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Arithmeticity and hidden symmetries of
fully augmented pretzel link complements

Jeffrey S. Meyer, Christian Millichap
and Rolland Trapp

Abstract. This paper examines number theoretic and topological prop-
erties of fully augmented pretzel link complements. In particular, we
determine exactly when these link complements are arithmetic and ex-
actly which are commensurable with one another. We show these link
complements realize infinitely many CM-fields as invariant trace fields,
which we explicitly compute. Further, we construct two infinite fami-
lies of non-arithmetic fully augmented link complements: one that has
no hidden symmetries and the other where the number of hidden sym-
metries grows linearly with volume. This second family realizes the
maximal growth rate for the number of hidden symmetries relative to
volume for non-arithmetic hyperbolic 3-manifolds. Our work requires
a careful analysis of the geometry of these link complements, including
their cusp shapes and totally geodesic surfaces inside of these manifolds.
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1. Introduction

Every link L ⊂ S3 determines a link complement, that is, a non-compact
3-manifold M = S3 \ L. If M admits a metric of constant curvature −1,
we say that both M and L are hyperbolic, and in fact, if such a hyperbolic
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structure exists, then it is unique (up to isometry) by Mostow–Prasad rigid-
ity. Ever since the seminal work of Thurston in the early 1980s [34], we
have known that links are frequently hyperbolic and a significant amount of
research has been dedicated to understanding how their geometries relate to
topological, combinatorial, and number theoretic properties of these links.
In this paper, we further investigate these relationships for a particularly
tractable class of links known as fully augmented links (FALs). These links
often admit hyperbolic structures that can be explicitly described in terms
of combinatorial information coming from their respective link diagrams.
See Figure 1 for two diagrams of FALs.

There has already been significant progress made in developing relation-
ships between a FAL diagram and the geometry of the corresponding link
complement. Geometric structures for these link complements that can be
constructed via diagrams were first described by Agol and Thurston in the
appendix of [18] in 2004. Futer–Purcell used this construction to determine
diagrammatic conditions that guarantee a FAL is hyperbolic and computed
explicit estimates on the geometry of the cusp shapes of FALs in [14]. One
nice feature of hyperbolic FALs is that any hyperbolic link L ⊂ S3 can be
constructed via Dehn surgery on a hyperbolic FAL. Futer–Purcell [14] ex-
ploited this relationship along with their cusp geometry estimates of FALs
to show that highly twisted links coming from Dehn surgeries of FALs admit
no exceptional surgeries. Purcell also exploited these geometric structures
on FALs in [28] to determine explicit bounds on volumes and cusp volumes
of hyperbolic FALs in terms of diagrammatic information. Since the mid
2000s, FALs and their generalizations have further been explored by Purcell
[29] & [30], Flint [12], and Harnois–Olson–Trapp [15].

Here, we address several open questions about number theoretic proper-
ties and commensurability classes of FALs in the context of fully augmented
pretzel links (pretzel FALs). These links are an infinite subclass of FALs
whose geometric decompositions admit additional properties that can be
exploited. They are constructed by fully augmenting any pretzel link, that
is, enclosing each twist region of a pretzel link with an unkotted circle, which
we call a crossing circle, and removing all full-twists from each twist region.
See Figure 1 for a diagram of a pretzel link K and the corresponding pretzel
FAL F . We let Pn denote a pretzel FAL with n crossing circles and with
no twists going through any of the crossing circles. A diagram of P3 is de-
picted on the right side of Figure 1. We set Mn = S3 \ Pn. We refer to
a pair of pretzel FALs as half-twist partners if they have the same number
of crossing circles and differ by some number of half-twists going through
these crossing circles; we also refer to the corresponding link complements as
half-twist partners. For instance, F and P3 in Figure 1 are half-twist part-
ners. Half-twist partners frequently exhibit a number of common features,
as we shall see in this paper. Moving forward, we will assume that n ≥ 3,
which guarantees that Mn and all of its half-twist partners are hyperbolic.



ARITH. AND HIDDEN SYMMETRIES OF PRETZEL FAL COMPLEMENTS 151

We refer the reader to Section 2 for a more thorough description of pretzel
FALs, their geometric decompositions, and their half-twist partners.

K F P3

c1 c2 c3

Figure 1. On the left is a diagram of a pretzel link K with
three twist regions. The middle diagram shows the pretzel
FAL F obtained from fully augmenting K. The right dia-
gram shows the pretzel FAL P3, which is a half-twist partner
to F . Crossing circles of P3 are labeled by ci, for i = 1, 2, 3.

Our first major result is a complete classification of which pretzel FAL
complements are arithmetic. A link complement is arithmetic if its funda-
mental group is commensurable to PSL2(Ok), where k is some imaginary
quadratic extension of Q and Ok is its ring of integers. For more on arith-
metic 3-manifolds, we refer the reader to [20]. Arithmetic link complements
have very restrictive topological and geometric properties, and in particular,
they can not contain closed geodesics that are very short; see Theorem 5.1 for
an exact description. We show that most pretzel FAL complements (along
with their half-twist partners and an even more general type of partner - see
Definition 2.4) are non-arithmetic by using their geometric decompositions
to find short geodesics. The remaining cases are dealt with by examin-
ing properties of the invariant trace fields for these link complements. The
following theorem shows that a pretzel FAL complement is non-arithmetic
exactly when it has at least 5 crossing circles in its respective diagram. See
Section 5 for more details.

Theorem 1.1. Mn and all of its half-twist partners are arithmetic if and
only if n = 3, 4.

In Remark 5.3 we highlight the curious case of M6, whose arithmetic
and geometric features resemble that of an arithmetic link complement, yet
itself is not arithmetic. As mentioned in the previous paragraph, part of
the proof of Theorem 1.1 requires comparing invariant trace fields of pretzel
FAL complements. The invariant trace field of a hyperbolic 3-manifold
M = H3/Γ is the field generated by the traces of the products of squares
of elements in Γ. Determining which fields are realized as invariant trace
fields of hyperbolic link complements is a question of interest. Neumann has
conjectured [25] that every non-real number field arises as the invariant trace
field of some hyperbolic 3-manifold, yet to date, a relatively small collection
of such fields have been verified to arise in this way.
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The invariant trace fields of arithmetic hyperbolic 3-manifolds are well un-
derstood [20, Theorem 8.3.2], and by cutting and gluing along thrice punc-
tured spheres, any non-real multi-quadratic extension of Q can be realized
[20, Theorem 5.6.4]. Recently Champanerkar-Kofman-Purcell, assuming a
conjecture of Milnor, produced infinitely many incommensurable link com-
plements each with invariant trace field Q(i,

√
3) [8]. For certain subclasses

of hyperbolic 3-manifolds, there are results restricting which invariant trace
fields might arise (e.g. as for once-punctured torus bundles [7, Thm. A] or
two-bridge knot complements [32, Prop. 2.5]) or providing alternate char-
acterizations (e.g. as for link complements [27, Prop. 4.3]).

Here, we are able to give an explicit description of the invariant trace
fields of pretzel FAL complements by analyzing their cusp geometry. The
work of Flint [12] implies that the invariant trace field of a FAL complement
is the same as its cusp field, that is, the field generated by all the cusp
shapes of this link complement. In Section 2.4, we compute the cusp shapes
of these link complements and in Section 4 we analyze the properties of their
invariant trace fields. The following theorem summarizes the major results
from Section 4.

Theorem 1.2. The invariant trace field of any pretzel FAL with n crossing
circles is exactly Q(cos(π/n)i). In addition, there are only finitely many
pretzel FAL complements with the same invariant trace field.

These fields are particularly nice in that they are imaginary quadratic
extensions of totally real number fields (i.e. CM-fields). As of writing this,
we are unaware of other hyperbolic 3-manifolds with these as their invariant
trace fields for n 6= 3, 4, 6. Additionally, as n increases, the number of half-
twist partners increases, thereby producing large collections of non-isometric
manifolds realizing these invariants.

Our next major result examines commensurability classes of pretzel FAL
complements. We say that two manifolds are commensurable if they share
a common finite-sheeted cover. The commensurability class of a manifold
M is the set of all manifolds commensurable with M . It is usually difficult
to determine if two hyperbolic 3-manifolds are in the same commensurabil-
ity class. Here, we determine exactly when two pretzel FAL complements
are commensurable with each other in terms of the number of crossing cir-
cles. To achieve this goal, we rely on a fundamental result of Margulis [21]
which implies that if a hyperbolic 3-manifold is non-arithmetic, then there
exists a unique minimal orbifold in its commensurability class. For a non-
arithmetic Mn, we show that it’s minimal orbifold On is just the quotient
of Mn by a group of symmetries that are visually obvious in a particular
diagram for these links; see Section 6 and Figure 12. From here, we compute
and compare the volumes of these minimal orbifolds, which help distinguish
commensurability classes. We also determine commensurability relations
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for half-twist partners via a lemma from Chesebro–Deblois–Wilton [11]. Fi-
nally, we deal with the few arithmetic pretzel FAL complements determined
by Theorem 1.1 on a case-by-case basis.

Theorem 1.3. Suppose M and N are two hyperbolic pretzel FAL comple-
ments. Then M and N are commensurable if and only if they have the exact
same number of crossing circles.

An essential part of the proof of Theorem 1.3 is showing that the min-
imal orbifold On is just the quotient of Mn by a group of symmetries. In
general, the minimal orbifold O in the commensurability class of a non-
arithmetic hyperbolic 3-manifoldM = H3/Γ isO = H3/C(Γ), where C(Γ) ={
g ∈ Isom(H3) : |Γ : Γ ∩ gΓg−1| <∞

}
denotes the commensurator of Γ. Note

that, Γ ⊂ N(Γ) ⊂ C(Γ), where N(Γ) denotes the normalizer of Γ. Elements
of N(Γ)/Γ correspond with symmetries of M , while elements of C(Γ)/N(Γ)
correspond with what we call hidden symmetries of M . Thus, our proof of
Theorem 1.3 required us to show that Mn has no hidden symmetries. This
task is accomplished by showing that if Mn did have hidden symmetries,
then On would be a low volume, single-cusped, hyperbolic 3-orbifold. Such
orbifolds are either arithmetic or have very specific cusp shapes. In Sec-
tion 2.4, the necessary cusp shape analysis is provided to help eliminate the
possibility of Mn having hidden symmetries.

Margulis’s work [21] mentioned above can also be stated as a classifica-
tion of arithmetic manifolds in terms of hidden symmetries: a hyperbolic
3-manifold is arithmetic if and only if it has an infinite number of hidden
symmetries. Thus, it is natural to ask: how many hidden symmetries could
a non-arithmetic hyperbolic 3-manifold have? It is known, for example, that
non-arithmetic two-bridge knot complements [32, Th. 3.1] and link comple-
ments [24, Th. 1.1] have no hidden symmetries. At the same time, there
are a few examples and methods for constructing links admitting hidden
symmetries; [9] gives one such construction. However, can we find exam-
ples of non-arithmetic hyperbolic 3-manifolds with the maximal number of
hidden symmetries relative to volume? At most, the number of hidden sym-
metries of non-arithmetic hyperbolic 3-manifolds could grow linearly with
volume; see the remark after Corollary 7.8. In Section 7, we construct exam-
ples exhibiting this optimal growth rate by considering particular half-twist
partners of Mn, which we denote by M ′n; see Figure 13. To the best of our
knowledge, there are no other explicit families of non-arithmetic hyperbolic
3-manifolds realizing this growth rate described in the literature. It is in-
teresting to see that among half-twist partners, which share a number of
geometric and topological features, we can have as many and as few hidden
symmetries as possible. This is highlighted in the following theorem.

Theorem 1.4. For n ≥ 5, each Mn has no hidden symmetries, while the
half-twist partner M ′n has 2n hidden symmetries. Furthermore, the number
of hidden symmetries of M ′n grows linearly with their volumes.
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Showing that each M ′n has 2n hidden symmetries first requires us to
determine the symmetries of M ′n. This is a far more challenging task than
determining the symmetries of Mn since quotienting by a visually obvious
group of symmetries no longer gives a low volume orbifold. Instead, a careful
analysis of how a certain cusp of M ′n can intersect totally geodesic surfaces
in M ′n is used to limit the number of possible symmetries. From here, we
can bootstrap off the fact that Mn and M ′n cover the same minimal orbifold
On and the degree of this covering map is the same in both cases since these
manifolds have the same volume. Our analysis of symmetries and hidden
symmetries of Mn determine exactly the degree of this cover. In turn, the
degree of this cover and the number of symmetries of M ′n determine the
number of hidden symmetries of M ′n.

This paper is organized into six additional sections beyond the introduc-
tion. In Section 2, we describe the geometric decomposition of pretzel FAL
complements and their half-twist partners and provide an analysis of their
cusp shapes. In Section 3, we show that a pretzel FAL complement is com-
mensurable with any of its half-twist partners. In Section 4, we determine
properties of the invariant trace fields of pretzel FAL complements; this
work ultimately relies on the cusp shapes calculated earlier. Theorem 1.1
is proved in Section 5. In Section 6, we determine the symmetries of Mn,
prove that Mn has no hidden symmetries, and prove Theorem 1.3. Finally,
in Section 7, we analyze the symmetries and hidden symmetries of M ′n.

The authors acknowledge support from U.S. National Science Foundation
grants DMS 1107452, 1107263, 1107367 ”RNMS: Geometric Structures and
Representation Varieties“ (the GEAR Network). We would also like to thank
Dave Futer for his helpful suggestions.

2. Geometric decomposition of fully augmented pretzel links

In this section, we first describe how to construct a pretzel FAL on the
level of link diagrams in Section 2.1. We then describe how to build the
complements of these links, both topologically and geometrically, in Section
2.2. Afterwards, we describe how to build a set of hyperbolic 3-manifolds
that are both topologically and geometrically similar to a FAL complement
in Section 2.3. Finally, in Section 2.4, we analyze the cusp shapes of pretzel
FAL complements.

2.1. FAL diagrams. To construct a hyperbolic FAL, start with a diagram
D(K) of a link K ⊂ S3 that is prime, twist reduced with at least two twist
regions, and nonspittable; see [14, Section 1] for appropriate definitions. We
create a diagram for a FAL F from D(K) by first adding a crossing circle
around each twist region in D(K) (any maximal string of bigons arranged
end to end in the link diagram or a single crossing). After augmenting K by
adding in the crossing circles, remove all full twists within each twist region.
This leaves either no twists or a single half-twist in each twist region. The
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resulting link is our FAL F , and Purcell [31, Theorem 2.5] shows that our
assumptions on D(K) imply that F is hyperbolic. See the diagrams in
Figure 1 for an example of a link diagram D(K) and its corresponding FAL
diagram D(F).

A FAL decomposes into two sets of components: crossing circles (those
added in the augmenting process) and knot circles (components coming from
the original link K). We refer to a crossing circle as twisted if the two strands
going through the crossing circle have a single half-twist. Otherwise, the two
strands have no twists, and we refer to the corresponding crossing circle as
untwisted.

For most of this paper, we will focus on FALs resulting from fully aug-
menting pretzel links. Let Pn denoted a pretzel link with n twist regions,
each with an even number of half-twists. We let Pn denote the FAL result-
ing from fully augmenting Pn. Thus Pn is a link with 2n components, half
of which are (untwisted) crossing circles and the other half are knot circles.
See Figure 2 for a diagram of Pn.

c1 c2 cn−1 cn

. . .

. . .

Figure 2. Pn, with crossing circles labeled ci, i = 1, . . . , n.

2.2. FAL complements. Given a hyperbolic FAL F , consider the link
complement MF = S3 \ F . The following theorem collects a number of
geometric properties of FALs coming from [14] and [31]. In what follows, a
crossing disk is a twice-punctured disk whose boundary is a crossing circle
of a FAL.
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Theorem 2.1. Given a hyperbolic FAL F , its complement MF has the
following properties:

(i) MF decomposes into two identical ideal totally geodesic polyhedra,
P±, all of whose dihedral angles are right angles.

(ii) The faces of these polyhedra can be checkerboard colored shaded and
white, where shaded faces are all triangles coming from crossing
disks and white faces are portions of the projection plane bounded
by the knot circles.

(iii) Intersecting a crossing disk with the projection plane creates two half
disks. If we peel these two half disks apart, then four shaded faces
are produced. Each of these four shaded faces is an ideal hyperbolic
triangle, two in P+ and two in P−.

Here, we give a short summary of how to explicitly build the polyhedra
P± and how to glue these polyhedra together to form a FAL complement.
We will examine this decomposition in terms of our pretzel FAL comple-
ments, Mn = S3 \ Pn, though this decomposition holds more generally for
hyperbolic FALs. Examples where a FAL has some twisted crossing circles
will be discussed in Section 2.3. For more explicit details on geometric de-
compositions of FALs, we refer the reader to [14] and [31]. By cutting S3\Pn
along the projection plane, we subdivide our link complement into two iden-
tical 3-balls, one above the projection plane and one below. The crossing
circles lie perpendicular to the projection plane, and so, each crossing disk
is sliced in half by this process. To obtain our checkerboard coloring, peel
each half crossing disk apart to obtain four shaded faces, two in each 3-ball.
By shrinking the link components to become ideal vertices, we obtain the
ideal polyhedra P±, each with the desired checkerboard coloring, which is
depicted in Figure 3. Note that, each crossing circle ci from our link diagram
produces two shaded triangular faces, cai and cbi , in one of our polyhedra. In
addition, there are n + 2 white faces, one for each region of the projection
plane, which are labeled Wi, for i = 1, . . . , n + 2. To reverse this process,
we first glue each white face in P+ to the white face in P− that corresponds
with the same white face in the projection plane. We then glue up pairs
of shaded faces corresponding to the same half crossing disk in the same
polyhedra.

The previous paragraph just gives a topological description of P±. We
now describe a geometric description of P± as regular ideal polyhedra in H3

that are reflections of each other. The checkerboard coloring of the faces
described in Theorem 2.1 actually provides instructions on how to explicitly
build these two polyhedra in H3. First, just consider the set of white faces.
This set induces a circle packing of S2, where we draw a circle for each
white face, and two circles are tangent to each other if the corresponding
white faces share a vertex. The shaded triangular faces also induce a circle
packing of S2, dual to the white circle packing. The circle packing for the
white faces is given in Figure 4. These circles are given the same labels as
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ca1

cb1

ca2

cb2

ca3

cb3 cb4

ca4

cbn−1

can−1

cbn

can

W1 W2 W3 Wn−1 Wn

Wn+1

Wn+2

. . .

Figure 3. The checkerboard tiling of S2 associated to Pn.
This tiling determines the faces of the polyhedra P±.

their corresponding faces in the checkerboard tiling of Figure 3. To build one
of our polyhedra, extend these circles (both white and shaded) on S2 ∼= ∂H3

to become totally geodesic planes in H3. Cut away these planes to obtain
P+. The polyhedron P− can be obtained by reflecting P+ across any of its
white faces. Faces on P± that are reflections of each other will be called
corresponding faces.

This is a convenient time to introduce a helpful combinatorial structure
related to the circle packing. It is used to provide examples of polyhedral
partners for Mn in Subsection 2.3 and to prove that Pn is commensurable
with the reflection orbifold of P+. We proceed with the definition.

Definition 2.2. The crushtacean CF of a FAL F is the trivalent graph whose
vertices correspond to shaded faces of the circle packing, and an edge is
inserted between two vertices if and only if the corresponding shaded faces
share a vertex in the circle packing.

The crushtacean was called the dual to the nerve of the circle packing
by Purcell in [31]. It was first called the crushtacean in Chesebro–Deblois–
Wilton [11] and named so because it can be constructed by crushing the
shaded faces of the checkerboard tiling of S2 associated to Pn down to ver-
tices. This graph is trivalent since all shaded faces in this checkerboard tiling
of S2 are triangles. In Figure 5, we show the crushtacean associated to our
pretzel FAL Pn, which comes from crushing the shaded faces seen in Figure
3 down to points.

2.3. Polyhedral Partners. In this section, we describe how to build sets
of cusped hyperbolic 3-manifolds that have a number of geometric and topo-
logical features in common with a FAL complement. To start, fix a FAL F
that has n crossing circles. Each crossing circle is either twisted or untwisted.
By varying which crossing circles contain a half-twist, we can create 2n FAL
link diagrams that all differ by some number of half-twists. Some of these
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W1

W2

W3

Wn

Wn+2

Wn+1

. . .

. .
.

Figure 4. The circle packing of S2 for the white faces of the
polyhedral decomposition of Pn.

. . .c1 c2 c3 cn

Figure 5. The crushtacean associated to the pretzel FAL
Pn. Edges coming from crossing circles have been labeled ci
for i = 1, . . . , n and colored green.

diagrams could correspond to the same link. However, it easy to show that
many of these link (and their corresponding complements) will be different
by considering the number of link components and their corresponding cusp
shapes. Nevertheless, all of these link complements are built from the same
two identical ideal totally geodesic polyhedra, P±, just with gluing instruc-
tions modified. Gluing shaded faces across their common vertex on the same
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polyhedron results in an untwisted crossing circle while gluing a shaded face
in P+ to its mate in P− results in a twisted crossing cricle (see [31, Figure
3]). Since this is the only modification made between two FALs that differ
by some number of half-twists, we would expect this set of FAL comple-
ments to be “geometrically similar” to one another. This all motivates the
following definitions.

Definition 2.3. Let F be a hyperbolic FAL with n crossing circles, and
fix an ordering on these crossing circles. At each crossing circle, assign a
0 to designate an untwisted crossing circle and assign a 1 to designate a
twisted crossing circle. Define F ′ = F(ε1, ε2, . . . , εn) to be the hyperbolic
FAL obtained from F by assigning εi ∈ {0, 1} to the ith crossing circle of
F . Any such MF ′ is called a half-twist partner of MF . We let HTP (F)
designate the set of all half-twist partners of MF .

See the middle diagram of Figure 1 for a diagram of P3(0, 1, 0).
In fact, we can generalize the above definition and just consider cusped

hyperbolic 3-manifolds that are built from the polyhedra P± with gluing
instructions modified along shaded faces.

Definition 2.4. Let MF = S3 \ F be a hyperbolic FAL with associated
polyhedra P±. We say that M is a polyhedral partner of MF if M can be
constructed from P± as follows:

(i) Corresponding white faces of P± are identified in the same manner
as MF , and

(ii) If ϕ : G → H identifies shaded faces G and H, then their corre-
sponding faces are identified by conjugating ϕ with the reflection
between P±.

We let PP (F) designate the set of all polyhedral partners of MF .

Remark. Polyhedral partners are precisely the manifolds obtained using
the admissible gluing patterns defined by Harnois-Olson-Trapp in [15]. The-
orem 1 and Lemma 1 of that paper combine to show that, assuming cor-
responding white faces are glued without twisting (criteria (i) of Definition
2.4), then criteria (ii) is necessary and sufficient to conclude that M is hy-
perbolic. Intuitively, polyhedral partners can be thought of as slicing MF
along the crossing disks, and then regluing in any manner that maintains a
reflection surface.

The set PP (F) is a rich collection of manifolds, some of which are topo-
logically well understood. For convenience we include an example of a nested
link which is a polyhedral partner of P5; for more detail see [15]. The com-
binatorial data that describes a nested link is an edge-symmetric spanning
forest of the crushtacean. The left of Figure 6 shows an edge-symmetric
spanning forest of the crushtacean CP5 . Note that each tree in the spanning
forest admits an involution swapping the endpoints of the “middle” edge
(hence the name edge-symmetric). The shaded faces whose corresponding
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vertices are swapped under this involution are glued together. The manifold
resulting from this gluing is a generalized FAL complement in S3 as seen
on the right of Figure 6. Crossing circles of generalized FALs do not typi-
cally bound thrice punctured spheres. The links constructed as above are
termed nested because the crossing circles nest in planes so that the regions
between them form thrice punctured spheres. The point of this discussion is
that PP (F) is a much broader class of links than FALs, and many of them
have explicit topological descriptions.

Figure 6. An edge-symmetric forest and corresponding
polyhedral partner of P5

2.4. Cusp Analysis. In this section we compute the cusp shapes for the
link complements Mn. The cusp shape of a cusp C of a cusped hyperbolic
3-manifold M is the Euclidean similarity class for the boundary torus ∂C,
which can be computed as the ratio of the meridian over the longitude on ∂C.
The calculations of this section will later assist in analyzing arithmeticity,
invariant trace fields, and hidden symmetries of Mn.

Since there is a symmetry of Mn taking any component to any other,
all cusp shapes are the same. We refer the reader to Figure 11 for a sym-
metric diagram of Pn, where it is clear that each link component can be
exchanged with its clockwise neighbor via a 90◦ rotation of the entire chain
followed by a rotation. Symmetries of (S3,Pn) are also symmetries of Mn

by Mostow–Prasad rigidity. Therefore, we isolate our attention to a single
cusp corresponding to a crossing circle. In general, such a cusp has torus
boundary tiled by two identical rectangles, coming from intersecting P± with
the horoballs centered at ideal vertices in ∂H3 corresponding to this crossing
circle. For a more thorough and general description of cusp shapes for FALs,
see Lemma 2.3 and Lemma 2.6 of [14].

Now recall that the circle packing for P+ consists of a ring of n circles
nested between concentric circles (see Figure 4). Assume that the ring of
smaller circles are all unit circles, and consider the closer view given in Figure
7. The shape of the cusp corresponding to p will be determined.



ARITH. AND HIDDEN SYMMETRIES OF PRETZEL FAL COMPLEMENTS 161

p

q

Figure 7. Partial circle packing of P+

Inverting in a unit circle S centered at p sends p to infinity and the
four faces of P+ incident with p will invert to intersect a horosphere in a
rectangle R, whose shape can be explicitly calculated. To do so, recall some
elementary facts about inversion in planar circles.

p
U

T

a
b

1/d

d

C
L

Figure 8. Inverting circles to lines

Let U denote a unit circle centered at p. Let C be any circle with diameter
d through p, and with tangent line T there (see Figure 8). Inverting C across
U yields a line L parallel to T . Moreover, the farthest point on C from p
inverts to the closest point on L (the points labeled a and b in Figure 8).
Since U is a unit circle, the distance from L to p is 1/d.

We now return to the task of calculating the cusp shape for Pn.

Lemma 2.5. Let P+ have p at infinity, and H be a horosphere centered at
infinity. The shape of R = P+ ∩H is i sec(π/n).

Proof. Starting with our original P+ as in Figure 7, we let S be a unit
sphere centered at p and invert in S. Focusing on those faces of P+ incident
with p, we get the diagram in Figure 9(a) where the dotted circle is the
boundary of S. The two unit circles (diameter 2) bound white faces of P+

and invert to parallel lines one unit apart by the remarks preceding the
lemma. The other circles bound shaded faces and invert to lines which are
1
d + 1

D apart. We now calculate the diameters d and D.
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d
D

2

2

p p

r 1
11θ

cscθ

Rcotθ
1

secθ

(a) (b) (c)

Figure 9. Inverting p to infinity

To calculate the desired diameters, note that the centers of the unit circles
are on a regular n-gon, and that the faint triangle in Figure 7 can be labeled
as in Figure 9(b). Indeed, all the edges labeled 1 are radii of a unit circle
in Figure 7. Letting θ = π/n, trigonometry labels the sides of the right
triangle with right angle at p. The edges labeled r and R are radii of the
smaller and larger shaded circles (see Figure 7). Using similar triangles one
computes that r = tan θ(csc θ − 1) and R = tan θ(csc θ + 1). The diameters
are twice that, and one computes

1

d
+

1

D
=

1

2 tan θ(csc θ − 1)
+

1

2 tan θ(csc θ + 1)
= sec θ.

Thus inversion in S sends p to infinity and P+ intersects a horosphere in a
rectangle with white sides 1 unit apart and shaded sides sec(π/n) apart (see
Figure 9(c)).

�

Lemma 2.5 determines the shape of R near the cusp p. To get a funda-
mental rectangle, we need to include P− near p. We state the result as the
following proposition.

Proposition 2.6. The cusp shape of each cusp of Mn is 2 cos(π/n)i.

Proof. As mentioned earlier, there is a symmetry of Mn between any two
components, so any two cusps will be isometric, for a particular choice of
cusp expansion. This implies that all cusp shapes are isometric. Thus we
calculate the shape of the cusp p. In Lemma 2.5 we showed that P+ near p is
a rectangle R with shaded sides length 1 and white sides length sec θ. Since
p is a crossing circle cusp, the shaded sides of R are identified, while the
white are not. To get a fundamental region for the cusp we note that P− is
the reflection of P+ across any white side. Thus a fundamental region is two
tiles identical to that of Lemma 2.5 glued along an white face, resulting in a
2-by-sec θ rectangle. Rescaling to have unit meridian gives Figure 10(a). �

Remark: We point out that since p is a crossing circle, the meridian lies
in the reflection surface and on the white sides of the fundamental region
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1

cosθ

cosθF

cosθ

cosθF

1
(a) Untwisted fundamental region F (b) Twisted fundamental region F

Figure 10. Untwisted and twisted cusp shapes

(labeled sec θ in Figure 9(c)). The longitude lies in the shaded faces. If one
normalizes the meridian to length 1, the corresponding longitude has length
2 cos(π/n).

Before moving on, we pause to consider the cusp shape of a half-twist
partner of Mn. The shape itself depends on whether the half-twist is positive
or negative, but as the resulting manifolds are homeomorphic (they differ
by a full-twist on the corresponding crossing disk) the distinction does not
affect the invariants under consideration.

Lemma 2.7. Let C be a twisted crossing circle cusp in a half-twisted partner

of Mn. The cusp shape of C is
2 cos(π/n)i

1± cos(π/n)i
.

Proof. Changing from an untwisted to a twisted crossing circle alters the
gluing pattern on the shaded faces. For untwisted crossing circles, as in
Proposition 2.6, shaded faces are glued straight across, while for twisted
crossing circles the gluing map shifts a single tile in the shaded direction
(see [14, Figure 7]). Thus, scaling so that the distance between shaded faces
is one, a fundamental parallelogram has longitude 2 cos(π/n)i and meridian
1 ± cos(π/n)i (see Figure 10(b) for the 1 + cos(π/n)i case). The result
follows. �

3. Hyperbolic reflection orbifolds

In this section, we establish a strong commensurability relation for our
pretzel FAL complements - we show that any Mn, along with all of its
half-twist partners, is commensurable with the hyperbolic reflection orbifold
associated with P (a single copy of P±). This is the orbifold OP = H3/ΓP ,
where ΓP is generated by reflections in the faces of P . This commensu-
rability relation will be used to help determine arithmeticity and hidden
symmetries of half-twist partners in Section 5 and Section 7, respectively.

While it perhaps seems probable that any FAL complement will be com-
mensurable with its associated hyperbolic reflection orbifold, this is not al-
ways the case. For instance, Chesebro–DeBlois–Wilton in Section 7.2 of [11]
describe an infinite family of FALs that are not commensurable with any
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hyperbolic reflection orbifold. Fortunately, in the same paper, a criterion
is established to guarantee that FAL complements with a certain combi-
natorial symmetry will be commensurable with their associated hyperbolic
reflection orbifolds. This criterion is stated in terms of the crushtacean of
Definition 2.2. The following lemma is a rewording of [11, Lemma 7.4]; the
commensurability conclusion stated in our version is noted in the paragraph
following the proof of Lemma 7.4 in [11].

Lemma 3.1. [11, Lemma 7.4] Let F be a FAL with crushtacean CF . Sup-
pose CF has the property that for each crossing circle component ci of F ,
corresponding to an edge ei of CF with vertices vi and v′i,

(i) if ci is untwisted, then there is a reflective involution of CF preserv-
ing ei and exchanging vi and v′i.

(ii) if ci is twisted, then there is a rotational involution of CF preserving
ei and exchanging vi and v′i.

Then MF is commensurable with its associated reflection orbifold.

Proposition 3.2. Suppose M ∈ HTP (Pn). Then M is commensurable with
the reflection orbifold associated to Mn. In particular, if M,M ′ ∈ HTP (Pn),
then M and M ′ are commensurable.

Proof. The crushtacean for Pn is given in Figure 5, where all of the edges
coming from crossing circles are labeled c1, . . . , cn. Note that, any half-twist
partner of Pn also has the same crushtacean with the same edge colorings.
Consider the horizontal line intersecting all of the green edges of our crush-
tacean in their respective midpoints. Both reflecting across this line and
rotating 180◦ across this line provide involutions of our crushtacean that
preserve any crossing circle edge ei while exchanging it’s respective vertices.
Thus, any M ∈ HTP (Pn) satisfies the criteria of Lemma 3.1, and so, is
commensurable with the reflection orbifold associated to Mn. The second
statement follows from the fact that commensurability is an equivalence
relation. �

4. Cusp and trace fields

The goal of this section is to prove Theorem 1.2, which is a key component
for the proof of Theorem 1.1. A complete hyperbolic 3-manifold M of finite
volume can be identified with the quotient H3/Γ where Γ ⊂ PSL2(C) is a
lattice. The trace field of M , denoted Q(tr Γ), is the field generated by the
traces of the elements of Γ. Similarly, the invariant trace field of M , denoted
kM , is the field generated by the traces of the products of squares of the
elements of Γ. When M is cusped, its cusp field, denoted cM , is the field
generated by the cusp shapes of M . These fields are finite extensions of Q
and satisfy the inclusions cM ⊂ kM ⊂ Q(tr Γ) [26]. In general, these fields
are distinct, however in the case of FALs, by [12, Theorem 6.1.6] and [20,
Cor. 4.2.2], these fields coincide, i.e. cM = kM = Q(tr(Γ)). This enables us
to determine the invariant trace field of each Mn and its half-twist partners.
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Proposition 4.1. If M ∈ HTP (Pn), n ≥ 3, then kM = Q(cos(π/n)i).

Proof. By Proposition 2.6, the cusp shapes of Mn are all 2 cos(π/n)i, and
hence, cMn = Q(cos(π/n)i). Flint [12, Theorem 6.1.6] shows cMn = kMn.
Since the invariant trace field is a commensurability invariant and half-
twist partners are commensurable by Proposition 3.2, it follows that kM =
Q(cos(π/n)i). �

Based on Proposition 4.1, it’s natural to ask if this result extends to poly-
hedral partners that are not half-twist partners. While half-twist partners
always share the same invariant trace field (both by Flint’s work [12] and
Theorem 5.6.1 from [20]), it does not seem immediately obvious that the
techniques used in these papers would extend to polyhedral partners. This
all motivates the following question.

Question 4.2. How much can cusp and trace fields vary among polyhedral
partners who are not half-twist partners?

Even though we have identified distinct primitive elements, cos(π/n)i,
in each kMn, the fields they generate may be isomorphic. To differentiate
them, we compute the degree of the field extension [kMn : Q].

Lemma 4.3. For each n ≥ 3, [kMn : Q] = φ(n), the Euler totient function.

Proof. Since

(cos(π/n)i)2 = − cos2(π/n) = −1

2
(cos(2π/n) + 1),

kMn is a quadratic extension of Q(cos(2π/n)). Lehmer showed that

[Q(cos(2π/n)) : Q] = φ(n)/2

in [19] [36]. The result follows. �

In the proof of Lemma 4.3, we see that for each n ≥ 3, kMn is an imaginary
quadratic extension of its totally real subfield Q(cos(2π/n)), or in other
words, is a CM-field. In particular, kMn has no real places (cf. [7, Thm.
A]).

Lemma 4.4. For any d ∈ N, there exists an nd ∈ N such that for all n ≥ nd,
[kMn : Q] ≥ d.

Proof. This follows from the fact that φ(n) can be bounded from below by
an increasing, unbounded function. For example, it is known that for n ≥ 3,

φ(n) >
n

eγ log logn+ 3
log logn

,

where γ is Euler’s constant [2, Theorem 8.8.7]. �

Putting these lemmas together, we get the following finiteness result.

Proposition 4.5. For each n ≥ 3, there are only finitely many ni such that
kMni

∼= kMn.
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Proof. Suppose that for some m ≥ 3, kMm
∼= kMn. Then [kMm : Q] =

[kMn : Q] and by Lemma 4.4, there are only finitely many m for which this
can hold. �

These results, taken together, now prove Theorem 1.2. Meanwhile, Propo-
sition 4.5 motivates the following question:

Question 4.6. Does m 6= n imply that kMm 6∼= kMn?

If kMm
∼= kMn, then it is necessarily the case that φ(m) = φ(n). Since for

a fixed d ∈ N, φ(x) = d has only finitely many solutions, one strategy is to
fix d and then compare the fields kMn for each n ∈ φ−1(d). In the low degree
cases, direct computations are possible and the answer to Question 4.6 is
yes. For example, φ(n) = 2 only when n is 3, 4, or 6. A direct computation
here shows that kM3 = Q(

√
−1), kM4 = Q(

√
−2), and kM6 = Q(

√
−3).

More generally, implementing SAGE code, we are able to compute kMn for
each n ≤ 150, and by comparing degrees and discriminants, verify than each
are distinct.

Proposition 4.7. If m,n ∈ {3, 4, . . . , 150} and m 6= n, then kMm 6∼= kMn.

Unfortunately, the problem of understanding the solutions to φ(x) = d
for large d becomes quite complicated (see, for example, [13]) which suggests
that one should look for another strategy. Should the answer to Question
4.6 be yes, then this would supply an alternative proof to Corollary 6.4,
below.

5. Arithmeticity

In this section, we completely classify which pretzel FAL complements
(along with their half-twist partners) are arithmetic. In order to do this,
we employ two arguments: one argument uses short geodesics to rule out
arithmeticity for most pretzel FAL complements and the other argument
uses our invariant trace field calculations from Section 4 to take care of the
remaining cases.

There are very strong restrictions placed on the possible lengths of short
geodesics in a cusped arithmetic hyperbolic 3-manifold, especially arithmetic
link complements. Essentially, such manifolds rarely have short geodesics,
and if they do, only a specific set of short lengths can be realized. This is
highlighted in the following work from Neumann and Reid:

Theorem 5.1. [26, Corollary 4.5, Theorem 4.6, Corollary 4.7] Let M =
H3/Γ be a hyperbolic link complement. If M is arithmetic and contains a
geodesic of length less than 1.9248473002 . . ., then Γ is commensurable with
PSL2Od with d ∈ {1, 2, 3, 7, 11, 15, 19} and the length of any such geodesic is
one of the values from Table 1 (page 283 of [26]). If M contains a geodesic
of length less than 0.862554627, then M must be non-arithmetic.
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Here, we will use Theorem 5.1 to show that most Mn = S3 \Pn (and their
respective polyhedral partners) are non-arithmetic.

Proposition 5.2. If n ≥ 7, then Mn and all of its polyhedral partners are
non-arithmetic.

Proof. We first show that Mn has a sufficiently short geodesic when n ≥
7 and then apply Theorem 5.1 to rule out arithmeticity. The fact that
polyhedral partners are also non-arithmetic will immediately follow from
how this geodesic is constructed.

Consider the circle packing used to build the polyhedra P+ for Mn shown
in Figure 4. The circles Wn+1 and Wn+2 bound planes that contain faces
of P+. Let γ+ be the vertical line segment through the origin that is the
common perpendicular from Wn+1 to Wn+2. The radii of the Wi are needed
to compute the length of γ+, and Figures 7 and 9(b) show that they can be
chosen to be csc(π/n)± 1. The hyperbolic length of γ+ is therefore

`(γ+) = ln

(
csc(π/n) + 1

csc(π/n)− 1

)
.

To construct the short geodesic γ, let P− be the reflection of P+ across the
plane H whose boundary is Wn+2 and let γ− be the reflection of γ+. The
polyhedron P+∪P− is a fundamental region for Mn, with the innermost face
(bounded by Wn+1) glued to the outermost (the reflection of the innermost
across H) by a dilation. Thus the curve γ+∪γ− projects to a closed geodesic
γ in Mn. Since the curves γ± are isometric, the length of γ in Mn is twice
that of γ+, or

`(γ) = 2 ln

(
csc(π/n) + 1

csc(π/n)− 1

)
.

For n ≥ 15, this creates a geodesic of length less than 0.862554627, and
so, by Theorem 5.1, any such Mn is non-arithmetic. At the same time, for
7 ≤ n ≤ 15, we can compare `(γ) to the geodesic lengths given in Table 1 on
page 283 in the original statement of Theorem 5.1 in [26]. Since `(γ) does not
match up with any of these values, we now know that Mn is non-arithmetic
for n ≥ 7.

Finally, we note that the geodesic segments γ+ and γ− run between white
faces in their respective polyhedra, and never intersect the shaded faces.
Thus, their union will always project to a geodesic of length `(γ) in any
polyhedral partner of Mn. Therefore, the same short geodesic analysis ap-
plied in the previous paragraph also applies to any polyhedral partner of
Mn, as needed. �

Proposition 5.2 applies to Mn and all of its polyhedral partners, making
it applicable to a broad class of hyperbolic manifolds (see Remark 2.3). We
now focus on the manifolds Mn (and their half-twist partners), and classify
which are arithmetic. To do so, both Proposition 5.2 and our invariant
trace field calculations limit the possible values of n to 3, 4, 6, and we use
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Vinberg’s criteria to show M6 is not arithmetic. These techniques are more
limited in scope, and do not immediately apply to polyhedral partners of
Mn.

Theorem 1.1. Mn and all of it’s half-twist partners are arithmetic if and
only if n = 3, 4.

Proof. For a cusped, finite volume, hyperbolic manifold to be arithmetic,
it is a necessary condition that its invariant trace field be an imaginary qua-
dratic extension of Q [20, Theorem 8.2.3]. By Proposition 4.1, the invariant
trace field of Mn is kMn = Q(cos(π/n)i), which by Lemma 4.3, has degree
[kMn : Q] = φ(n). A straight forward computation shows that φ(n) = 2
implies that n is 3, 4, or 6. Thus only M3, M4 and M6 can be arithmetic.
Additionally, Proposition 5.2 also implies that only Mn with n ≤ 6 could be
arithmetic.

The fact that M3 and M4 are arithmetic was observed by Thurston in
[33, Chapter 6], a fact that also follows from [11, Lemma 7.6 and Corollary
7.5] where they show that the crushtaceans of M3 and M4 imply they are
arithmetic.

We now analyze the case of M6. Let P denote the hyperbolic polyhedra
associated to M6. By Proposition 3.2, M6 is commensurable to the hyper-
bolic orbifold O = H3/ΓP generated by reflections through the faces of P .
Since arithmeticity is a commensurability invariant, it suffices to analyze
O. Associated to P is the Gram matrix G(P ), which encodes the angles be-
tween intersecting faces, and distances between disjoint faces of P . Vinberg’s
arithmeticity criterion in this context states that for O to be arithmetic, it
is necessary that each entry in the Gram matrix is an algebraic integer [20,
10.4.5]. A direct calculation shows this fails for the polyhedron P , which we
now describe.

The Gram matrix entry corresponding to disjoint faces is −2 cosh(`(γ))
where `(γ) is the length of the common perpendicular between the faces. Let
γ− be the common perpendicular between faces Wn+1 and Wn+2 of Figure
4. When n = 6 the calculations of the proof of Proposition 5.2 reduce to

`(γ−) = ln

(
csc(π/6) + 1

csc(π/6)− 1

)
= ln 3,

and the corresponding Gram matrix entry is −2 cosh(ln 3) = −10/3. Hence
Vinberg’s criterion fails, and M6 is not arithmetic.

The extension to half-twist partners follows from Proposition 3.2. �

Remark 5.3. The manifold M6 is a rather intriguing example. We know
kM6 = Q(

√
−3). In [33, Chapter 6], Thurston remarked that the volume of

M6 is 20 times the volume of the figure-eight knot complement, the arith-
metic knot complement whose invariant trace field happens to be Q(

√
−3).

Despite these coincidences, M6 is not arithmetic. This suggests that M6

should be considered in the future when looking for non-arithmetic mani-
folds that share other attributes with arithmetic manifolds.
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6. Symmetries and hidden symmetries

Here, we completely classify the symmetries and hidden symmetries of
pretzel FAL complements. As a corollary, we are able to completely de-
termine when pretzel FAL complements (and their half-twist partners) are
commensurable with one another. First, we define these terms and intro-
duce some important tools necessary to understand why symmetries and
hidden symmetries play a pivotal role in analyzing commensurability classes
of hyperbolic 3-manifolds.

Given a hyperbolic 3-manifold M = H3/Γ, the group of symmetries of M ,
denoted Sym(M), is the group of self-homeomorphisms of M , up to isotopy.
This group is homeomorphic to N(Γ)/Γ, where N(Γ) denotes the normal-
izer of Γ in Isom(H3). Let Sym+(M) ∼= N+(Γ)/Γ denote the subgroup of
orientation-preserving symmetries, where N+(Γ) denotes the restriction of
N(Γ) to orientation-preserving isometries. To define a hidden symmetry of
M , we first need to introduce the commensurator of Γ, which is

C(Γ) =
{
g ∈ Isom(H3) : |Γ : Γ ∩ gΓg−1| <∞

}
.

We let C+(Γ) denote the restriction of C(Γ) to orientation-preserving isome-
tries of H3.

Studying commensurators of Γ is another way to approach studying the
commensurability class of M : M is commensurable with another hyperbolic
3-manifold N if and only if the corresponding commensurators of M and N
are conjugate in Isom(H3); see Lemma 2.3 of [35]. Note that, Γ ⊂ N(Γ) ⊂
C(Γ). Hidden symmetries of M correspond with nontrivial elements of
C(Γ)/N(Γ). Geometrically, M admits a hidden symmetry if there exists
a symmetry of a finite cover of M that is not a lift of an isometry of M .
See [35] for more background on hidden symmetries and commensurators of
hyperbolic 3-manifolds.

Hidden symmetries also play a defining role in the arithmeticity of hyper-
bolic 3-manifolds, and more generally, hyperbolic 3-orbifolds. The work of
Margulis [21] shows that C(Γ) is discrete in Isom(H3) with Γ finite index in
C(Γ) if and only if Γ is non-arithmetic. Thus, M = H3/Γ is arithmetic if
and only if M has infinitely many hidden symmetries. Furthermore, in the
non-arithmetic case, the hyperbolic 3-orbifold O = H3/C(Γ) is the unique
minimal orbifold in the commensurability class of M . This minimal orbifold
(and its orientable variant: O+ = H3/C+(Γ)) will play an essential role in
examining commensurability classes here. In particular, if M admits no hid-
den symmetries, then O = H3/N(Γ) = M/Sym(M). In this case, we only
need to determine the symmetries of M to get our hands on the minimal
orbifold in the commensurability class of M .

Now, we focus on determining the symmetries and hidden symmetries
of our pretzel FAL complements. For our purposes, we will work with a
symmetric diagram of Pn; see Figure 11. These links and their symmetric
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diagrams were examined in Example 6.8.7 of Chapter 6 of Thurston’s notes
[33]. In this setting, Thurston used D2n to denote our Pn.

∼=
c1 c2 c3 c4

c1

c2

c3

c4

Figure 11. Two diagrams of the same pretzel FAL, P4.
The left diagram comes from augmenting a pretzel link and
the right diagram is the symmetric diagram as described in
Thurston’s notes. Crossing circles are labeled in each dia-
gram.

In what follows, for a link K ⊂ S3, we let Sym(S3,K) denote the group
of homeomorphisms of the pair (S3,K), up to isotopy. We use Sym+(S3,K)
to denote the restriction to orientation-preserving symmetries. First, we
identify a visually obvious subgroup of Sym+(S3,Pn), as viewed from the
symmetric diagram of Pn. Let α be the symmetry that takes every link
component to its (clockwise) neighbor, swapping each knot component with
a crossing circle component. Let β be the 180◦ rotation about the circular
axis depicted in Figure 12. Let γ be the 180◦ rotation about the linear axis
depicted in Figure 12. These three elements generate a group of orientation-
preserving symmetries of order 8n, which we denote by G+

n .
Note that

G+
n ≤ Sym+(S3,Pn) ≤ Sym+(Mn)

and both of these containments could be strict. By Mostow–Prasad Rigidity,
the group of symmetries of a hyperbolic link in S3 is a subgroup of the
symmetries of the corresponding link complement. For hyperbolic knots,
these two groups are always equal by the work of Gordon–Luecke. However,
for hyperbolic links with more than one component, this could be a strict
containment; see [16] for such an example. At the same time, it is also
possible that Pn has orientation-preserving symmetries beyond the ones we
identified from its symmetric diagram. Our first goal is to show that we have
identified all orientation-preserving symmetries, and in fact, all the hidden
symmetries of Mn.
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β

γ

Figure 12. A symmetric diagram for P4

Theorem 6.1. For any non-arithmetic Mn = S3 \ Pn, we have that G+
n =

Sym+(Mn) and Mn admits no (orientation-preserving) hidden symmetries.

To prove this theorem, we first need a lemma about the volumes of Mn.
Let

L(θ) = −
∫ θ

0
ln |2 sin(x)| dx

denote the Lobachevsky function. In Example 6.8.7 in Chapter 6 of Thurston’s
notes [33], the following volume formula is given:

vol(Mn) = 8n
(
L
(π

4
+

π

2n

)
+ L

(π
4
− π

2n

))
.

Let

f(n) =
vol(Mn)

8n
.

This function will actually give us the volume of the minimal orbifold in the
commensurability class of Mn.

Let voct denote the volume of a regular ideal hyperbolic octahedron.

Lemma 6.2. The function f(n) is strictly increasing and

lim
n→∞

f(n) =
voct
4
≈ 0.915965

for n > 2.
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Proof. A great exercise for your calculus students shows that

f ′(n) =
π

2n2
ln

∣∣∣∣sin(π4 + π
2n)

sin(π4 −
π
2n)

∣∣∣∣ .
Notice that f ′(n) > 0 if and only if

sin(π4 + π
2n)

sin(π4 −
π
2n)

> 1.

This second inequality holds if and only if

sin
(π

4
+

π

2n

)
> sin

(π
4
− π

2n

)
.

This inequality holds for n > 2 since sin(θ) is increasing on the interval
0 < θ < π

2 . Thus, since f ′(n) > 0 on our domain, we can conclude that f(x)
is strictly increasing on our domain.

Also, we have that

lim
n→∞

f(n) = lim
n→∞

(
L
(π

4
+

π

2n

)
+ L

(π
4
− π

2n

))
= 2L

(π
4

)
=
voct
4
,

completing the proof of the lemma. �

Now, we prove Theorem 6.1. In this proof, any symmetries or hidden
symmetries will be assumed to be orientation-preserving. In what follows,
a hyperbolic 3-orbifold has a rigid cusp if it has a cusp whose cross section
is of the form S2(2, 4, 4), S2(3, 3, 3), or S2(2, 3, 6). Likewise, a cusp of a
hyperbolic 3-orbifold is called a non-rigid cusp if a cross section of this cusp
is topologically either a torus or S2(2, 2, 2, 2).

Proof of Theorem 6.1. By Margulis’s Theorem, we know that for any
non-arithmetic Mn, there exists a unique minimal (orientation-preserving)
orbifold in its commenusrability class, namely O+

n = H3/C+(Γn). Let Q+
n =

Mn/G
+
n . If Mn has any hidden symmetries or any symmetries beyond the

ones contained in G+
n , then Q+

n 6= O+
n , and in particular, Q+

n is a non-trivial
cover of O+

n . Since |G+
n | = 8n, we have that

vol(Q+
n ) =

V ol(Mn)

8n
= f(n).

Lemma 6.2 implies that vol(Q+
n ) < 0.915965 for all non-arithmetic Mn.

Since we are assuming Q+
n non-trivially covers O+

n , we have that

vol(O+
n ) ≤ vol(Q+

n )

2
< 0.4579825.

We now consider two cases based on the cusp of Q+
n . Note that, since G+

n

contains a subgroup of symmetries exchanging all of the link components,
the orbifold Q+

n only has one cusp.
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Case 1: Suppose the cusp of Q+
n is non-rigid. In this case, our volume

bound guarantees that O+
n is on the list of smallest volume (orientable) hy-

perbolic 3-orbifolds with a non-rigid cusp highlighted in the work of Adams;
see Corollary 4.2 and Lemma 7.1 of [1]. In particular, all of these orbifolds
are arithmetic. But Mn is non-arithmetic and since arithmeticity is a com-
mensurability invariant, this would imply that O+

n is non-arithmetic, giving
a contradiction.

Case 2: Suppose the cusp of Q+
n is rigid. In this case, the cusp field of

Q+
n must be contained in Q(i) or Q(

√
−3). The proof of Theorem 1.1 shows

that the invariant trace field of a non-arithmetic Mn (which is the same
as the cusp field of Mn) could be Q(i) or Q(

√
−3) only if n = 6. From

here, we determine Sym+(M6) via SnapPy and see that it has order 48
(SnapPy actually determines the full symmetry group, which is order 96).
Since |G6| = 48, we can conclude that G6 contains all orientation-preserving
symmetries of M6. Now, suppose M6 admits hidden symmetries. Then we
have a non-normal cover of O+

6 by Q+
6 . Thus,

vol(O+
6 ) ≤ vol(Q+

6 )

3
= f(6)/3 ≈ 0.281928224.

However, this is impossible since this is smaller than the smallest volume for
an orientable, one-cusped hyperbolic 3-orbifold; see [22]. Thus, M6 admits
no hidden symmetries.

In conclusion, we must have that Q+
n = O+

n , which implies that Mn has
no hidden symmetries and G+

n = Sym+(Mn). �

There are a number of useful applications of Theorem 6.1. First off, we can
extend this same line of argument to determine Sym(Mn) and show that Mn

also admits no orientation-reversing hidden symmetries. Every Pn admits
an orientation-reversing symmetry σ given by reflection in the projection
plane, and so, by Mostow–Prasad Rigidity, induces an orientation-reversing
symmetry for Mn, which we shall also denote by σ. Let Gn be the group
generated by the elements of G+

n and σ. This group has order 16n.

Corollary 6.3. For any non-arithmetic Mn = S3 \ Pn, we have that Gn =
Sym(Mn) and Mn admits no hidden symmetries (both orientation-preserving
and reversing).

Proof. Consider the quotient Qn = Mn/Gn. If we suppose Qn is not the
minimal orbifold in its respective commensurability class, then we can now
apply the same argument used in the proof of Theorem 6.1. �

Another nice application is the fact that we can now determine which
pretzel FAL complements are commensurable with each other. The corollary
given below describes this commensurability relation, and also, confirms
Conjecture 6.2.6 from the work of Flint [12].

Corollary 6.4. Suppose M ∈ HTP (Pm) and N ∈ HTP (Pn). Then M
and N are commensurable if and only if m = n.
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Proof. First off, Proposition 3.2 implies that if m = n, then M and N are
commensurable. For the other direction, we break this proof down into a
few cases, depending on whether or not Mn and Mm are arithmetic.

Case 1: Suppose Mn and Mm are non-arithmetic. By Margulis, there
exists a unique minimal (orientable) hyperbolic 3-orbifold O+

n = H3/C+(Γn)
in the commensurability classes of Mn = H3/Γn. Likewise, we have that
O+
m = H3/C+(Γm) is the minimal orbifold for Mm. By Theorem 6.1, we

know that O+
n is just the quotient Mn/G

+
n , where |G+

n | = 8n. Thus

vol(O+
n ) =

vol(Mn)

8n
= f(n)

and

vol(O+
m) =

vol(Mm)

8m
= f(m).

By Lemma 6.2, we know that f(n) is strictly increasing, and so, we have
that vol(O+

n ) 6= vol(O+
m), whenever n 6= m. Thus, O+

n and O+
m are non-

isometric, whenever n 6= m. Since this minimal orbifold is unique for each
non-arithmetic commensurability class, this implies that Mn and Mm are
not commensurable if n 6= m.

Case 2: Now, suppose Mn and Mm are both arithmetic. Then from
Theorem 1.1, we know that m,n ∈ {3, 4}. Proposition 4.1 implies that M3

and M4 have different invariant trace fields, and so, they must belong to
different commensurability classes.

Case 3: Suppose Mn is arithmetic, while Mm is non-arithmetic. Since
arithmeticity is a commensurability invariant, Mn is not commensurable
with Mm.

Thus, we have that Mn is not commensurable to Mm, whenever m 6= n.
The extension to half-twist partners follows from Proposition 3.2. �

7. Half-twist partners with many hidden symmetries

Here, we will analyze a special subclass of half-twist partners of pret-
zel FALs. Consider the pretzel FAL Pn and build it’s half-twist partner
P ′n = Pn(0, 1, 1, 1, . . . , 1). See the left side of Figure 13 for the pretzel FAL
diagram of P ′5. In general, P ′n has n crossing circles and 1 knot circle. In
addition, there is always exactly one untwisted crossing circle and n − 1
twisted crossing circles in P ′n. Set M ′n = S3 \ P ′n.

Our main goal for this section is to show that each non-arithmetic M ′n ad-
mits exactly 2n hidden symmetries, allowing us to construct non-arithmetic
hyperbolic link complements with as many hidden symmetries as we would
like, by taking n sufficiently large. To accomplish this goal, we first de-
termine Sym(M ′n). Similar to Section 6, we start by identifying a visually
obvious subgroup of symmetries of (S3,P ′n) and then work to show this
group must generate the full symmetry group Sym(M ′n). However, unlike
in Section 6, we can no longer use the fact that the quotient of M ′n by this
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∼=

Figure 13. Two link diagrams of P ′5.

visually obvious subgroup of symmetries gives a small volume orbifold. In-
stead, we will analyze how cusps intersect certain totally geodesic surfaces
in M ′n in order to limit the number of symmetries of M ′n. From here, we can
indirectly use our work from Section 6 to determine the number of hidden
symmetries of M ′n.

By examining the diagram on the right side of Figure 13, we can see
that (S3,P ′n) admits three order two symmetries: 180◦ rotation about the
circular axis cutting through all of the half-twists (similar to the symmetry
β in Figure 12), 180◦ rotation about the line L going through the middle
of the untwisted crossing circle and the center of this ring of links, and the
reflection in the vertical plane containing L.

Theorem 7.1. Sym(M ′n) ∼= Z/2Z × Z/2Z × Z/2Z, generated by the sym-
metries mentioned above.

The proof of Theorem 7.1 requires some technical lemmas describing how
symmetries of M ′n could act on its cusps. We now proceed to state and
prove these lemmas before returning to the proof of Theorem 7.1.

By abuse of notation, let C denote both the untwisted crossing circle of
P ′n and the corresponding cusp of M ′n.

Lemma 7.2. Let ρ ∈ Sym(M ′n). Then ρ maps the cusp C to itself.

Proof. A symmetry ρ can not map C to a cusp coming from a crossing
circle with half-twists since they have different cusp shapes; see Proposition
2.6 and Lemma 2.7 for cusp shape descriptions. Now, we just need to show
C can not map to the knot circle cusp. A nice description of how to build
the boundary torus of a knot circle cusp for a FAL complement is given in
Lemma 2.3 and Lemma 2.6 of [14]. In particular, the larger the number of
crossing circles a knot circle goes through, the longer the longitude of this
cusp (relative to its meridian). In our case, our knot circle goes through
all n crossing circles twice, and so, a direct application of [14, Lemma 2.6]
shows that the length of the longitude of this knot circle cusp is at least 2n,
while its meridian is length exactly 2 (for a particular horoball expansion).
At the same time, since the cusp shape of C is 2 cos(π/n)i, the ratio of the
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meridian to the longitude for C is at most two-to-one. Thus, C could not
map to the knot circle cusp. �

Choose a cusp expansion for M ′n and let [µ] and [λ] denote the isotopy
classes of the meridian and longitude, respectively, on the boundary torus
∂C. When we refer to the length of an isotopy class of a closed geodesic on
∂C, we mean the length of a geodesic representative.

Lemma 7.3. Let ρ ∈ Sym(M ′n). Then ρ([µ]) = ±[µ] and ρ([λ]) = ±[λ].

Proof. Given ρ ∈ Sym(M ′n), we know that ρ maps C to C from Lemma
7.2. Since ρ is an isometry, it must map geodesics on the torus ∂C to
geodesics on ∂C with the same length. Choose the cusp expansion for C so
that [µ] has length 1 and [λ] has length |2 cos(π/n)|, as done in the proof of
Proposition 2.6. Recall that all geodesics on the torus ∂C are of the form
k1 ·±[µ]+k2 ·±[λ] for some integers (k1, k2) 6= (0, 0). Since 1 < |2 cos(π/n)|,
we must have ρ([µ]) = ±[µ]. Similarly, since 1 < |2 cos(π/n)| < 2, we must
have that ρ([λ]) = ±[λ]. �

The above lemma only tells us that given any fixed cusp expansion, the
isotopy classes of the meridian and longitude must map to themselves. We
would now like to place stronger restrictions on where particular geodesic
representatives for [µ] and [λ] could be mapped to under a symmetry of M ′n.

Now let D be the untwisted crossing disk that C bounds, and let W be
the reflection surface in M ′n resulting from gluing the white faces of P±. We
wish to show D and W are each fixed set-wise by Sym(M ′n).

The main tool is an analysis of intersecting embedded totally geodesic
surfaces, particularly when one of them is a thrice-punctured sphere. Some
preliminary observations are in order. An embedded totally geodesic sur-
face in a hyperbolic 3-manifold lifts to a union of disjoint planes in the
universal cover. Consequently, embedded totally geodesic surfaces intersect
in a collection of pairwise disjoint simple geodesics. There are six simple
geodesics on a thrice-punctured sphere, three joining distinct cusps (inter-
cusp geodesics labeled a, b, c in Figure 14(a)) and three from a cusp to itself
(intracusp geodesics labeled x, y, z in Figure 14(a)). Figure 14(b) displays

these geodesics on a lift D̃ to a fundamental region for D in P+ ∪ P−. Any
embedded totally geodesic surface that intersects D must intersect D in a
pairwise disjoint subset of these geodesics.

Further, any thrice-punctured sphere can be decomposed into two ideal
triangles by slicing along intercusp geodesics. Let T denote such a triangle,
then the simple geodesics of the thrice-punctured sphere intersect T in one of
two ways. By construction, the edges of T correspond to intercusp geodesics.
The intracusp geodesics are midpoint rays, i.e. hyperbolic rays perpendicular
to one side of T and pointing toward the opposite vertex. The intracusp
geodesic labeled z̃ in Figure 14(b) demonstrates this phenomenon. Since T
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Figure 14. Totally geodesic surfaces

is a subset of the thrice-punctured sphere, any embedded totally geodesic
surface intersects the triangle T in a pairwise disjoint collection of edges
and midpoint rays. This significantly restricts how lifts of these surfaces
intersect in the universal cover, a fact which we will use to our advantage.

The fundamental region P+ ∪ P− can be chosen so that the cusp cor-
responding to the untwisted crossing circle C is at infinity. In this case,
the shaded sides are standard fundamental regions for the thrice punctured
sphere D, and the simple geodesics on D adjacent to C lift to those labeled
ã, b̃ and z̃ in Figure 14(b) (the intracusp geodesic is the union of the two
geodesic rays labeled z̃).

Lemma 7.4. The crossing disk D is a fixed set of any symmetry of M ′n.

Proof. Let ρ be a symmetry of M ′n. As above, place the cusp corresponding

to C at infinity in the universal cover M̃ ′n of M ′n. A horosphere centered at
infinity intersects the fundamental region P+∪P− in a rectangle R comprised
of two rectangular tiles (the tile in P+ for T6 is depicted in Figure 14(c)).

Now D̃ ∩ R forms a longitude λ for the cusp C (the curve λ/2 of Figure
14(c) represents half a longitude). By Lemmas 7.2 and 7.3, we know ρ fixes
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C and must take λ to a copy λ′ of ±λ. We let D̃′ denote the lift of the

thrice-punctured sphere ρ(D) to P±. Then D̃′ intersects R in λ′, a parallel

copy of λ. Once we show λ′ = ±λ we will have that D̃ = D̃′, proving that
D = D′.

Suppose D̃ 6= D̃′. We begin by showing there is, up to symmetry, only

one possible λ′ different from λ. If D̃′ is different from D̃, then it lifts to
a vertical plane through R, parallel to the shaded sides and perpendicular
to the white sides. The curve λ′ cannot go precisely through the middle of

R, for then D′ would have too many punctures. Thus D̃′ would have to
intersect the shaded triangles labeled F,G in Figure 14(c). Now triangles
F,G project to (triangles in) thrice punctured spheres SF , SG in M ′n. By

the remarks preceding the lemma, the curve D̃′ ∩ F must be an edge or a

midpoint ray of F . This implies D̃′∩F must go through the vertices labeled
f, g in Figure 14(b). We now finish the contradiction by showing that area
considerations prevent this case from happening.

We will show that for this λ′ the area A(D̃′) of D̃′ is greater than 2π so

that it can’t be a thrice punctured sphere. Let D̃′+ = D̃′∩P+ is as in Figure

14(c), and note that A(D̃′) ≥ 2A(D̃′+) because there is an identical copy of

D̃′+ in P−, so it suffices to show A(D̃′+) > π. Since D̃′+ is a polygon, its area
is 2π less than the sum of the external angles, where the external angle of an

ideal vertex is π. Now D̃′+ has three ideal vertices (f , g and at the cusp C),

and a finite vertex along each vertical edge of D̃′+. Summing the external

angles gives a value strictly greater than 3π, proving that A(D̃′+) > π. Thus

the assumption D̃′ 6= D̃ is false, proving the lemma. �

Lemma 7.5. The reflection surface W is a fixed set of any symmetry of
M ′n.

Proof. Again let ρ ∈ Sym(M ′n), and we wish to show ρ(W ) = W . As in
Figure 14(a), label the cusps of D by A,B, and C where C corresponds
to the crossing circle cusp, and label the intercusp geodesics by a, b, and c.
The reflection surface W has two components, both of which intersect D.
One of the components, say U , of W has just the knot circle as boundary,
and can be thought of as obtained by attaching the inner and outer disks
of the projection plane by one untwisted band through C and n − 1 half-
twisted bands through the other crossing circles. Thus U intersects D in the
geodesic c opposite C. The other component of W , denoted V , is punctured
by C along two meridians, and intersects D in geodesics a and b.

Let U ′ and V ′ denote the images of U and V under ρ, respectively. The
isometry ρ preserves the cusp C by Lemma 7.2, and the crossing disk D by
Lemma 7.4. Thus it either fixes or swaps cusps A,B, and acts analogously
on intercusp geodesics opposite the cusps. More precisely, ρ preserves the
geodesic c, and the set {a, b}. This implies that U ′ ∩ D = c = U ∩ D
and V ′ ∩ D = {a, b} = V ∩ D. Moreover, ρ preserves angles so all the
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surfaces U,U ′, V, V ′ are orthogonal to D. Thus both U and U ′ are connected,
embedded, totally geodesic surfaces that intersect D orthogonally in the
geodesic c (and similarly for V, V ′ using geodesics {a, b}). Therefore both

lift to the plane in P+ containing c̃ and orthogonal to D̃. Projecting back
to M ′n shows that in fact U = U ′ (similarly V = V ′). Since W = U ∪V , the
proof is complete. �

Lemmas 7.4 and 7.5 allow us to determine the images of a longitude-
meridian pair (λ, µ) under any symmetry of M ′n. The rectangle R in P+ ∪
P− projects to a torus boundary ∂C of the cusp C. The crossing disk D
intersects ∂C in a longitude λ, and the reflection surface W intersects ∂C in
two meridians we denote µ1, µ2. Choosing µ = µ1 and λ as our generators
for π1∂(C) we can now explicitly determine their possible images under
Sym(M ′n).

Corollary 7.6. If ρ ∈ Sym(M ′n), then ρ(λ) = ±λ and ρ(µ) = ±µi, for
some i ∈ {1, 2}.

Proof. Since D is fixed by ρ (Lemma 7.4), we have D ∩ N(C) = λ is
fixed as well, or that λ = ±λ. Lemma 7.5 shows that W is fixed by ρ, so
ρ(µ) ∈ ρ(W ) ∩N(C) = W ∩N(C). This implies ρ(µ) ∈ {±µ1,±µ2}. �

At this point, we are finally able to prove Theorem 7.1.

Proof of Theorem 7.1. Fix a cusp expansion for C. Since any symmetry
of M ′n maps C to C, we can consider the homomorphism f : Sym(M ′n) →
Sym(C) given by restriction. We claim that this homomorphism is injective.
Let ρ ∈ Sym(M ′n), and suppose ρ restricted to C is the identity. So, ρ will fix
any given point in the interior of C along with a tangent frame at that point.
Then Proposition A.2.1 in Benedetti–Petronio [6] implies that ρ must be the
identity map. Thus, the kernel of f is trivial, making this homomorphism
injective.

Now, Corollary 7.6 implies that |Sym(C)| ≤ 8 since there are only 8
possible combinations for where λ and µ could map to under a symmetry,
and these symmetries of C are completely determined by how they act on
λ and µ. At the same time, we know that |Sym(S3,P ′n)| ≥ 8, since we have
already identified a set of symmetries of (S3,P ′n) that generates a group of
order 8. Since f is injective, we now have that

8 ≤ |Sym(S3,P ′n)| ≤ |Sym(M ′n)| ≤ |Sym(C)| ≤ 8,

giving the desired result. �

Finally, we can prove the main result of this section. Recall that a
hidden symmetry of a hyperbolic 3-manifold M = H3/Γ is an element of
C(Γ)/N(Γ).

Theorem 7.7. For n ≥ 5, M ′n is a non-arithmetic hyperbolic 3-manifold
with 2n hidden symmetries.
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Proof. For n ≥ 5, Mn = H3/Γn and M ′n = H3/Γ′n are in the same commen-
surability class (Proposition 3.2) and non-arithmetic (Theorem 1.1). Thus,
they cover a common minimal orbifold On = Mn/C(Γn). In Section 6, we
showed that Mn has no hidden symmetries and its (full) symmetry group
has order 16n. This implies that [C(Γn) : Γn] = 16n. Thus, the cover
Mn → On is degree 16n, and since Mn and M ′n have the same volume, we
also have that the cover M ′n → On is degree 16n. Now, Theorem 7.1 implies
that

[N(Γ′n) : Γ′n] = |Sym(M ′n)| = 8,

and since

16n = [N(Γ′n) : Γ′n][C(Γ′n) : N(Γ′n)],

we have that [C(Γ′n) : N(Γ′n)] = 2n. This implies that M ′n has 2n hidden
symmetries, as needed. �

Corollary 7.8. The number of hidden symmetries of M ′n grows linearly
with volume.

Proof. Recall that

vol(M ′n) = vol(Mn) = 8n
(
L
(π

4
+

π

2n

)
+ L

(π
4
− π

2n

))
,

where L(θ) denotes the Lobachevsky function. Since the Lobachevsky func-
tion is continuous, we can choose an arbitrarily small ε > 0, so that for all
n sufficiently large, we have

16n(L(π4 )− ε) ≤ vol(M ′n) ≤ 16n(L(π4 ) + ε).

Let HSn denote the number of hidden symmetries for M ′n. Since Theorem
7.7 tells us that M ′n has 2n hidden symmetries, the above inequality implies
that

vol(M ′n)

8(L(π/4) + ε)
≤ HSn ≤

vol(M ′n)

8(L(π/4)− ε)
which gives the desired bound. �

Remark 1: Corollary 7.8 actually highlights the fastest growth rate
for the number of hidden symmetries that any sequence of non-arithmetic
hyperbolic 3-manifold can have relative to volume. To justify this, we give
an upper bound. Given a non-arithmetic hyperbolic 3-manifold M = H3/Γ,
the number of hidden symmetries of M is at most [C(Γ) : Γ], with equality
exactly when M admits no symmetries. At the same time, [C(Γ) : Γ] also
gives the degree of the cover M → O, where O is the minimal orbifold
in M ’s commensurability class. Since vol(O) is uniformly bounded below
by the volume of the minimal volume hyperbolic 3-orbifold (say this has
volume v0), we have that any non-arithmetic M has at most vol(M)/v0
hidden symmetries. Thus, given any sequence of non-arithmetic hyperbolic
3-manifolds, the number of hidden symmetries can grow at most linearly
with volume.
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Remark 2: In [23, Section 7], Millichap shows that if you perform suf-
ficiently long Dehn fillings on all of the crossing circles of P ′n (with n odd),
then the resulting knot complement admits no hidden symmetries. It is
interesting to see that even though M′n admits many hidden symmetries,
performing long Dehn fillings will always break these hidden symmetries
in these cases. In light of this fact and Theorem 1.2 from [10], it seems
plausible that highly twisted knot complements (that come from perform-
ing sufficiently long Dehn fillings along crossing circles of a FAL with a single
knot component) will admit no hidden symmetries.
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