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Nonmonogenity of number �elds
de�ned by trinomials

Anuj Jakhar

Abstract. Let f(x) = xn − axm − b be a monic irreducible polynomial of
degree n having integer coe�cients. Let K = Q(�) be an algebraic number
�eld with � a root of f(x). In this paper, we provide some explicit conditions
involving only a, b,m, n for which K is not monogenic. Further, as an ap-
plication, in a special case, we show that if p is a prime number of the form
32k + 1, k ∈ Z and � is a root of a monic polynomial x32n − 64axm − p with
2 ∤ n, p|a, then Q(�) is not monogenic.
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1. Introduction and statement of the result

For a given algebraic number �eld K, it is a classical problem in Algebraic
Number Theory whether K is monogenic or not. There are many results in
the literature for testing the monogenity of number �elds using di�erent ap-
proaches (cf. [1], [3], [5], [6], [7], [8], [9], [12], [16], [2]). Let ZK denote the ring
of algebraic integers of an algebraic number �eld K = Q(�)where � is a root of
a monic irreducible polynomial f(x) of degree n having coe�cients from the
ring Z of integers. It is well-known that ZK is a free abelian group of rank n. Let
ind � denote the index of the subgroup Z[�] in ZK . The index i(K) of the �eld
K is de�ned as

i(K) = gcd{ind� | � ∈ ZK generates the �eld extension K∕Q}.
A prime number p dividing i(K) is called a prime common index divisor of K.
A number �eld K is called monogenic if there exists an element � ∈ ZK such
that {1, �,⋯ , �n−1} is an integral basis ofK; if no such � exists, then we say that
K is not monogenic. In 2016, Ahmad, Nakahara, and Husnine [1] proved that
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the sextic number �eld generated by b
1
6 is not monogenic if b ≡ 1 mod 4 and

b ≢ ±1 mod 9. In 2017, Gaál and Remete [9] provided some new results on

monogenity of number �elds generated by b
1
n with b a square free integer and

3 ≤ n ≤ 9 by applying the explicit form of the index equation. In 2021, Yakkou

and Fadil [2] studied the monogenity of number �elds generated by b
1
qr , where

b is a square free integer and q be a prime number. In this paper, using the
splitting of primes in ZK , we prove some results regarding the non-monogenity
of a number �eld K de�ned by an irreducible trinomial of the type xn − axm −
b having integer coe�cients. As an application of our results, we provide a
class of non-monogenic number �elds de�ned by irreducible trinomials (see
Example 1.3).

For a prime number q and a non-zero a belonging to the ring Zq of q-adic
integers, vq(a) will be the highest power of q dividing a and vq(a) = ∞ when
a = 0. Let Fq denote the �eld with q elements and N(q,l) denote the number
of irreducible polynomials of degree l over Fq. It is well known that

N(q,l) = 1
l

∑

k∣l
�(k)q

l
k ,

where � is the Möbius function. Observe that

N(q, 1) = q, N(q, 2) =
q(q − 1)

2 , N(q, 3) =
q(q2 − 1)

3 .

We now state our main result.

Theorem 1.1. Let K = Q(�) be an algebraic number �eld with � a root of a
monic irreducible polynomial f(x) = xn − axm − b of degree n having integer
coe�cients. Let q be a prime factor of n with n = qru, q ∤ u. Assume that qr+1
divides a and q ∤ b. Suppose �(x) is a monic irreducible factor of degree l of the
polynomial xu − b over Fq and N(q,l) is as above. If r1 stands for the integer
vq(bq−1 − 1), then in the following cases q divides i(K).

(1) q ≠ 2 andN(q,l) < r1 ≤ r.
(2) q = 2 andN(2,l) + 2 < r1 ≤ r.
(3) N(q,l) + 1 < r < r1.

In the special case when l = 1, the following corollary is an immediate con-
sequence of the above theorem.

Corollary 1.2. LetK = Q(�),f(x) = xn−axm−b, r and r1 be as in Theorem 1.1.
If qr+1 divides a, b ≡ 1 mod q andmin{r, r1} > q + 2, then K is not monogenic.

It may be pointed out that if we have b = 1 in the above corollary, then K is
not monogenic for r > q + 2.

As an application, we provide a class of non-monogenic number �elds de-
�ned by irreducible trinomials.
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Example 1.3. Let p be a prime number1 of the form 32k + 1 with k ∈ Z.
Consider a monic polynomial f(x) = xn − axm − p ∈ Z[x]with v2(n) = 5 and
64p divides a. Note that f(x) is irreducible over Q as f(x) satis�es Eisenstein
criterion with respect to p. If � is a root of f(x) and K = Q(�), then as in the
notations of Corollary 1.2, for q = 2 we have r = 5 and r1 ≥ 5. Therefore K is
not monogenic in view of Corollary 1.2.

2. Preliminary results

Let K = Q(�) be an algebraic number �eld with � a root of an irreducible
polynomial f(x) having integer coe�cients and ZK denote the ring of alge-
braic integers of K. Let q be a prime number. If q does not divide ind �, then
Dedekind [4] proved a signi�cant theorem in 1878 which relates the decompo-
sition of f(x) modulo q with the factorization of qZK into a product of prime
ideals of ZK . Precisely, he proved the following.

Dedekind Theorem. Let K = ℚ(�) be an algebraic number �eld of degree n
with � an algebraic integer. Let f(x) be the minimal polynomial of � over ℚ
and q be a rational prime not dividing ind �. Let f(x) = g1(x)

e1 ⋯ gt(x)
et be

the factorization of f(x) into powers of distinct irreducible polynomials over
ℤ∕qℤ, where each gi(x) ∈ ℤ[x] is monic. Then ℘i = ⟨gi(�), q⟩ for 1 ≤ i ≤ t
are distinct prime ideals of ZK and qZK = ℘e1

1 ⋯℘et
t ;moreover the norm of℘i

is qdeg gi(x) for 1 ≤ i ≤ t.
The following lemma is an immediate consequence of Dedekind’s theorem.

It plays a key role in the proof of Theorem 1.1. We shall denote by Fq the �eld
with q elements.
Lemma 2.1. LetK be a number �eld and q be a prime number. For every positive
integer f, let N(q, f) denote the number of irreducible polynomials of Fq[x] of
degreef andP(q, f)denote the number of distinct prime ideals ofZK lying above q
having residual degree f. If P(q, f) > N(q, f) for some f, then for every algebraic
integer � generating the �eld extension K∕Q, the prime q divides ind�.

When Dedekind’s theorem fails, i.e., q divides i(K), then Ore developed an
alternative approach in 1928 for obtaining the prime ideal factorization of the
rational primes in a number �eld K by using Newton polygons (cf. [14], [15]).

We now introduce the notion of Gauss valuation which is required for de�n-
ing the �-Newton polygon of a polynomial, where �(x) belonging to Zq[x] is a
monic polynomial with �̄(x) irreducible over Fq.

We shall denote by vq,x the Gauss valuation of the �eld Qq(x) of rational
functions in an indeterminate x which extends the valuation vq of Qq and is
de�ned on Qq[x] by

vq,x(
∑

i
bixi) = min

i
{vq(bi)}, bi ∈ Qq. (2.1)

1It is known that there exists in�nitely many primes of the form 32k + 1, k ∈ Z.
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Now we de�ne the notion of �-Newton polygon with respect to some prime q.
De�nition 2.2. Let q be a prime number and �(x) ∈ Zq[x] be a monic poly-
nomial which is irreducible modulo q. Let f(x) ∈ Zq[x] be a monic polyno-

mial not divisible by�(x)with�-expansion
n∑
i=0

ai(x)�(x)i, deg ai(x) < deg�(x),

an(x) ≠ 0 which is obtained on dividing f(x) by successive powers of �(x). To
each non-zero term ak(x)�(x)k, we associate the point (n − k, vq,x(ak(x))) and
form the set

P = {(k, vq,x(an−k(x))) | 0 ≤ k ≤ n, an−k(x) ≠ 0}.
The �-Newton polygon of f(x) with respect to q is the polygonal path formed
by the lower edges along the convex hull of the points of P. The slopes of the
edges are increasingwhen calculated from left to right. The principal�-Newton
polygon of f(x) with respect to q is the part of the �-Newton polygon of f(x),
which is determined by joining all edges of positive slopes.
Example 2.3. Let f(x) = (x+5)4−5. Here take �(x) = x. Then the x-Newton
polygon of f(x) with respect to prime 2 consists of only one edge joining the
points (0, 0) and (4, 2) with the lattice point (2, 1) lying on it (see Figure 1).

x

y

(0, 0)

(2, 1)

(4, 2)
(1, 2) (3, 2)

Figure 1. x-Newton polygon of f(x) with respect to prime 2

De�nition 2.4. Let q be a prime number and �(x) ∈ Zq[x] be a monic poly-
nomial which is irreducible modulo q having a root � in the algebraic closure
Q̃q of Qq. Let f(x) ∈ Zq[x] be a monic polynomial not divisible by �(x) with
�-expansion �(x)n + an−1(x)�(x)n−1 +⋯+ a0(x). Suppose that the �-Newton
polygon of f(x)with respect to q consists of a single edge, say S having positive
slope denoted by d

e
with d, e coprime, i.e.,

min{
vq,x(an−i(x))

i ∣ 1 ≤ i ≤ n} =
vq,x(a0(x))

n = d
e

so that n is divisible by e, say n = et and vq,x(an−ej(x)) ≥ dj for 1 ≤ j ≤ t.
Thus the polynomial an−ej(x)

qdj
= bj(x) (say) has coe�cients in Zq and hence
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bj(�) ∈ Zq[�] for 1 ≤ j ≤ t. The polynomial T(y) in an indeterminate y

de�ned by T(y) = yt +
t∑

j=1
bj(�)yt−j having coe�cients in Fq[�] is said to be

the polynomial associated to f(x) with respect to (�, S); here the �eld Fq[�̄] is
isomorphic to the �eld Fq[x]

⟨�̄(x)⟩
.

Example 2.5. Consider f(x) = (x + 5)4 − 5. Then, as in Example 2.3, the
x-Newton polygon of f(x) with respect to prime 2 consists of only one edge
joining the points (0, 0) and (4, 2) with the lattice point (2, 1) lying on it. With
notations as in the above de�nition, we see that e = 2, d = 1 and the polyno-
mial associated to f(x) with respect to (x, S) is T(y) = y2 + y + 1 belonging to
F2[y].

We now state a weaker version of Theorem 1.2 of [13].

Theorem 2.6. Let L = Q(�) be an algebraic number �eld with � satisfying
a monic irreducible polynomial g(x) ∈ Z[x] and q be a prime number. Let
�̄1(x)e1 ⋯ �̄r(x)

er be the factorization of g(x) modulo q into a product of pow-
ers of distinct irreducible polynomials over Fq with each �i(x) ≠ g(x) belonging
to Z[x] monic. Assume that, for a �xed i, the �i-Newton polygon of g(x) has k
edges, say Sj having positive slopes �j =

dj
ej

with gcd(dj, ej) = 1 for 1 ≤ j ≤ k.
If the polynomial Tj(y) associated to f(x) with respect to (�i, Sj) is linear for k1
edges with 1 ≤ j ≤ k1 ≤ k, then there are at least k1 distinct prime ideals of ZL
having residual degree deg�i(x).

In [10], Guàrdia, Montes, andNart introduced the notion of �-admissible ex-
pansion, which is used in order to treat some special caseswhen the�-expansion
of a polynomial g(x) is not obvious.

Let q be a prime number and f(x) ∈ Zq[x] be a monic polynomial not

divisible by �(x) with �(x)-development
n∑
j=0

a′j(x)�(x)
j, a′j(x) ∈ Zq[x]; here

deg a′j(x) can be greater than or equal todeg�(x).Analogous to the de�nition of
�-Newton polygon of f(x)with respect to q, to each non-zero term a′k(x)�(x)

k,
we associate the point (n−k, vq,x(a′k(x))) and the polygonal path formed by the
lower edges along the convex hull of the points of {(k, vq,x(a′n−k(x))) | 0 ≤ k ≤
n, a′n−k(x) ≠ 0} de�nes the �-development Newton polygon of f(x) with re-
spect to q in this case. Nowas inDe�nition 2.4, suppose that the�-development
Newton polygon of f(x)with respect to q consists of a single edge, say S′ having
positive slope denoted by d

e
with d, e coprime, i.e.,

min{
vq,x(a′n−i(x))

i ∣ 1 ≤ i ≤ n} =
vq,x(a′0(x))

n = d
e



NONMONOGENITY OF NUMBER FIELDS DEFINED BY TRINOMIALS 655

so that n is divisible by e, say n = et and vq,x(a′n−ej(x)) ≥ dj for 1 ≤ j ≤ t.

Let
a′n−ej(x)

qdj
is denoted by b′j(x). We de�ne the polynomial T′(y) in an indeter-

minate y by T′(y) = yt +
t∑

j=1
b′j(�)y

t−j having coe�cients in Fq[x]
⟨�̄(x)⟩

(≅ Fq[�]).

T′(y) is said to be the polynomial associated to f(x) with respect to (�, S′). We
say that a �-development of f(x) is called admissible with respect to (�, S′) if
and only if �̄ does not divide b̄′j(x) for each j. If the �-development Newton
polygon of a polynomial f(x) has lmany egdes Si having positive slopes, then
�-development of f(x) is called admissible when �-development of f(x) is ad-
missible with respect to (�, Si) for each i, 1 ≤ i ≤ l. It is proved in [10] that
if a �-development of f(x) is admissible, then the principal �-Newton polygon
of f(x) with respect to q will be the same as �-development Newton polygon
of f(x) with respect to prime q for edges having positive slopes; in particular,
for any edge S having positive slope of the �-Newton polygon of f(x), we have
T(y) = T′(y).

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Keeping in mind that qr − 1 = (q − 1)m with m ≡
1 mod q and bq−1 ≡ 1 mod q, one can quickly verify that vq(bq

r−1 − 1) =
vq(bq−1 − 1) = r1.

Since q|a and q ∤ b, we have f(x) ≡ xn − b mod q. Using Fermat’s little
theorem and the fact that n = qru, q ∤ u, it follows that f(x) ≡ (xu − b)qr

mod q. Since q does not divide ub, the monic polynomial xu−b is separable in
Fq[x]. Let �1(x)⋯�t(x) be the factorization of xu − b into a product of monic
irreducible polynomials in Fq[x], then f(x) ≡ (�1(x)⋯�t(x))q

r mod q. Now
we �x an irreducible factor �̄i(x) = �̄(x) of the polynomial f̄(x) in Fq[x]. Write
xu − b = �1(x)⋯�t(x) + qk1ℎ1(x) = �(x)g1(x) + qk1ℎ1(x), where g1(x) =

t∏
j=1,j≠i

�j(x), ℎ1(x) ∈ Z[x] and k1 ≥ 1 is an integer such that ℎ̄1(x) ≠ 0̄. Note

that �̄(x) ∤ ḡ1(x). Now we observe that there exists g(x) and ℎ(x) such that
�̄(x) ∤ ḡ(x)ℎ̄(x) and xu−b = �(x)g(x)+qkℎ(x) for some k ≥ 1. Because if �̄(x)
divides ℎ̄1(x), we canwrite ℎ̄1(x) = �̄(x)eḡ2(x) such that e ≥ 1 and �̄(x) ∤ ḡ2(x).
So we have ℎ1(x) = �(x)eg2(x) + qk2ℎ2(x) and k2 is a positive integer such that
ℎ̄2(x) ≠ 0̄. If �̄(x) ∤ ℎ̄2(x), then we set g(x) = g1(x) + qk2�(x)e−1g2(x) and
ℎ(x) = ℎ2(x) with k = k1 + k2. If �̄(x) divides ℎ̄2(x), then we can repeat this
process. Therefore, let g(x), ℎ(x) ∈ Z[x] be such that

xu − b = �(x)g(x) + qkℎ(x) with k ≥ 1, �̄(x) ∤ ḡ(x)ℎ̄(x). (3.1)

Applying the binomial theorem, we see that

f(x) = (xu − b + b)qr − axm − b = (�(x)g(x) + qkℎ(x) + b)qr − axm − b
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can be written as

f(x) =
qr∑

j=1

(qr

j
)
(qkℎ(x) + b)qr−jg(x)j�(x)j + (qkℎ(x) + b)qr − axm − b.

Let d(x) ∈ Z[x] be a polynomial such that

(qkℎ(x) + b)qr − bqr = qr+kd(x).
Then

d(x) = bqr−1ℎ(x) + 1
qr+k

qr−2∑

j=0

(qr

j
)
bj(qkℎ(x))qr−j.

It follows that
f(x) = (�(x)g(x))qr (3.2)

+
qr−1∑

j=1

(qr

j
)
(qkℎ(x) + b)qr−jg(x)j�(x)j + qr+kd(x) − axm + bqr − b.

Thus f(x) =
qr∑
j=0

a′j(x)�(x)
j is the �-development of f(x), where

a′0(x) = qr+kd(x) − axm + bqr − b.

a′i (x) =
qr∑

j=1

(qr

j
)
(qkℎ(x) + b)qr−jg(x)j.

Note that

vq,x(
(qr

j
)
(qkℎ(x) + b)qr−jg(x)j) = vq(

(qr

j
)
) for every j = 1, 2,⋯ , qr. (3.3)

We now divide our proof into two cases.
Case (1). Suppose r1 ≤ r. Keeping inmind that qr+1 dividesa, one can easily

verify that the successive vertices of the�-developmentNewton polygon off(x)
with respect to an odd prime q is given by the set {(0, 0), (qr − qr−1, 1),⋯ , (qr −
qr−r1+1, r1−1), (qr, r1)} having r1 edges S′i with slopes �i =

1
qr−i+1−qr−i

for 1 ≤ i ≤

r1−1 and �r1 =
1

qr−r1+1
. Since q ∤ b and �̄(x) ∤ ḡ(x)ℎ̄(x), one can see that the �-

development off(x) is admissiblewith respect to (�, S′i ) for each i, and hence�-
development of f(x) is admissible. Further, the polynomial associated to f(x)
with respect to (�, S′i ) is linear for 1 ≤ i ≤ r1. Therefore, the �-Newton polygon
off(x)has r1 edges and the polynomials associated tof(x)with respect to these
edges are linear. Hence by Theorem 2.6, there are at least r1 distinct prime
ideals of ZK lying above q having residual degree deg�(x)(= l). It is known
[11] that the number of monic irreducible polynomials of degree l over Fq are
N(q,l). Therefore, if r1 > N(q,l), then applying Lemma 2.1 it follows that q
divides i(K). We now consider the situation when q = 2. In this situation, the
successive vertices of the �-development Newton polygon of f(x) with respect
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to 2 is given by the set {(0, 0), (2r − 2r−1, 1),⋯ , (2r − 2r−r1+2, r1 − 2), (2r, r1)}
having r1 − 1 edges S′i with slopes �i =

1
2r−i+1−2r−i

for 1 ≤ i ≤ r1 − 2 and �r1−1 =
1

2r−r1+1
. The polynomial associated to f(x) with respect to (�, S′i ) is linear for

1 ≤ i ≤ r1 − 2 and the polynomial associated to f(x) with respect to (�, S′r1−1)
is a second degree irreducible polynomial y2 + y + 1̄ over F2. Since q ∤ b and
�̄(x) ∤ ḡ(x)ℎ̄(x), �-development of f(x) is admissible. Hence, the �-Newton
polygon of f(x) has r1 − 2 edges such that the polynomials associated to f(x)
with respect to these edges are linear. Therefore, by Theorem 2.6, there are at
least r1 − 2 distinct prime ideals of ZK lying above 2 having residual degree l.
So, if r1 − 2 > N(2,l), then applying Lemma 2.1 it follows that 2 divides i(K).

Case (2). Suppose r1 > r. Keeping inmind that qr+1 dividesa, one can easily
verify that the successive vertices of the�-developmentNewton polygon off(x)
with respect to an odd prime q are given by the set {(0, 0), (qr−qr−1, 1),⋯ , (qr−
q, r − 1), (qr − 1, r), (qr, z)} having r + 1 edges S′i with z ≥ r + 1 and slopes
�i =

1
qr−i+1−qr−i

for 1 ≤ i ≤ r, �r+1 = z − r. Also, if vq,x(a′0(x)) = r + 1, then the
successive vertices of the �-development Newton polygon of f(x) with respect
to 2 is given by the set {(0, 0), (2r −2r−1, 1),⋯ , (2r −2, r−1), (2r, r+1)} having
r edges S′i with slopes �i =

1
qr−i+1−qr−i

for 1 ≤ i ≤ r − 1 and �r = 1. Arguing
exactly as in the above case, we see that there are at least r − 1 distinct prime
ideals of ZK lying above q having residual degree l. So, if r − 1 > N(q,l), then
applying Lemma 2.1 we see that q divides i(K). This completes the proof of the
theorem. �
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