(E1, E0)we associate its spectral �ow across � = 0 as
follows: Pick "0, �0 > 0 small enough such thatP(�)−� ∶ E1 → E0 is Fredholm
for −�0 ≤ � ≤ �0 and −"0 ≤ � ≤ "0, and such that P(�) ± "0 ∶ E1 → E0 is
invertible for −�0 ≤ � ≤ �0. Then

SF�=0[P(�) ∶E1 ⊂ E0 → E0] =

lim
�→0+

(
tr
[
Π[0,"0)

(P(�))
]
− tr

[
Π[0,"0)

(P(−�))
])
,
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where Π[0,"0)
in each case is the spectral projection onto the spectral subspace

of the operator pertaining to the part of the spectrum contained in [0, "0). We
refer to the survey by Lesch [40] for details on the spectral �ow.

For any Fréchet space F letM0(F) denote the space of meromorphic germs
of F-valued functions at 0, and letℌ0(F) denote the holomorphic germs. Then
(
M∕ℌ

)

0
(F) ∶= M0(F)∕ℌ0(F) can be identi�ed with the space of principal

parts of Laurent expansions at 0 of F-valued meromorphic functions. The op-
erator function P(�) ∈ Psa(E1, E0) induces a map

P ∶
(
M∕ℌ

)

0
(E1)→

(
M∕ℌ

)

0
(E0),

P
[
û(�) +ℌ0(E1)

]
= P(�)û(�) +ℌ0(E0)

for û(�) +ℌ0(E1) ∈
(
M∕ℌ

)

0
(E1). De�ne

K (P) = {û(�) +ℌ0(E1) ∈
(
M∕ℌ

)

0
(E1); P(�)û(�) ∈ ℌ0(E0)}.

Then K (P) = ker
[
P ∶

(
M∕ℌ

)

0
(E1)→

(
M∕ℌ

)

0
(E0)

]
, and by analytic Fred-

holm theory we have dimK (P) <∞. We de�ne a pairing

[⋅, ⋅]K (P) ∶ K (P) ×K (P)→ ℂ

via

[û, v̂]K (P) =
1

2�i
∮
C

⟨P(�)û(�), v̂(�)⟩E0 d� = res�=0⟨P(�)û(�), v̂(�)⟩E0 ,

where C is a positively oriented circle of su�ciently small radius centered at
the origin. It is easy to see that [⋅, ⋅]K (P) is well-de�ned (i.e. independent of
representatives û and v̂ modulo holomorphic germs), and that it furnishes a
Hermitian sesquilinear form on K (P). We then consider the triple

(
K (P), [⋅, ⋅]K (P),M�

)
,

where

M� ∶ K (P)→ K (P), û(�) +ℌ0(E1)↦ �û(�) +ℌ0(E1).

Note thatM� is selfadjoint with respect to [⋅, ⋅]K (P).
For l ∈ ℕ we also consider the Hermitian sesquilinear forms

[⋅, ⋅]K (P),l ∶ kerM
l
� × kerM

l
� → ℂ,

[û, v̂]K (P),l = [Ml−1
� û, v̂]K (P).

Let (m0(l), m+(l), m−(l)) be the invariants of [⋅, ⋅]K (P),l. The numbersm+(l)

and m−(l) yield the sign characteristic for M� associated to Jordan blocks of
size l × l in the Canonical Form Theorem [26, Theorem 5.1.1] for the triple
(
K (P), [⋅, ⋅]K (P),M�

)
; see [26, Theorem5.8.1] and Proposition 3.3. Themain

theorem regarding this triple is the following.
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Theorem B.2.
(
K (P), [⋅, ⋅]K (P)

)
is nondegenerate, and

sgn
(
K (P), [⋅, ⋅]K (P)

)
=

∑

l odd

(
m+(l) −m−(l)

)

= SF�=0
[
P(�) ∶ E1 ⊂ E0 → E0

]
,

wherem±(l) are the invariants of the triple
(
K (P), [⋅, ⋅]K (P),M�

)
.

Proof. Wewill prove the theorem by reducing it to the �nite-dimensional case,
considered separately in Appendix C. To this end, let N = ker(P(0)) and R =

ran(P(0)). We have the orthogonal decomposition E0 = N ⊕ R. Let �N =

�∗
N
= �2

N
∈ L (E0) be the orthogonal projection onto N, and let �R = 1 − �N .

Because dimN <∞ both �N , �R ∈ L (E1) by the Closed Graph Theorem, and
we get E1 = N ⊕ [R ∩ E1]. We decompose

P(�) = [
P11(�) P12(�)

P21(�) P22(�)
] ∶

N

⊕

R ∩ E1

→

N

⊕

R

,

and note that P22(�) is invertible for |�| < " for " > 0 small enough.
Now, for 0 ≤ t ≤ 1, de�ne Ut(�) ∶ Ej → Ej via

Ut(�) = [
1 0

−tP22(�)
−1P21(�) 1

] ∶

N

⊕

R ∩ Ej

→

N

⊕

R ∩ Ej

, j = 1, 2.

Then Ut(�) ∶ B"(0) → L (Ej) is holomorphic and invertible, and the same
holds for

Ut(�)
∗ = [

1 −tP12(�)P22(�)
−1

0 1
] ∶

N

⊕

R ∩ Ej

→

N

⊕

R ∩ Ej

,

where the adjoint refers to the base Hilbert space E0. Then
Pt(�) = Ut(�)

∗P(�)Ut(�) ∈ Psa(E1, E0)

is a homotopy within Psa(E1, E0) between P0(�) = P(�) and

P1(�) = [
P11(�) −P12(�)P22(�)

−1P21(�) 0

0 P22(�)
] .

By the homotopy invariance of the spectral �ow we have
SF�=0[P1(�) ∶ E1 ⊂ E0 → E0] = SF�=0[P(�) ∶ E1 ⊂ E0 → E0].

Moreover, the map
û(�) +ℌ0(E1)⟼ U1(�)û(�) +ℌ0(E1)

furnishes a unitary equivalence
(
K (P1), [⋅, ⋅]K (P1)

,M�

)
≅

(
K (P), [⋅, ⋅]K (P),M�

)
.

It therefore su�ces to prove the theorem for P1(�) instead of P(�). De�ne
p(�) ∶= P11(�) −P12(�)P22(�)

−1P21(�) ∈ Psa(N),
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so P1(�) = [
p(�) 0

0 P22(�)
]. In view of the invertibility of P22(�) we have

both

SF�=0[P1(�) ∶ E1 ⊂ E0 → E0] = SF�=0[p(�) ∶ N → N]

and

(
K (P1), [⋅, ⋅]K (P1)

,M�

)
≅

(
K (p), [⋅, ⋅]K (p),M�

)
,

where the latter unitary equivalence is induced by projection onto N. The the-
orem is therefore reduced to considering the �nite-dimensional case for p(�) ∈
Psa(N), and an application of Theorem C.5 thus �nishes the proof. �

We conclude with the following theorem about semibounded operators.

Theorem B.3. Suppose P(�) ∈ Psa(E1, E0) satis�es P(�) ≥ 0 for � real. Then
the following hold:

(1) m+(l) = m−(l) = 0 for l odd. The canonical form for M� does not
contain any Jordan blocks of odd sizes, and sgn

(
K (P), [⋅, ⋅]K (P)

)
= 0.

(2) The sign characteristic for the triple
(
K (P), [⋅, ⋅]K (P),M�

)
does not con-

tain any negative terms, i.e., we also havem−(l) = 0 for l even.
(3) There exists a unique Lagrangian subspace of K (P) that is invariant

underM�, denoted by K (P) 1
2

. Speci�cally, if

K (P) =

N⨁

j=1

Uj

according to theCanonical FormTheoremwithmutually [⋅, ⋅]K (P)-ortho-
gonal direct summands, and eachUj is associated to a single Jordan block
ofM� of size (2nj) × (2nj), then

K (P) 1
2

=

N⨁

j=1

[
Uj ∩ kerM

nj
�

]
.

Proof. Let l ∈ ℕ, and let û(�) +ℌ0(E1) ∈ kerMl
� be arbitrary. Then

[û, û]K (P),l = [û,Ml−1
� û]K (P) = res�=0⟨P(�)û(�), �

l−1
û(�)⟩E0 .

We have P(�)û(�), �lû(�) ∈ ℌ0(E0), and consequently

res�=0⟨P(�)û(�), �
l−1

û(�)⟩E0 = lim
�→0
� real

�l⟨P(�)û(�), û(�)⟩E0 .
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Note that ⟨P(�)û(�), û(�)⟩E0 ≥ 0 for real � ≠ 0 by assumption. For odd l we
thus get

res�=0⟨P(�)û(�), �
l−1

û(�)⟩E0 = lim
�→0+

�l⟨P(�)û(�), û(�)⟩E0 ≥ 0,

res�=0⟨P(�)û(�), �
l−1

û(�)⟩E0 = lim
�→0−

�l⟨P(�)û(�), û(�)⟩E0 ≤ 0,

and so [û, û]K (P),l = 0, while for even l we have

res�=0⟨P(�)û(�), �
l−1

û(�)⟩E0 = lim
�→0
� real

�l⟨P(�)û(�), û(�)⟩E0 ≥ 0,

and so [û, û]K (P),l ≥ 0. This proves the �rst two assertions of the theorem.
The third assertion now follows from [26, Theorem 5.12.4]. �

Appendix C. Analytic crossings and spectral �ow in
�nite-dimensional spaces

Let F be a complex �nite-dimensional Hilbert space. For a holomorphic op-
erator function p(�) ∶ B"(0) → L (F), where " > 0 is su�ciently small, we
de�ne its adjoint via p⋆(�) ∶= [p(�)]∗ ∶ B"(0) → L (F) and note that it de-
pends holomorphically on �. By Psa(F) we denote the collection of all germs
of holomorphic L (F)-valued functions p(�) de�ned near � = 0 such that for
some su�ciently small " > 0 the following two properties hold:

∙ p(�) ∶ B"(0)→ L (F) is holomorphic and invertible for � ≠ 0.
∙ p is selfadjoint in the sense that p⋆ = p as operator functions on B"(0).

In other words, for real −" < � < ", the operator p(�) ∶ F → F is selfadjoint
and invertible for � ≠ 0. Thus crossings of negative to positive eigenvalues (or
vice versa) may occur at � = 0 only, while p(�) is analytic near � = 0. The
spectral �ow of p(�) across � = 0 is

SF�=0[p(�) ∶ F → F] = lim
�→0+

(
tr[Π+(p(�))] − tr[Π+(p(−�))]

)
,

where Π+ in each case denotes the spectral projection onto the span of the
eigenspaces associatedwith positive eigenvalues of the selfadjoint operatorp(�)
or p(−�), respectively.

As in Appendix B, every p(�) ∈ Psa(F) induces a map

p ∶
(
M∕ℌ

)

0
(F)→

(
M∕ℌ

)

0
(F),

p
[
v̂(�) +ℌ0(F)

]
= p(�)v̂(�) +ℌ0(F)

for v̂(�) +ℌ0(F) ∈
(
M∕ℌ

)

0
(F). De�ne

K (p) = ker
[
p ∶

(
M∕ℌ

)

0
(F)→

(
M∕ℌ

)

0
(F)

]

= {v̂(�) +ℌ0(F) ∈
(
M∕ℌ

)

0
(F); p(�)v̂(�) ∈ ℌ0(F)}.
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Note that dimK (p) <∞. We de�ne a pairing [⋅, ⋅]K (p) ∶ K (p) ×K (p)→ ℂ

via

[v̂, ŵ]K (p) =
1

2�i
∮
C

⟨p(�)v̂(�), ŵ(�)⟩F d� = res�=0⟨p(�)v̂(�), ŵ(�)⟩F ,

where C is any positively oriented circle centered at � = 0 of su�ciently small
radius. This is a Hermitian sesquilinear form onK (p). We thus associate with
every p(�) ∈ Psa(F) the triple

(
K (p), [⋅, ⋅]K (p),M�

)
, where

M� ∶ K (p)→ K (p),

M� ∶ v̂(�) +ℌ0(F)↦ �v̂(�) +ℌ0(F).

Note thatM� ∈ L (K (p)) is nilpotent and selfadjoint with respect to [⋅, ⋅]K (p).

De�nition C.1. For p, q ∈ Psa(F) we write p ∼s q if there exists " > 0 and
an invertible holomorphic operator function u(�) ∶ B"(0) → L (F) such that
u⋆qu = p on B"(0), i.e., [u(�)]∗q(�)u(�) = p(�) ∶ F → F for � ∈ B"(0).

Note that ∼s is an equivalence relation on the set Psa(F).

Proposition C.2. For p, q ∈ Psa(F) with p ∼s q the triples
(
K (p), [⋅, ⋅]K (p),M�

)
and

(
K (q), [⋅, ⋅]K (q),M�

)

are unitarily equivalent. More precisely, if u⋆qu = p with the holomorphic and
invertible function u(�) ∶ B"(0)→ L (F), then

T ∶ K (p)→ K (q), v̂(�) +ℌ0(F)↦ u(�)v̂(�) +ℌ0(F)

furnishes a unitary equivalence between these inde�nite inner product spaces.
Moreover, we have

SF�=0[p(�) ∶ F → F] = SF�=0[q(�) ∶ F → F].

Proof. The proof of the �rst statement follows immediately from the de�ni-
tions. Note that T−1 is given by multiplication by u(�)−1, which exists and is
holomorphic near � = 0. Finally, M� commutes with multiplication by holo-
morphic operator functions, so T is a unitary equivalence of the triples.

Regarding the spectral �ow, we note that if a = a∗ ∈ L (F) is selfadjoint,
then [v, w]a ∶= ⟨av,w⟩F is aHermitian sesquilinear formonF. If (m0, m+, m−)

are its invariants, thenm+ = tr
(
Π+(a)

)
. If b = u∗au with an invertible u, then

u ∶
(
F, [⋅, ⋅]b

)
→

(
F, [⋅, ⋅]a

)
is a unitary equivalence of these inde�nite inner

product spaces. Consequently, [⋅, ⋅]a and [⋅, ⋅]b have the same invariants, i.e.,
m+ = tr

(
Π+(a)

)
= tr

(
Π+(b)

)
, which implies the invariance of the spectral

�ow as claimed. �

The following key lemma is based on several results from analytic perturba-
tion theory (see [30, 55]).

Lemma C.3. Suppose p ∈ Psa(F) such that p(0) is invertible. Then there exists
an orthogonal projection � = �2 = �∗ ∈ L (F) such that p(�) ∼s � − (1 − �).
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Proof. Choose " > 0 and % ≫ 0 such that with

spec
±
(p(�)) ∶= spec(p(�)) ∩ B%−"(±%)

we have spec(p(�)) = spec
+
(p(�)) ∪ spec

−
(p(�)) for |�| < ". De�ne

�(�) =
1

2�i
∮
)B%−"(%)

(� − p(�))−1 d� ∈ L (F).

Then �(�) = �∗(�) = �(�)2 is the Riesz projection onto the generalized eigen-
spaces associated with eigenvalues of p(�) that have positive real part for |�| <
". In particular, for � real, �(�) is an orthogonal projection. Note that �(�)
is holomorphic in � in view of the Dunford integral representation formula.
We’ll see momentarily that the � in the statement of the lemma is going to be
� ∶= �(0), but �rst de�ne w(�) via

1

2�i
∮
)B%−"(%)

�
−
1

2 (� − p(�))−1 d� +
1

2�i
∮
)B%−"(−%)

(−�)
−
1

2 (� − p(�))−1 d�.

Holomorphic functional calculus implies that w(�) = w⋆(�) is invertible with
w⋆pw = �(�) − (1 − �(�)), so p(�) ∼s �(�) − (1 − �(�)). Now, making " > 0

smaller if necessary, we may further assume that ‖�(�) − �(0)‖L (F) < 1 for all
|�| < ". Let then

u(�) =
[
�(�)�(0) + [1 − �(�)][1 − �(0)]

][
1 − [�(�) − �(0)]2

]− 1

2 ,

u⋆(�) =
[
1 − [�(�) − �(0)]2

]− 1

2
[
�(0)�(�) + [1 − �(0)][1 − �(�)]

]
.

Wehave u⋆(�) = u(�)−1, and u⋆(�)�(�)u(�) = �(0). Thus�(�)−(1−�(�)) ∼s
�(0) − (1 − �(0)). In conclusion,

p(�) ∼s �(�) − (1 − �(�)) ∼s �(0) − (1 − �(0)).

�

Proposition C.4. Let p ∈ Psa(F) be arbitrary. Then there existsN ∈ ℕ0 and an
orthogonal decomposition

F =

N⨁

l=0

(
F+,l ⊕F−,l

)

such that

p(�) ∼s

N∑

l=0

(
�F+,l − �F−,l

)
�l,

where �F±,l is the orthogonal projection onto F±,l ⊂ F. We note that some of the
spaces F±,l may be {0}.
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Proof. We prove this proposition by induction with respect to dimF.
IfF = ℂwe canwritep(�) = �Np̃(�) for someN ∈ ℕ0, where p̃(�) ∈ Psa(ℂ)

with p̃(0) ≠ 0. By Lemma C.3 we have p̃(�) ∼s ±1, and so p(�) ∼s ±�N , thus
proving the result if dimF = 1.

We now assume that the proposition is valid for spaces F up to dimension
k for some k ∈ ℕ. Let then F be (k + 1)-dimensional. We can write p(�) =
��p̃(�), where � ∈ ℕ0 and p̃(�) ∈ Psa(F) with p̃(0) ≠ 0, and proving the claim
for p̃(�) implies that it holds for p(�) as well. Thus we assume without loss of
generality that � = 0 and p(�) = p̃(�) in the sequel.

If p(0) is invertible, Lemma C.3 implies that p(�) ∼s � − (1 − �) for some
orthogonal projection �, thus proving the assertion in this case. So suppose
now that p(0) is not invertible. Let F0 = kerp(0). Then {0} ⊊ F0 ⊊ F, so
1 ≤ dimF0 ≤ k. We decompose p(�) as

p(�) = [
p11(�) p12(�)

p21(�) p22(�)
] ∶

F0
⊕

F⟂
0

→

F0
⊕

F⟂
0

.

Note that p22(�) ∈ Psa(F
⟂
0
) is invertible for |�| small enough. De�ne

u(�) = [
1 0

−p22(�)
−1p21(�) 1

] ∶

F0
⊕

F⟂
0

→

F0
⊕

F⟂
0

.

Then u(�) is invertible, and

u⋆(�) = [
1 −p12(�)p22(�)

−1

0 1
] ∶

F0
⊕

F⟂
0

→

F0
⊕

F⟂
0

.

We have

u⋆(�)p(�)u(�) = [
p11(�) − p12(�)p22(�)

−1p21(�) 0

0 p22(�)
] ,

where q = p11 − p12p
−1
22
p21 ∈ Psa(F0). Consequently, the proposition holds

for p if it holds for both q ∈ Psa(F0) and p22 ∈ Psa(F
⟂
0
). But the inductive

hypothesis is applicable to q, and Lemma C.3 applies to p22, thus proving the
proposition for p. This completes the induction and �nishes the proof. �

Theorem C.5. Let p ∈ Psa(F) be arbitrary. Then [⋅, ⋅]K (p) ∶ K (p) ×K (p)→

ℂ is nondegenerate, and

sgn
(
K (p), [⋅, ⋅]K (p)

)
=

∑

l odd

(
m+(l) −m−(l)

)
= SF�=0

[
p(�) ∶ F → F

]
,

wherem±(l) are the invariants of the triple
(
K (p), [⋅, ⋅]K (p),M�

)
.
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Proof. Propositions C.2 and C.4 imply that it su�ces to prove the theorem for
the special case p(�) = �NI ∶ F → F, where N ∈ ℕ0. In this situation

K (p) =
{ N∑

j=1

fj�
−j +ℌ0(F); fj ∈ F

}
,

and for v̂(�) =
N∑

j=1

fj�
−j and ŵ(�) =

N∑

k=1

gk�
−k we get

[v̂, ŵ]K (p) =

N∑

k=1

⟨fN+1−k, gk⟩F =

⟨

J
⎡
⎢

⎣

f1
⋮

fN

⎤
⎥

⎦

,
⎡
⎢

⎣

g1
⋮

gN

⎤
⎥

⎦

⟩

FN
,

where J ∶ FN → FN is given by J
⎡
⎢

⎣

f1
⋮

fN

⎤
⎥

⎦

=
⎡
⎢

⎣

fN
⋮

f1

⎤
⎥

⎦

. We have J2 = I, so J has

eigenvalues ±1, proving the nondegeneracy of the pairing. The dimensions of
the eigenspaces of J depend on the parity ofN. Direct computation shows that
forN even we have dimker(J − I) = dimker(J + I) = N

2
dimF, thus proving in

this case that

sgn
(
K (p), [⋅, ⋅]K (p)

)
= 0 = SF�=0

[
p(�) ∶ F → F

]
.

ForN oddwe have dimker(J−I) = N+1

2
dimF and dimker(J+I) = N−1

2
dimF,

and thus

sgn
(
K (p), [⋅, ⋅]K (p)

)
= dimF = SF�=0

[
p(�) ∶ F → F

]
.

Finally, we note that if v̂(�) and ŵ(�) above belong to ker[Ml
� ∶ K (p) →

K (p)], then

[Ml−1
� v̂, ŵ]K (p) = {

0 l ≠ N,

⟨fN , gN⟩F l = N.

Thus m+(l) = m−(l) = 0 for l ≠ N, while m+(N) = dimF and m−(N) = 0.
The theorem is proved. �
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