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Flow equivalence of topological Markov
shifts and Ruelle algebras

Kengo Matsumoto

ABSTRACT. In this paper we study discrete flow equivalence of two-sided
topological Markov shifts by using extended Ruelle algebra. We characterize
flow equivalence of two-sided topological Markov shifts in terms of conjugacy
of certain actions weighted by ceiling functions of two-dimensional torus on
the stabilized extended Ruelle algebras for the Markov shifts.
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1. Introduction

Flow equivalence relation in two-sided topological Markov shifts is one of
the most interesting and important equivalence relations in symbolic dynam-
ics as seen in many papers [2], [3], [9], [22], etc. Let (X4,54) be the two-
sided topological Markov shift defined by an N X N irreducible matrix A =
[A(, j)]ﬁ’j:1 with entries in {0, 1}. The shift space X 4 consists of bi-infinite se-

quences (X,)pez € {1,..,N}? of {1,...,N} such that A(x,,X,.;) = 1 for all
n € Z. Take and fix a real number A, such as 0 < 1, < 1. The space X, is a

Received October 18, 2018.

2010 Mathematics Subject Classification. Primary 37A55, 46L35; Secondary, 37B10, 46L55.

Key words and phrases. Topological Markov shift, flow equivalence, topological conjugacy,
Ruelle algerba, Cuntz-Krieger algebra.

The author would like to thank the referee for his careful reading, comments and sugges-
tions on the first draft of the paper. This work was supported by JSPS KAKENHI Grant Number
15K04896, 19K03537.

ISSN 1076-9803/2021
1375


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2021/Vol27.htm

1376 KENGO MATSUMOTO

compact metric space by the metric defined by for x = (x,),e7,Y = Vnez
with x # y

1 if X9 # Yo,

d(x,y) =
(x.7) A)™  if m = Max{n | x; = y for all k with |k| < n}.

The homeomorphism of the shift transformation &, on X , is defined by

O_'A((xn)nez) = (xn+1)neZ-

Two topological Markov shifts (X 4,5 4) and (X, 65) are said to be flow equiv-
alent if they are realized as cross sections with their first return maps of a com-
mon flow space. Parry-Sullivan in [22] proved that (X 4,5 ,4) and (Xp,&p) are
flow equivalent if and only if they are realized as discrete cross sections with
their first return maps of a common topological Markov shift. Cuntz-Krieger
have first found that there is an interesting relation between flow equivalence of
topological Markov shifts and certain purely infinite simple C*-algebras called
Cuntz-Krieger algebras that they introduced in [7]. For an irreducible ma-
trix A with entries in {0, 1}, let O4 be the Cuntz-Krieger algebra and D, its
canonical maximal abelian C*-subalgebra of O4. We denote by X and C the
C*-algebra of compact operators on the separable infinite dimensional Hilbert
space ¢2(N) and its commutative C*-subalgebra of diagonal operators on £2(N),
respectively. Cuntz-Krieger proved that for irreducible non-permutation ma-
trices A and B, if (X4,54) and (Xp,d5) are flow equivalent, then there ex-
ists an isomorphism ® : 04 ® X — Oy ® X of C*-algebras such that
d(D, ® C) = Dy @ C. Its converse implication holds by [21] (for more gen-
eral matrices a similar assertion is shown in [5]). They also proved in [7] that
the extension group Ext(@Q,4), which is isomorphic to the K-group Ky,(O,4) as
groups, appears as the Bowen-Franks group BF(A) defined by Bowen-Franks
in [2], that is an invariant of flow equivalence of (X 4,5 4) ([2]).

There is another kind of construction of C*-algebras from two-sided topolog-
ical Markov shifts by using groupoids and regarding the Markov shifts as Smale
spaces ([1], [30], [33], etc. ). The construction was initiated by D. Ruelle [30],
[31] and I. Putnam [23], [24]. I. Putnam in [23] constructed several kinds of
groupoids from each Smale space. Each of the groupoids yields a C*-algebra.
In this paper, we focus on asymptotic groupoids G§ among several groupoids
studied in [12], [23], [24], [25], etc. and their semi-direct products defined be-
low. The asymptotic étale groupoid G for (X4, ) is defined by

GY ={(,y) € Xax X, |
3 n n — 3 n n —
r}l_)ngo d(O'A(X), UA(y)) - nl_l)lzloo d(O'A(X), GA(y)) - 0}
with natural groupoid operations and topology (see [23]). It has been shown
in [24] that the groupoid G is amenable and its C*-algebra C*(GY) is stably

isomorphic to the tensor product 4 ® F4 of the canonical AF-subalgebras
F 4 and F 4 inside the Cuntz—Krieger algebras 04 and O 4, respectively. The
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semi-direct product G X Z is defined by
GiXZ :={(x,k—1y) €XsxZxX,|(c5(x),6,(x) € G4}

with natural groupoid operations and topology (see [23]). It is étale and amen-
able. The groupoid C*-algebra C*(GY X Z) is called the Ruelle algebra for
the Markov shift (X4,5,4) and written R,. Since the unit space (Gy X 2Z)is
{(x,0,x) € G4 X Z | x € X4} thatisidentified with the shift space X4, the alge-
bra R4 has the commutative C*-algebra C(X,) of continuous functions on X 4
as a maximal commutative C*-subalgebra. It is the crossed product C*(G5) X Z
of C*(GY) induced by the automorphism of the shift &,, and hence has the
dual action written p;“, t € T. See [26] for the construction of C*-algebras from
groupoids.

Following [23], let us consider the groupoids G, and G defined by sta-
ble equivalence relation and unstable equivalence relation on (X 4, & 4), respec-
tively, which are defined by

G} ={(x.y) € Xy x %y | lim d(&3(x), 6%() = 0},
Gl ={(x.y) € X4 x Xy | lim_d(&j(x).850) = O}
n——oo

In [19] and [20], the author introduced the groupoid G X Z* defined by
Gi’“ NZ% ={(x,p,q,y) EX, X ZXZxX, |

(@5 (x),y) € G, (650, y) € G4}
which has a natural groupoid operations and topology making it étale and amen-
able. The groupoid C*-algebra C*(Gi’u X Z?) is called the extended Ruelle al-
gebra written R 4. Since the unit space (G X Z2)° is {(x,0,0,x) € G} X Z? |
x € X4} that is identified with the shift space X 4, the algebra R, has C(X,) as
a maximal abelian C*-subalgebra. As in [19] and [20], there exists a projection
E, in the tensor product O ® O 4 such that E (0 @ ®0 4)E 4 is naturally iso-
morphic to the algebra R4, so that the C*-algebra R, is regarded as a version
of the bilateral Cuntz-Krieger algebra. Let a4 denote the gauge action on the
Cuntz-Krieger algebra O,. Under the identification between E4(O 4 ® O4)E 4
and R 4, the tensor product oc;“t ® oc;4 for (r,s) € T? yields an action of T?
written yé’s), (r,s) € T2.In [20, Theorem 1.1], it was shown that the triplet

(R4, C(X4),y4) is a complete invariant for the topological conjugacy class of
(X4,64). For a continuous function f : X, — N, we may define an action
y*/ weighted by f on R 4. In this paper, we will characterize the flow equiva-
lence class of (X 4, 1) in terms of the stabilized version of R , with the weighted
action y4/. The continuous function f : X, — N exactly corresponds to a
ceiling function of a discrete suspension. The main result of this paper is the
following theorem.

Theorem 1.1 (Theorem 6.8). Let A, B be irreducible, non-permutation matri-
ces with entries in {0, 1}. The two-sided topological Markov shifts (X 4,5 4) and
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(Xp, dp) are flow equivalent if and only if there is an irreducible non-permutation
matrix C with entries in {0, 1} and continuous functions f 4, fg : Xc — N with
values in the positive integers such that Ry ® K and Ry ® K are isomorphic to
R ® K via isomorphisms ® 4 and ®y satisfying

. c, .
q)Ao(Yé’s) ® ld) = (Y(F’S)A ® ld)oq)A’
. c, .
oyl | ®id) = (7" @ id)oy
for(r,s) € T2

The above statement exactly corresponds to the situation that the topological
Markov shift (X 4,5 ,) is realized as a discrete suspension of (X, &) by ceiling
function f 4, and (Xp,&p) is realized as a discrete suspension of (X, &) by
ceiling function fz. As a corollary we have the following.

Corollary 1.2 (Corollary 6.9). Let A, B be irreducible, non-permutation matrices
with entries in {0, 1}. Two-sided topological Markov shifts (X 4,5 4) and (Xg, 55)
are flow equivalent if and only if there exist continuous functions f 4 : X, — N
and fg : Xy —> N with values in the positive integers, and an isomorphism
D Ry ® K — Ry ® K of C*-algebras such that

P11 @id) = (7 ? @id)od,  (r,5) € T2,

The organization of the paper is the following.

In Section 2, we will briefly recall basic notation and terminology on groupoid
C*-algebras, Cuntz-Krieger algebras, Ruelle algebras and flow equivalence of
topological Markov shifts.

In Section 3, a bilateral version of the Krieger’s dimension group for topo-
logical Markov shifts will be studied and called the dimension quadruplet that
will be shown to be invariant for shift equivalence of the underlying matrices.

In Section 4, the dimension quadruplet is described by the K-group of the
AF-algebra C*(G}) of the groupoid G . As aresult, a sufficient condition under
which the two-sided Markov shifts (X 4,5 4) and (X, 55) are flow equivalent is
given in terms of the stabilized action y* ® id of T2 on R, ® X (Proposition
4.6).

In Section 5, the action y*/ with potential function f on the algebra R, is
introduced.

In Section 6, we characterize the flow equivalence of two-sided topological
Markov shifts in terms of the actions with potential functions of two dimen-
sional torus on the extended Ruelle algebras R 4.

In Section 7, we reformulate Theorem 1.1 and Corollary 1.2 by describing
their statements including not only flow equivalence but also topological con-
jugacy of two-sided topological Markov shifts (Theorem 7.2 and Theorem 7.3).

Throughout the paper, we denote by Z, and N the set of nonnegative integers
and the set of positive integers, respectively.
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2. Preliminaries

In this section, we briefly recall basic notation and terminology on the C*-
algebras of étale groupoids, Cuntz-Krieger algebras, Ruelle algebras and flow
equivalence of topological Markov shifts. In what follows, a square matrix A =
[AG, j)]ﬁ\,’j=1 is assumed to be an N X N irreducible, non-permutation matrix

with entries in {0, 1}.

2.1. C*-algebras of étale groupoids. Let us construct C*-algebras from étale
groupoids. The general theory of the construction of groupoid C*-algebras was
initiated and studied by Renault [26] (see also [27], [28]). The construction will
be used in the following sections. Let G be an étale groupoid with its unit space
G° and range map, source map r,s : G — G° and C.(G) denote the *-algebra
of continuous functions on G with compact support having its product and -
involution defined by

F=2d= 2, [few™n., [f@=foD

nr(y)=r(n)

for f,g € C.(G), y € G. We denote by Cy(G°) the commutative C*-algebra
of continuous functions on G° vanishing at infinity. The algebra C.(G) has a
structure of right Cy(G°)-module with C(G°)-valued right inner product given

by

€)= MG, <&L>M= 3 EmLm)

nst=s(n)
for £,{ € C.(G), g € C.(G°),y € G,t € G°. The completion of C.(G) by
the norm defined by the above inner product is denoted by ¢%(G), which is
a Hilbert C*-right module over Cy(G°). The algebra C.(G) is represented on
¢?(G) as bounded adjointable Cy(G°)-right module maps by 7(f)é = f * £
for f € C.(G),& € ¢*(G). The closure of 7(C,.(G)) by the operator norm on
¢?(G) is denoted by C(G) and called the (reduced) groupoid C*-algebra for
the étale groupoid G. The completeion of C.(G) by the universal C*-norm is
called the (full) groupoid C*-algebra for G. Now we treat the three kinds of
groupoids G%,G4 X Z,G}" X Z*. They are all étale and amenable, so that
the two groupoid C*-algebras C;(G) and C*(G) are canonically isomorphic for
such groupoids. We do not distinguish them, and write them as C*(G) for G =
G$. G4 X Z,G}" X 72

2.2. Cuntz-Krieger algebras, Ruelle algebras and extended Ruelle alge-
bras. The Cuntz-Krieger algebra O 4 introduced by Cuntz-Krieger [7] is a uni-
versal unique C*-algebra generated by partial isometries Sy, ... , Sy subject to the
relations:

N N
2881 =1 S'Si=2 A0 NS;S;,  i=1.,N. (2D
j=1 j=1
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By the universality for the relations (2.1) of operators, the correspondence S; —
exp(Zn\/—_lt)Si, i=1,..,Nforeacht € R/Z = T yields an automorphism
written a;“ on the C*-algebra O,4. The automorphisms oc;“, t € T define an ac-
tion of T on O, called the gauge action. It is well-known that the fixed point
algebra (O A)“A of O, under the gauge action is an AF-algebra written & 4. Let
us denote by B,,(X,) the set of admissible words in X, of length m and by
B..(X ) the set of all admissible words of X 4. For 4 = (Uy, ..., ) € B(X4),
we write S, =S, ---S, . We denote by D, the C*-subalgebra of # 4 generated
by projections S,,S};, u € B..(X4).

Asin[7]and [6](cf. [18], [29]), the crossed product O 4 X4 T is stably isomor-
phic to the AF-algebra F 4. Hence the dual action &4 on O4 X4 T induces an
automorphism on Ky(F 4), that is written 6 4. The triplet (Ky(F 4), K(;“ (F4),64)
appears as the (future) dimension triplet written (A, A,:’ d4) for A defined
by W. Krieger [16]. For the transposed matrix A’ of A, we similarly consider
the Cuntz-Krieger algebra O, and its AF-subalgebra ¥ 4.. Let us denote by
Ty, ..., Ty the generating partial isometries of O 4 which satisfy the relations:

N N
DITTr =1, TiT; = DAGPTTE, j=1,..,N. (2.2)
i=1 i=1

For & = (£, ..., &) € Br(X,), we denote by € the transposed word (&, ..., £;)
which belongs to By (X 4), and write Te=Tg - Tg,.
Define the projection E4 € F 4 ® F 4 by setting
N
Ey= ) TiT; ®S;S;
j=1
which coincides with Zfil T,T; ®S;S; because of the equalities (2.1) and (2.2).
Let va fo1 XZ, G;’” X Z2 denote the étale amenable groupoids stated in Section
1. For reference, we state [20, Proposition 2.1] as

Lemma 2.1.

(i) The groupoid C*-algebra C*(GY) is canonically isomorphic to the C*-
subalgebra of F 4 @ F 4 generated by elements T¢T; ® S, S, where pi =
(:uls_"' uum)’ V= (vla ’Vn) € B*(XA)ﬂ § = (‘gks ] gl)ﬂ n= (771, ’771) €
B..(X 4:) satisfying A(&, u1) = A(m;,v1) = land k = I, m = n. Hence
C*(GY) is canonically isomorphic to the C*-algebra Eo(F s« @ F 4)E 4.

(ii) The Ruelle algebra R, = C*(G4 X Z) is canonically isomorphic to the
C*-subalgebra of O 4, @ O4 generate_d by _elements TgT;f ®S,,S;, where . =
(:ul’_"' s lum)’ V= (Vlﬁ sy Vn) € B*(XA)’§ = (gk’ ] gl)’ ﬁ = (771, ] 7)1) €
B.(X4:) satisfying A(§, 1) = A, v)) =landm+k =n+1.

(iii) The extended Ruelle algebra R, = C*(G;"* X Z?) is canonically isomor-
phic to the C*-subalgebra of O 5« ® O 4 generated by elements T T;; ®S,S,

where M= (:ula ,,le), V= (Vla ’VVL) € B*(XA)a g = (gka ’gl)a N =
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@y, .., m) € B.(X ) satisfying A&, uy) = A(n,v,) = 1. Hence R 4 is
canonically isomorphic to the C*-algebra E4,(O 4 @ O4)E 4.

Under the identification between E ,(O 4 ® ©4)E 4 and R 4, the tensor prod-
uct oc;“[ ® a' of gauge actions on @4 and O, yields an action of T? on R4
written yé o (r.8) € T2, because yé o(Ea) = E4. We write

t
§t i=a ®a, et =yt teT.

tt
)

Lemma 2.2.

(i) The restriction of the action p;“,t € T to the subalegera R, is regarded
as the dual action on R 4 under a natural identification between R 4 and
the crossed product C*(G%) X Z. Hence the fixed point algebra (R A)”A is
isomorphic to C*(G%).

(ii) The fixed pointalgebra (R, A)5A of R 4 under 84 is isomorphic to R 4, so that
the fixed point algebra (R, A)VA of R 4 under y* is isomorphic to C* (G-

2.3. Suspension and flow equivalence. We will briefly review discrete sus-
pensions of topological Markov shifts. Let f : X, — N be a continuous
function on the shift space X 4, with values in the positive integers. Let f(X,) =
{1,2,...,L}. PutX; = {x € X4 | f(x) =j},j =1,...,L. Define the suspension
space XAyf = UJL.=1X]~ x{0,1,..., j — 1} with transformation &, ; on XA,f by

[x,k+1] ifo<k<j-2,

O_'A,f([xa k]) = [64(x),0] ifk=j—1

for [x,k] € X; x{0,1,..., j — 1}. The resulting topological dynamical system
(Xa,f,Ga,f) is called the discrete suspension of (X4, G 4) by the ceiling function
f, which is homeomorphic to a topological Markov shift. If, in particular, the
function f : X, — N depends only on the Oth coordinate of X4, then f
is written f = Z;V:l fj XU,(0) for some integers f; € N, where XU(0) is the
characteristic function of the cylinder set

Uj(O) = {(xn)nEZ eXVA | X0 = J}’ j=1..,N.

Putm; = f; —1for j = 1,..,N. Let G = (V, ) be the directed graph defined
by the matrix A with the vertex set V = {1, 2,..., N}. An edge of G is defined by
a pair (i, j) of vertices i, j = 1, ..., N such that A(i, j) = 1, whose source is i and
the terminal is j. The set of such pairs (i, j) is the edge set €. Construct a new
graph § = (Vf, & f) with its transition matrix A 7 from the graph G = (V, €)
and the function f such that V, = Uﬁ.\’zl{jo,jl,jz, wes Jm;} and if A, k) = 1,
then

Ar(jo, J1) = Ap(j1, J2) = -+ = ApUm;-1Jm,) = Ap(m;> ko) = 1. (2.3)

For other pairs (ji, j},) € V; x V¢, we define A;(j;, j;,) = 0. Hence the size of
the matrix Ay is (f1 + f, + -+ + f§) X (f1 + f2 + --- + fn). Then the discrete
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suspension (X4 ¢, G4 ¢) is nothing but the topological Markov shift (X4 ;04;)
defined by the matrix Ay.

Two topological Markov shifts are said to be flow equivalent if they are real-
ized as cross sections with their first return maps of a common one-dimensional
flow space. Parry-Sullivan in [22] proved that (X 4,5 4) and (Xg, &) are flow
equivalent if and only if there exist another topological Markov shift (X, &¢)
for some matrix C and continuous maps f 4, fz : X¢ — Nsuch that (X4,54)
is topologically conjugate to the discrete suspension (X¢ ¢, ¢ r,) and (X, 65)
is topologically conjugate to the discrete suspension (X¢ ¢,,0c f,)-

Cuntz and Krieger were the first to find interesting relations between flow
equivalence of topological Markov shifts and Cuntz-Krieger algebrasin [7]. Re-
call that X and € are the C*-algebra of compact operators on the separable in-
finite dimensional Hilbert space £2(N) and its commutative C*-subalgebra of
diagonal operators on ¢2(N). Cuntz and Krieger proved that for irreducible
non-permutation matrices A and B, if (X4,5,) and (X, &) are flow equiva-
lent, then there exists an isomorphism ® : 04 @ X — Op ® KX of C*-algebras
such that (D, ® C) = Dy ® C. Its converse implication holds by [21] (for more
general matrices a similar assertion is shown in [5]).

In this paper, we will study flow equivalence of topological Markov shifts in
terms of the extended Ruelle algebras with its action y“ of T2.

3. Bilateral dimension groups

We keep an irreducible, non-permutation matrix A = [A(I, j)]fj:1 with en-
tries in {0, 1}. Following W. Krieger [16] (cf. [14], [15], [8], etc.), the dimension
group (Ay4, AD for the matrix A are defined as an ordered group by the induc-
tive limits

p=2V SV S at=N Sy S

The group A, is identified with the equivalence classes of U? {(v,n) | v €
7ZN,n € Z.} by the equivalence relation generated by (v,n) ~ (A'v,n + 1).
The equivalence class of (v, n) is denoted by [v, n]. The dimension drop auto-
morphism 6§ 4 on (Ay4, A;) is defined by 8 4([v, n]) = [(v,n+1)] for [v,n] € Ay4.
The triplet (A A,A} d4) is called the (future) dimension triplet for the topo-
logical Markov shift (X 4,5 4). We similarly have the (future) dimension triplet
(A4, A%, 8 40) for the topological Markov shift (X 4, & 4. ) for the matrix A, which
is called the (past) dimension triplet for (X 4,5 4). Hence we have two dimen-
sion triplets (A4, A%, 8,4) and (A, AT, 64) for the matrix A.

Lete; € ZVN be the vector of ZN whose ith component is 1, other components
are zeros. We will define a specific element ii4 in A4 ® A, by setting

N

iy = Y [e;, 11 @ A(j, e, 1] € Ay ® Agy.
i,j=1
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We then see that

N N N
g =) |le;, 11 @D, AU, e, 11| = D le;, 11 ® [Ale;, 1]
Jj=1 i=1 j=1

N
=(id ® 6,") Y (e}, 1] ® [}, 1])
j=1

and
N( N N
iy =y [ [ AG, Dej, 11 @ [e, 1] | = Y [Ae;, 1] @ [e;,1]
i=1\ j=1 i=1

N
=(6,! ®id) D ([e;, 1] ® [e;, 1]

i=1
Define an automorphism 8,4 : Ay ® Ay — Ay @ Ay by, =67 @8, It
satisfies
Sa(lu,n] ®@ [v,m]) = [Au,n] @ [v,m + 1],  [u,n] @ [v,m] € Ay ® Ay.
We set the abelian group A, = A4 ® A4 with its positive cone A} = AT, ® AY.

Definition 3.1. The quadruplet (A4, A%, 64, 11,4) is called the dimension quadru-
plet for the two-sided topological Markov shift (X 4,5 4).

We note that a bilateral version of the dimension groups first appeared in
Krieger’s paper [14] (cf. [15], [16]).

Lemma 3.2. §,(ii,) = di,.

Proof. Since

N N
i, =>d®8;") D (e, 11 ®le;,1]) = (5, ®id) Y (e, 1] ® [e;, 1),

and &, = 5;1} ® & 4, the assertion is immediate. O

We will next show that the dimension quadruplet (A, A*,8,,17,4) is invari-
ant under shift equivalence of the underlying matrices A. The notion of shift
equivalence in square matrices with entries in nonnegative integers has been
introduced by W. F. Williams [34]. Two matrices A and B are said to be shift
equivalent if there exist rectangular matrices H, K with entries in nonnegative
integers and a positive integer ¢ such that

A’ =HK, BY =KH, AH=HB, KA =BK. (3.1)

W. Krieger has proved in [16] that two matrices A and B are shift equivalent if
and only if their dimension triplet (A 4, Aj‘, d4)and (Ag, AE, dp) are isomorphic.
The following result has been already proved by C. G. Holton [10, Proposition
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6.7] for primitive matrices by using Rohlin property of automorphisms on the
AF-algebras C*(GY). The proof given below does not use C*-algebra theory, nor
does it assume that the matrices are primitive.

Proposition 3.3 (C. G. Holton [10, Proposition 6.7]). Suppose that A and B
are shift equivalent. Then there exists an isomorphism ® : A, — Ag which
yields an isomorphism between the dimension quadruplets (A, A%, 5 4,1,) and
(Ag, A}, 6, iip).

Proof. Let A and B be N X N matrix and M X M matrix, respectively. Assume
that there exist rectangular matrices H, K with entries in nonnegative integers
and a positive integer ¢ satisfying (3.1). Define

@, : Ay, — Ay by @, ([v,k])=[H", k],
®_ Ay — Ay by D_([v,k]) = [Kv,k +£],

so that

o' 1 Ap — A, satisfies  @7([w, j]) = [K'u, j + €],
&7 Ap — Ay satisfies  ®7'([u, j]) = [Hu, j].

Asin[16],®, : Ay — Agand ®_ : Ay —> Ap yield isomorphisms for each
such that

¢+(AZ) = AE’ D, 06, = Spod,,

q)—(A:gt) = A;g—t’ CI>_O5A1 = 53:0@_.

Hence they induce isomorphisms

cI)+ . (AA’A;L 5A) — (AB’AgaaB)a

O (AAI,AL,5A[) — (ABt,A;t,aBl).
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We define® = ®_ ® &, : A, — Ag. Let f; € ZM be the vector whose Ith
component is 1, and other components are zeros. It then follows that

N
(i) = Y, @_(lej,1]) ® @,(A(), )le;, 1])
i,j=1
N
= Y [Ke;, 1+ ¢]® A(j, )[H'e;, 1]

Lj=1

1=

-
Il
—_

=

M
[Kej, 1+ €] ® [ (AH)(j, D) f1,1]
I=1

<
I
—

w o | K@@
_3 3| K@ ARG

,1+€]®[fl’1]

T
L

KM, )Y AH)(j. 1)

=

[(KAH)f1,1+¢]® [f1.1]

N
Il
—

M=

[((BKH)f1,1+¢]® [f1,1]

N
Il
Jai

B f, 1+ €1Q® [f1,1]

M=

N
Il
_

M=

[be 1] ® [fl» 1] = aB'

N
I
—_

O

R. F. Williams characterized topological conjugacy of two-sided topological
Markov shifts (X 4,5 4) and (Xp,3) in terms of an equivalence relation of its
underlying matrices, called strong shift equivalence ([34]). Two square ma-
trices A and B with entries in nonnegative integers are said to be elementary
equivalent if there exist rectangular matrices C, D with entries in nonnegative
integers such that A = CD, B = DC. If two matrices are connected by a finite
chain of elementary equivalences, they are said to be strong shift equivalent.
Williams proved that two-sided topological Markov shift (X 4,5 4) and (X5, &)
are topologically conjugate if and only if the matrices A and B are strong shift
equivalent ([34]). Since shift equivalence is weaker than strong shift equiva-
lence, by virtue of the Williams’ result, we have
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Proposition 3.4. The dimension quadruplet (A,, A7, 8 4, 1i4) is invariant under
topological conjugacy of the two-sided topological Markov shift (X 4,5 4).

4. Dimension quadruplets and AF-algebras

In this section, we will study the dimension quadruplet (A4, A%, 54,1l4) by
using K-theory for C*-algebras. D. B. Killough and I. F. Putnam in [13] have
deeply studied ring and module structure of the AF-algebras C*(G?) as well as
C*(GY) from a different view point from ours below. Recall that X denotes the
C*-algebra of compact operators on the separable infinite dimensional Hilbert
space H = ¢%(N).

Lemma 4.1. Let A be an irreducible, non-permutation matrix with entries in
{0,1}.

(i) There exists a projection p, in the crossed product R 4 Xy T2of R, by y4
such that py(R 4 X4 T%)py is isomorphic to C*(G). Hence R4 Mya T2 is
stably isomorphic to the AF-algebra C*(GY).

(ii) The inclusion i,y : po(R4 X4 T2)p, & R4 Xy a T? induces an isomor-
phism
tas t Ko(CH(G)) — Ko(Ra Xya T?)

on K-theory where C*(GY) is identified with Po(R 4 X4 T?)py.

Proof. (i) The fixed point algebra (R A)”A of R, ', under y4 coincides with the
fixed point algebra (E4(O4 ® O4)E A)“At‘g’“A which is nothing but E(F 4 ®
F 4)E4. Hence (R,)" is identified with C*(G%)- Let p, be the projection in
e LY(T2,R,) defined by py(r,s) = 1 forall (r, 5) € T>. We know that p,, is a full
projection in R4 X, T2 and

Po(Ra Xtya TPy = (Ra)" = C*(GY)
by [29] or a manner similar to [18]. This shows that the algebra R4 Xya T?is
stably isomorphic to the AF-algebra C*(G%) by [4].

(ii) By [4], there exists a partial isometry v in the multiplier algebra M (R4 Xya
T2 QK) of R4 Xya T2 Q@ K such that v} v, = py, L4V = 1. Putihy = Ad(v,) :
Po(Ra Hya T)py @ K — R4 Xy T? ® X, which is an isomorphism of C*-
algebras. We then have for a projection pyfpy ® q € R4 Xya T’ X,

(ta ® id).([poSf Po ® q]) =[pofPo ® 4l
=[vva(Pof Po ® Qv Al
=[va(PofPo ® QU]
=P 4+([PoS Po ® gD

Hence 14, = g, : Ko(C*(G))) — KO(ﬁA Xya T?) is an isomorphism. O
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Let us denote by 7 the dual action of the crossed product R 4 Xy a T2. Under
the identifications
C*(G}) = (Ra)" = po(Ry Xya T2)po,
we define an action 8 of Z? on Ko(C*(GY)) by
Bomn) 1= 13207 (py gy Olas * Ko(C*(GY)) — Ko(C*(GY)),  (m,n) € 27

such that the diagram

A
(m,n)*

- 7 _
Ko(R4 Hya —|]—2) — Ky(Ry Hya —|]—2)

LA*T TLA*

ﬁ(m,n)

Ko(C*(GY) —— Ko(C*(GY)
is commutativeN
LetUy = 2, T; ® S;in Ou ® O4. Asin [19], Uy is a unitary in R, and
hencein 4, so that U 4 U, =U,U, = E,. We denote by lesce) the unit of the

C*-algebra C*(G%). By [6] and [7] (see also [8], [15], [16]), the ordered group
A 4 is naturally identified with the K-group Ky(F 4).

Lemma 4.2. There exists an isomorphism ¢, : C*(G{)QK — F 4 QF QK
of C*-algebras such that the induced isomorphism

Pax * Ko(C*(GY)) — Ko(F 4t ® F ) = Ko(Far) ® Ko(F )
satisfies
Pax([1cxc)D) = [Eal, Pa:0Ad(U ), = 6409 4s,
goA*oﬁ(m,n)qu;li = 521 ® 527 (m,n) € 72,

Hence the diagrams

S A
(m,n)*

Ko(Ry Xya T?) Ko(Ry Xya T?)

LA*T I[A*

K(C(GD)  — Ky(C(G)

¢A*l lq’A*

m n

Ko(Fa) ® Ko(F 4) =5 Ko(F 41) @ Ko(F 4)

are commutative.

Proof. Since the C*-algebra 4 ® F 4 is simple, the projection E 4 is full in
F s @ F 4. By using Brown’s theorem [4], there exists an isometry u, in the
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multiplier algebra M((F 4« @ F4) @ X) of (F4e @ F 4) ® K such that uu, =
Lu,u)y = E4 ® 1y. Define an isomorphism

Pa = Ad(u:) . C*(GZ) ®.7C(= EA(?A‘ ®?A)EA ®:7C) — fAt ®5tA R K.
Let p, be a rank one projection in K. We then have

Pax([1csc))) =pas([E4 ® p1])
=[“Z(EA ® p1)uy]
=[((E4 ® p1)ua)(Ea ® p1)us)’]
=[E4 ® p1] = [E4].

We will next see that ¢ 4,0Ad(U,), = 840¢4,. We note that Ko(C*(GY)) is
generated by the classes of projections of the form Tng ® S,S;, where u =

(,ul, eee ,ﬂm) (S Bk(XA)’ g = (gk, ey 51) S Bk(XAl) with A(gk,,ul) = 1. We then
have

(Pa-oAdUNITET; @ SuSiD) =[pa(Te, TS e @ SeuSy )]

k-1

S0 (T, T] g ® SeuSy, il
[T, T3 g, ® SeiSE )

On the other hand,
84°9[TeT; ® SuSi1) =(87) @ Su) ([} (TeT; ® S,S)ual)
=64 ® 8.(TeT; ® SuSyD)
=5 [TeT7D @ SalS,SuD-
Asin [18, Lemma 4.5], we know
S TeTL) = [Ty e Ty | ]

and aA([S,LCSZ]) = [S§k#5§ku]

(PAcoAdUITET; @ S,SiD) = §a00,(TET; ® 57D

. Hence we have

0

We note that the K-theoretic class [E 4] of the projection E 4 has appeared in
studying of K-theoretic duality by J. Kaminker-I. F. Putnam [11].

Lemma 4.3. Let A = [A(i,j)]f\]j:1 and B = [B(i,j)]%:1 be irreducible, non-
permutation matrices Wiﬂl entries in {0, 1}. Suppose that there exists an isomor-
phism® : Ry @ KX —> R ® K of C*-algebras such that

Qo) ®id) = (y) ®id)o®@, (r,5) € T™. (4.1)
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(i) Then ® induces an isomorphism
Dy, 1 Ko(Far) ® Ko(F4) — Ko(Fp) ® Ko(Fp)
such that
Dy,0(8)), ® 8),) = (6 ® Sp)oD,, (m,n) € 7.

(ii) There exist an N? x M?-matrix H, an M? X N?-matrix K with entries in
nonnegative integers and a natural number ¢ such that

(A'® A)f = HK, (B'® B)Y = KH, 4.2)
1® AH=H(1®B), K1®A)=(0®B)X, (4.3)
(A'®1)H =HB'®1), K(A'®1)=(B' ® 1)K. (4.4)

Proof. (i) Since ® : R, @ X — Rz ® X is an isomorphism of C*-algebras
satisfying (4.1), it induces an isomorphism

D) 1 (Ry ® K) Myagia T2 — (R ® K) X, pgiq T2
of C*-algebras of the crossed products. Let 74, 7% be the dual actions on R4 Xy a
T2, Rp X4 T2, respectively. By identifying (R4 ® K) Xyagia T2 with (R4 X4
T2) ® X, and (R ® K) Mysgia T2 with (Ry X, T?) ® XK, we see that

@007, ,, ®1d) = (7, ,, ®id)o®y,  (m,n) € Z2.
Hence we have an isomorphism

D, 1 Ko(Rg Xya T2) — Ko(Rp X, T2)
such that
q)l*oy?m,n)* = )7571’”)*0(1)1*’ (m,n) € 7%
We then define @, : Ko(F 4:) ® Ko(F 4) — Ko(Fp) @ Ko(Fp) by setting
Do, = @B*OlEiO‘Dl*WA*OGOZi,

where 14, @ Ko(C*(G%)) = Ko(po(Ra Xya T)py) — Ko(Ra Xya T2) is the
isomorphism defined in Lemma 4.1 (ii). Hence the following diagram is com-
mutative:

1

~ (2] ~
Ko(RA XYA ‘|]'2) — Ko(RB >4yB —[|—2)

[A*T TLB*

Ko(po(R 4 Hya T%)po) Ko(po(Rp 0% T)po)

Ko(C*(GY)) Ko(C*(GY))

¢A*l l¢B>}-

(DO*
Ko(Fa) @ Ko(Fa) —— Ko(Fa) Q Ko(F ).
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We then have by Lemma 4.2
Py.0(8 ® 87)
=(¢B*°[§i°¢1*OLA*°¢21)°(¢A*°L;‘1 of(Am’n)*O[A*ogDZi)
=¢B*°l§i°¢1*°724m’n)*°l,4* °§021
=§0B*°[1;i°y?m’n)* oy, 0Ly, °¢Zi
=(PB1OL5LOF 1 O1B+OP )0(P Ol L 0P 1, 0Ly, 0P 1)
=6 ® 65)oDy,.
ii) By (i) the isomorphism & : ~A — ~B satisfying (4.1) induces
(i) By (i) the i hism® : R, ® K R Q@K g(4.1)ind
an isomorphism
Dy, 1 Ko(Far) ® Ko(F 4) — Ko(Fp:) ® Ko(Fp)
of ordered groups such that ®,.0(8", ® 6}) = (63 ® 55)oPy,.. Now
At Al
Ko(.(fr’A) == lim{ZN — ZN E— ---},
A A

and the dimension drop automorphisms 64 : Ko(F,4) — Ko(F,4) and 64
Ko(F 41) —> Ko(F 4) are defined by 64([x,n]) = [x,n + 1](= [Ax,n]) for
[x,n] € Ko(F4) and 84 ([y,n]) = [y,n + 1](= [A'y,n]) for [y,n] € Ko(F 4),
respectively ([6], [7]). Since Ko(F 1) @ Ko(F4) = Ko(F arga) and 64 @ 64 =
6 st@a> We have an isomorphism of dimension triplets

(Ko(Farga) 0aga) = (Ko(Fpigp) Opign)

with dimension drop automorphisms. Hence the two matrices A’ ® A and B' ®
B are shift equivalent by [16], which means that there exist an N? x M2-matrix
H, an M? x N2-matrix K with entries in nonnegative integers and a natural
number ¢ such that

(A'® A = HK, (Bt ® B)Y = KH,
(A' ® A)H = H(B' ® B), K(A'® A) = (B ® B)X.
Since

Ko(Fa1) @ Ko(F 4)

A A At Al
:lim{ZN — 7N ---}®lim{ZN —5 7N i}

AQA! AQA!
2 lim{ZN @ 7N — ZN @ 7N — ...}

and similarly

B®B! B®B!
Ko(Fp) ® Ko(Fp) = lim{zM @ 7M 25 M @ zM 225 ..,
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®,,. induces an isomorphism

ARA! AQA!
lim{zZVN@zN — ZN @ 7ZN — ...}

B®B! B®B!
— lim{ZM @7z — 7ZM @ 7M — ...},

which satisfies

(I)O*O(id ® 5A) = (ld ® 5B)o¢0*, (4.5)
@0*0(5At ® ld) = (531 ® idO(I)O*. (46)
By the conditions (4.5) and (4.6), we may take the matrices H,K satisfying
(4.2),(4.3) and (4.4). O

For a matrix A, let us denote by Sp*(A) and Sp’; (4) the set of nonzero eigen-
values of A and the list of nonzero repeated eigenvalues of A according to their
multiplicity, respectively.

Lemma 4.4. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Suppose that there exist an N*> X M?-matrix H, an M?* x N%-matrix K with
entries in nonnegative integers and a natural number € satisfying (4.2),(4.3) and
(4.4). Then

Sp(A'® A) =Sp;(B'®B) and Sp*(A)=Sp*(B). 4.7)
Proof. We note that Sp;(l(A) = Spé(A[ ). By the equalities (4.3) and (4.4), we
see that

(A'® A)H = H(B'®B), K(A'® A)=(B'® B)X. (4.8)

The equalities (4.2) together with (4.8) show us that the matrices A’ ® A and
B! ® B are shift equivalent, so that

Sp(A' ® A) = Sp; (B' ® B) (4.9)

by [17, Theorem 7.4.10]. For 1 € Sp*(A), one may take nonzero eigenvectors
u,v € CN such that Av = 1v and A'u = Au. By (4.3), we have

(1I®BKu®v)=KQ1®A)(u®v)=K(uQ iv) =1K(u ® v).
By (4.2), we have
HKu®v)=(A'®@ A)f(u®v) =1"(u®v)

so that the vector K(u ® v) is a nonzero eigenvector of the matrix 1 ® B for
the eigenvalue A. Hence A € Sp*(1 ® B). Since Sp*(1 ® B) = Sp*(B), we have
A € Sp™(B), so that Sp™(A) c Sp™(B). Similarly the inclusion relation Sp*(B) C
Sp™(A) holds and hence Sp*(A) = Sp™(B). O

Lemma 4.5. Suppose that two irreducible, non-permutation matrices A, B with
entries in {0, 1} satisfy (4.7). Then we have

Sp(A) =Spx(B) andhence det(l—A) = det(1— B).
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Proof. Since both A, B are irreducible, they have its periods as irreducible ma-

trices, which we denote by p4, pg, respectively. Since Sp™(A4) = Sp™(B), their

Perron-Frobenius eigenvalues coincide. We denote the common eigenvalue by

A, which is positive. There are exactly p, eigenvalues A of Sp); (4) such that

|A] = 44, so that we have p, = pp which we denote by p. Let w be the p th root
1

271\/—_

e "2 of unity. By Perron-Frbobenius theorem for irreducible matrices, one
may find distinct eigenvalues {1, A,, ..., 4.} C Sp*(A)(= Sp*(B)) such that

and the set {cok/li | k=0,1,..,p—1,i = 1,...,L} is the full list of SpX(A)(z
Sp™(B)) (cf. [32, Section 1.4]). For each i = 1, ..., L, the p eigenvalues
cuk/ll-, k=0,1,..,p—-1

have common multiplicities in Sp;(l(A) and in Spg(B), respectively, which we
denote by m and m?”, respectively. Hence we know that m?' = m? = 1. We put
Ai(k) = w2 fork =0,1,...,p—1, i =1,..,L. Let m}, mJ be the multiplicities
of zero eigenvalues of A, B, respectively. Then the characteristic polynomials of
the matrices A’ ® A, B! ® B are written such that

A

L p-1 B
paga®) =" TT TT € - 2:002,@)""™,

i,j=1k,1=0
L p-1

epes(®) = (" T [T - atoa,ay™m.
i,j=1k,]=0

By the assumption Sp): (A’ ® A) = Sp; (B' ® B), we have

L opl A A L opl B, B
IT [T -ator,m™ =TT [T -atona™™. @i
{,j=1k,1=0 {,j=1k,=0

The above polynomial of the left (resp. right) hand side is denoted by ¢ 4(t)
(resp. ¢5(t)). Suppose that

LA, = li(k)/lj(l) forsomei,j=1,..,Land k,[ =0,1,...,p—1.
We may assume i < j. By the inequalities (4.10) with [2;(k)| = |4, |4;(D| =
|4;], we have i = 1, so that 4;(k) = wk2;. Hence we have
Ay = cuk/lj(l) = cuk”/lj

so that j = 2and k + [ = 0 (mod p). We put a = 1;1,. The power exponent of
(t — a) in the polynomial ¢ 4(¢) is

(mims + mim®) x |{(k,1) €{0,1,...,p — 1} | k + 1 = 0(mod p)}| = 2m4 p.

Similarly the power exponent of (t —a) in the polynomial ¢5(¢) is 2m]23 p- Hence
we have mf' = mJ. Next assume that there exists 2 < h < L such that

ma=m8 foralln < h. (4.12)
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Suppose that
MApg = Ai(k)/lj(l) forsomei,j=1,..,Land k,l=0,1,..,p—1.
We may assume i < j.Ifi = 1, then 4;(k) = w¥1,. Hence we have
;l'h+1 = CUk/lj(l) = C()k+llj
sothat j =h+1and k + 1 = 0(mod p). If i # 1, we have j < h + 1 because of
the inequalities (4.10). We put
pl(ls h + 1) = {(l’ J) € {21 sL}z | i< ja Al/lh+1 = /‘ll(k)/lj(l)
for some k,l =0,1,...,p — 1},
po(l, h- + 1) = {l (S {1, 2, ,L} | Al/‘lh+1 = Al(k)z
forsome k =0,1,...,p — 1}.

Both sets p;(1, h+1) and py(1, h+1) are possibly empty. We note that 4;(k)4;(l) =
cuk”/ll-/lj and |{(k,]) € {1,...,p}* | k+1 = 0(mod p)}| = p. Putb = A;4},;.
Hence the power exponent of (t — b) in the polynomial ¢ 4(¢) is

2m‘14m2+1p + 2( Z mlf“m;‘) “D+ep 2 miA
(i.))ep(L,h+1) i€py(1,h+1)
where €, = 2if p is even, and €, = 1 if p is odd. Similarly the power exponent
of (t — b) in the polynomial ¢5(¢) is

BB BB B
2mim, . p+2( Z mimj)'p+€p Z m;.
(i.))ep;(1,h+1) i€po(1,h+1)
Any pair (i, j) € p;(1,h + 1) satisfiesi < j < h + 1 and any element i €
po(1, h + 1) satisfies i < h + 1. Hence the hypothesis (4.12) ensures that

A _ B
mh+1 - mh+1'

Therefore we obtain that Sp’- (A) = Sp’; (B). Since

L p-1 L p-1
det(1 —A) = [T [Ja -4, deta - B) = [] [Ja - ak)y™),

i=1 k=0 i=1 k=0
the equality det(1 — A) = det(1 — B) follows from Sp:;(A) = Spi;(B). O

W. Parry and D. Sullivan in [22] proved that the determinant det(1 — A) is
invariant under flow equivalence of topological Markov shift (X4, 5 4). There is
another crucial invariant of flow equivalence called the Bowen-Franks group
written BF(A), which is defined by the abelian group ZV /(1 — A)ZN for the
N X N matrix A with entries in {0, 1} ([2]). J, Franks in [9] proved that the pair
det(1 — A) and BF(A) is a complete set of invariants of flow equivalence. We
note that the group BF(A) is isomorphic to the K,-group Ky(O4) of the Cuntz-
Krieger algebra O 4. We reach the following proposition.
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Proposition 4.6. Assume that A and B are irreducible, non-permutation ma-
trices with entries in {0, 1}. Suppose that there exists an isomorphism ® : R, ®
K — Rp ® X such that

Qo(y) , ®id) = (r) , ®id)o®, (r,5) € T (4.13)

Then the two-sided topological Markov shifts (X 4, & 4) and (X, G) are flow equiv-
alent.

Proof. Suppose that there exists an isomorphism @ : RAQK — Ry @K
satisfying (4.13). We then have Ko(R,) = Ky(Rp) so that Ky(Ou ® O4) =
Ko(Op ® Op) and hence Ky(O4) = Ky(Op) by Kiinneth formulas. This implies
that BF(A) is isomorphic to BF(B). By Lemma 4.3, Lemma 4.4 and Lemma 4.5,
we have det(1—A) = det(1—B). Hence we conclude that (X 4,5 4) and (X3, 55)
are flow equivalent by Franks’s theorem [9]. O

We will use Proposition 4.6 to prove Theorem 6.7 in Section 6.

5. Gauge actions with potentials

In this section, we will define gauge actions y-/ with potential function f :
X, — Z on the C*-algebra R 4. For a continuous function f € C(X,4,Z) on
X, and n € Z, we define a continuous function f" € C(X,4, Z) by setting

YUUfE(x)  fornx1,
f"(x) =140 forn =0,

~ 3 fEL(x) forn< 1.
It is easy to see that the identities
U = fr) + fMeh(x), nmeZ xeX,
hold. For f € C(X4,Z) and (x, p,q,y) € G} X Z?, define
[T, p.q,y) = Hm {f*"P(5,4(x)) = (@A}
(. p.g.y) = Tim {f7900) - 10}

Lemma 5.1. Both f*,f~ : G X 7> — Z are continuous groupoid homo-
morphisms from G}* X Z* to Z.

Proof. Take an arbitrary point (x, p,q,y) € G}, X Z* so that
lim d(@;"(x),c) =0,  lim d(@(x).550) =0.  (51)
By the first equality above, we may find N; € N locally such that
[ G5@A00)) = f(65(64()) foralln > Ny. (5.2)
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For n > N, we have
FrHP(64(0)) — f1(64())
=fP(G4(x)) + f(G5(GA(x)) = f(GA())
=fP(G400)) + FGRGAC)) + FGET(Ga0N) + -+ + F(G5T T (G 4(x)))
— f(G4)) = F(G) = -+ = F(E T @A)
=fP(G400) + NG EA)) = N (EAD))
so that

[0, p,q,y) = PN A()) = N1 (G4)- (5.3)

By the second equality of (5.1), we may similarly find a negative integer N, € Z
such that

G p.g.y) = fI00) = ). (54)

Hence both the values f*(x, p,q,y), f~(x, p, q,) are defined.
For (x,p,q,),(x',p',q".y") € G* X Z* with x’ = y, we have

(e pa. & p'q', "))
=f*C.p+p.q+4q.y)
= im {22 (0,4(0) = F(Ga0")}
= Im {f"*P(g4() + f HCHCACHENEFH A
On the other hand, we have
fHeapa )+ &gy
= im {F™P(@,4(0)) = FEAOD}+ m {4 (G4() = FH(EA0 )}
= Im {f"*P(g4() + f PG A() = fMEA0)) — FH(EA N}
= im {f"P(GA(x)) + [P (F3(GA0) — F(GA0 D}
By (5.2), the equality
lim £7/(4(@5@4000) = lim f7 (&G0
holds, so that
G pg P q Y = fH(x. p.a. ) + FH. P gy
and similarly
(G p. g gy = f-(x.p.a. ) + f (. P q. ).
The identities

f~+((x’pa q’y)_l) = _f~+(x’ b, q’y)’ f_((xa b, q’y)_l) = _f_(x’ps q’y)
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are easily seen. As the continuity of f*, f~ follows from the formulas (5.3), (5.4)
with the uniform continuity of f, we know that they are continuous groupoid
homomorphisms from G}* X Z* to Z. O

Define a continuous groupoid homomorphism f : G} X Z* — Z by

fGx,p,q,y) = ft(x,p,q,y) — f~(x, p,q,y). Recall that the C*-algebra R,
is represented on the Hilbert C*-right module ¢2(G}"* X Z?) over C,((G}" X

7%)°)(= C(X,)) as the reduced groupoid C*-algebra. For f € C(X4, Z), (r,s) €
T?and & € €2(G}" X Z%), we set

[U(fEI(x, p, q,y) = exp2aV —1F*(x, p, ¢, y)s}(x, p. 4, ),
[U,(f)ENx, p, . y) = exp2mV =11~ (x, p, g, Y)r}, p, 4, ),
U(r,s)(f) = Ur(f_)Us(f+)-

Since f, f~ and f are groupoid homomorphisms from G} X Z* to Z, the oper-
ators U(f*), U(f™) yield unitary representations of T and U(f) does a unitary
representation of T2.

Proposition 5.2. For f € C(Xy4, Z), the correspondence
ae ﬁA E— Ad(U(r,s)(f))(a) (= U(r,s)(f)aU(r,s)(f)*) € ﬁA

defines an automorphism on R 4 such that (r,s) € T2 — Ad(U ) € Aut(R )
gives rise to an action of T2 on R 4 and its restriction to the subalgebra C(X 4) is
the identity.

Proof. For a € C.(G}" X Z%),& € ¢%(G}" X Z%), (x,p,q,y) € G} X Z?, we
have

[Ad(U 5 (FN@)E]Cx, p, g, ¥)
=exp2mV=1(*(x, p. ¢, V)s + f~(x, p. @, VINHaU () €1(x, p,q. ).
Now the equalities
[aUg.(/)*€1(x, p.q, ¥)
= > aWUuo(—DNEIG™ - (x,p.q,y)

yir(y)=x

= Y a) - expaV-1(f s + [0}

yir(y)=x
- exp{—2mV=1(f*(x, p, ¢, )s + f~(x, p.q. YINEG™ - (x, p. ¢, ¥))
hold, so that
[Ad(U (5 (M) @)E](x, . g, y)
= > a) expRaV-1(f* s+ NG - (x. p.q.¥).

yir(y)=x
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Let us identify Uy, ;,(f) with the continuous function on G}" Xt Z? defined by

Ups(D@) = exp2aV=1(F* (s + -}, 7 € G 1 7%

Hence we have

[Ad(U o (PN@EIC P, 4 0) = D, Ui () - aXPEG™ - (x,p,4,))

yir(y)=x
=[U¢5(f) - E1(x, p,q. )
so that
Ad(U(r,s)(f))(a) = U(r,s)(f) -a fora € Cc(Gjiu X Zz) (5-5)

where U, 4( f) - ais the pointwise product between the two functions Ug( Ia)
and a. Thus Ad(Uy,5(f))(a) belongs to C.(G3" X Z2), so that Ad(Uy,5(f))

yields an automorphism of the C*-algebra R ,.
Especially for a continuous function a € C(X,) on X, it is regarded as an
element of C.(G" X Z?) by

a(x) ifx=y,p=q=0,

a x’ s Y = .
(*.p.¢,y) 0 otherwise.

For x = y, p = q = 0, we know that f*(x, p,q,y) = f~(x, p,q,y) = 0 so that
Ad(U(r,s)(f))(a) = U(r,s)(f)) -a=a fora € C.(X,).
O
We denote by yé:f) the automorphism Ad(Uj; ( f)) on R, which yields an

action called gauge action with potential function f, or weighted gauge ac-
tion. For the constant function f = 1, the equalities f*(x, p,q,y) = p and

f~(x,p,q,¥) = g hold so that the action yé’f) for f = 1 coincides with the
previously defined action yé 5"
Let Uj(O), j =1,2,...,N be the cylinder sets on X 4 such that

Uj(O) = {(xn)nEZ € XA | X0 = .]}

Let v, ) be the characteristic function of the cylinder set U;(0) on X 4.

Lemma 5.3. Suppose that f = Z;\Ll fj XU,(0) for some integers f; € Z. Then
we have

)/3:{) = ocf[’f ® ocf’f, (r,s)€T? onRy=E (O ® ONE,,
ALf Af
wherea, € Aut(O4e), 0,7 € Aut(O,) are defined by
oc;qt’f(Tj) = exp (ZﬂV—lfjr) T;, j=12,..,N,

asA’f(Sj) = exp (27r\/—1fjs) S;, j=1,2,..,N.
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Proof. For m,n,k,l € N and

M= (/’{17 ’lum)’ V= (Vli ’Vn) € B*(XA)a

§ =6, 7=, m) € B.(X4)
satisfying A(&y, u;) = A(n;, 1) = 1, we write
Ugyw = {x,m—n,1—k,y) € G}" X Z* |
- _ 0~k -l 0
(67(x), 35 € G}, (G4 (x),5,(») € G,
X[1,m] = M Yin] = Vs X[—k+1,0] = &5 V[-141,00 = 1}
where
Gio = {(X,J’) e)_(A XXA | Xi =Yi foralli € Z+}’
GZ’O ={(x,y) €X s xX | x_j=y_forallie Z,}.
As in [19, Section 9], the correspondence XUy < T¢T, ® S,S, gives rise
to an isomorphism between the groupoid C*-algebra C*(Gi’” X Z?) and the
algebra R ,. For (x, p,q,y) € Utyyy With p = m —n,q = | — k, one may take
N; = nso that
f*(x.p.q.y)
=fP@A0N + fERGACM + FE5T (@40 + - + FE4™ T (G4(0)))
— @A) = F@GON =+ = [} )
=f(64(0) + f(GA(6A(X)) + -+ + f(G7 (X))
— f@A) = f@EO) = = f(& ()
=(fpt1 +f/,42 + e +f/1m)_(fvl +fv2 + "'+f1/n)

because 6A(x)[0,m_1] =, O_'A(y)[o,n—u = v, and similarly

f(x.p,q,y)
=f(x) + fG7 ) + FG2) + -+ + f(6,1(x))
— fO) = f(6 ) — FG2O) — -+ = @& )
=(fe, + Fe+ o4 L) =y + Foy + o0+ F).

It then follows that by (5.5)
(AU (P, X P24, 9)
=[U(r,s)(f)) : XUgﬁ,nv)](xs p-q, y)
=exp{2mV—1(f*(x, p.q.y)s + f~(x, p. 4.9} xv,,,, (%. - 4. ¥)
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so that
Ad(U(r,s)(f))()(Ugﬂgm,)

=exp[27V —UH(fy, + fu, + - + fr,) = (o, + fo, + -+ o )ls
+{fe +fe, + o+ fe) =y, + o + -+ Fi] - xusy,,
proving that the equality
A, Al % A, *
y(r,{)(){U&t,nv) = f(Tng) ® a; f(S;,tSV)
O

Proposition 5.4. Let ¢ : X, — Xz be a topological conjugacy between two-
sided topological Markov shifts (X 4,6 4) and (X, 6g). Suppose that f € C(X 4, 7)
andg € C(Xg, Z)satisfy f = gog. Then there exists an isomorphism ® : R, —>
Ry of C*-algebras such that

> > A, B,
O(CXL) =CKp),  @oyyt =y %00, (r,5)eT

Proof. The topological conjugacy ¢ : X, — Xj induces an isomorphism

¢ 1 G} X Z* — Gy* X Z* of étale groupoids such that @(x, p,q,y) =
(p(x), p,q, () for (x,p,q,y) € G;* X Z>. 1t gives rise to a unitary written
V, 1 €3Gy X Z%) — 3G X Z~2) satisfying V(&) = Eog for & € £4(Gy" X
7?%). Assume that the C*-algebras R, and Ry are represented on ¢ Z(GZ’“ X 7?)
and ¢2(G" X Z?) as reduced groupoid C*-algebras. Since VjaV, = aop™' €
C(Gy" X Z2) for a € C,(G5" X Z?), we know that ®(a) = ViaV,,a € R,
gives rise to an isomorphism Ry — Ry of C*-algebras. Since ¢ : X, — X3
is a topological conjugacy, we know that

g (), p,q, o) = fH(x,p,q,y), & (@(x),p.q,9») = f~(x,p.q,y)
for (x, p,q,y) € G} X Z*so that for & € ¢%(G}" X Z?),(x, p,q,y) € G} X Z?,
we have

[quU(r,s)(g)V;g](x’ b,q, y)
=[U5@V51(e(x), p, g, 9(¥))
=exp{2V —1(g*(9(x), p. ¢, p(Y)s + & (9(x), p, ¢, P(Y)P)}
[V3§1(e(x), p, g, ()
—exp{2V—1(f*(x, p, ¢, y)s + f~(x, p, ¢, I, p, ¢, y)
=[U(r,s)(f)§](xa p-q, y)-

- x . A, B,
Hence we have VU, (§)V,, = U 5)(f), so that the equality ®oy (r’f) =7, i)oé

holds. Since aog~" € C.(G3* X Z2))) for a € C.(G5* X Z2)")), the equality
®(C(X,)) = C(Xp) is obvious (cf. [20, Theorem 1.1]). O
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Corollary 5.5. Let B be an M X M irreducible non-permutation matrix with
entries in {0,1}. For any continuous function g € C(Xg,Z) on Xg, there ex-
ist an N X N irreducible non-permutation matrix A with entries in {0,1} and

a_continuous function f = le\l:1 [ Xu,0) for some integers f; € Z such that
(X4, 6 4) is topologically conjugate to (Xp,5p) and there exists an isomorphism
® . Ry —> Rg such that

®(C(X,)) = C(Xp), @oy(rs) o®d, (r,s) e T2

y(r s)

Proof. There exists K € N such that g = Z# B, (Xy) 8uXU, for some g, € Z

where U, is the cylinder set of Xj for a word u € Bx(Xp). By taking K-higher
block representation of Xz and its K higher block matrix of B as A (see [17,
1.4]), and shifting g, one may have a topological conjugacy ¢ : X, — Xp and

a continuous function f = le\’:l fj XU ,(0) for some integers f; € Z such that
f = gop. Hence we get the desired assertion by Proposition 5.4. U

6. Flow equivalence

We fix an irreducible, non-permutation matrix A. Let f : X, — N be
. . i N .
a continuous function on X4 such that f = ijl fj XU,(0) for some positive

integers f; € N. Putm; = f; —1for j = 1,..,N. Consider the new graph
G¢ = (Vy, &) with its transition matrix Ay from the graph G = (V, &) for the
matrix A defined in (2.3) in Section 2. The vertex set Vy is

N
U s drs oo s dmy
j=1

which is denoted by ¥, and if A(j, k) = 1, then

ArGos j1) = Ap(ra o) = = = ApGmy-10m)) = AfGim, ko) = 1.
Let us denote by
SJO,Sh,S]Z,...,Sjmj and TJO,Th,sz,...,Tij

the canonical generating partial isometries of O 4 ; and Oy o respectively which
satisfy

Z(SJOS}k +8;,8; + 485, 87 )=1, (6.1)
i Jm;
S;knsfn = ~jn+1 ~;kn+1 n=0,1,.., m] -1, (62)

N
S* Sjmj => A(j,k)SkOS;QO, j=1,2,..,N (6.3)
k=1
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and
N
T Tk T Tk I Tk —
ZI(TJ.O AT T 4 jijjmj) =1, (6.4)
]:
;fnJrl e — T]n J*:n, n=20,1,.. ,I’I’I.j -1, (65)
N
74T, = kz AG T, Ty o J=12..N. (6.6)
=1
We set
Sj = Sjosjlsjz Sjmj’ Tj = ijj ijj—l leTjo fOI' J = 1’ ’N'

Define the projections

N N
PA:ZSJO‘?;O and PA‘:ZT' T*
j=1 j=1

We denote by C*(Sy,...,Sy) (resp. C*(Ty,...,Ty)) the C*-subalgebra of OAf
(resp. O(Af)t) generated by S, ..., Sy (resp. Ty, ..., Tx).

Lemma 6.1. Keep the above notation. We have
@
N N
> SjSt =Py, SiS;= kz A lSES; for  j=1,..,N,
j=1 =1

and the C*-algebra P 4 Oa,Pa coincides with C*(Sy, ..., Sy ) that is isomor-

phicto Oy4.
(ii)
N N
jz_lTjT;.‘ =Py, TiT;= kzlAf(j,k)TkT;; for j=1,..,N,

and the C*-algebra P 4 Oy Pa coincides with C*(Ty, ..., Ty ) that is iso-
morphic to O 4.

Proof. We will prove (i). By (6.2), we have the following equalities
S;Sj =(§jo§j1§jz Sjm.)*(gjogjlgjz S )

j Jm;
=S~;<mj S~;'<mj—1 S;kl ~;0 ~j0 ~j1 Sjm/'—l ~jmj
:S;fmj S;fmj_l o g;&l S, g;fl S; ”ij_l Sjmj
=S~;<mj S~;'<mj—1 o szgjlgjlgh o Sij—lgjmj
=S* S* 5*S S; .S,

Jm; jmj—lu. PR Jmj=1"Jmj*
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By continuing this procedure, the last term above goes to S* S, sothatS*S; =
Jm; ]mj j=J

Sjmj S ;- We also have
S;S7 =(S;,5,5;, "'Sjmj)(gjoghgjz ~ij)*
=S1055 " Simy1Simy S Sy S50
5,85, 5, 8,8, 58,
=S,S, - gfm, 152,, h ;15;0

By continuing this procedure, the last term above goes to S J-OS;TO. Hence we have

J

so that

N
ZSJS =P, and SiS;= D AG,SS;,  j=1..,N.
k=1

Similarly we have

T*T —T*T

o TT; =T, T . j=1..,N (6.8)

mj - Jmj

so that
N N
ZlTjT;.‘ =Py and TiT;= I;A‘(j,k)TkT*, j=1,..,N.

AsS; = P,S; 5.8, ---SjijA, one sees that S; € P40y P, for j = 1,..,N.
Hence we have C*(S;, ...,Sy) C P40 4 Pa-We will show the converse inclusion
relation. We note that for ji, j’,, € £, the equality A,(ji, j’,,) = 1 holds if and
only if either of the following two cases occurs

(1) j =jandk’' =k +1

(2 A(j,j)=1land k = mj, k' = 0.
For ft = (fty, s fim), 7 = (91, .., ¥) € B,(Xy4,), suppose that P4S;S;P4 # O.
We first see that ii; = m(1), and 7; = n(1), for some m(1),n(1) = 1,...,N. By
the conditions (1), (2), we know that

Su = Sm) - SmSjo = Sjr S5 = Sn1)+* Su@Siy +++ Si

U

for some m(1), ..., m(p),n(1),...,n(q), j,i € {1,...,N}and 0 < k < mj, 0 <
I < m;. Hence we may assume that it = (jo, ji, > Jjk)> ¥ = (g, i1, .. » i) With
Oskgmj,OSZSmi,sothat

SuS5 =55, --Sijl?';---Si”;Slf‘; # 0.
Since
S. =§.8§. =§.S. S , S*—S”‘SS*—~ S* S¥

i L ll+1 L+1 i’
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we have

-S; S8, Sr § Sf SESF ...S8SF.

*
v Jo™ 1 Je=12 7k Jre+1 Jierr U1y T i i1 iy

The condition Sﬂs; # 0 leads ji,.; = i1, so that we have j, = i), ---,j; =
i1, jo = ip. Hence

S8;,S; -+ S;..8;.8; kHS]k SiSi SiSy - SiSy
=§j0§j1 - S]k 1S Sjk+1 et ]kHS;"kHSij;k ) -~-S;f1S;fo.
As S;TMS‘ e = S ~;k+2, by continuing this procedure we know that
SuSy =88, -85, --SjmJS;.kmj Sijjk 1 S;S;ko = 5,57

This shows that the element P,S5,S55P, belongs to C*(S;, ..., Sy), so that
PAOAfPA = C*(Sl, ,SN)
and similarly
PA[O(Af)tPAt = C*(Tl, ,TN).
[l

Recall that the vertex set V' defined by UZJ-V=1{ Jos J1s s jmj} of the graph G is
denoted by . We set

U;, =T ®S;, k€=

The partial isometries U;,, jx € % belong to the Ruelle algebra R, ; for the
matrix Ay. The following lemma is direct from the identities (6.2), (6.5).

Lemma6.2. Forj=1,..,N, k= 0,1,...,mj, we have

( ijjk+1'"Ujmj)(ﬁijjkﬂmU' ) U U* _T* TJk®S ST,

]mj Jk ]
7 7 7 *(TT T * 7 * >k
U Uy U, U0, U, ) =05 U, =TT ®S]S;
J
Hence we have
N mj N m}
EAf :Z Tjk jk k Sj = Z Z U n RAf’
j=1k=0 j=1k=0

N N
Ey=),TiT:®S:S;=>,U" U

i in R,
]mj ij A

Let H be the separable infinite dimensional Hilbert space £2(N). Take isome-
tries s;,, ji € £ on H such that

j
D 5;.8 =1g,  j=1..,N. (6.9)
k=0
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We define a partial isometry V in the tensor product C*-algebra ;® B(H)
by setting
-3 30,0, -0, @5, (6.10)
J= =

J

Lemma 6.3. VfV;i =E,, ® 1 and V;Vf =E,®1y.

Proof. By Lemma 6.2 we have the following equalities.

N m

Z Z( ]k+1 ) )*( Jk+1 o Ujmj) ® S]ksjk

z

—Z(TT*@SS)@(Zs

]k ]k

j=1
and
N m;
! }'?=Z WU, Uj., Jm )(U]k jen U ) @SS
j=1k=0
N m;
=) >0 U ®1y =Ea ®1p.
j=1k=0

0

Recall that X denotes the C*-algebra K (H) of compact operators on the
Hilbert space H. As U;, belongs to R, ; and R4 ; ® B(H) is contained in the

multiplier algebra M(R,, @ X) of R4 ® X, the partial isometry V ; belongs to
M(Ry, ® X).

Lemma 6.4. EAf(PAt ®PA) = (PA‘ ®PA)EAf = EA'
Proof. We have

N N
Eq(Pa ® Py) = Z(Z T]ij ® S* SJk) (Z w1l ® ZSiOSZ)
st 4

j=1 k=0 i Img

N
j=1 i=1 "/

] .]mj

By the identities (6.7) and (6.8), we know
S¢S, =88, §,S =858 T; T% =TT,
J J

Im; Jm; o™iy i ij m;
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so that we have

Ey (Pa @ Py)
N

N N
=2 {T;T; ® S7S;Q, A, DSiSH} = 2, (T;T; ® S7S)) = Ey,
j=1 i=1 j=1

andhence (PAI ®PA)EAf =EA‘ D
Theorem 6.5. Let A be an irreducible, non-permutation matrix with entries in

{0, 1}. For a continuous function f : X4 — N, there exists an isomorphism
Of: RAf ® K — R4 ® K of C*-algebras such that

A . , .
roly,, ®id) = (7] @ id)ody, (r,5) € T2
. N
Proof. By Corollary 5.5, we may assume that f is of the form Z}.zl fj XU (0)-

Define @; : ﬁAf ® K — R4 ® X by setting Pr(x®K) = V;i(x ® K)V for
x®Kej€Af®5C.Wenotethat

Ra; =Ea,(Oca,y @ Oa)Ey,, Ra=Ea(Ox @ Op)E4,
va}k‘zEAf®1H’ V;szEA®1H1
(PAt ®PA)(O(Af)‘ ® OAf)(PAt ®PA) = OAz ® OA'

Forx®K € ﬁAf ® X, we have

=(E4 ® 1H)V;5(x Q@ K)V(Ea ® 1y)

=(E4 @ 1) (P4 ® P4) ® IH)V;(-X QKW i(Pa ® Ps) ® 1)(E4 ® 1p).
AsVy € M(ﬁAf ® X), the element VJ"Z(x ® K)V  belongs to ﬁAf ® X which
is (EAf ® lH)((O(Af)z ® OAf) ® JC)(EA], ® 1;). By Lemma 6.4, we have

Ea®1p)(Par @ Py) @ 1p)(Es, @ 1y) = (B4 @ 1p)(Par ® P4) @ 1)
so that Vj’j(x ® K)V ; belongs to the algebra

(Ea®1p)(Par @ Pa) @ 1p)(Oa,y ® O4,) @ K)(Par ®P o) @ 1)(E4 ® 1p1)
which is

Ef(Ou ® ONE, QK =Ry ® K.
Hence V;(x ® K)V s belongs to the algebra R4 ® XK. This shows that the inclu-

sion relation
Vi(Ra, ® KIVy C Ry ® K (6.11)

holds. Conversely, fory ® K € R 4 ® K, we have
Vi ® K)V; = (B4, ® IV ® K)V;(EAf ® 1)
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AsV; e M(ﬁAf®5C) and y®K € R,QK C ﬁAf®5C, the element Vf(y®K)I7;i
belongs to RAf ® X which is (EAf ®1H)(((9(Af), ®(9Af)®56)(EAf ®1y). Hence
Vix® K)V; belongs to the algebra
(Ea, @ 1p)(Ea, @ 1g)(Oa,y ® O4,) @ K)(E4, @ 1)
which is
Ea,(Ou,y ® 04 )Ea, @ K = Ry, @ XK.
Hence V;(y ® K )17;; belongs to the algebra R, , ® X. This shows that the in-

clusion relation _ _
Vf(RA ®K)V;§ C RAf RK (6.12)

holds. Since V;Vf =E,®1yand E,R,E, = R4, the inclusion relation (6.12)
implies _ _
Ry,QK C V;(RAJ. ® K)Vy. (6.13)
By (6.11) and (6.13), we have V;i(ﬁAf Q@ K)W; = R4 ® K. Therefore we have
an isomorphism @ = Ad(V;i) : ﬁAf QK —>R, QK.
Since yé‘{s)(Ujk) = U, for j, € £ by Lemma 5.3, we know the equality
A o N _
(y(nfs) ®id)(Vy)=Vs. Forx ®K € RAf ® X, we have
A ) s A .
_ Ay . sk >
=15 @DV E(x ® K)Vy)
A .
=7,y ® 1D(@(x ® K)).
Now
Ar *
y(r,s)(Tj ® Sk)

Af ~ ~  ~ ~ o~ ~
=Y ) L, =+ Ty Tjo)™ ® Siey Sk Sk )

=exp(mV=1(fis = £ (T}, -+ T1,T5,)* ® S, Sk, -+ Sk, )
= (1) ® o (5)).

Hence the restriction of yéfs) ® id to the subalgebra R, ® K coincides with

yé’g ® id so that we conclude that
Ag . A, .
oy, ®id) = (7, ® id)od;.
O

Remark 6.6. We note that it is not difficult to see that the above isomorphism
Dy 1 Ry, @K — Ry, @XK satisfies <I>f(C(XAf)®€) = C(X,)®C, where Cis the
commutative C*-algebra of diagonal operators on the Hilbert soace H = ¢%(N).
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By using Proposition 4.6, we have the converse implication of Theorem 6.5
in the following way.

Theorem 6.7. Let A, B be irreducible, non-permutation matrices with entries in
{0,1}. Suppose that there exist a continuous function f : X, — N and an iso-
morphism ® : Ry @ K —> R4 ® X such that

Po(y , ®id) = (7(,25) ®id)od,  (r,s) € T%

Then the two-sided topological Markov shifts (X, 65) and (X 4, & 4) are flow equiv-
alent.

Proof. By Theorem 6.5, there exists an isomorphism @ : R4 ;K — RA®
X of C*-algebras such that

A . A, .
oy, ®id) = (r) ! @ id)ody, (r,5) € T2

We define the isomorphism @, = @leoé : ﬁB K — ﬁAf ® X which
satisfies
®,0(/8  ®id) = (¥ @id)od,, (r,s) € T2
o y(r,s) - J/(r’s) 3} ’ .
By Proposition 4.6, we know that (X, &) and (X4 ;»0a,) are flow equivalent.
Since (X4 04 f) is a discrete suspension of (X 4,5 4), they are flow equivalent,
so (Xp,d5) and (X 4,5 4) are flow equivalent. O

Therefore we have a characterization of flow equivalence in terms of the C*-
algebras R 4, with their gauge actions with potentials.

Theorem 6.8. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X 4, & 4) and (Xg, 65) are flow equiva-
lent if and only if there exist an irreducible non-permutation matrix C with entries
in {0, 1} and continuous functions f 4, fg : Xc — N such that there exist iso-
morphisms ®, * Ry @ X —> ﬁc®5Candd>B P RERK — Re® K
satisfying

@007 ) ®id) = (7,11 @ id)od, (6.14)
and

Dgo(y? | ®@id) = ¢°/F @ id)od (6.15)

B 7/(r,s) - 7/(r,s) B- :

Proof. Suppose the two-sided topological Markov shifts (X4, 54) and (X3, 65)
are flow equivalent. By Parry-Sullivan [22], there exist an irreducible non-
permutation matrix C with entries in {0, 1} and continuous functions f 4, f5 :
Xc — Nsuch that (X4,54) and (X +.»0c, ) are topologically conjugate, and
(Xp,0p) and (XCJ_B,O_'C fB) are topologically conjugate. By [20, Theorem 1.1]
and Theorem 6.5, we have isomorphisms &4 : R4y @ X — R ® X and

5 @ Rp @ K — Re @ K of C*-algebras satisfying (6.14) and (6.15), respec-
tively.
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The converse implication immediately follows from Theorem 6.7. O

As a corollary we have

Corollary 6.9. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X 4,6 4) and (Xg, 5g) are flow equiv-
alent if and only if there exist continuous functions f, : X, — Nand fp :

Xz — N such that there exists an isomorphism ® : Ry @ X — Ry @ K of
C*-algebras satisfying

(1 @id) = (/1 @ id)o®,  (r,5) € T2,

Proof. By Parry-Sullivan [22], (X 4,5 4) and (X3, &3) are flow equivalent if and
only if there exist continuous functions f, : X, — Nand fz : Xz — N
such that (X4 004 fA) and (X5 1,08, ) are topologically conjugate. The asser-
tion follows from [20, Theorem 1.1] and Theorem 6.5, Theorem 6.7. O

7. Flow equivalence and topological conjugacy

In [20, Theorem 1.1], it was proved that two-sided topological Markov shifts
(X4,6,4) and (X3, 6p) are topologically conjugate if and only if there exists an
isomorphism @ : R, —> Ry of C*-algebras such that ®(C(X,)) = C(Xp) and
d)oy(f; 9= yfr s)ocb, (r,s) € T2. Although topological conjugacy is a special case
of flow equi\;alence, Theorem 6.8 and Corollary 6.9 do not refer to the case of
topological conjugacy. In this final section, we reformulate both Theorem 6.8
and Corollary 6.9 to give characterizations of flow equivalence in terms of C*-
algebras that simultaneously include characterzations of topological conjugacy
as a special case. They appear as Theorem 7.2 and Theorem 7.3.

We keep the assumption that A is an irreducible, non-permutation matrix
with entries in {0,1}, and f : X, — N is a continuous function such that
f= Z]j\;l fj XU,0) for some positive integers f;. Let e,,n € N be a sequence
of vectors of complete orthonormal basis of the separable infinite dimensional
Hilbert space H = ¢2(N). We fix j = 1,...,N.Fork = 0,1,..., m;, where mj =
f j— 1, we set

Ny ={n €N |n=k(mod f;)}

so that we have a disjoint union N =Ny UN; U --- U N, We write
Ne = {1k, 2k, 3k, -} Where 1) <2, <3, < ...
Define an isometry s;, on H by setting
Sj.en = €n,» neN, k=0,1,...,mj.

The family {s;, }kmi , satisty (6.9). We may construct the operator Vf from them
by the formula (6.10). As in the proof of Theorem 6.5, define the isomorphism
Dyt Ry, ®K —> Ry ®K of C*-algebras by setting @;(x ®K) = V;(x®k)17f
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forx®K € R, , ®XK. Let py be the projection on H of rank one onto the vector

e,. As EAf R1ly = Vfo,we have

N m;

ViEa ® p)Vy =2, 20,0, U, (U, U0, U )®s;pis),

j=1k=0
N

=Y AT;T ®S*S>®(Zs]kp1s )}
j=1

. .
Since s, p1s; = p1,, We have

N m;
Vi(Ba, ® pOVy = QAT T; ®SiS) ® (kZ_Oplk)} €CXy ® K.

J=1

Hence we obtain the following formula in the K-group K,(C(X,4)) :
N

[ViEa, ® POVl = D) fiIT;T; ® 5351 in Ko(C(Xy))-
j=1

Let us denote by C(X 4, Z) the abelian group of Z-valued continuous functions
on X 4. Under the natural identification between K,(C(X4)) and C(X 4, Z), one
may regard the class Z;V:l fj[TjT* ® S* S;]in Ky(C(X,)) as the function f in
C(X,4, 7). We writeitas f([E4]) in KO(C(X 4)). For a general continuous func-
tion f € C(X 4, Z), we write it as f(|[E4]) as an element of K,(C(X 4)) under the
identification between Ky(C(X 4)) and C(X 4, Z). Recall that € denotes the com-
mutative C*-algebra on ¢2(N) consisting of diagonal operators with respect to
the basis {e,, },,en- The construction of the operator Vf tells us that the equality

ViI(CXL)®CWy=CXA)®C

holds. Therefore we obtain the following proposition that is a reformulation of
Theorem 6.5.

Proposition 7.1. Let A be an irreducible, non-permutation matrix with entries
in {0, 1}. Then there exists an isomorphism ®; : 5€Af QK — Ry ® K of C*-
algebras such that

P(CX4)®C)=CXH®C, (7.1)
roy, ®id) = (1) ®id)od;, (r,5) € T2, (7.2)
Pp.([Ea, ) = fUIEAD  inKo(C(Xp))- (7.3)

By virtue of Proposition 7.1, we may finally state two theorems. The first one
is a reformulation of Theorem 6.8 in the following way.
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Theorem 7.2. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X 4,3 4) and (X, 5g) are flow equiv-
alent if and only if there exist an irreducible non-permutation matrix C with en-
tries in {0, 1} and continuous functions f 4, fz : Xc —> N such that Ry @ X
and Rz @ X are isomorphic to Re ® K via isomorphisms ® 4 and @y satisfying

Duo(h, ®id) =y, @id)od,,
lecEnee) =cEoee, (74)
®u(EaD) = fallEcD  inKo(CXo)),

. C, .
(©po(rf  ®id) = (7" @id)ods,

123(CXp)®€C) =CX)RC, (7.5)
®p.([Ep]) = fa([EcD) inKo(CXc)).

In particular, (X 4,6 4) and (X, &) are topologically conjugate if and only if the
equalities (7.4) and (7.5) hold for f 4 = fp = 1.

Proof. Assume the two-sided topological Markov shifts (X 4,5 4) and (Xz, 65)
are flow equivalent. By Parry-Sullivan [22], there exist an irreducible non-
permutation matrix C with entries in {0, 1} and continuous functions f 4, f5 :
Xc — Nsuch that (X4,54) and (X +.»0c, ) are topologically conjugate, and
(Xp,0p) and (XCJ'B’5C fB) are topologically conjugate. By [20, Theorem 1.1]
there exist isomorphisms @, : ﬁ 4 — ﬁc and @B D R — ﬁc of C*-

algebras such that (I)Aoyg‘ y(r 9 ody, Pgo y(r 9 y(r S)ocDB and @A(C(XA)) =
CXc o ), P(C(Xp)) = C(Xc s ). By Proposition 7.1, there exist isomorphisms
O RC QK — Re®K and @ : Rcf QK — Re®K satsifying the
equahtles sated as (7.1), (7.2) and (7.3). By putting

Dyt =0p 0@, ®id) : Ry ®K — Re Q@ K,
Dp =P 0P ®id) 1 Rp® K — Re ® K,

we know the isomorphisms ® 4 and ®j satisfy the desired properties. The con-
verse implication immediately follows from Theorem 6.8.

It remains to show that if the equalities (7.4) and (7.5) hold for f4, = fz =1,
then (X4,5,) and (X, Gp) are topologically conjugate. Let e,,n € N be a
complete orthonormal system of the Hilbert space ¢2(N), and p, be the pro-
jection on £2(N) of rank one onto the vector e;. By (7.4) for f4 = 1, we have
[®4(E4 ® p1)] = [Ec ® p;]in Ky(C(X)). Hence we may take a prtial isometry
Vi € CXc)® K suchthat ViV, = Ec ® p1,V,Va = ®4(E4 ® py). Put
Y, = Ad(V 4)od,. Since we see

WA(EL® p1) =VaPa(E4 @ p)V, = V4V, =Ec ® py,
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we have an isomorphism ¥, : R4, ® Cp, — R¢ ® Cp,. Forany a € C(X,),
we have

Yala® p1) =V Pa(E4 ® p1)(a® p1)(Es ® p1))V),
= VAVZVACDA(a ® pl)V:VAVZ
= (Ec ® p1)VaPala ® p))V,(Ec ® p1),

so that we know that ¥4(a ® p;) € C(X¢) ® p;. We thus have ¥4(C(X,) ®
Cp;) = C(X¢)®Cp;. Since V 4 belongs to C(X ) ® K, one knows that (y(c;’];)“ ®
id)(V4) = V4 so that

. C, .
wao(rt ®id) = (7, @ id)ow,

for f4 = 1. By restricting ¥, to R 4 ® Cp;, we have an isomorphism &, :
R, —> Rc such that dbAoyé’S) = y((';’s)odiA and @,4(C(X4)) = C(Xc). This
shows that (X4, 4) and (X, 6¢) are topologically conjugate by [20]. We simi-
larly know that (X, 65) and (X, 6) are topologically conjugate, so that (X 4,5 4)
and (X, 6p) are topologically conjugate.

Converse implication under the condition that f, = 1 and fz = 1 is obvious
by [20, Theorem 1.1]. O

The second one is a reformulation of Corollary 6.9 in the following way.

Theorem 7.3. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X 4,6 4) and (Xg, 5g) are flow equiv-
alent if and only if there exist continuous functions f, : X, — Nand fp :

Xz — N such that there exists an isomorphism ® : R, @ X — R @ K of
C*-algebras satisfying

oy ®id) = (7P ®@id)o®,  (r,5) €T, (7.6)
P(CXA)®C)=C(Xp)®C, (7.7)
P.(fa(lEaD) = fB([Epl)  in Ko(C(Xp)). (7.8)

In particular, (X 4,6 4) and (Xg, &) are topologically conjugate if and only if the
equalities (7.6), (7.7) and (7.8) hold for f 4, = fz = 1.

Proof. It suffices to show the only if part. Assume that (X4, ,) and (X3, 65)
are flow equivalent. By Parry-Sullivan [22], there exist continuous functions
fa:X4— Nand fp : Xz — Nsuch that (XAfA,c?AfA) and (XBfB,éBfB) are
topologically conjugate. By [20], there exists an isomorphism @, : R4 W
Ry " of C*-algebras such that @,(C(X4 ) ) = C(Xp fB) and

A
Doy, A = yfrff)od)o, (r,s) e T~

rs)
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By Theorem 6.5 and Remark 6.6 with Proposition 7.1, we have an isomorphism
D Ry @K — R4 ® K of C*-algebras satisfying

CIJon(y(r ®id) = (y(r:s)*‘ ® id)o®@; , (r,s) € T?,
®;,(C(X4, )®C) = C(X,) ®C,
Dy +([Ea, D) = fa(E4D)  InKo(C(Xy).

Similarly we have an isomorphism @ : Ry , ®K — Ry ® K of C*-algebras
satisfying

qafBo(yiff) ®id) = (. ®id)ody,,  (r,5) €T,
P (CXp, )®C) = C(Xp)®C,
Py ([Ep, D) = fp([Ep])  in Ko(C(Xp)).

Put @ := @ o(P, ® id)ocbj_,j : ﬁA RK — ﬁB ® K. We then see that
the equality ®(C(X,) ® €) = C(Xp) ® € holds. Since E,4 iy ,Ep, are the units
of Ry fA,jfB o respectively, we know that (@, ® id)(E4 W ® p1) = Ep ., ® D1,

where p; is the projection on £2(N) of rank one as in the proof of the preceding
theorem. We thus have

D (falEaD) = @f,. (Do, @ IA)[Ef, ® P1])) = @4, ([Ef, ® P1]) = fB([EBD-

Suppose next that f 4, = 1and f = 1. The condition (7.8) goes to ®..([E4]) =
[Eg] in Ky(C(Xp)). Hence we may take a partial isometry V € C(Xp) ® X such
that ®(E4 ® p;) = V*V and Ez ® p; = VV*. By a manner similar to the

proof of Theorem 7.2, we obtain an isomorphism @ : R, — Ry such that

B(C(X4)) = C(Xp) and doy,, f)A = yf J [#o®. Now 4 =1, fp = 1, we conclude

that (X 4,5 ,4) and (X3, 65) are topologically conjugate by [20, Theorem 1.1].
The converse implication under the condition f4 = 1, fz = lisobvious. [J
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