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Flow equivalence of topological Markov
shifts and Ruelle algebras

Kengo Matsumoto

Abstract. In this paper we study discrete �ow equivalence of two-sided
topological Markov shifts by using extended Ruelle algebra. We characterize
�owequivalence of two-sided topologicalMarkov shifts in terms of conjugacy
of certain actions weighted by ceiling functions of two-dimensional torus on
the stabilized extended Ruelle algebras for the Markov shifts.
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1. Introduction
Flow equivalence relation in two-sided topological Markov shifts is one of

the most interesting and important equivalence relations in symbolic dynam-
ics as seen in many papers [2], [3], [9], [22], etc. Let (X̄A, �̄A) be the two-
sided topological Markov shift de�ned by an N × N irreducible matrix A =
[A(i, j)]Ni,j=1 with entries in {0, 1}. The shift space X̄A consists of bi-in�nite se-
quences (xn)n∈ℤ ∈ {1,… , N}ℤ of {1,… , N} such that A(xn, xn+1) = 1 for all
n ∈ ℤ. Take and �x a real number �◦ such as 0 < �◦ < 1. The space X̄A is a
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compact metric space by the metric de�ned by for x = (xn)n∈ℤ, y = (yn)n∈ℤ
with x ≠ y

d(x, y) = {
1 if x0 ≠ y0,
(�◦)m ifm = Max{n ∣ xk = yk for all k with |k| < n}.

The homeomorphism of the shift transformation �̄A on X̄A is de�ned by

�̄A((xn)n∈ℤ) = (xn+1)n∈ℤ.

Two topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B) are said to be �ow equiv-
alent if they are realized as cross sections with their �rst return maps of a com-
mon �ow space. Parry–Sullivan in [22] proved that (X̄A, �̄A) and (X̄B, �̄B) are
�ow equivalent if and only if they are realized as discrete cross sections with
their �rst return maps of a common topological Markov shift. Cuntz–Krieger
have �rst found that there is an interesting relation between�ow equivalence of
topological Markov shifts and certain purely in�nite simple C∗-algebras called
Cuntz–Krieger algebras that they introduced in [7]. For an irreducible ma-
trix A with entries in {0, 1}, let OA be the Cuntz–Krieger algebra and DA its
canonical maximal abelian C∗-subalgebra of OA. We denote by K and C the
C∗-algebra of compact operators on the separable in�nite dimensional Hilbert
spacel2(ℕ) and its commutativeC∗-subalgebra of diagonal operators onl2(ℕ),
respectively. Cuntz–Krieger proved that for irreducible non-permutation ma-
trices A and B, if (X̄A, �̄A) and (X̄B, �̄B) are �ow equivalent, then there ex-
ists an isomorphism Φ ∶ OA ⊗ K ⟶ OB ⊗ K of C∗-algebras such that
Φ(DA ⊗ C) = DB ⊗ C. Its converse implication holds by [21] (for more gen-
eral matrices a similar assertion is shown in [5]). They also proved in [7] that
the extension group Ext(OA), which is isomorphic to the K-group K0(OA) as
groups, appears as the Bowen–Franks group BF(A) de�ned by Bowen–Franks
in [2], that is an invariant of �ow equivalence of (X̄A, �̄A) ([2]).

There is another kind of construction ofC∗-algebras from two-sided topolog-
ical Markov shifts by using groupoids and regarding theMarkov shifts as Smale
spaces ([1], [30], [33], etc. ). The construction was initiated by D. Ruelle [30],
[31] and I. Putnam [23], [24]. I. Putnam in [23] constructed several kinds of
groupoids from each Smale space. Each of the groupoids yields a C∗-algebra.
In this paper, we focus on asymptotic groupoids GaA among several groupoids
studied in [12], [23], [24], [25], etc. and their semi-direct products de�ned be-
low. The asymptotic étale groupoid GaA for (X̄A, �̄A) is de�ned by

GaA ∶= {(x, y) ∈ X̄A × X̄A ∣
lim
n→∞

d(�nA(x), �
n
A(y)) = lim

n→−∞
d(�nA(x), �

n
A(y)) = 0}

with natural groupoid operations and topology (see [23]). It has been shown
in [24] that the groupoid GaA is amenable and its C∗-algebra C∗(GaA) is stably
isomorphic to the tensor product ℱAt ⊗ ℱA of the canonical AF-subalgebras
ℱAt and ℱA inside the Cuntz–Krieger algebras OAt and OA, respectively. The
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semi-direct product GaA ⋊ℤ is de�ned by

GaA ⋊ℤ ∶= {(x, k − l, y) ∈ X̄A ×ℤ × X̄A ∣ (�̄kA(x), �̄
l
A(x)) ∈ GaA}

with natural groupoid operations and topology (see [23]). It is étale and amen-
able. The groupoid C∗-algebra C∗(GaA ⋊ ℤ) is called the Ruelle algebra for
the Markov shift (X̄A, �̄A) and written ℛA. Since the unit space (GaA ⋊ ℤ)◦ is
{(x, 0, x) ∈ GaA⋊ℤ ∣ x ∈ X̄A} that is identi�ed with the shift space X̄A, the alge-
bra ℛA has the commutative C∗-algebra C(X̄A) of continuous functions on X̄A
as amaximal commutativeC∗-subalgebra. It is the crossed productC∗(GaA)⋊ℤ
of C∗(GaA) induced by the automorphism of the shift �̄A, and hence has the
dual action written �At , t ∈ T. See [26] for the construction of C∗-algebras from
groupoids.

Following [23], let us consider the groupoids GsA and GuA de�ned by sta-
ble equivalence relation and unstable equivalence relation on (X̄A, �̄A), respec-
tively, which are de�ned by

GsA ={(x, y) ∈ X̄A × X̄A ∣ limn→∞
d(�̄nA(x), �̄

n
A(y) = 0},

GuA ={(x, y) ∈ X̄A × X̄A ∣ lim
n→−∞

d(�̄nA(x), �̄
n
A(y) = 0}.

In [19] and [20], the author introduced the groupoid Gs,uA ⋊ℤ2 de�ned by

Gs,uA ⋊ℤ2 ∶= {(x, p, q, y) ∈ X̄A ×ℤ ×ℤ × X̄A ∣

(�̄pA(x), y) ∈ GsA, (�̄
q
A(x)), y) ∈ GuA}

whichhas a natural groupoid operations and topologymaking it étale and amen-
able. The groupoid C∗-algebra C∗(Gs,uA ⋊ ℤ2) is called the extended Ruelle al-
gebra written ℛ̃A. Since the unit space (G

s,u
A ⋊ℤ2)◦ is {(x, 0, 0, x) ∈ Gs,uA ⋊ℤ2 ∣

x ∈ X̄A} that is identi�ed with the shift space X̄A, the algebra ℛ̃A has C(X̄A) as
a maximal abelian C∗-subalgebra. As in [19] and [20], there exists a projection
EA in the tensor productOAt ⊗OA such that EA(OAt ⊗OA)EA is naturally iso-
morphic to the algebra ℛ̃A, so that the C∗-algebra ℛ̃A is regarded as a version
of the bilateral Cuntz–Krieger algebra. Let �A denote the gauge action on the
Cuntz–Krieger algebraOA. Under the identi�cation between EA(OAt ⊗OA)EA
and ℛ̃A, the tensor product �Atr ⊗ �As for (r, s) ∈ T2 yields an action of T2
written 
A(r,s), (r, s) ∈ T2. In [20, Theorem 1.1], it was shown that the triplet
(ℛ̃A, C(X̄A), 
A) is a complete invariant for the topological conjugacy class of
(X̄A, �̄A). For a continuous function f ∶ X̄A ⟶ ℕ, we may de�ne an action

A,f weighted by f on ℛ̃A. In this paper, we will characterize the �ow equiva-
lence class of (X̄A, �̄A) in terms of the stabilized version of ℛ̃Awith theweighted
action 
A,f. The continuous function f ∶ X̄A ⟶ ℕ exactly corresponds to a
ceiling function of a discrete suspension. The main result of this paper is the
following theorem.

Theorem 1.1 (Theorem 6.8). Let A, B be irreducible, non-permutation matri-
ces with entries in {0, 1}. The two-sided topological Markov shifts (X̄A, �̄A) and
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(X̄B, �̄B) are �ow equivalent if and only if there is an irreducible non-permutation
matrix C with entries in {0, 1} and continuous functions fA, fB ∶ X̄C ⟶ ℕ with
values in the positive integers such that ℛ̃A ⊗K and ℛ̃B ⊗K are isomorphic to
ℛ̃C ⊗K via isomorphisms ΦA and ΦB satisfying

ΦA◦(
A(r,s) ⊗ id) = (
C,fA(r,s) ⊗ id)◦ΦA,

ΦB◦(
B(r,s) ⊗ id) = (
C,fB(r,s) ⊗ id)◦ΦB

for (r, s) ∈ T2.

The above statement exactly corresponds to the situation that the topological
Markov shift (X̄A, �̄A) is realized as a discrete suspension of (X̄C , �̄C) by ceiling
function fA, and (X̄B, �̄B) is realized as a discrete suspension of (X̄C , �̄C) by
ceiling function fB. As a corollary we have the following.

Corollary 1.2 (Corollary 6.9). LetA, B be irreducible, non-permutationmatrices
with entries in {0, 1}. Two-sided topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B)
are �ow equivalent if and only if there exist continuous functions fA ∶ X̄A ⟶ ℕ
and fB ∶ X̄B ⟶ ℕ with values in the positive integers, and an isomorphism
Φ ∶ ℛ̃A ⊗K ⟶ ℛ̃B ⊗K of C∗-algebras such that

Φ◦(
A,fA(r,s) ⊗ id) = (
B,fB(r,s) ⊗ id)◦Φ, (r, s) ∈ T2.

The organization of the paper is the following.
In Section 2, wewill brie�y recall basic notation and terminology on groupoid

C∗-algebras, Cuntz-Krieger algebras, Ruelle algebras and �ow equivalence of
topological Markov shifts.

In Section 3, a bilateral version of the Krieger’s dimension group for topo-
logical Markov shifts will be studied and called the dimension quadruplet that
will be shown to be invariant for shift equivalence of the underlying matrices.

In Section 4, the dimension quadruplet is described by the K-group of the
AF-algebra C∗(GaA) of the groupoidG

a
A.As a result, a su�cient condition under

which the two-sided Markov shifts (X̄A, �̄A) and (X̄B, �̄B) are �ow equivalent is
given in terms of the stabilized action 
A ⊗ id of T2 on ℛ̃A ⊗ K (Proposition
4.6).

In Section 5, the action 
A,f with potential function f on the algebra ℛ̃A is
introduced.

In Section 6, we characterize the �ow equivalence of two-sided topological
Markov shifts in terms of the actions with potential functions of two dimen-
sional torus on the extended Ruelle algebras ℛ̃A.

In Section 7, we reformulate Theorem 1.1 and Corollary 1.2 by describing
their statements including not only �ow equivalence but also topological con-
jugacy of two-sided topological Markov shifts (Theorem 7.2 and Theorem 7.3).

Throughout the paper, we denote byℤ+ andℕ the set of nonnegative integers
and the set of positive integers, respectively.
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2. Preliminaries
In this section, we brie�y recall basic notation and terminology on the C∗-

algebras of étale groupoids, Cuntz-Krieger algebras, Ruelle algebras and �ow
equivalence of topological Markov shifts. In what follows, a square matrixA =
[A(i, j)]Ni,j=1 is assumed to be an N × N irreducible, non-permutation matrix
with entries in {0, 1}.

2.1. C∗-algebras of étale groupoids. Let us construct C∗-algebras from étale
groupoids. The general theory of the construction of groupoid C∗-algebras was
initiated and studied by Renault [26] (see also [27], [28]). The construction will
be used in the following sections. LetG be an étale groupoid with its unit space
G◦ and range map, source map r, s ∶ G ⟶ G◦ and Cc(G) denote the ∗-algebra
of continuous functions on G with compact support having its product and ∗-
involution de�ned by

(f ∗ g)(
) =
∑

�;r(
)=r(�)
f(�)g(�−1
), f∗(
) = f(
−1)

for f, g ∈ Cc(G), 
 ∈ G. We denote by C0(G◦) the commutative C∗-algebra
of continuous functions on G◦ vanishing at in�nity. The algebra Cc(G) has a
structure of right C0(G◦)-module with C0(G◦)-valued right inner product given
by

(�g)(
) = �(
)g(s(
)), < �, � > (t) =
∑

�;t=s(�)
�(�)�(�)

for �, � ∈ Cc(G), g ∈ Cc(G◦), 
 ∈ G, t ∈ G◦. The completion of Cc(G) by
the norm de�ned by the above inner product is denoted by l2(G), which is
a Hilbert C∗-right module over C0(G◦). The algebra Cc(G) is represented on
l2(G) as bounded adjointable C0(G◦)-right module maps by �(f)� = f ∗ �
for f ∈ Cc(G), � ∈ l2(G). The closure of �(Cc(G)) by the operator norm on
l2(G) is denoted by C∗r (G) and called the (reduced) groupoid C∗-algebra for
the étale groupoid G. The completeion of Cc(G) by the universal C∗-norm is
called the (full) groupoid C∗-algebra for G. Now we treat the three kinds of
groupoids GaA, G

a
A ⋊ ℤ, Gs,uA ⋊ ℤ2. They are all étale and amenable, so that

the two groupoid C∗-algebras C∗r (G) and C∗(G) are canonically isomorphic for
such groupoids. We do not distinguish them, and write them as C∗(G) for G =
GaA, G

a
A ⋊ℤ, Gs,uA ⋊ℤ2.

2.2. Cuntz-Krieger algebras, Ruelle algebras and extended Ruelle alge-
bras. The Cuntz–Krieger algebraOA introduced by Cuntz–Krieger [7] is a uni-
versal uniqueC∗-algebra generated by partial isometries S1,… , SN subject to the
relations:

N∑

j=1
SjS∗j = 1, S∗i Si =

N∑

j=1
A(i, j)SjS∗j , i = 1,… , N. (2.1)
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By theuniversality for the relations (2.1) of operators, the correspondenceSi ⟶
exp(2�

√
−1t)Si, i = 1,… , N for each t ∈ ℝ∕ℤ = T yields an automorphism

written �At on the C∗-algebra OA. The automorphisms �At , t ∈ T de�ne an ac-
tion of T on OA called the gauge action. It is well-known that the �xed point
algebra (OA)�

A of OA under the gauge action is an AF-algebra written ℱA. Let
us denote by Bm(X̄A) the set of admissible words in X̄A of length m and by
B∗(X̄A) the set of all admissible words of X̄A. For � = (�1,… , �m) ∈ Bm(X̄A),
we write S� = S�1⋯ S�m . We denote byDA the C∗-subalgebra ofℱA generated
by projections S�S∗�, � ∈ B∗(X̄A).

As in [7] and [6] (cf. [18], [29]), the crossed productOA⋊�AT is stably isomor-
phic to the AF-algebra ℱA. Hence the dual action �̂A on OA ⋊�A T induces an
automorphism onK0(ℱA), that is written �A. The triplet (K0(ℱA), K+

0 (ℱA), �A)
appears as the (future) dimension triplet written (∆A,∆+A, �A) for A de�ned
by W. Krieger [16]. For the transposed matrix At of A, we similarly consider
the Cuntz–Krieger algebra OAt and its AF-subalgebra ℱAt . Let us denote by
T1,… , TN the generating partial isometries of OAt which satisfy the relations:

N∑

i=1
TiT∗i = 1, T∗jTj =

N∑

i=1
A(i, j)TiT∗i , j = 1,… , N. (2.2)

For � = (�1,… , �k) ∈ Bk(X̄A), we denote by �̄ the transposed word (�k,… , �1)
which belongs to Bk(X̄At ), and write T�̄ = T�k ⋯T�1 .

De�ne the projection EA ∈ ℱAt ⊗ℱA by setting

EA =
N∑

j=1
T∗jTj ⊗ SjS∗j

which coincides with
∑N

i=1 TiT
∗
i ⊗S∗i Si because of the equalities (2.1) and (2.2).

LetGaA, G
a
A⋊ℤ, G

s,u
A ⋊ℤ2 denote the étale amenable groupoids stated in Section

1. For reference, we state [20, Proposition 2.1] as

Lemma 2.1.
(i) The groupoid C∗-algebra C∗(GaA) is canonically isomorphic to the C∗-

subalgebra of ℱAt ⊗ ℱA generated by elements T�̄T∗�̄ ⊗ S�S∗� where � =
(�1,… , �m), � = (�1,… , �n) ∈ B∗(X̄A), �̄ = (�k,… , �1), �̄ = (�l,… , �1) ∈
B∗(X̄At ) satisfying A(�k, �1) = A(�l, �1) = 1 and k = l, m = n. Hence
C∗(GaA) is canonically isomorphic to the C∗-algebra EA(ℱAt ⊗ℱA)EA.

(ii) The Ruelle algebra ℛA = C∗(GaA ⋊ ℤ) is canonically isomorphic to the
C∗-subalgebra ofOAt⊗OA generated by elementsT�̄T∗�̄⊗S�S

∗
� where� =

(�1,… , �m), � = (�1,… , �n) ∈ B∗(X̄A), �̄ = (�k,… , �1), �̄ = (�l,… , �1) ∈
B∗(X̄At ) satisfying A(�k, �1) = A(�l, �1) = 1 andm + k = n + l.

(iii) The extended Ruelle algebra ℛ̃A = C∗(Gs,uA ⋊ ℤ2) is canonically isomor-
phic to theC∗-subalgebra ofOAt⊗OA generated by elementsT�̄T∗�̄⊗S�S∗�
where � = (�1,… , �m), � = (�1,… , �n) ∈ B∗(X̄A), �̄ = (�k,… , �1), �̄ =
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(�l,… , �1) ∈ B∗(X̄At ) satisfying A(�k, �1) = A(�l, �1) = 1. Hence ℛ̃A is
canonically isomorphic to the C∗-algebra EA(OAt ⊗OA)EA.

Under the identi�cation between EA(OAt ⊗OA)EA and ℛ̃A, the tensor prod-
uct �Atr ⊗ �As of gauge actions on OAt and OA yields an action of T2 on ℛ̃A
written 
A(r,s), (r, s) ∈ T2, because 
A(r,s)(EA) = EA.We write

�At ∶= �Att ⊗ �At , �At ∶= 
A
(− t

2
, t
2
)
, t ∈ T.

Lemma 2.2.
(i) The restriction of the action �At , t ∈ T to the subalegera ℛA is regarded

as the dual action onℛA under a natural identi�cation betweenℛA and
the crossed product C∗(GaA)⋊ℤ. Hence the �xed point algebra (ℛA)�

A is
isomorphic to C∗(GaA).

(ii) The�xedpoint algebra (ℛ̃A)�
A of ℛ̃A under�A is isomorphic toℛA, so that

the �xed point algebra (ℛ̃A)

A of ℛ̃A under 
A is isomorphic to C∗(GaA).

2.3. Suspension and �ow equivalence. We will brie�y review discrete sus-
pensions of topological Markov shifts. Let f ∶ X̄A ⟶ ℕ be a continuous
function on the shift space X̄A with values in the positive integers. Let f(X̄A) =
{1, 2,… , L}. Put Xj = {x ∈ X̄A ∣ f(x) = j}, j = 1,… , L. De�ne the suspension
space X̄A,f = ∪Lj=1Xj × {0, 1,… , j − 1} with transformation �̄A,f on X̄A,f by

�̄A,f([x, k]) = {
[x, k + 1] if 0 ≤ k ≤ j − 2,
[�̄A(x), 0] if k = j − 1

for [x, k] ∈ Xj × {0, 1,… , j − 1}. The resulting topological dynamical system
(X̄A,f, �̄A,f) is called the discrete suspension of (X̄A, �̄A) by the ceiling function
f, which is homeomorphic to a topological Markov shift. If, in particular, the
function f ∶ X̄A ⟶ ℕ depends only on the 0th coordinate of X̄A, then f
is written f =

∑N
j=1 fj�Uj(0) for some integers fj ∈ ℕ, where �Uj(0) is the

characteristic function of the cylinder set

Uj(0) = {(xn)n∈ℤ ∈ X̄A ∣ x0 = j}, j = 1,… , N.

Put mj = fj − 1 for j = 1,… , N. Let G = (V ,ℰ) be the directed graph de�ned
by the matrix A with the vertex set V = {1, 2,… , N}. An edge of G is de�ned by
a pair (i, j) of vertices i, j = 1,… , N such that A(i, j) = 1,whose source is i and
the terminal is j. The set of such pairs (i, j) is the edge set ℰ. Construct a new
graph Gf = (Vf,ℰf) with its transition matrix Af from the graph G = (V ,ℰ)
and the function f such that Vf = ∪Nj=1{j0, j1, j2,… , jmj

} and if A(j, k) = 1,
then

Af(j0, j1) = Af(j1, j2) =⋯ = Af(jmj−1, jmj
) = Af(jmj

, k0) = 1. (2.3)

For other pairs (ji, j′i′) ∈ Vf × Vf, we de�ne Af(ji, j′i′) = 0. Hence the size of
the matrix Af is (f1 + f2 +⋯ + fN) × (f1 + f2 +⋯ + fN). Then the discrete
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suspension (X̄A,f, �̄A,f) is nothing but the topological Markov shift (X̄Af , �̄Af )
de�ned by the matrix Af.

Two topological Markov shifts are said to be �ow equivalent if they are real-
ized as cross sectionswith their �rst returnmaps of a commonone-dimensional
�ow space. Parry–Sullivan in [22] proved that (X̄A, �̄A) and (X̄B, �̄B) are �ow
equivalent if and only if there exist another topological Markov shift (X̄C , �̄C)
for some matrix C and continuous maps fA, fB ∶ X̄C ⟶ ℕ such that (X̄A, �̄A)
is topologically conjugate to the discrete suspension (X̄C,fA , �̄C,fA) and (X̄B, �̄B)
is topologically conjugate to the discrete suspension (X̄C,fB , �̄C,fB).

Cuntz and Krieger were the �rst to �nd interesting relations between �ow
equivalence of topologicalMarkov shifts andCuntz–Krieger algebras in [7]. Re-
call thatK and C are the C∗-algebra of compact operators on the separable in-
�nite dimensional Hilbert space l2(ℕ) and its commutative C∗-subalgebra of
diagonal operators on l2(ℕ). Cuntz and Krieger proved that for irreducible
non-permutation matrices A and B, if (X̄A, �̄A) and (X̄B, �̄B) are �ow equiva-
lent, then there exists an isomorphismΦ ∶ OA⊗K ⟶ OB⊗K of C∗-algebras
such thatΦ(DA⊗C) = DB⊗C. Its converse implication holds by [21] (formore
general matrices a similar assertion is shown in [5]).

In this paper, we will study �ow equivalence of topological Markov shifts in
terms of the extended Ruelle algebras with its action 
A of T2.

3. Bilateral dimension groups

We keep an irreducible, non-permutation matrix A = [A(i, j)]Ni,j=1 with en-
tries in {0, 1}. Following W. Krieger [16] (cf. [14], [15], [8], etc.), the dimension
group (∆A,∆+A) for the matrix A are de�ned as an ordered group by the induc-
tive limits

∆A = ℤN At
⟶ ℤN At

⟶⋯ , ∆+A = ℤN
+

At
⟶ ℤN

+
At
⟶⋯ .

The group ∆A is identi�ed with the equivalence classes of ∪∞n=0{(v, n) ∣ v ∈
ℤN , n ∈ ℤ+} by the equivalence relation generated by (v, n) ∼ (Atv, n + 1).
The equivalence class of (v, n) is denoted by [v, n]. The dimension drop auto-
morphism �A on (∆A,∆+A) is de�ned by �A([v, n]) = [(v, n+1)] for [v, n] ∈ ∆A.
The triplet (∆A,∆+A, �A) is called the (future) dimension triplet for the topo-
logical Markov shift (X̄A, �̄A). We similarly have the (future) dimension triplet
(∆At ,∆+At , �At ) for the topologicalMarkov shift (X̄At , �̄At ) for thematrixAt, which
is called the (past) dimension triplet for (X̄A, �̄A). Hence we have two dimen-
sion triplets (∆A,∆+A, �A) and (∆At ,∆

+
At , �At ) for the matrix A.

Let ei ∈ ℤN be the vector ofℤN whose ith component is 1, other components
are zeros. We will de�ne a speci�c element ũA in ∆At ⊗ ∆A by setting

ũA ∶=
N∑

i,j=1
[ej, 1]⊗A(j, i)[ei, 1] ∈ ∆At ⊗ ∆A.
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We then see that

ũA =
N∑

j=1

⎛
⎜
⎝
[ej, 1]⊗ [

N∑

i=1
A(j, i)ei, 1]

⎞
⎟
⎠
=

N∑

j=1
[ej, 1]⊗ [Atej, 1]

=(id⊗ �−1A )
N∑

j=1
([ej, 1]⊗ [ej, 1])

and

ũA =
N∑

i=1

⎛
⎜
⎝
[
N∑

j=1
A(j, i)ej, 1]⊗ [ei, 1]

⎞
⎟
⎠
=

N∑

i=1
[Aei, 1]⊗ [ei, 1]

=(�−1At ⊗ id)
N∑

i=1
([ei, 1]⊗ [ei, 1]).

De�ne an automorphism �̃A ∶ ∆At ⊗ ∆A ⟶ ∆At ⊗ ∆A by �̃A = �−1At ⊗ �A. It
satis�es

�̃A([u, n]⊗ [v,m]) = [Au, n]⊗ [v,m + 1], [u, n]⊗ [v,m] ∈ ∆At ⊗ ∆A.

We set the abelian group ∆̃A = ∆At ⊗∆A with its positive cone ∆̃+A = ∆+At ⊗∆+A.

De�nition3.1. Thequadruplet (∆̃A, ∆̃+A, �̃A, ũA) is called thedimensionquadru-
plet for the two-sided topological Markov shift (X̄A, �̄A).

We note that a bilateral version of the dimension groups �rst appeared in
Krieger’s paper [14] (cf. [15], [16]).

Lemma 3.2. �̃A(ũA) = ũA.

Proof. Since

ũA = (id⊗ �−1A )
N∑

j=1
([ej, 1]⊗ [ej, 1]) = (�−1At ⊗ id)

N∑

i=1
([ei, 1]⊗ [ei, 1]),

and �̃A = �−1At ⊗ �A, the assertion is immediate. �

We will next show that the dimension quadruplet (∆̃A, ∆̃+A, �̃A, ũA) is invari-
ant under shift equivalence of the underlying matrices A. The notion of shift
equivalence in square matrices with entries in nonnegative integers has been
introduced by W. F. Williams [34]. Two matrices A and B are said to be shift
equivalent if there exist rectangular matrices H,K with entries in nonnegative
integers and a positive integer l such that

Al = HK, Bl = KH, AH = HB, KA = BK. (3.1)

W. Krieger has proved in [16] that two matrices A and B are shift equivalent if
and only if their dimension triplet (∆A,∆+A, �A) and (∆B,∆

+
B , �B) are isomorphic.

The following result has been already proved by C. G. Holton [10, Proposition
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6.7] for primitive matrices by using Rohlin property of automorphisms on the
AF-algebrasC∗(GaA). The proof given below does not useC∗-algebra theory, nor
does it assume that the matrices are primitive.

Proposition 3.3 (C. G. Holton [10, Proposition 6.7]). Suppose that A and B
are shift equivalent. Then there exists an isomorphism Φ ∶ ∆̃A ⟶ ∆̃B which
yields an isomorphism between the dimension quadruplets (∆̃A, ∆̃+A, �̃A, ũA) and
(∆̃B, ∆̃+B , �̃B, ũB).

Proof. Let A and B beN ×N matrix andM ×M matrix, respectively. Assume
that there exist rectangular matrices H,K with entries in nonnegative integers
and a positive integer l satisfying (3.1). De�ne

Φ+ ∶ ∆A ⟶ ∆B by Φ+([v, k]) = [Htv, k],
Φ− ∶ ∆At ⟶ ∆Bt by Φ−([v, k]) = [Kv, k + l],

so that

Φ−1+ ∶ ∆B ⟶ ∆A satis�es Φ−1+ ([u, j]) = [Ktu, j + l],
Φ−1− ∶ ∆Bt ⟶ ∆At satis�es Φ−1− ([u, j]) = [Hu, j].

As in [16],Φ+ ∶ ∆A ⟶ ∆B andΦ− ∶ ∆At ⟶ ∆Bt yield isomorphisms for each
such that

Φ+(∆+A) = ∆+B , Φ+◦�A = �B◦Φ+,
Φ−(∆+At ) = ∆+Bt , Φ−◦�At = �Bt◦Φ−.

Hence they induce isomorphisms

Φ+ ∶ (∆A,∆+A, �A)⟶ (∆B,∆+B , �B),
Φ− ∶ (∆At ,∆+At , �At )⟶ (∆Bt ,∆+Bt , �Bt ).
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We de�ne Φ = Φ− ⊗ Φ+ ∶ ∆̃A ⟶ ∆̃B. Let fl ∈ ℤM be the vector whose lth
component is 1, and other components are zeros. It then follows that

Φ(ũA) =
N∑

i,j=1
Φ−([ej, 1])⊗ Φ+(A(j, i)[ei, 1])

=
N∑

i,j=1
[Kej, 1 + l]⊗A(j, i)[Htei, 1]

=
N∑

j=1
[Kej, 1 + l]⊗ [(AH)tej, 1]

=
N∑

j=1
[Kej, 1 + l]⊗ [

M∑

l=1
(AH)(j, l)fl, 1]

=
M∑

l=1

N∑

j=1
[
⎡
⎢
⎢
⎢
⎣

K(1, j)(AH)(j, l)
K(2, j)(AH)(j, l)

⋮
K(M, j)(AH)(j, l)

⎤
⎥
⎥
⎥
⎦

, 1 + l]⊗ [fl, 1]

=
M∑

l=1
[(KAH)fl, 1 + l]⊗ [fl, 1]

=
M∑

l=1
[(BKH)fl, 1 + l]⊗ [fl, 1]

=
M∑

l=1
[Bl+1fl, 1 + l]⊗ [fl, 1]

=
M∑

l=1
[Bfl, 1]⊗ [fl, 1] = ũB.

�

R. F. Williams characterized topological conjugacy of two-sided topological
Markov shifts (X̄A, �̄A) and (X̄B, �̄B) in terms of an equivalence relation of its
underlying matrices, called strong shift equivalence ([34]). Two square ma-
trices A and B with entries in nonnegative integers are said to be elementary
equivalent if there exist rectangular matrices C,D with entries in nonnegative
integers such that A = CD, B = DC. If two matrices are connected by a �nite
chain of elementary equivalences, they are said to be strong shift equivalent.
Williams proved that two-sided topological Markov shift (X̄A, �̄A) and (X̄B, �̄B)
are topologically conjugate if and only if the matrices A and B are strong shift
equivalent ([34]). Since shift equivalence is weaker than strong shift equiva-
lence, by virtue of the Williams’ result, we have
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Proposition 3.4. The dimension quadruplet (∆̃A, ∆̃+A, �̃A, ũA) is invariant under
topological conjugacy of the two-sided topological Markov shift (X̄A, �̄A).

4. Dimension quadruplets and AF-algebras
In this section, we will study the dimension quadruplet (∆̃A, ∆̃+A, �̃A, ũA) by

using K-theory for C∗-algebras. D. B. Killough and I. F. Putnam in [13] have
deeply studied ring and module structure of the AF-algebras C∗(GsA) as well as
C∗(GaA) from a di�erent view point from ours below. Recall thatK denotes the
C∗-algebra of compact operators on the separable in�nite dimensional Hilbert
spaceH = l2(ℕ).

Lemma 4.1. Let A be an irreducible, non-permutation matrix with entries in
{0, 1}.

(i) There exists a projection p0 in the crossed product ℛ̃A⋊
A T2 of ℛ̃A by 
A

such that p0(ℛ̃A⋊
A T2)p0 is isomorphic to C∗(GaA).Hence ℛ̃A⋊
A T2 is
stably isomorphic to the AF-algebra C∗(GaA).

(ii) The inclusion �A ∶ p0(ℛ̃A ⋊
A T2)p0 ↪ ℛ̃A ⋊
A T2 induces an isomor-
phism

�A∗ ∶ K0(C∗(GaA))⟶ K0(ℛ̃A ⋊
A T2)

on K-theory where C∗(GaA) is identi�ed with p0(ℛ̃A ⋊
A T2)p0.

Proof. (i) The �xed point algebra (ℛ̃A)

A of ℛ̃A under 
A coincides with the

�xed point algebra (EA(OAt ⊗ OA)EA)�
At⊗�A which is nothing but EA(ℱAt ⊗

ℱA)EA. Hence (ℛ̃A)

A is identi�ed with C∗(GaA). Let p0 be the projection in

∈ L1(T2, ℛ̃A) de�ned by p0(r, s) = 1 for all (r, s) ∈ T2.We know that p0 is a full
projection in ℛ̃A ⋊
A T2 and

p0(ℛ̃A ⋊
A T2)p0 = (ℛ̃A)

A = C∗(GaA)

by [29] or a manner similar to [18]. This shows that the algebra ℛ̃A ⋊
A T2 is
stably isomorphic to the AF-algebra C∗(GaA) by [4].

(ii) By [4], there exists a partial isometry vA in themultiplier algebraM(ℛ̃A⋊
A

T2⊗K) of ℛ̃A⋊
A T2⊗K such that v∗AvA = p0, vAv∗A = 1. Put  A = Ad(vA) ∶
p0(ℛ̃A ⋊
A T2)p0 ⊗K ⟶ ℛ̃A ⋊
A T2 ⊗K, which is an isomorphism of C∗-
algebras. We then have for a projection p0fp0 ⊗ q ∈ ℛ̃A ⋊
A T2 ⊗K,

(�A ⊗ id)∗([p0fp0 ⊗ q]) =[p0fp0 ⊗ q]
=[v∗AvA(p0fp0 ⊗ q)v∗AvA]
=[vA(p0fp0 ⊗ q)v∗A]
= A∗([p0fp0 ⊗ q]).

Hence �A∗ =  A∗ ∶ K0(C∗(GaA))⟶ K0(ℛ̃A ⋊
A T2) is an isomorphism. �
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Let us denote by 
̂A the dual action of the crossed product ℛ̃A⋊
A T2.Under
the identi�cations

C∗(GaA) = (ℛ̃A)

A = p0(ℛ̃A ⋊
A T2)p0,

we de�ne an action � of ℤ2 on K0(C∗(GaA)) by

�(m,n) ∶= �−1A∗◦
̂
A
(m,n)∗◦�A∗ ∶ K0(C

∗(GaA))⟶ K0(C∗(GaA)), (m, n) ∈ ℤ2

such that the diagram

K0(ℛ̃A ⋊
A T2)

̂A(m,n)∗
,,,,,,→ K0(ℛ̃A ⋊
A T2)

�A∗↑⏐⏐⏐⏐⏐⏐⏐
↑⏐⏐⏐⏐⏐⏐⏐
�A∗

K0(C∗(GaA))
�(m,n)
,,,,,,→ K0(C∗(GaA))

is commutative.
Let UA =

∑N
i=1 T

∗
i ⊗ Si in OAt ⊗ OA. As in [19], UA is a unitary in ℛA and

hence in ℛ̃A, so thatUAU∗
A = U∗

AUA = EA.We denote by 1C∗(GaA) the unit of the
C∗-algebra C∗(GaA). By [6] and [7] (see also [8], [15], [16]), the ordered group
∆A is naturally identi�ed with the K-group K0(ℱA).

Lemma 4.2. There exists an isomorphism'A ∶ C∗(GaA)⊗K ⟶ ℱAt⊗ℱA⊗K
of C∗-algebras such that the induced isomorphism

'A∗ ∶ K0(C∗(GaA))⟶ K0(ℱAt ⊗ℱA) = K0(ℱAt )⊗K0(ℱA)

satis�es

'A∗([1C∗(GaA)]) = [EA], 'A∗◦Ad(UA)∗ = �̃A◦'A∗,

'A∗◦�(m,n)◦'−1A∗ = �mAt ⊗ �nA, (m, n) ∈ ℤ2.

Hence the diagrams

K0(ℛ̃A ⋊
A T2)

̂A(m,n)∗
,,,,,,→ K0(ℛ̃A ⋊
A T2)

�A∗↑⏐⏐⏐⏐⏐⏐⏐
↑⏐⏐⏐⏐⏐⏐⏐
�A∗

K0(C∗(GaA))
�(m,n)
,,,,,,→ K0(C∗(GaA))

'A∗
⏐⏐⏐⏐⏐⏐⏐
↓

⏐⏐⏐⏐⏐⏐⏐
↓'A∗

K0(ℱAt )⊗K0(ℱA)
�m
At
⊗�nA

,,,,,,,→ K0(ℱAt )⊗K0(ℱA)

are commutative.

Proof. Since the C∗-algebra ℱAt ⊗ ℱA is simple, the projection EA is full in
ℱAt ⊗ ℱA. By using Brown’s theorem [4], there exists an isometry uA in the
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multiplier algebraM((ℱAt ⊗ ℱA)⊗K) of (ℱAt ⊗ ℱA)⊗K such that u∗AuA =
1, uAu∗A = EA ⊗ 1H . De�ne an isomorphism

'A = Ad(u∗A) ∶ C
∗(GaA)⊗K(= EA(ℱAt ⊗ℱA)EA ⊗K)⟶ ℱAt ⊗ℱA ⊗K.

Let p1 be a rank one projection inK. We then have

'A∗([1C∗(GaA)]) ='A∗([EA ⊗ p1])
=[u∗A(EA ⊗ p1)uA]
=[((EA ⊗ p1)uA)((EA ⊗ p1)uA)∗]
=[EA ⊗ p1] = [EA].

We will next see that 'A∗◦Ad(UA)∗ = �̃A◦'A∗. We note that K0(C∗(GaA)) is
generated by the classes of projections of the form T�̄T∗�̄ ⊗ S�S∗� where � =

(�1,… , �m) ∈ Bk(X̄A), �̄ = (�k,… , �1) ∈ Bk(X̄At ) with A(�k, �1) = 1.We then
have

('A∗◦Ad(UA)∗)([T�̄T∗�̄ ⊗ S�S∗�]) =['A(T�k−1⋯�1T
∗
�k−1⋯�1

⊗ S�k�S
∗
�k�
)]

=[u∗A(T�k−1⋯�1T
∗
�k−1⋯�1

⊗ S�k�S
∗
�k�
)uA]

=[T�k−1⋯�1T
∗
�k−1⋯�1

⊗ S�k�S
∗
�k�
].

On the other hand,

�̃A◦'A∗([T�̄T∗�̄ ⊗ S�S∗�]) =(�−1At ⊗ �A)([u∗A(T�̄T
∗
�̄
⊗ S�S∗�)uA])

=(�−1At ⊗ �A)([T�̄T∗�̄ ⊗ S�S∗�])

=�−1At ([T�̄T
∗
�̄
])⊗ �A([S�S∗�]).

As in [18, Lemma 4.5], we know

�−1At ([T�̄T
∗
�̄
]) = [T�k−1⋯�1T

∗
�k−1⋯�1

]

and �A([S�S∗�]) = [S�k�S
∗
�k�
]. Hence we have

('A∗◦Ad(UA)∗)([T�̄T∗�̄ ⊗ S�S∗�]) = �̃A◦'A∗([T�̄T∗�̄ ⊗ S�S∗�]).

�

We note that the K-theoretic class [EA] of the projection EA has appeared in
studying of K-theoretic duality by J. Kaminker–I. F. Putnam [11].

Lemma 4.3. Let A = [A(i, j)]Ni,j=1 and B = [B(i, j)]Mi,j=1 be irreducible, non-
permutation matrices with entries in {0, 1}. Suppose that there exists an isomor-
phism Φ ∶ ℛ̃A ⊗K ⟶ ℛ̃B ⊗K of C∗-algebras such that

Φ◦(
A(r,s) ⊗ id) = (
B(r,s) ⊗ id)◦Φ, (r, s) ∈ T2. (4.1)
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(i) Then Φ induces an isomorphism

Φ0∗ ∶ K0(ℱAt )⊗K0(ℱA)⟶ K0(ℱBt )⊗K0(ℱB)

such that

Φ0∗◦(�mAt ⊗ �nA) = (�mBt ⊗ �nB)◦Φ0∗, (m, n) ∈ ℤ2.

(ii) There exist an N2 ×M2-matrix H, anM2 × N2-matrix K with entries in
nonnegative integers and a natural number l such that

(At ⊗A)l = HK, (Bt ⊗ B)l = KH, (4.2)
(1⊗A)H = H(1⊗ B), K(1⊗A) = (1⊗ B)K, (4.3)

(At ⊗ 1)H = H(Bt ⊗ 1), K(At ⊗ 1) = (Bt ⊗ 1)K. (4.4)

Proof. (i) Since Φ ∶ ℛ̃A ⊗K ⟶ ℛ̃B ⊗K is an isomorphism of C∗-algebras
satisfying (4.1), it induces an isomorphism

Φ1 ∶ (ℛ̃A ⊗K)⋊
A⊗id T2 ⟶ (ℛ̃B ⊗K)⋊
B⊗id T2

ofC∗-algebras of the crossed products. Let 
̂A, 
̂B be the dual actions on ℛ̃A⋊
A

T2, ℛ̃B ⋊
A T2, respectively. By identifying (ℛ̃A ⊗K)⋊
A⊗id T2 with (ℛ̃A ⋊
A

T2)⊗K, and (ℛ̃B ⊗K)⋊
B⊗id T2 with (ℛ̃B ⋊
B T2)⊗K, we see that

Φ1◦(
̂A(m,n) ⊗ id) = (
̂B(m,n) ⊗ id)◦Φ1, (m, n) ∈ ℤ2.

Hence we have an isomorphism

Φ1∗ ∶ K0(ℛ̃A ⋊
A T2)⟶ K0(ℛ̃B ⋊
B T2)

such that
Φ1∗◦
̂A(m,n)∗ = 
̂B(m,n)∗◦Φ1∗, (m, n) ∈ ℤ2.

We then de�ne Φ0∗ ∶ K0(ℱAt )⊗K0(ℱA)⟶ K0(ℱBt )⊗K0(ℱB) by setting

Φ0∗ = 'B∗◦�−1B∗◦Φ1∗◦�A∗◦'
−1
A∗,

where �A∗ ∶ K0(C∗(GaA)) = K0(p0(ℛ̃A ⋊
A T2)p0) ⟶ K0(ℛ̃A ⋊
A T2) is the
isomorphism de�ned in Lemma 4.1 (ii). Hence the following diagram is com-
mutative:

K0(ℛ̃A ⋊
A T2)
Φ1∗,,,,,,→ K0(ℛ̃B ⋊
B T2)

�A∗↑⏐⏐⏐⏐⏐⏐⏐
↑⏐⏐⏐⏐⏐⏐⏐
�B∗

K0(p0(ℛ̃A ⋊
A T2)p0) K0(p0(ℛ̃B ⋊
B T2)p0)
‖‖‖‖‖

‖‖‖‖‖
K0(C∗(GaA)) K0(C∗(GaA))

'A∗
⏐⏐⏐⏐⏐⏐⏐
↓

⏐⏐⏐⏐⏐⏐⏐
↓'B∗

K0(ℱAt )⊗K0(ℱA)
Φ0∗,,,,,,→ K0(ℱAt )⊗K0(ℱA).
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We then have by Lemma 4.2

Φ0∗◦(�mAt ⊗ �nA)

=('B∗◦�−1B∗◦Φ1∗◦�A∗◦'
−1
A∗)◦('A∗◦�

−1
A∗◦
̂

A
(m,n)∗◦�A∗◦'

−1
A∗)

='B∗◦�−1B∗◦Φ1∗◦
̂
A
(m,n)∗◦�A∗◦'

−1
A∗

='B∗◦�−1B∗◦
̂
B
(m,n)∗◦Φ1∗◦�A∗◦'

−1
A∗

=('B∗◦�−1B∗◦
̂
B
(m,n)∗◦�B∗◦'

−1
B∗)◦('B∗◦�

−1
B∗◦Φ1∗◦�A∗◦'

−1
A∗)

=(�mBt ⊗ �nB)◦Φ0∗.

(ii) By (i) the isomorphismΦ ∶ ℛ̃A⊗K ⟶ ℛ̃B⊗K satisfying (4.1) induces
an isomorphism

Φ0∗ ∶ K0(ℱAt )⊗K0(ℱA)⟶ K0(ℱBt )⊗K0(ℱB)

of ordered groups such that Φ0∗◦(�mAt ⊗ �nA) = (�mBt ⊗ �nB)◦Φ0∗. Now

K0(ℱA) = lim{ℤN At
⟶ ℤN At

⟶⋯},

K0(ℱAt ) = lim{ℤN A
⟶ ℤN A

⟶⋯}

and the dimension drop automorphisms �A ∶ K0(ℱA) ⟶ K0(ℱA) and �At ∶
K0(ℱAt ) ⟶ K0(ℱAt ) are de�ned by �A([x, n]) = [x, n + 1](= [Ax, n]) for
[x, n] ∈ K0(ℱA) and �At ([y, n]) = [y, n + 1](= [Aty, n]) for [y, n] ∈ K0(ℱAt ),
respectively ([6], [7]). Since K0(ℱAt )⊗ K0(ℱA) = K0(ℱAt⊗A) and �At ⊗ �A =
�At⊗A, we have an isomorphism of dimension triplets

(K0(ℱAt⊗A), �At⊗A) ≅ (K0(ℱBt⊗B), �Bt⊗B)

with dimension drop automorphisms. Hence the twomatricesAt⊗A and Bt⊗
B are shift equivalent by [16], which means that there exist anN2 ×M2-matrix
H, an M2 × N2-matrix K with entries in nonnegative integers and a natural
number l such that

(At ⊗A)l = HK, (Bt ⊗ B)l = KH,
(At ⊗A)H = H(Bt ⊗ B), K(At ⊗A) = (Bt ⊗ B)K.

Since

K0(ℱAt )⊗K0(ℱA)

= lim{ℤN A
⟶ ℤN A

⟶⋯}⊗ lim{ℤN At
⟶ ℤN At

⟶⋯}

≅ lim{ℤN ⊗ℤN A⊗At
⟶ ℤN ⊗ℤN A⊗At

⟶ ⋯}

and similarly

K0(ℱBt )⊗K0(ℱBt ) ≅ lim{ℤM ⊗ℤM B⊗Bt
⟶ ℤM ⊗ℤM B⊗Bt

⟶ ⋯},
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Φ0∗ induces an isomorphism

lim{ℤN ⊗ℤN A⊗At
⟶ ℤN ⊗ℤN A⊗At

⟶ ⋯}

⟶ lim{ℤM ⊗ℤM B⊗Bt
⟶ ℤM ⊗ℤM B⊗Bt

⟶ ⋯},

which satis�es

Φ0∗◦(id⊗ �A) = (id⊗ �B)◦Φ0∗, (4.5)
Φ0∗◦(�At ⊗ id) = (�Bt ⊗ id◦Φ0∗. (4.6)

By the conditions (4.5) and (4.6), we may take the matrices H,K satisfying
(4.2),(4.3) and (4.4). �

For a matrixA, let us denote by Sp×(A) and Sp×m(A) the set of nonzero eigen-
values of A and the list of nonzero repeated eigenvalues of A according to their
multiplicity, respectively.

Lemma 4.4. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Suppose that there exist anN2 ×M2-matrixH, anM2 ×N2-matrix K with
entries in nonnegative integers and a natural number l satisfying (4.2),(4.3) and
(4.4). Then

Sp×m(A
t ⊗A) = Sp×m(B

t ⊗ B) and Sp×(A) = Sp×(B). (4.7)

Proof. We note that Sp×m(A) = Sp×m(A
t). By the equalities (4.3) and (4.4), we

see that

(At ⊗A)H = H(Bt ⊗ B), K(At ⊗A) = (Bt ⊗ B)K. (4.8)

The equalities (4.2) together with (4.8) show us that the matrices At ⊗ A and
Bt ⊗ B are shift equivalent, so that

Sp×m(A
t ⊗A) = Sp×m(B

t ⊗ B) (4.9)

by [17, Theorem 7.4.10]. For � ∈ Sp×(A), one may take nonzero eigenvectors
u, v ∈ ℂN such that Av = �v and Atu = �u. By (4.3), we have

(1⊗ B)K(u ⊗ v) = K(1⊗A)(u ⊗ v) = K(u ⊗ �v) = �K(u ⊗ v).

By (4.2), we have

HK(u ⊗ v) = (At ⊗A)l(u ⊗ v) = �l(u ⊗ v)

so that the vector K(u ⊗ v) is a nonzero eigenvector of the matrix 1 ⊗ B for
the eigenvalue �. Hence � ∈ Sp×(1⊗ B). Since Sp×(1⊗ B) = Sp×(B), we have
� ∈ Sp×(B), so that Sp×(A) ⊂ Sp×(B). Similarly the inclusion relation Sp×(B) ⊂
Sp×(A) holds and hence Sp×(A) = Sp×(B). �

Lemma 4.5. Suppose that two irreducible, non-permutation matrices A, B with
entries in {0, 1} satisfy (4.7). Then we have

Sp×m(A) = Sp×m(B) and hence det(1 − A) = det(1 − B).
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Proof. Since bothA, B are irreducible, they have its periods as irreducible ma-
trices, which we denote by pA, pB, respectively. Since Sp

×(A) = Sp×(B), their
Perron-Frobenius eigenvalues coincide. We denote the common eigenvalue by
�1 which is positive. There are exactly pA eigenvalues � of Sp×m(A) such that
|�| = �1, so that we have pA = pB which we denote by p. Let ! be the p th root

e
2�

√
−1 1

p of unity. By Perron-Frbobenius theorem for irreducible matrices, one
may �nd distinct eigenvalues {�1, �2,… , �L} ⊂ Sp×(A)(= Sp×(B)) such that

�1 > |�2| ≥ |�3| ≥⋯ ≥ |�L| (4.10)

and the set {!k�i ∣ k = 0, 1,… , p − 1, i = 1,… , L} is the full list of Sp×(A)(=
Sp×(B)) (cf. [32, Section 1.4]). For each i = 1,… , L, the p eigenvalues

!k�i, k = 0, 1,… , p − 1
have common multiplicities in Sp×m(A) and in Sp×m(B), respectively, which we
denote bymA

i andmB
i , respectively. Hence we know thatmA

1 = mB
1 = 1.We put

�i(k) = !k�i for k = 0, 1,… , p−1, i = 1,… , L. LetmA
0 , m

B
0 be the multiplicities

of zero eigenvalues ofA, B, respectively. Then the characteristic polynomials of
the matrices At ⊗A,Bt ⊗ B are written such that

'At⊗A(t) = t(m
A
0 )

2
L∏

i,j=1

p−1∏

k,l=0
(t − �i(k)�j(l))

mA
i m

A
j ,

'Bt⊗B(t) = t(m
B
0 )
2

L∏

i,j=1

p−1∏

k,l=0
(t − �i(k)�j(l))

mB
i m

B
j .

By the assumption Sp×m(A
t ⊗A) = Sp×m(B

t ⊗ B), we have
L∏

i,j=1

p−1∏

k,l=0
(t − �i(k)�j(l))

mA
i m

A
j =

L∏

i,j=1

p−1∏

k,l=0
(t − �i(k)�j(l))

mB
i m

B
j . (4.11)

The above polynomial of the left (resp. right) hand side is denoted by �A(t)
(resp. �B(t)). Suppose that

�1�2 = �i(k)�j(l) for some i, j = 1,… , L and k, l = 0, 1,… , p − 1.

We may assume i ≤ j. By the inequalities (4.10) with |�i(k)| = |�i|, |�j(l)| =
|�j|, we have i = 1, so that �i(k) = !k�1. Hence we have

�2 = !k�j(l) = !k+l�j
so that j = 2 and k + l ≡ 0 (modp).We put a = �1�2. The power exponent of
(t − a) in the polynomial �A(t) is
(mA

1m
A
2 +mA

2m
A
1 ) × |{(k, l) ∈ {0, 1,… , p − 1}2 ∣ k + l ≡ 0 (modp)}| = 2mA

2 p.

Similarly the power exponent of (t−a) in the polynomial �B(t) is 2mB
2p.Hence

we havemA
2 = mB

2 . Next assume that there exists 2 ≤ ℎ ≤ L such that

mA
n = mB

n for all n ≤ ℎ. (4.12)
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Suppose that

�1�ℎ+1 = �i(k)�j(l) for some i, j = 1,… , L and k, l = 0, 1,… , p − 1.

We may assume i ≤ j. If i = 1, then �i(k) = !k�1. Hence we have

�ℎ+1 = !k�j(l) = !k+l�j

so that j = ℎ + 1 and k + l ≡ 0 (modp). If i ≠ 1, we have j < ℎ + 1 because of
the inequalities (4.10). We put

p1(1, ℎ + 1) = {(i, j) ∈ {2,… , L}2 ∣ i < j, �1�ℎ+1 = �i(k)�j(l)
for some k, l = 0, 1,… , p − 1},

p0(1, ℎ + 1) = {i ∈ {1, 2,… , L} ∣ �1�ℎ+1 = �i(k)2

for some k = 0, 1,… , p − 1}.

Both setsp1(1, ℎ+1) andp0(1, ℎ+1) are possibly empty. Wenote that�i(k)�j(l) =
!k+l�i�j and |{(k, l) ∈ {1,… , p}2 ∣ k + l ≡ 0 (modp)}| = p. Put b = �1�ℎ+1.
Hence the power exponent of (t − b) in the polynomial �A(t) is

2mA
1m

A
ℎ+1p + 2(

∑

(i,j)∈p1(1,ℎ+1)
mA
i m

A
j ) ⋅ p + �p

∑

i∈p0(1,ℎ+1)
mA
i

where �p = 2 if p is even, and �p = 1 if p is odd. Similarly the power exponent
of (t − b) in the polynomial �B(t) is

2mB
1m

B
ℎ+1p + 2(

∑

(i,j)∈p1(1,ℎ+1)
mB
i m

B
j ) ⋅ p + �p

∑

i∈p0(1,ℎ+1)
mB
i .

Any pair (i, j) ∈ p1(1, ℎ + 1) satis�es i < j < ℎ + 1 and any element i ∈
p0(1, ℎ + 1) satis�es i < ℎ + 1. Hence the hypothesis (4.12) ensures that

mA
ℎ+1 = mB

ℎ+1.

Therefore we obtain that Sp×m(A) = Sp×m(B). Since

det(1 − A) =
L∏

i=1

p−1∏

k=0
(1 − �i(k)m

A
i ), det(1 − B) =

L∏

i=1

p−1∏

k=0
(1 − �i(k)m

B
i ),

the equality det(1 − A) = det(1 − B) follows from Sp×m(A) = Sp×m(B). �

W. Parry and D. Sullivan in [22] proved that the determinant det(1 − A) is
invariant under �ow equivalence of topological Markov shift (X̄A, �̄A). There is
another crucial invariant of �ow equivalence called the Bowen–Franks group
written BF(A), which is de�ned by the abelian group ℤN∕(1 − A)ℤN for the
N ×N matrix A with entries in {0, 1} ([2]). J, Franks in [9] proved that the pair
det(1 − A) and BF(A) is a complete set of invariants of �ow equivalence. We
note that the group BF(A) is isomorphic to the K0-group K0(OA) of the Cuntz-
Krieger algebra OA.We reach the following proposition.
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Proposition 4.6. Assume that A and B are irreducible, non-permutation ma-
trices with entries in {0, 1}. Suppose that there exists an isomorphism Φ ∶ ℛ̃A ⊗
K ⟶ ℛ̃B ⊗K such that

Φ◦(
A(r,s) ⊗ id) = (
B(r,s) ⊗ id)◦Φ, (r, s) ∈ T2. (4.13)

Then the two-sided topologicalMarkov shifts (X̄A, �̄A)and (X̄B, �̄B)are�owequiv-
alent.

Proof. Suppose that there exists an isomorphism Φ ∶ ℛ̃A ⊗ K ⟶ ℛ̃B ⊗ K
satisfying (4.13). We then have K0(ℛ̃A) = K0(ℛ̃B) so that K0(OAt ⊗ OA) ≅
K0(OBt ⊗OB) and hence K0(OA) ≅ K0(OB) by Künneth formulas. This implies
that BF(A) is isomorphic to BF(B). By Lemma 4.3, Lemma 4.4 and Lemma 4.5,
we have det(1−A) = det(1−B). Hence we conclude that (X̄A, �̄A) and (X̄B, �̄B)
are �ow equivalent by Franks’s theorem [9]. �

We will use Proposition 4.6 to prove Theorem 6.7 in Section 6.

5. Gauge actions with potentials

In this section, we will de�ne gauge actions 
A,f with potential function f ∶
X̄A ⟶ ℤ on the C∗-algebra ℛ̃A. For a continuous function f ∈ C(X̄A,ℤ) on
X̄A and n ∈ ℤ, we de�ne a continuous function fn ∈ C(X̄A,ℤ) by setting

fn(x) =
⎧

⎨
⎩

∑n−1
i=0 f(�̄

i
A(x)) for n ≥ 1,

0 for n = 0,
−

∑−1
i=n f(�̄

i
A(x)) for n ≤ −1.

It is easy to see that the identities

fn+m(x) = fn(x) + fm(�̄nA(x)), n,m ∈ ℤ, x ∈ X̄A

hold. For f ∈ C(X̄A,ℤ) and (x, p, q, y) ∈ Gs,uA ⋊ℤ2, de�ne

f̃+(x, p, q, y) = lim
n→∞

{fn+p(�̄A(x)) − fn(�̄A(y))},

f̃−(x, p, q, y) = lim
n→−∞

{fn+q(x) − fn(y)}.

Lemma 5.1. Both f̃+, f̃− ∶ Gs,uA ⋊ ℤ2 ⟶ ℤ are continuous groupoid homo-
morphisms from Gs,uA ⋊ℤ2 to ℤ.

Proof. Take an arbitrary point (x, p, q, y) ∈ Gs,uA ⋊ℤ2 so that

lim
n→∞

d(�̄n+pA (x), �̄nA(y)) = 0, lim
n→−∞

d(�̄n+qA (x), �̄nA(y)) = 0. (5.1)

By the �rst equality above, we may �nd N1 ∈ ℕ locally such that

f(�̄nA(�̄
p
A(�̄A(x)))) = f(�̄nA(�̄A(y))) for all n ≥ N1. (5.2)
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For n ≥ N1, we have

fn+p(�̄A(x)) − fn(�̄A(y))

=fp(�̄A(x)) + fn(�̄pA(�̄A(x))) − fn(�̄A(y))

=fp(�̄A(x)) + f(�̄pA(�̄A(x))) + f(�̄p+1A (�̄A(x))) +⋯ + f(�̄p+N1−1
A (�̄A(x)))

− f(�̄A(y)) − f(�̄2A(y)) −⋯ − f(�̄N1−1
A (�̄A(y)))

=fp(�̄A(x)) + fN1(�̄pA(�̄A(x))) − fN1(�̄A(y))

so that
f̃+(x, p, q, y) = fp+N1(�̄A(x)) − fN1(�̄A(y)). (5.3)

By the second equality of (5.1), wemay similarly �nd a negative integerN2 ∈ ℤ
such that

f̃−(x, p, q, y) = fq+N2(x) − fN2(y). (5.4)
Hence both the values f̃+(x, p, q, y), f̃−(x, p, q, y) are de�ned.

For (x, p, q, y), (x′, p′, q′, y′) ∈ Gs,uA ⋊ℤ2 with x′ = y, we have

f̃+((x, p, q, y)(x′, p′, q′, y′))
=f̃+(x, p + p′, q + q′, y′)

= lim
n→∞

{fn+p+p′(�̄A(x)) − fn(�̄A(y′))}

= lim
n→∞

{fn+p(�̄A(x)) + fp′(�̄nA(�̄
p
A(�̄A(x)))) − fn(�̄A(y′))}.

On the other hand, we have

f̃+(x, p, q, y) + f̃+(x′, p′, q′, y′)

= lim
n→∞

{fn+p(�̄A(x)) − fn(�̄A(y))} + lim
n→∞

{fn+p′(�̄A(x′)) − fn(�̄A(y′))}

= lim
n→∞

{fn+p(�̄A(x)) + fn+p′(�̄A(y)) − fn(�̄A(y)) − fn(�̄A(y′))}

= lim
n→∞

{fn+p(�̄A(x)) + fp′(�̄nA(�̄A(y))) − fn(�̄A(y′))}.

By (5.2), the equality

lim
n→∞

fp′(�̄nA(�̄
p
A(�̄A(x)))) = lim

n→∞
fp′(�̄nA(�̄A(y)))

holds, so that

f̃+((x, p, q, y)(x′, p′, q′, y′)) = f̃+(x, p, q, y) + f̃+(x′, p′, q′, y′)

and similarly

f̃−((x, p, q, y)(x′, p′, q′, y′)) = f̃−(x, p, q, y) + f̃−(x′, p′, q′, y′).

The identities

f̃+((x, p, q, y)−1) = −f̃+(x, p, q, y), f̃−((x, p, q, y)−1) = −f̃−(x, p, q, y)
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are easily seen. As the continuity of f̃+, f̃− follows from the formulas (5.3), (5.4)
with the uniform continuity of f, we know that they are continuous groupoid
homomorphisms from Gs,uA ⋊ℤ2 to ℤ. �

De�ne a continuous groupoid homomorphism f̃ ∶ Gs,uA ⋊ ℤ2 ⟶ ℤ by
f̃(x, p, q, y) = f̃+(x, p, q, y) − f̃−(x, p, q, y). Recall that the C∗-algebra ℛ̃A
is represented on the Hilbert C∗-right module l2(Gs,uA ⋊ ℤ2) over C0((G

s,u
A ⋊

ℤ2)◦)(= C(X̄A)) as the reduced groupoidC∗-algebra. For f ∈ C(X̄A,ℤ), (r, s) ∈
T2 and � ∈ l2(Gs,uA ⋊ℤ2), we set

[Us(f̃+)�](x, p, q, y) = exp{2�
√
−1f̃+(x, p, q, y)s}�(x, p, q, y),

[Ur(f̃−)�](x, p, q, y) = exp{2�
√
−1f̃−(x, p, q, y)r}�(x, p, q, y),

U(r,s)(f̃) = Ur(f̃−)Us(f̃+).

Since f̃+, f̃− and f̃ are groupoid homomorphisms fromGs,uA ⋊ℤ2 toℤ, the oper-
ators U(f̃+), U(f̃−) yield unitary representations of T and U(f̃) does a unitary
representation of T2.

Proposition 5.2. For f ∈ C(X̄A,ℤ), the correspondence

a ∈ ℛ̃A ⟶ Ad(U(r,s)(f̃))(a)
(
= U(r,s)(f̃)aU(r,s)(f̃)∗

)
∈ ℛ̃A

de�nes an automorphism on ℛ̃A such that (r, s) ∈ T2 ⟶ Ad(U(r,s)) ∈ Aut(ℛ̃A)
gives rise to an action of T2 on ℛ̃A and its restriction to the subalgebra C(X̄A) is
the identity.

Proof. For a ∈ Cc(G
s,u
A ⋊ ℤ2), � ∈ l2(Gs,uA ⋊ ℤ2), (x, p, q, y) ∈ Gs,uA ⋊ ℤ2, we

have

[Ad(U(r,s)(f̃))(a)�](x, p, q, y)

=exp{2�
√
−1(f̃+(x, p, q, y)s + f̃−(x, p, q, y)r)}[aU(r,s)(f̃)∗�](x, p, q, y).

Now the equalities

[aU(r,s)(f̃)∗�](x, p, q, y)

=
∑


;r(
)=x
a(
)[U(r,s)(−f̃)�](
−1 ⋅ (x, p, q, y))

=
∑


;r(
)=x
a(
) ⋅ exp{2�

√
−1(f̃+(
)s + f̃−(
)r)}

⋅ exp{−2�
√
−1(f̃+(x, p, q, y)s + f̃−(x, p, q, y)r)}�(
−1 ⋅ (x, p, q, y))

hold, so that

[Ad(U(r,s)(f̃))(a)�](x, p, q, y)

=
∑


;r(
)=x
a(
) ⋅ exp{2�

√
−1(f̃+(
)s + f̃−(
)r)}�(
−1 ⋅ (x, p, q, y)).
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Let us identify U(r,s)(f̃) with the continuous function on Gs,uA ⋊ℤ2 de�ned by

U(r,s)(f̃)(
) = exp{2�
√
−1(f̃+(
)s + f̃−(
)r)}, 
 ∈ Gs,uA ⋊ℤ2.

Hence we have

[Ad(U(r,s)(f̃))(a)�](x, p, q, y) =
∑


;r(
)=x
(U(r,s)(f̃) ⋅ a)(
)�(
−1 ⋅ (x, p, q, y))

=[(U(r,s)(f̃) ⋅ a)�](x, p, q, y)

so that

Ad(U(r,s)(f̃))(a) = U(r,s)(f̃) ⋅ a for a ∈ Cc(G
s,u
A ⋊ℤ2) (5.5)

whereU(r,s)(f̃) ⋅ a is the pointwise product between the two functionsU(r,s)(f̃)
and a. Thus Ad(U(r,s)(f̃))(a) belongs to Cc(G

s,u
A ⋊ ℤ2), so that Ad(U(r,s)(f̃))

yields an automorphism of the C∗-algebra ℛ̃A.
Especially for a continuous function a ∈ C(X̄A) on X̄A, it is regarded as an

element of Cc(G
s,u
A ⋊ℤ2) by

a(x, p, q, y) = {
a(x) if x = y, p = q = 0,
0 otherwise.

For x = y, p = q = 0, we know that f̃+(x, p, q, y) = f̃−(x, p, q, y) = 0 so that

Ad(U(r,s)(f̃))(a) = U(r,s)(f̃)) ⋅ a = a for a ∈ Cc(X̄A).

�

We denote by 
A,f(r,s) the automorphism Ad(U(r,s)(f̃)) on ℛ̃A, which yields an
action called gauge action with potential function f, or weighted gauge ac-
tion. For the constant function f ≡ 1, the equalities f̃+(x, p, q, y) = p and
f̃−(x, p, q, y) = q hold so that the action 
A,f(r,s) for f ≡ 1 coincides with the
previously de�ned action 
A(r,s).

Let Uj(0), j = 1, 2,… , N be the cylinder sets on X̄A such that

Uj(0) = {(xn)n∈ℤ ∈ X̄A ∣ x0 = j}.

Let �Uj(0) be the characteristic function of the cylinder set Uj(0) on X̄A.

Lemma 5.3. Suppose that f =
∑N

j=1 fj�Uj(0) for some integers fj ∈ ℤ. Then
we have


A,f(r,s) = �A
t ,f

r ⊗ �A,fs , (r, s) ∈ T2 on ℛ̃A = EA(OAt ⊗OA)EA,

where �A
t ,f

r ∈ Aut(OAt ), �
A,f
s ∈ Aut(OA) are de�ned by

�A
t ,f

r (Tj) = exp
(
2�

√
−1fjr

)
Tj, j = 1, 2,… , N,

�A,fs (Sj) = exp
(
2�

√
−1fjs

)
Sj, j = 1, 2,… , N.
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Proof. Form, n, k, l ∈ ℕ and

� = (�1,… , �m), � = (�1,… , �n) ∈ B∗(X̄A),

�̄ = (�k,… , �1), �̄ = (�l,… , �1) ∈ B∗(X̄At )

satisfying A(�k, �1) = A(�l, �1) = 1, we write

U��,�� = {(x,m − n, l − k, y) ∈ Gs,uA ⋊ℤ2 ∣

(�̄mA (x), �̄
n
A(y)) ∈ Gs,0A , (�̄kA(x), �̄

l
A(y)) ∈ Gu,0A ,

x[1,m] = �, y[1,n] = �, x[−k+1,0] = �, y[−l+1,0] = �}

where

Gs,0A = {(x, y) ∈ X̄A × X̄A ∣ xi = yi for all i ∈ ℤ+},

Gu,0A = {(x, y) ∈ X̄A × X̄A ∣ x−i = y−i for all i ∈ ℤ+}.

As in [19, Section 9], the correspondence �U��,��
⟷ T�̄T∗� ⊗ S�S∗� gives rise

to an isomorphism between the groupoid C∗-algebra C∗(Gs,uA ⋊ ℤ2) and the
algebra ℛ̃A. For (x, p, q, y) ∈ U��,�� with p = m − n, q = l − k, one may take
N1 = n so that

f̃+(x, p, q, y)

=fp(�̄A(x)) + f(�̄pA(�̄A(x))) + f(�̄p+1A (�̄A(x))) +⋯ + f(�̄p+N1−1
A (�̄A(x)))

− f(�̄A(y)) − f(�̄2A(y)) −⋯ − f(�̄N1
A (y))

=f(�̄A(x)) + f(�̄A(�̄A(x))) +⋯ + f(�̄mA (x))

− f(�̄A(y)) − f(�̄2A(y)) −⋯ − f(�̄nA(y))
=(f�1 + f�2 +⋯ + f�m) − (f�1 + f�2 +⋯ + f�n)

because �̄A(x)[0,m−1] = �, �̄A(y)[0,n−1] = �, and similarly

f̃−(x, p, q, y)

=f(x) + f(�̄−1A (x)) + f(�̄−2A (x)) +⋯ + f(�̄−k+1A (x))

− f(y) − f(�̄−1A (y)) − f(�̄−2A (y)) −⋯ − f(�̄−l+1A (y))
=(f�1 + f�2 +⋯ + f�k ) − (f�1 + f�2 +⋯ + f�l ).

It then follows that by (5.5)

[Ad(U(r,s)(f̃))(�U��,��
)](x, p, q, y)

=[U(r,s)(f̃)) ⋅ �U��,��
)](x, p, q, y)

=exp{2�
√
−1(f̃+(x, p, q, y)s + f̃−(x, p, q, y)r)}�U��,��

(x, p, q, y)
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so that

Ad(U(r,s)(f̃))(�U��,��
)

=exp[2�
√
−1{(f�1 + f�2 +⋯ + f�m) − (f�1 + f�2 +⋯ + f�n)}s

+ {(f�1 + f�2 +⋯ + f�k ) − (f�1 + f�2 +⋯ + f�l )}r] ⋅ �U��,��
,

proving that the equality


A,f(r,s)(�U��,��
) = �A

t ,f
r (T�T∗�)⊗ �A,fs (S�S∗� ).

�

Proposition 5.4. Let ' ∶ X̄A ⟶ X̄B be a topological conjugacy between two-
sided topologicalMarkov shifts (X̄A, �̄A)and (X̄B, �̄B).Suppose thatf ∈ C(X̄A,ℤ)
and g ∈ C(X̄B,ℤ) satisfyf = g◦'.Then there exists an isomorphismΦ ∶ ℛ̃A ⟶
ℛ̃B of C∗-algebras such that

Φ(C(X̄A)) = C(X̄B), Φ◦
A,f(r,s) = 
B,g(r,s)◦Φ, (r, s) ∈ T2.

Proof. The topological conjugacy ' ∶ X̄A ⟶ X̄B induces an isomorphism
'̃ ∶ Gs,uA ⋊ ℤ2 ⟶ Gs,uB ⋊ ℤ2 of étale groupoids such that '̃(x, p, q, y) =
('(x), p, q, '(y)) for (x, p, q, y) ∈ Gs,uA ⋊ ℤ2. It gives rise to a unitary written
V' ∶ l2(G

s,u
B ⋊ℤ2)⟶ l2(Gs,uA ⋊ℤ2) satisfyingV'(�) = �◦'̃ for � ∈ l2(Gs,uB ⋊

ℤ2). Assume that the C∗-algebras ℛ̃A and ℛ̃B are represented on l2(G
s,u
A ⋊ℤ2)

and l2(Gs,uB ⋊ ℤ2) as reduced groupoid C∗-algebras. Since V∗
'aV' = a◦'̃−1 ∈

Cc(G
s,u
B ⋊ ℤ2) for a ∈ Cc(G

s,u
A ⋊ ℤ2), we know that Φ(a) = V∗

'aV', a ∈ ℛ̃A

gives rise to an isomorphism ℛ̃A ⟶ ℛ̃B of C∗-algebras. Since ' ∶ X̄A ⟶ X̄B
is a topological conjugacy, we know that

g̃+('(x), p, q, '(y)) = f̃+(x, p, q, y), g̃−('(x), p, q, '(y)) = f̃−(x, p, q, y)

for (x, p, q, y) ∈ Gs,uA ⋊ℤ2 so that for � ∈ l2(Gs,uA ⋊ℤ2), (x, p, q, y) ∈ Gs,uA ⋊ℤ2,
we have

[V'U(r,s)(g̃)V∗
'�](x, p, q, y)

=[U(r,s)(g̃)V∗
'�]('(x), p, q, '(y))

=exp{2�
√
−1(g̃+('(x), p, q, '(y))s + g̃−('(x), p, q, '(y))r)}

[V∗
'�]('(x), p, q, '(y))

=exp{2�
√
−1(f̃+(x, p, q, y)s + f̃−(x, p, q, y)r)}�(x, p, q, y)

=[U(r,s)(f̃)�](x, p, q, y).

Hencewe haveV'U(r,s)(g̃)V∗
' = U(r,s)(f̃), so that the equalityΦ◦


A,f
(r,s) = 
B,g(r,s)◦Φ

holds. Since a◦'̃−1 ∈ Cc((G
s,u
B ⋊ℤ2)

◦
)) for a ∈ Cc((G

s,u
A ⋊ℤ2)

◦
)), the equality

Φ(C(X̄A)) = C(X̄B) is obvious (cf. [20, Theorem 1.1]). �
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Corollary 5.5. Let B be an M × M irreducible non-permutation matrix with
entries in {0, 1}. For any continuous function g ∈ C(X̄B,ℤ) on X̄B, there ex-
ist an N × N irreducible non-permutation matrix A with entries in {0, 1} and
a continuous function f =

∑N
j=1 fj�Uj(0) for some integers fj ∈ ℤ such that

(X̄A, �̄A) is topologically conjugate to (X̄B, �̄B) and there exists an isomorphism
Φ ∶ ℛ̃A ⟶ ℛ̃B such that

Φ(C(X̄A)) = C(X̄B), Φ◦
A,f(r,s) = 
B,g(r,s)◦Φ, (r, s) ∈ T2.

Proof. There exists K ∈ ℕ such that g =
∑

�∈BK(X̄B)
g��U�

for some g� ∈ ℤ
where U� is the cylinder set of X̄B for a word � ∈ BK(X̄B). By taking K-higher
block representation of X̄B and its K higher block matrix of B as A (see [17,
1.4]), and shifting g, one may have a topological conjugacy ' ∶ X̄A ⟶ X̄B and
a continuous function f =

∑N
j=1 fj�Uj(0) for some integers fj ∈ ℤ such that

f = g◦'. Hence we get the desired assertion by Proposition 5.4. �

6. Flow equivalence
We �x an irreducible, non-permutation matrix A. Let f ∶ X̄A ⟶ ℕ be

a continuous function on X̄A such that f =
∑N

j=1 fj�Uj(0) for some positive
integers fj ∈ ℕ. Put mj = fj − 1 for j = 1,… , N. Consider the new graph
Gf = (Vf,ℰf) with its transition matrix Af from the graph G = (V ,ℰ) for the
matrix A de�ned in (2.3) in Section 2. The vertex set Vf is

N⋃

j=1
{j0, j1, j2,… , jmj

},

which is denoted by Σ̃, and if A(j, k) = 1, then

Af(j0, j1) = Af(j1, j2) =⋯ = Af(jmj−1, jmj
) = Af(jmj

, k0) = 1.

Let us denote by

S̃j0 , S̃j1 , S̃j2 ,… , S̃jmj and T̃j0 , T̃j1 , T̃j2 ,… , T̃jmj
the canonical generating partial isometries ofOAf andO(Af)t respectivelywhich
satisfy

N∑

j=1
(S̃j0 S̃

∗
j0
+ S̃j1 S̃

∗
j1
+⋯ + S̃jmj S̃

∗
jmj
) = 1, (6.1)

S̃∗jn S̃jn = S̃jn+1 S̃
∗
jn+1

, n = 0, 1,… , mj − 1, (6.2)

S̃∗jmj
S̃jmj =

N∑

k=1
A(j, k)S̃k0 S̃

∗
k0
, j = 1, 2,… , N (6.3)
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and
N∑

j=1
(T̃j0 T̃

∗
j0
+ T̃j1 T̃

∗
j1
+⋯ + T̃jmj T̃

∗
jmj
) = 1, (6.4)

T̃∗jn+1 T̃jn+1 = T̃jn T̃
∗
jn
, n = 0, 1,… , mj − 1, (6.5)

T̃∗j0 T̃j0 =
N∑

k=1
At(j, k)T̃kmk T̃

∗
kmk

, j = 1, 2,… , N. (6.6)

We set

Sj = S̃j0 S̃j1 S̃j2⋯ S̃jmj , Tj = T̃jmj T̃jmj−1⋯ T̃j1 T̃j0 for j = 1,… , N.

De�ne the projections

PA =
N∑

j=1
S̃j0 S̃

∗
j0

and PAt =
N∑

j=1
T̃jmj T̃

∗
jmj
.

We denote by C∗(S1,… , SN) (resp. C∗(T1,… , TN)) the C∗-subalgebra of OAf
(resp. O(Af)t ) generated by S1,… , SN (resp. T1,… , TN).

Lemma 6.1. Keep the above notation. We have
(i)

N∑

j=1
SjS∗j = PA, S∗jSj =

N∑

k=1
A(j, k)SkS∗k for j = 1,… , N,

and theC∗-algebraPAOAfPA coincides withC
∗(S1,… , SN) that is isomor-

phic to OA.
(ii)

N∑

j=1
TjT∗j = PAt , T∗jTj =

N∑

k=1
At(j, k)TkT∗k for j = 1,… , N,

and theC∗-algebra PAtO(Af)tPAt coincides withC
∗(T1,… , TN) that is iso-

morphic to OAt .

Proof. We will prove (i). By (6.2), we have the following equalities

S∗jSj =(S̃j0 S̃j1 S̃j2⋯ S̃jmj )
∗(S̃j0 S̃j1 S̃j2⋯ S̃jmj )

=S̃∗jmj
S̃∗jmj−1

⋯ S̃∗j1 S̃
∗
j0
S̃j0 S̃j1⋯ S̃jmj−1 S̃jmj

=S̃∗jmj
S̃∗jmj−1

⋯ S̃∗j1 S̃j1 S̃
∗
j1
S̃j1⋯ S̃jmj−1 S̃jmj

=S̃∗jmj
S̃∗jmj−1

⋯ S̃∗j2 S̃
∗
j1
S̃j1 S̃j2⋯ S̃jmj−1 S̃jmj

=S̃∗jmj
S̃∗jmj−1

⋯ S̃∗j2 S̃j2⋯ S̃jmj−1 S̃jmj .
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By continuing this procedure, the last term above goes to S̃∗jmj
S̃jmj so that S

∗
jSj =

S̃∗jmj
S̃jmj .We also have

SjS∗j =(S̃j0 S̃j1 S̃j2⋯ S̃jmj )(S̃j0 S̃j1 S̃j2⋯ S̃jmj )
∗

=S̃j0 S̃j1⋯ S̃jmj−1 S̃jmj S̃
∗
jmj
S̃∗jmj−1

⋯ S̃∗j1 S̃
∗
j0

=S̃j0 S̃j1⋯ S̃jmj−1 S̃
∗
jmj−1

S̃jmj−1 S̃
∗
jmj−1

⋯ S̃∗j1 S̃
∗
j0

=S̃j0 S̃j1⋯ S̃jmj−1 S̃
∗
jmj−1

⋯ S̃∗j1 S̃
∗
j0
.

By continuing this procedure, the last term above goes to S̃j0 S̃
∗
j0
.Hence we have

S∗jSj = S̃∗jmj
S̃jmj , SjS∗j = S̃j0 S̃

∗
j0
, j = 1,… , N (6.7)

so that
N∑

j=1
SjS∗j = PA and S∗jSj =

N∑

k=1
A(j, k)SkS∗k , j = 1,… , N.

Similarly we have

T∗jTj = T̃∗j0 T̃j0 , TjT∗j = T̃jmj T̃
∗
jmj
, j = 1,… , N (6.8)

so that
N∑

j=1
TjT∗j = PAt and T∗jTj =

N∑

k=1
At(j, k)TkT∗k , j = 1,… , N.

As Sj = PAS̃j0 S̃j1 S̃j2⋯ S̃jmjPA, one sees that Sj ∈ PAOAfPA for j = 1,… , N.
Hencewe haveC∗(S1,… , SN) ⊂ PAOAfPA.Wewill show the converse inclusion
relation. We note that for jk, j′k′ ∈ Σ̃, the equality Af(jk, j′k′) = 1 holds if and
only if either of the following two cases occurs

(1) j′ = j and k′ = k + 1
(2) A(j, j′) = 1 and k = mj, k′ = 0.

For �̃ = (�̃1,… , �̃m), �̃ = (�̃1,… , �̃n) ∈ B∗(X̄Af ), suppose that PAS̃�̃S̃
∗
�̃PA ≠ 0.

We �rst see that �̃1 = m(1)0 and �̃1 = n(1)0 for some m(1), n(1) = 1,… , N. By
the conditions (1), (2), we know that

S̃�̃ = Sm(1)⋯ Sm(p)S̃j0⋯ S̃jk , S̃�̃ = Sn(1)⋯ Sn(q)S̃i0⋯ S̃il
for some m(1),… , m(p), n(1),… , n(q), j, i ∈ {1,… , N} and 0 ≤ k ≤ mj, 0 ≤
l ≤ mi. Hence we may assume that �̃ = (j0, j1,… , jk), �̃ = (i0, i1,… , il) with
0 ≤ k ≤ mj, 0 ≤ l ≤ mi, so that

S̃�̃S̃∗�̃ = S̃j0 S̃j1⋯ S̃jk S̃
∗
il
⋯ S̃∗i1 S̃

∗
i0
≠ 0.

Since

S̃jk = S̃jk S̃
∗
jk
S̃jk = S̃jk S̃jk+1 S̃

∗
jk+1

, S̃∗il = S̃∗il S̃il S̃
∗
il
= S̃il+1 S̃

∗
il+1
S̃∗il ,



FLOW EQUIVALENCE OF TOPOLOGICAL MARKOV SHIFTS AND RUELLE ALGEBRAS 1403

we have

S̃�̃S̃∗�̃ = S̃j0 S̃j1⋯ S̃jk−1 S̃jk S̃jk+1 S̃
∗
jk+1

S̃il+1 S̃
∗
il+1
S̃∗il S̃

∗
il−1
⋯ S̃∗i1 S̃

∗
i0
.

The condition S̃�̃S̃∗�̃ ≠ 0 leads jk+1 = il+1, so that we have jk = il, ⋯ , j1 =
i1, j0 = i0. Hence

S̃j0 S̃j1⋯ S̃jk−1 S̃jk S̃jk+1 S̃
∗
jk+1

S̃il+1 S̃
∗
il+1
S̃∗il S̃

∗
il−1
⋯ S̃∗i1 S̃

∗
i0

=S̃j0 S̃j1⋯ S̃jk−1 S̃jk S̃jk+1 S̃
∗
jk+1

S̃jk+1 S̃
∗
jk+1

S̃∗jk S̃
∗
jk−1

⋯ S̃∗j1 S̃
∗
j0
.

As S̃∗jk+1 S̃jk+1 = S̃jk+2 S̃
∗
jk+2

, by continuing this procedure we know that

S̃�̃S̃∗�̃ = S̃j0 S̃j1⋯ S̃jk−1 S̃jk ⋯ S̃jmj S̃
∗
jmj
⋯ S̃∗jk S̃

∗
jk−1

⋯ S̃∗j1 S̃
∗
j0
= SjS∗j .

This shows that the element PAS̃�̃S̃∗�̃PA belongs to C∗(S1,… , SN), so that

PAOAfPA = C∗(S1,… , SN)

and similarly
PAtO(Af)tPAt = C∗(T1,… , TN).

�

Recall that the vertex set Vf de�ned by ∪Nj=1{j0, j1,… , jmj
} of the graph Gf is

denoted by Σ̃.We set

Ũjk = T̃∗jk ⊗ S̃jk , jk ∈ Σ̃.

The partial isometries Ũjk , jk ∈ Σ̃ belong to the Ruelle algebra ℛAf for the
matrix Af. The following lemma is direct from the identities (6.2), (6.5).

Lemma 6.2. For j = 1,… , N, k = 0, 1,… , mj, we have

(ŨjkŨjk+1⋯ Ũjmj
)(ŨjkŨjk+1⋯ Ũjmj

)∗ =ŨjkŨ
∗
jk
= T̃∗jk T̃jk ⊗ S̃jk S̃

∗
jk
,

(ŨjkŨjk+1⋯ Ũjmj
)∗(ŨjkŨjk+1⋯ Ũjmj

) =Ũ∗
jmj
Ũjmj

= TjT∗j ⊗ S∗jSj.

Hence we have

EAf =
N∑

j=1

mj∑

k=0
T̃jk T̃

∗
jk
⊗ S̃∗jk S̃jk =

N∑

j=1

mj∑

k=0
ŨjkŨ

∗
jk

in ℛAf ,

EA =
N∑

j=1
TjT∗j ⊗ S∗jSj =

N∑

j=1
Ũ∗
jmj
Ũjmj

in ℛA.

LetH be the separable in�nite dimensional Hilbert spacel2(ℕ). Take isome-
tries sjk , jk ∈ Σ̃ onH such that

mj∑

k=0
sjks

∗
jk
= 1H , j = 1,… , N. (6.9)
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We de�ne a partial isometry Ṽf in the tensor product C∗-algebra ℛAf ⊗ B(H)
by setting

Ṽf =
N∑

j=1

mj∑

k=0
ŨjkŨjk+1⋯ Ũjmj

⊗ s∗jk . (6.10)

Lemma 6.3. ṼfṼ∗
f = EAf ⊗ 1H and Ṽ∗

fṼf = EA ⊗ 1H .

Proof. By Lemma 6.2 we have the following equalities.

Ṽ∗
fṼf =

N∑

j=1

mj∑

k=0
(ŨjkŨjk+1⋯ Ũjmj

)∗(ŨjkŨjk+1⋯ Ũjmj
)⊗ sjks

∗
jk

=
N∑

j=1
(TjT∗j ⊗ S∗jSj)⊗ (

mj∑

k=0
sjks

∗
jk
)

=
N∑

j=1
TjT∗j ⊗ S∗jSj ⊗ 1H = EA ⊗ 1H

and

ṼfṼ∗
f =

N∑

j=1

mj∑

k=0
(ŨjkŨjk+1⋯ Ũjmj

)(ŨjkŨjk+1⋯ Ũjmj
)∗ ⊗ s∗jksjk

=
N∑

j=1

mj∑

k=0
ŨjkŨ

∗
jk
⊗ 1H = EAf ⊗ 1H .

�

Recall that K denotes the C∗-algebra K(H) of compact operators on the
Hilbert space H. As Ũjk belongs to ℛAf and ℛAf ⊗ B(H) is contained in the
multiplier algebraM(ℛAf ⊗K) ofℛAf ⊗K, the partial isometry Ṽf belongs to
M(ℛAf ⊗K).

Lemma 6.4. EAf (PAt ⊗ PA) = (PAt ⊗ PA)EAf = EA.

Proof. We have

EAf (PAt ⊗ PA) =
N∑

j=1
(
mj∑

k=0
T̃jk T̃

∗
jk
⊗ S̃∗jk S̃jk ) ⋅ (

N∑

j=1
T̃jmj T̃

∗
jmj

⊗
N∑

i=1
S̃i0 S̃

∗
i0
)

=
N∑

j=1
{T̃jmj T̃

∗
jmj

⊗ (
N∑

i=1
S̃∗jmj

S̃jmj ⋅ S̃i0 S̃
∗
i0
)}.

By the identities (6.7) and (6.8), we know

S̃∗jmj
S̃jmj = S∗jSj, S̃i0 S̃

∗
i0
= SiS∗i , T̃jmj T̃

∗
jmj

= TjT∗j ,
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so that we have

EAf (PAt ⊗ PA)

=
N∑

j=1
{TjT∗j ⊗ S∗jSj(

N∑

i=1
A(j, i)SiS∗i )} =

N∑

j=1
(TjT∗j ⊗ S∗jSj) = EA,

and hence (PAt ⊗ PA)EAf = EA. �

Theorem 6.5. Let A be an irreducible, non-permutation matrix with entries in
{0, 1}. For a continuous function f ∶ X̄A ⟶ ℕ, there exists an isomorphism
Φf ∶ ℛ̃Af ⊗K ⟶ ℛ̃A ⊗K of C∗-algebras such that

Φf◦(

Af
(r,s) ⊗ id) = (
A,f(r,s) ⊗ id)◦Φf, (r, s) ∈ T2.

Proof. By Corollary 5.5, we may assume that f is of the form
∑N

j=1 fj�Uj(0).
De�ne Φf ∶ ℛ̃Af ⊗K ⟶ ℛ̃A ⊗K by setting Φf(x ⊗ K) = Ṽ∗

f(x ⊗ K)Ṽf for
x ⊗ K ∈ ℛ̃Af ⊗K.We note that

ℛ̃Af = EAf (O(Af)t ⊗OAf )EAf , ℛ̃A = EA(OAt ⊗OA)EA,
ṼfṼ∗

f = EAf ⊗ 1H , Ṽ∗
fṼf = EA ⊗ 1H ,

(PAt ⊗ PA)(O(Af)t ⊗OAf )(PAt ⊗ PA) = OAt ⊗OA.

For x ⊗ K ∈ ℛ̃Af ⊗K, we have

Ṽ∗
f(x ⊗ K)Ṽf

=(EA ⊗ 1H)Ṽ∗
f(x ⊗ K)Ṽf(EA ⊗ 1H)

=(EA ⊗ 1H)((PAt ⊗ PA)⊗ 1H)Ṽ∗
f(x ⊗ K)Ṽf((PAt ⊗ PA)⊗ 1H)(EA ⊗ 1H).

As Ṽf ∈ M(ℛ̃Af ⊗K), the element Ṽ∗
f(x ⊗ K)Ṽf belongs to ℛ̃Af ⊗K which

is (EAf ⊗ 1H)((O(Af)t ⊗OAf )⊗K)(EAf ⊗ 1H). By Lemma 6.4, we have

(EA ⊗ 1H)((PAt ⊗ PA)⊗ 1H)(EAf ⊗ 1H) = (EA ⊗ 1H)((PAt ⊗ PA)⊗ 1H)

so that Ṽ∗
f(x ⊗ K)Ṽf belongs to the algebra

(EA⊗ 1H)((PAt ⊗PA)⊗ 1H)((O(Af)t ⊗OAf )⊗K)((PAt ⊗PA)⊗ 1H)(EA⊗ 1H)

which is
EA(OAt ⊗OA)EA ⊗K = ℛ̃A ⊗K.

Hence Ṽ∗
f(x⊗K)Ṽf belongs to the algebra ℛ̃A⊗K. This shows that the inclu-

sion relation
Ṽ∗
f(ℛ̃Af ⊗K)Ṽf ⊂ ℛ̃A ⊗K (6.11)

holds. Conversely, for y ⊗ K ∈ ℛ̃A ⊗K, we have

Ṽf(y ⊗ K)Ṽ∗
f = (EAf ⊗ 1H)Ṽf(y ⊗ K)Ṽ∗

f(EAf ⊗ 1H).
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As Ṽf ∈ M(ℛ̃Af⊗K) and y⊗K ∈ ℛ̃A⊗K ⊂ ℛ̃Af⊗K, the element Ṽf(y⊗K)Ṽ∗
f

belongs to ℛ̃Af⊗K which is (EAf⊗1H)((O(Af)t⊗OAf )⊗K)(EAf⊗1H).Hence
Ṽf(x ⊗ K)Ṽ∗

f belongs to the algebra

(EAf ⊗ 1H)(EAf ⊗ 1H)((O(Af)t ⊗OAf )⊗K)(EAf ⊗ 1H)

which is
EAf (O(Af)t ⊗OAf )EAf ⊗K = ℛ̃Af ⊗K.

Hence Ṽf(y ⊗ K)Ṽ∗
f belongs to the algebra ℛ̃Af ⊗K. This shows that the in-

clusion relation
Ṽf(ℛ̃A ⊗K)Ṽ∗

f ⊂ ℛ̃Af ⊗K (6.12)

holds. Since Ṽ∗
fṼf = EA⊗1H and EAℛ̃AEA = ℛ̃A, the inclusion relation (6.12)

implies
ℛ̃A ⊗K ⊂ Ṽ∗

f(ℛ̃Af ⊗K)Ṽf. (6.13)

By (6.11) and (6.13), we have Ṽ∗
f(ℛ̃Af ⊗K)Ṽf = ℛ̃A ⊗K. Therefore we have

an isomorphism Φf = Ad(Ṽ∗
f) ∶ ℛ̃Af ⊗K ⟶ ℛ̃A ⊗K.

Since 

Af
(r,s)(Ũjk ) = Ũjk for jk ∈ Σ̃ by Lemma 5.3, we know the equality

(

Af
(r,s) ⊗ id)(Ṽf) = Ṽf. For x ⊗ K ∈ ℛ̃Af ⊗K, we have

(Φf◦(

Af
(r,s) ⊗ id))(x ⊗ K) =Ṽ∗

f(

Af
(r,s)(x)⊗K)Ṽf

=(

Af
(r,s) ⊗ id)(Ṽ∗

f(x ⊗ K)Ṽf)

=(

Af
(r,s) ⊗ id)(Φ(x ⊗ K)).

Now



Af
(r,s)(T

∗
j ⊗ Sk)

=

Af
(r,s)((T̃jmj ⋯ T̃j1 T̃j0)

∗ ⊗ S̃k0 S̃k1⋯ S̃kmk )

=exp(2�
√
−1(fks − fjr))((T̃jmj ⋯ T̃j1 T̃j0)

∗ ⊗ (S̃k0 S̃k1⋯ S̃kmk ))

=�A
t ,f

r (T∗j )⊗ �A,fs (Sk).

Hence the restriction of 

Af
(r,s) ⊗ id to the subalgebra ℛ̃A ⊗ K coincides with


A,f(r,s) ⊗ id so that we conclude that

Φf◦(

Af
(r,s) ⊗ id) = (
A,f(r,s) ⊗ id)◦Φf.

�

Remark 6.6. We note that it is not di�cult to see that the above isomorphism
Φf ∶ ℛ̃Af⊗K ⟶ ℛ̃A⊗K satis�esΦf(C(X̄Af )⊗C) = C(X̄A)⊗C, whereC is the
commutative C∗-algebra of diagonal operators on the Hilbert soaceH = l2(ℕ).
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By using Proposition 4.6, we have the converse implication of Theorem 6.5
in the following way.

Theorem 6.7. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Suppose that there exist a continuous function f ∶ X̄A ⟶ ℕ and an iso-
morphism Φ ∶ ℛ̃B ⊗K ⟶ ℛ̃A ⊗K such that

Φ◦(
B(r,s) ⊗ id) = (
A,f(r,s) ⊗ id)◦Φ, (r, s) ∈ T2.

Then the two-sided topologicalMarkov shifts (X̄B, �̄B)and (X̄A, �̄A)are�owequiv-
alent.

Proof. By Theorem 6.5, there exists an isomorphismΦf ∶ ℛ̃Af ⊗K ⟶ ℛ̃A⊗
K of C∗-algebras such that

Φf◦(

Af
(r,s) ⊗ id) = (
A,f(r,s) ⊗ id)◦Φf, (r, s) ∈ T2.

We de�ne the isomorphism Φ◦ = Φ−1f ◦Φ ∶ ℛ̃B ⊗ K ⟶ ℛ̃Af ⊗ K which
satis�es

Φ◦◦(
B(r,s) ⊗ id) = (

Af
(r,s) ⊗ id)◦Φ◦, (r, s) ∈ T2.

By Proposition 4.6, we know that (X̄B, �̄B) and (X̄Af , �̄Af ) are �ow equivalent.
Since (X̄Af , �̄Af ) is a discrete suspension of (X̄A, �̄A), they are �ow equivalent,
so (X̄B, �̄B) and (X̄A, �̄A) are �ow equivalent. �

Therefore we have a characterization of �ow equivalence in terms of the C∗-
algebras ℛ̃A with their gauge actions with potentials.

Theorem 6.8. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}.Two-sided topologicalMarkov shifts (X̄A, �̄A) and (X̄B, �̄B) are �ow equiva-
lent if and only if there exist an irreducible non-permutationmatrixC with entries
in {0, 1} and continuous functions fA, fB ∶ X̄C ⟶ ℕ such that there exist iso-
morphisms ΦA ∶ ℛ̃A ⊗ K ⟶ ℛ̃C ⊗ K and ΦB ∶ ℛ̃B ⊗ K ⟶ ℛ̃C ⊗ K
satisfying

ΦA◦(
A(r,s) ⊗ id) = (
C,fA(r,s) ⊗ id)◦ΦA (6.14)

and

ΦB◦(
B(r,s) ⊗ id) = (
C,fB(r,s) ⊗ id)◦ΦB. (6.15)

Proof. Suppose the two-sided topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B)
are �ow equivalent. By Parry–Sullivan [22], there exist an irreducible non-
permutation matrix C with entries in {0, 1} and continuous functions fA, fB ∶
X̄C ⟶ ℕ such that (X̄A, �̄A) and (X̄CfA , �̄CfA ) are topologically conjugate, and
(X̄B, �̄B) and (X̄CfB , �̄CfB ) are topologically conjugate. By [20, Theorem 1.1]
and Theorem 6.5, we have isomorphisms ΦA ∶ ℛ̃A ⊗ K ⟶ ℛ̃C ⊗ K and
ΦB ∶ ℛ̃B ⊗K ⟶ ℛ̃C ⊗K of C∗-algebras satisfying (6.14) and (6.15), respec-
tively.
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The converse implication immediately follows from Theorem 6.7. �

As a corollary we have

Corollary 6.9. LetA, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B) are �ow equiv-
alent if and only if there exist continuous functions fA ∶ X̄A ⟶ ℕ and fB ∶
X̄B ⟶ ℕ such that there exists an isomorphism Φ ∶ ℛ̃A ⊗K ⟶ ℛ̃B ⊗K of
C∗-algebras satisfying

Φ◦(
A,fA(r,s) ⊗ id) = (
B,fB(r,s) ⊗ id)◦Φ, (r, s) ∈ T2.

Proof. By Parry–Sullivan [22], (X̄A, �̄A) and (X̄B, �̄B) are �ow equivalent if and
only if there exist continuous functions fA ∶ X̄A ⟶ ℕ and fB ∶ X̄B ⟶ ℕ
such that (X̄AfA , �̄AfA ) and (X̄BfB , �̄BfB ) are topologically conjugate. The asser-
tion follows from [20, Theorem 1.1] and Theorem 6.5, Theorem 6.7. �

7. Flow equivalence and topological conjugacy
In [20, Theorem 1.1], it was proved that two-sided topological Markov shifts

(X̄A, �̄A) and (X̄B, �̄B) are topologically conjugate if and only if there exists an
isomorphism � ∶ ℛ̃A ⟶ ℛ̃B of C∗-algebras such that �(C(X̄A)) = C(X̄B) and
�◦
A(r,s) = 
B(r,s)◦�, (r, s) ∈ T2. Although topological conjugacy is a special case
of �ow equivalence, Theorem 6.8 and Corollary 6.9 do not refer to the case of
topological conjugacy. In this �nal section, we reformulate both Theorem 6.8
and Corollary 6.9 to give characterizations of �ow equivalence in terms of C∗-
algebras that simultaneously include characterzations of topological conjugacy
as a special case. They appear as Theorem 7.2 and Theorem 7.3.

We keep the assumption that A is an irreducible, non-permutation matrix
with entries in {0, 1}, and f ∶ X̄A ⟶ ℕ is a continuous function such that
f =

∑N
j=1 fj�Uj(0) for some positive integers fj. Let en, n ∈ ℕ be a sequence

of vectors of complete orthonormal basis of the separable in�nite dimensional
Hilbert space H = l2(ℕ).We �x j = 1,… , N. For k = 0, 1,… , mj, where mj =
fj − 1, we set

ℕk = {n ∈ ℕ ∣ n ≡ k (mod fj)}
so that we have a disjoint union ℕ = ℕ0 ∪ ℕ1 ∪⋯ ∪ ℕmj

.We write

ℕk = {1k, 2k, 3k,… } where 1k < 2k < 3k < … .

De�ne an isometry sjk onH by setting

sjken = enk , n ∈ ℕ, k = 0, 1,… , mj.

The family {sjk }
mj

k=0 satisfy (6.9). We may construct the operator Ṽf from them
by the formula (6.10). As in the proof of Theorem 6.5, de�ne the isomorphism
Φf ∶ ℛ̃Af⊗K ⟶ ℛ̃A⊗K ofC∗-algebras by settingΦf(x⊗K) = Ṽ∗

f(x⊗k)Ṽf
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for x⊗K ∈ ℛ̃Af⊗K. Let pn be the projection onH of rank one onto the vector
en. As EAf ⊗ 1H = ṼfṼ∗

f, we have

Ṽ∗
f(EAf ⊗ p1)Ṽf =

N∑

j=1

mj∑

k=0
(ŨjkŨjk+1⋯ Ũjmj

)∗(ŨjkŨjk+1⋯ Ũjmj
)⊗ sjkp1s

∗
jk

=
N∑

j=1
{(TjT∗j ⊗ S∗jSj)⊗ (

mj∑

k=0
sjkp1s

∗
jk
)}.

Since sjkp1s
∗
jk
= p1k , we have

Ṽ∗
f(EAf ⊗ p1)Ṽf =

N∑

j=1
{(TjT∗j ⊗ S∗jSj)⊗ (

mj∑

k=0
p1k )} ∈ C(X̄A)⊗K.

Hence we obtain the following formula in the K0-group K0(C(X̄A)) :

[Ṽ∗
f(EAf ⊗ p1)Ṽf] =

N∑

j=1
fj[TjT∗j ⊗ S∗jSj] in K0(C(X̄A)).

Let us denote by C(X̄A,ℤ) the abelian group of ℤ-valued continuous functions
on X̄A. Under the natural identi�cation betweenK0(C(X̄A)) and C(X̄A,ℤ), one
may regard the class

∑N
j=1 fj[TjT

∗
j ⊗ S∗jSj] in K0(C(X̄A)) as the function f in

C(X̄A,ℤ). We write it as f([EA]) in K0(C(X̄A)). For a general continuous func-
tion f ∈ C(X̄A,ℤ), we write it as f([EA]) as an element ofK0(C(X̄A)) under the
identi�cation betweenK0(C(X̄A)) andC(X̄A,ℤ). Recall thatC denotes the com-
mutative C∗-algebra on l2(ℕ) consisting of diagonal operators with respect to
the basis {en}n∈ℕ. The construction of the operator Ṽf tells us that the equality

Ṽ∗
f(C(X̄Af )⊗ C)Ṽf = C(X̄A)⊗ C

holds. Therefore we obtain the following proposition that is a reformulation of
Theorem 6.5.

Proposition 7.1. Let A be an irreducible, non-permutation matrix with entries
in {0, 1}. Then there exists an isomorphism Φf ∶ ℛ̃Af ⊗K ⟶ ℛ̃A ⊗K of C∗-
algebras such that

Φf(C(X̄Af )⊗ C) = C(X̄A)⊗ C, (7.1)

Φf◦(

Af
(r,s) ⊗ id) = (
A,f(r,s) ⊗ id)◦Φf, (r, s) ∈ T2, (7.2)

Φf∗([EAf ]) = f([EA]) in K0(C(X̄A)). (7.3)

By virtue of Proposition 7.1, wemay �nally state two theorems. The �rst one
is a reformulation of Theorem 6.8 in the following way.



1410 KENGOMATSUMOTO

Theorem 7.2. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B) are �ow equiv-
alent if and only if there exist an irreducible non-permutation matrix C with en-
tries in {0, 1} and continuous functions fA, fB ∶ X̄C ⟶ ℕ such that ℛ̃A ⊗ K
and ℛ̃B ⊗K are isomorphic to ℛ̃C ⊗K via isomorphisms ΦA and ΦB satisfying

⎧

⎨
⎩

ΦA◦(
A(r,s) ⊗ id) = (
C,fA(r,s) ⊗ id)◦ΦA,
ΦA(C(X̄A)⊗ C) = C(X̄C)⊗ C,

ΦA∗([EA]) = fA([EC]) in K0(C(X̄C)),
(7.4)

⎧

⎨
⎩

ΦB◦(
B(r,s) ⊗ id) = (
C,fB(r,s) ⊗ id)◦ΦB,
ΦB(C(X̄B)⊗ C) = C(X̄C)⊗ C,

ΦB∗([EB]) = fB([EC]) in K0(C(X̄C)).
(7.5)

In particular, (X̄A, �̄A) and (X̄B, �̄B) are topologically conjugate if and only if the
equalities (7.4) and (7.5) hold for fA ≡ fB ≡ 1.

Proof. Assume the two-sided topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B)
are �ow equivalent. By Parry–Sullivan [22], there exist an irreducible non-
permutation matrix C with entries in {0, 1} and continuous functions fA, fB ∶
X̄C ⟶ ℕ such that (X̄A, �̄A) and (X̄CfA , �̄CfA ) are topologically conjugate, and
(X̄B, �̄B) and (X̄CfB , �̄CfB ) are topologically conjugate. By [20, Theorem 1.1]
there exist isomorphisms �A ∶ ℛ̃A ⟶ ℛ̃CfA

and �B ∶ ℛ̃B ⟶ ℛ̃CfB
of C∗-

algebras such that�A◦
A(r,s) = 

CfA
(r,s)◦�A,�B◦


B
(r,s) = 


CfB
(r,s)◦�B and�A(C(X̄A)) =

C(X̄CfA ), �B(C(X̄B)) = C(X̄CfB ). By Proposition 7.1, there exist isomorphisms
ΦfA ∶ ℛ̃CfA

⊗K ⟶ ℛ̃C⊗K and ΦfB ∶ ℛ̃CfB
⊗K ⟶ ℛ̃C⊗K satsifying the

equalities sated as (7.1), (7.2) and (7.3). By putting

ΦA ∶ = ΦfA◦(�A ⊗ id) ∶ ℛ̃A ⊗K ⟶ ℛ̃C ⊗K,

ΦB ∶ = ΦfB◦(�B ⊗ id) ∶ ℛ̃B ⊗K ⟶ ℛ̃C ⊗K,

we know the isomorphisms ΦA and ΦB satisfy the desired properties. The con-
verse implication immediately follows from Theorem 6.8.

It remains to show that if the equalities (7.4) and (7.5) hold for fA ≡ fB ≡ 1,
then (X̄A, �̄A) and (X̄B, �̄B) are topologically conjugate. Let en, n ∈ ℕ be a
complete orthonormal system of the Hilbert space l2(ℕ), and p1 be the pro-
jection on l2(ℕ) of rank one onto the vector e1. By (7.4) for fA ≡ 1, we have
[ΦA(EA⊗p1)] = [EC⊗p1] in K0(C(X̄C)).Hence we may take a prtial isometry
VA ∈ C(X̄C) ⊗ K such that V∗

AVA = EC ⊗ p1, V∗
AVA = ΦA(EA ⊗ p1). Put

ΨA = Ad(VA)◦ΦA. Since we see

ΨA(EA ⊗ p1) = VAΦA(EA ⊗ p1)V∗
A = VAV∗

A = EC ⊗ p1,
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we have an isomorphism ΨA ∶ ℛ̃A ⊗ ℂp1 ⟶ ℛ̃C ⊗ ℂp1. For any a ∈ C(X̄A),
we have

ΨA(a ⊗ p1) = VAΦA((EA ⊗ p1)(a ⊗ p1)(EA ⊗ p1))V∗
A

= VAV∗
AVAΦA(a ⊗ p1)V∗

AVAV
∗
A

= (EC ⊗ p1)VAΦA(a ⊗ p1)V∗
A(EC ⊗ p1),

so that we know that ΨA(a ⊗ p1) ∈ C(X̄C) ⊗ p1. We thus have ΨA(C(X̄A) ⊗
ℂp1) = C(X̄C)⊗ℂp1. SinceVA belongs to C(X̄C)⊗K, one knows that (
C,fA(r,s) ⊗
id)(VA) = VA so that

ΨA◦(
A(r,s) ⊗ id) = (
C,fA(r,s) ⊗ id)◦ΨA

for fA ≡ 1. By restricting ΨA to ℛ̃A ⊗ ℂp1, we have an isomorphism �A ∶
ℛ̃A ⟶ ℛ̃C such that �A◦
A(r,s) = 
C(r,s)◦�A and �A(C(X̄A)) = C(X̄C). This
shows that (X̄A, �̄A) and (X̄C , �̄C) are topologically conjugate by [20]. We simi-
larly know that (X̄B, �̄B) and (X̄C , �̄C) are topologically conjugate, so that (X̄A, �̄A)
and (X̄B, �̄B) are topologically conjugate.

Converse implication under the condition that fA ≡ 1 and fB ≡ 1 is obvious
by [20, Theorem 1.1]. �

The second one is a reformulation of Corollary 6.9 in the following way.

Theorem 7.3. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. Two-sided topological Markov shifts (X̄A, �̄A) and (X̄B, �̄B) are �ow equiv-
alent if and only if there exist continuous functions fA ∶ X̄A ⟶ ℕ and fB ∶
X̄B ⟶ ℕ such that there exists an isomorphism Φ ∶ ℛ̃A ⊗K ⟶ ℛ̃B ⊗K of
C∗-algebras satisfying

Φ◦(
A,fA(r,s) ⊗ id) = (
B,fB(r,s) ⊗ id)◦Φ, (r, s) ∈ T2, (7.6)

Φ(C(X̄A)⊗ C) = C(X̄B)⊗ C, (7.7)
Φ∗(fA([EA])) = fB([EB]) in K0(C(X̄B)). (7.8)

In particular, (X̄A, �̄A) and (X̄B, �̄B) are topologically conjugate if and only if the
equalities (7.6), (7.7) and (7.8) hold for fA ≡ fB ≡ 1.

Proof. It su�ces to show the only if part. Assume that (X̄A, �̄A) and (X̄B, �̄B)
are �ow equivalent. By Parry–Sullivan [22], there exist continuous functions
fA ∶ X̄A ⟶ ℕ and fB ∶ X̄B ⟶ ℕ such that (X̄AfA , �̄AfA ) and (X̄BfB , �̄BfB ) are
topologically conjugate. By [20], there exists an isomorphism �◦ ∶ ℛ̃AfA

⟶
ℛ̃BfB

of C∗-algebras such that �◦(C(X̄AfA )) = C(X̄BfB ) and

�◦◦

AfA
(r,s) = 


BfB
(r,s)◦�◦, (r, s) ∈ T2.



1412 KENGOMATSUMOTO

By Theorem 6.5 and Remark 6.6 with Proposition 7.1, we have an isomorphism
ΦfA ∶ ℛ̃AfA

⊗K ⟶ ℛ̃A ⊗K of C∗-algebras satisfying

ΦfA◦(

AfA
(r,s) ⊗ id) = (
A,fA(r,s) ⊗ id)◦ΦfA , (r, s) ∈ T2,

ΦfA(C(X̄AfA )⊗ C) = C(X̄A)⊗ C,

ΦfA∗([EAfA ])) = fA([EA]) in K0(C(X̄A)).

Similarly we have an isomorphismΦfB ∶ ℛ̃BfB
⊗K ⟶ ℛ̃B⊗K of C∗-algebras

satisfying

ΦfB◦(

BfB
(r,s) ⊗ id) = (
B,fB(r,s) ⊗ id)◦ΦfB , (r, s) ∈ T2,

ΦfB(C(X̄BfB )⊗ C) = C(X̄B)⊗ C,

ΦfB∗([EBfB ])) = fB([EB]) in K0(C(X̄B)).

Put Φ ∶= ΦfB◦(�◦ ⊗ id)◦Φ−1fA ∶ ℛ̃A ⊗ K ⟶ ℛ̃B ⊗ K. We then see that
the equality Φ(C(X̄A)⊗ C) = C(X̄B)⊗ C holds. Since EAfA , EBfB are the units
of ℛ̃BfA

, ℛ̃BfB
, respectively, we know that (�◦ ⊗ id)(EAfA ⊗ p1) = EBfB ⊗ p1,

where p1 is the projection on l2(ℕ) of rank one as in the proof of the preceding
theorem. We thus have

Φ∗(fA[EA]) = ΦfB∗((�◦∗ ⊗ id)([EfA ⊗ p1])) = ΦfB∗([EfB ⊗ p1]) = fB([EB]).

Suppose next that fA ≡ 1 and fB ≡ 1. The condition (7.8) goes toΦ∗([EA]) =
[EB] in K0(C(X̄B)).Hence we may take a partial isometry V ∈ C(X̄B)⊗K such
that Φ(EA ⊗ p1) = V∗V and EB ⊗ p1 = VV∗. By a manner similar to the
proof of Theorem 7.2, we obtain an isomorphism � ∶ ℛ̃A ⟶ ℛ̃B such that
�(C(X̄A)) = C(X̄B) and�◦


A,fA
(r,s) = 
B,fB(r,s) ◦�. Now fA ≡ 1, fB ≡ 1, we conclude

that (X̄A, �̄A) and (X̄B, �̄B) are topologically conjugate by [20, Theorem 1.1].
The converse implication under the conditionfA ≡ 1, fB ≡ 1 is obvious. �
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