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Abelian fixed point free endomorphisms

and the Yang-Baxter equation

Alan Koch, Laura Stordy and Paul J. Truman

Abstract. We obtain a simple family of solutions to the set-theoretic

Yang-Baxter equation, one which depends only on considering special

endomorphisms of a finite group. We show how such an endomorphism

gives rise to two non-degenerate solutions to the Yang-Baxter equation,

solutions which are inverse to each other. We give concrete examples

using dihedral, alternating, symmetric, and metacyclic groups.
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1. Introduction

In the span of just a few years, Chen-Ning Yang [23], working in the-

oretical physics, and Rodney Baxter [2], working in statistical mechanics,

independently developed an equation which is now commonly referred to

as the Yang-Baxter equation. The Yang-Baxter equation has been found

to have applications in many areas of mathematics and physics, including

quantum groups [20], knots [13, 15], analysis of integrable systems [14], and

quantum computing [7].
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The Yang-Baxter equation describes a relationship between functions,

namely

(R⊗ 1)(1⊗R)(R⊗ 1) = (1⊗R)(R⊗ 1)(1⊗R),

where R ∈ End(V ⊗V ) for some finite dimensional vector space V . Interest-

ing solutions of this equation are difficult to find, so an easier problem was

introduced by Drinfeld in [10]: that of finding set-theoretic solutions, where

V is replaced by a finite set B, and tensor product replaced by the cross

product. Given such a set-theoretic solution on B, one obtains a solution

for a vector space with B as a basis.

Many interesting example of set-theoretic solutions start to appear when

B carries some additional structure. For example, if B = (B, ·) is an abelian

group then Rump [21] showed how to construct solutions to the Yang-Baxter

equation by giving B the structure of a left brace, where (B, ·) is endowed

with another binary operation ◦ such that (B, ◦) is a group and a certain

relation holds. The corresponding solutions to the equation were both non-

degenerate (see section 2) and involutive (i.e., self-inverse).

Later, the concept of left brace was generalized by Guarnieri and Ven-

dramin [12] to the case where (B, ·) is nonabelian, obtaining a (left) skew

brace. Skew braces correspond to non-degenerate solutions of the Yang-

Baxter equations which are non-involutive, though one can easily compute

the inverse to any solution [16].

Thus, identifying set-theoretic solutions to the Yang-Baxter equation re-

duces to finding skew braces. But skew braces may not be easy to find:

they involve putting two (potentially) different group structures on B that

interact with each other in a precise way. A breakthrough was obtained in

2016 by Bachiller [1], who observed a correspondence between skew braces

and Hopf-Galois structures on Galois field extensions, a subject which had

been studied for 30 years by numerous people–see, e.g., [18], [6], [8], [5].

The classification of Hopf-Galois structures on a Galois extension with Ga-

lois group G follows from a theorem of Greither and Pareigis, and amounts

to finding regular subgroups N of Perm(G), satisfying a certain stability

condition. Given N ≤ Perm(G) as above, a skew brace can be constructed

where one of the underlying groups is isomorphic to N , the other to G.

But Hopf-Galois theory still involves two groups interacting in a very

precise way. In 2013, Childs [9] developed a technique using fixed point free

abelian endomorphisms (definition 4.1 below) of a group G to construct a

certain class of suitable regular subgroups, hence of Hopf-Galois structures.

In this work, we use Childs’ theory to construct explicit solutions to the

Yang-Baxter equation. If ψ : G → G is a fixed point free abelian endo-

morphism, then one can obtain a regular subgroup of Perm(G). Here, we
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construct the skew brace Bψ associated to ψ, and then we find a solution to

the Yang-Baxter equation based on Bψ. We then use the theory of opposite

braces in [16] to develop a second solution, namely, the inverse to the first

solution. In short, we prove the following.

Theorem (Theorem 5.1). Let G be a finite group.

(1) Let ψ : G → G be a fixed point free abelian endomorphism. Let

Rψ, R
′
ψ : G×G→ G×G be given by

Rψ(g, h) =
(
ψ(g−1)hψ(g), ψ(hg−1)h−1ψ(g)gψ(g−1)hψ(gh−1

)
)

R′ψ(g, h) =
(
gψ(g−1)hψ(g)g−1, ψ(h)gψ(h−1)

)
Then:

(a) Both Rψ and R′ψ are non-degenerate, set-theoretic solutions to

the Yang-Baxter equation.

(b) The functions Rψ and R′ψ are inverse to each other.

(2) Two fixed point free abelian endomorphisms ψ1, ψ2 : G → G give

equivalent solutions to the Yang-Baxter equation Rψ1 , Rψ2 if and

only if ψ2 = ϕψ1ϕ
−1 for some ϕ ∈ Aut(G).

In section 3, we define precisely the concepts of type of solution and equiv-

alence of solutions.

The significance of this result lies in its simplicity. Although the proof

presented here uses the Greither-Pareigis correspondence for Hopf-Galois

structures on separable field extensions and the theory of skew braces, the

reader can generate pairs of solutions to the Yang-Baxter equation without

a deep understanding of these concepts: one simply needs to be familiar

with elementary group theory.

We start by describing, in greater detail, the Yang-Baxter equation. Then,

we give an overview of Greither-Pareigis theory, which we then connect to

skew braces which, in turn, give us set-theoretic solutions to the Yang-

Baxter equation. Next, we discuss fixed-point free abelian endomorphisms

on a finite group G and we explicitly construct a brace corresponding to

such an endomorphism. We then prove the main result above (with some

minor differences in notation) in Section 5. Finally, we provide examples in

which G is dihedral, alternating, symmetric, or metacyclic.

Unless otherwise specified, we assume all groups (and braces) are finite.

2. The Yang-Baxter equation and its solutions

Let V be a finite dimensional vector space over some field K. A solution

to the Yang-Baxter equation is a K-linear map R : V ⊗ V → V ⊗ V such
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that

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R) : V ⊗ V ⊗ V → V ⊗ V ⊗ V,

where I : V → V is the identity map. If we view R ∈ Mn2(K) where

dimK V = n then R is what is called an R-matrix. As a way to develop

non-trivial examples of solutions, in [10], Drinfeld suggests considering set-

theoretic solutions to the Yang-Baxter equation, that is, a set B and a

function R : B ×B → B ×B such that

(R× id)(id×R)(R× id) = (id×R)(R× id)(id×R)

holds, where id is the identity map on B. If B is finite, we let VB be the K-

vector space with basis B; then a set theoretic solution on B gives a vector

space solution on VB.

A set-theoretic solution R : B×B → B×B is said to be non-degenerate if

the functions fy, gx : B → B given by R(x, y) = (fy(x), gx(y)) are invertible.

As above, we say R is involutive if R2 = id.

In the work being presented here, the set B will carry the structure of

a (finite) group, say G, and the set-theoretic solutions will rely heavily on

the group operation. Working with G will allow us to identify VG naturally

with K[G], thereby naturally obtaining R-matrices on group algebras.

3. Regular subgroups, braces, and solutions to the YBE

In this section, we introduce many of the structures needed to prove

Theorem 5.1. We start with the definition of regular G-stable subgroups of

Perm(G), which give rise to skew braces, which in turn give rise to solutions

to the Yang-Baxter equation.

Let G be a group, and denote by Perm(G) the group of all permutations

of G. We say a subgroup N of Perm(G) is regular if the action of N on G

is free and transitive, that is

(1) for η ∈ N, g ∈ G we have η[g] = g if and only if η = 1N ; and

(2) for g, h ∈ G there exists an η ∈ N such that η[g] = h.

If N ≤ Perm(G) is regular then |N | = |G|. Additionally, if N ≤ Perm(G)

with |N | = |G| and either of the above two conditions are satisfied, then N

is a regular subgroup. Two fundamental examples of regular subgroups are

the images of the left regular representation λ : G ↪→ Perm(G) and the right

regular representation ρ : G ↪→ Perm(G).

In general, it is not necessarily the case that N ∼= G. However, in the

examples we will consider here these groups will in fact be isomorphic.

The subgroup λ(G) ≤ Perm(G) acts on Perm(G) by conjugation. We say

N ≤ Perm(G) is G-stable if this action restricts to an action on N . In other
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words, for all η ∈ N, g ∈ G we have

gη := λ(g)ηλ(g−1) ∈ N.

Certainly, λ(G) isG-stable, and since λ(G) and ρ(G) commute in Perm(G)

we see that ρ(G) is G-stable as well.

Subgroups of Perm(G) which are regular and G-stable are essential in

identifying Hopf-Galois structures on Galois extensions L/K in which we

have Gal(L/K) ∼= G. This was first discovered by Greither and Pareigis in

[11], but will not be needed here.

We will now introduce the notion of a skew (left) brace, and connect it

to the regular, G-stable subgroups above.

A skew left brace is a triple B = (B, ·, ◦) where (B, ·) and (B, ◦) are

groups; and for all a, b, c ∈ B the following condition holds:

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c),

where a−1 is the inverse to a in (B, ·). We call this condition the brace

relation.

For simplicity, we adopt the following conventions.

(1) We will refer to B simply as a brace. The term “brace” was first

used by Rump in [21] to describe a triple (B, ·, ◦) satisfying the brace

relation where (B, ·) is abelian. The notion of brace was generalized

10 years later by Guarnieri and Vendramin [12].

(2) When no confusion will arise we will suppress the dot and write

ab = a · b.
(3) While (B, ·) and (B, ◦) share the same identity element, their in-

verses are different in general: we will denote the inverse to a ∈ (B, ◦)
by a.

The reader should be made aware that there is no universal notation for

braces at this point. Not only are the symbols for the two operations not

standard, the order in which they appear in the triple is not standard as

well.

Simple examples of braces include (G, ·, ·), called the trivial brace on G,

and (G, ·, ·′) where (G, ·′) is the opposite group to (G, ·), giving the almost

trivial brace on G.

As with regular, G-stable subgroups of Perm(G), we do not require that

(B, ·) ∼= (B, ◦), however this paper will only deal with braces satisfying this

property.

A regular, G-stable subgroup N ≤ Perm(G) gives rise to a brace as fol-

lows. The map κ : N → G given by κ(η) = η(1G) is a bijection. Define
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B(N) = (N, ·, ◦), where · is the usual group operation on N , and

η ◦ π = κ−1(κ(η) ∗G κ(π)), η, π ∈ N.

It is well-known that every brace (B, ·, ◦) arises from a regular, G-stable

subgroup N ≤ Perm(G) with G ∼= (B, ◦) [1, Prop. 6.1]. However, different

regular G-stable subgroups can result in isomorphic braces. To describe

this phenomenon more precisely we temporarily change our perspective by

letting N be an abstract group of the same order as G. Then the embeddings

α : N ↪→ Perm(G) such that α(N) is both regular and G-stable correspond

bijectively with embeddings β : G ↪→ Hol(N) such that the image β(G) acts

regularly on N . (Here Hol(N) = ρ(N)oAut(N) is the holomorph of N .) In

[22, Proposition A.3], it is shown that two such embeddings G ↪→ Hol(N)

will give isomorphic braces if and only if their images are conjugate by some

element in Aut(N).

Braces give set-theoretic solutions to the Yang-Baxter equation. Explic-

itly, for B = (B, ·, ◦) a brace, define RB : B ×B → B ×B by

RB = (a−1(a ◦ b), a−1(a ◦ b) ◦ a ◦ b) (3.1)

Then RB is a non-degenerate, set-theoretic solution to the Yang-Baxter

equation.

Definition 3.1. Let B = (B, ·, ◦) be a brace. Then RB is said to be a

solution of type (N,G) if N and G are abstract groups with N ∼= (B, ·) and

G ∼= (B, ◦). If N ∼= G then we say RB is a solution of type G.

If (B, ·) is abelian, then RB is involutive, i.e., RB is self-inverse. On

the other hand, if (B, ·) is non-abelian, two of the authors in [16, Th. 4.1]

construct the inverse to RB through the use of opposite braces. The inverse

to RB, denoted R′B, is simply

R′B = ((a ◦ b)a−1, (a ◦ b)a−1 ◦ a ◦ b). (3.2)

In this case, R′B is a solution of the same type as RB. Notice that R′B =

RB′ , i.e., it is the solution obtained from 3.1 using the opposite brace to B.

It should be pointed out that braces can give additional set-theoretic

solutions. For example, suppose φ : B → B is a brace isomorphism, i.e.,

a bijective map which preserves both operations, and R is any solution

to the Yang-Baxter equation with underlying set B. Then the function

Rφ := R(φ× φ) : B ×B → B ×B is given by

Rφ(a, b) = (φ(a)−1(φ(a) ◦ φ(b)), φ(a)−1(φ(a) ◦ φ(b)) ◦ φ(a) ◦ φ(b))

= (φ(a−1(a ◦ b)), φ(a−1(a ◦ b) ◦ a ◦ b)),
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so R(φ × φ) = (φ × φ)R and the Yang-Baxter equation is clearly satisfied.

However, if one is interested in set-theoretic solutions as a means to find

vector space solutions, then Rφ and R can be thought of as being the same

solution under a change of basis. Thus, if N1 and N2 are regular, G-stable

subgroups which produce the same brace (up to isomorphism), we think of

them as giving equivalent solutions to the Yang-Baxter equation.

4. Fixed-point free abelian endomorphisms and braces

The purpose of this section is to explicitly show how to obtain a brace

from a fixed point free abelian endomorphism.

We start with a formal definition of what it means for an endomorphism

to be fixed point free abelian. The term is self-explanatory. However, since

these endomorphisms are central to this work, we wish to be explicit.

Definition 4.1. Let G be a group. An endomorphism ψ : G → G is said

to be fixed point free abelian if both of the following hold:

(1) If ψ(g) = g then g = 1G. (Fixed point free)

(2) The image ψ(G) is abelian. (Abelian)

Observe that if ψ is an abelian endomorphism, then ψ(ghg−1) = ψ(h) for

all g, h ∈ G. That is, ψ is constant on conjugacy classes. We will use this

fact extensively in section 6 when constructing these maps.

For a given group G, we will denote by FPF(G) the set of all fixed point

free abelian endomorphisms of G. If ψ1, ψ2 ∈ FPF(G) their composition

is typically not fixed point free, so FPF(G) should be viewed as simply a

pointed set, with base point the trivial map ψ0.

Example 4.2. Let G be any group. Certainly, the trivial homomorphism

ψ0 : G→ G, ψ0(g) = 1G is fixed point free abelian.

Example 4.3. Let G = D4 = 〈r, s : r4 = s2 = rsrs = 1G〉 be the dihedral

group of order 8. Define the endomorphism ψ : G → G on the generating

set above by ψ(r) = s, ψ(s) = 1G. Since ψ(G) = 〈s〉 this map is clearly

abelian; it is also evidently fixed-point free, hence ψ ∈ FPF(G).

This example is well-known: see [9, p. 1264, (6)].

In [9], Childs constructs, from ψ ∈ FPF(G), a regular G-stable subgroup

of Perm(G), namely N = {λ(g)ρ(ψ(g)) : g ∈ G}. Explicitly,

ηg[h] = ghψ(g−1) for all g, h ∈ G.

The reader can check that N is regular, and that kηg = ηkgk−1 for every

g, k ∈ G.
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Different fixed point free endomorphisms can yield the same group N .

Indeed, ψ1, ψ2 ∈ FPF(G) produce the same regular, G-stable subgroup of

Perm(G) if and only if there is a ζ ∈ FPF(G) with ζ(G) ≤ Z(G) and such

that

ψ2(g) = ψ1(gζ(g−1))ζ(g), g ∈ G.

In particular, ψ ∈ FPF(G) gives the same regular, G-stable subgroup of

Perm(G) as ψ0–namely, λ(G) ≤ Perm(G)–if and only if ψ(G) ≤ Z(G). See

[9, Th. 2] for details.

Thus, N gives rise to a brace Bψ = (N, ·, ◦) where the dot operation is

the usual operation in N , which itself is inherited from G: since λ(G) and

ρ(G) commute in Perm(G) we have

ηgηh = λ(g)ρ(ψ(g))λ(h)ρ(ψ(h))

= λ(g)λ(h)ρ(ψ(g))ρ(ψ(h))

= λ(gh)ρ(ψ(gh))

= ηgh.

We will now explicitly compute the circle operation, completing the de-

scription of Bψ. Note that the bijection κ : N → G is κ[ηg] = ηg[1G] =

gψ(g−1). For g, h ∈ G we have

ηg ◦ ηh = κ−1(κ(ηg) ∗G κ(ηh))

= κ−1
(
gψ(g−1)hψ(h−1)

)
.

On the other hand, since ψ is constant on conjugacy classes,

κ
(
ηgψ(g−1)hψ(g)

)
= gψ(g−1)hψ(g)ψ

(
(gψ(g−1)hψ(g))−1

)
= gψ(g−1)hψ(g)ψ(h−1g−1)

= gψ(g−1)hψ(h−1),

hence

ηg ◦ ηh = ηgψ(g−1)hψ(g).

At this point we remark that the map g 7→ ηg : G → (N, ·) is in fact an

isomorphism. This allows us to think of the underlying set of our brace as

G, obtaining:

Proposition 4.4. Let ψ : G → G be a fixed point free abelian endomor-

phism. Then Bψ = (G, ·, ◦) is a brace, where

g ◦ h = gψ(g−1)hψ(g), g, h ∈ G.
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As mentioned earlier, the two groups in a brace need not be isomorphic,

however for braces constructed from fixed point free abelian maps, it is

necessary that they are.

Corollary 4.5. Let ψ ∈ FPF(G), and let Bψ = (G, ·, ◦) be its corresponding

brace. Then (G, ◦) ∼= (G, ·).

Proof. Define φ : (G, ◦) → (G, ·) by φ(g) = gψ(g−1). We claim that φ is

an isomorphism. Indeed, we have

φ(g ◦ h) = φ(gψ(g−1)hψ(g))

= gψ(g−1)hψ(g)ψ(ψ(g−1)h−1ψ(g)g−1)

= gψ(g−1)hψ(h−1)

= φ(g)φ(h)

so φ is a homomorphism. If g ∈ kerφ then φ(g) = gψ(g−1) = 1G, from

which it follows that g = ψ(g). As ψ is fixed point free, this means g = 1G.

Thus, φ is injective, hence an isomorphism. �

Direct calculation establishes the following, which will be needed in the

sequel.

Corollary 4.6. Let ψ ∈ FPF(G). Then for all g ∈ G we have

g = ψ(g)g−1ψ(g−1).

From [17, §5], the group of automorphisms Aut(G) acts on FPF(G) via

conjugation, i.e., ϕψϕ−1 ∈ FPF(G) whenever ϕ ∈ Aut(G), ψ ∈ FPF(G).

Furthermore, the braces formed by ψ and ϕψϕ−1 are isomorphic: in fact,

any regular subgroup of Perm(G) which gives a brace isomorphic to the one

determined by ψ is of this form.

Definition 4.7. We say the maps ψ1, ψ2 ∈ FPF(G) are brace equivalent if

ψ2 = ϕψ1ϕ
−1 for some ϕ ∈ Aut(G).

Example 4.8. Let G be any group, and let ψ0 : G→ G be the trivial map

as in example 4.2. Then

g ◦ h = gψ0(g
−1)hψ0(g) = gh

and Bψ = (G, ·, ·) is the trivial brace on G.

Notice that for any ϕ ∈ Aut(G) we have

ϕ−1ψ0ϕ(g) = ϕ−1(1G) = 1G

so ϕ−1ψ0ϕ = ψ0. Thus, no nontrivial ψ ∈ FPF(G) is equivalent to ψ0.
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Example 4.9. Let G = D4 = 〈r, s : r4 = s2 = rsrs = 1G〉 be the dihedral

group of order 8, and let ψ1 ∈ FPF(G) be ψ1(r) = ψ1(s) = rs as in example

4.3. The circle operation in Bψ1 is given by

ri ◦ rj = ri(rs)irj(rs)i = ri+(−1)ij

ri ◦ rjs = ri(rs)irjs(rs)i = r−i+(−1)ijs

ris ◦ rj = ris(rs)i+1rj(rs)i+1 = ri+(−1)ijs

ris ◦ rjs = ris(rs)i+1rjs(rs)i+1 = r2−i+(−1)ij .

Example 4.10. Let G = D4 as above, and let ψ2 : G → G be the endo-

morphism given by ψ2(r) = r2s, ψ2(s) = 1. Since ψ2(G) = 〈r2s〉 the map

is abelian, and since ψ(r2s) = 1G 6= r2s we get ψ2 ∈ FPF(G). The circle

operation in Bψ2 is given by

ri ◦ rj = ri(r2s)irj(r2s)i = ri+(−1)ij

ri ◦ rjs = ri(r2s)irjs(r2s)i = ri+(−1)ijs

ris ◦ rj = ris(r2s)irj(r2s)i = ri−(−1)
ijs

ris ◦ rjs = ris(r2s)irjs(r2s)i = ri−(−1)
ij .

Now let ϕ ∈ Aut(G) be given by ϕ(r) = r, ϕ(s) = r3s. Then

ϕ−1ψ1ϕ(r) = ϕ−1ψ1(r) = ϕ−1(rs) = r2s = ψ2(r)

ϕ−1ψ1ϕ(s) = ϕ−1ψ1(r
3s) = ϕ−1(1G) = 1G = ψ2(s),

so ψ2 is equivalent to the ψ1 found in example 4.9.

5. Proof of the main result

We are now well-positioned to prove our main theorem.

Theorem 5.1. Let G be a finite group.

(1) Let ψ ∈ FPF(G). Let Rψ, R
′
ψ : G×G→ G×G be given by

Rψ(g, h) =
(
ψ(g−1)hψ(g), ψ(hg−1)h−1ψ(g)gψ(g−1)hψ(gh−1

)
)

R′ψ(g, h) =
(
gψ(g−1)hψ(g)g−1, ψ(h)gψ(h−1)

)
.

Then:

(a) Both Rψ and R′ψ are non-degenerate, set-theoretic solutions to

the Yang-Baxter equation of type G.

(b) The functions Rψ and R′ψ are inverse to each other.
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(2) The maps ψ1, ψ2 ∈ FPF(G) give equivalent pairs of solutions to the

Yang-Baxter equation Rψ1 , Rψ2 if and only if ψ2 = ϕψ1ϕ
−1 for some

ϕ ∈ Aut(G).

Proof. Any ψ ∈ FPF(G) gives rise to a regular, G-stable subgroup Nψ of
Perm(G), which in turn corresponds to the brace Bψ = (G, ·, ◦) from before.
The solution Rψ can be readily computed from equation (3.1):

Rψ(g, h) =
(
g−1(g ◦ h), g−1(g ◦ h) ◦ g ◦ h

)
=
(
g−1gψ(g−1)hψ(g), g−1gψ(g−1)hψ(g) ◦ g ◦ h

)
=
(
ψ(g−1)hψ(g), (ψ(ψ(g−1)hψ(g)))(ψ(g−1)h−1ψ(g))ψ(ψ(g−1)h−1ψ(g)) ◦ g ◦ h

)
.

The first component now agrees with the statement of the theorem. For
the second component,

(ψ(ψ(g−1)hψ(g)))(ψ(g−1)h−1ψ(g))ψ(ψ(g−1)h−1ψ(g)) ◦ g ◦ h

= ψ(h)ψ(g−1)h−1ψ(g)ψ(h−1) ◦ gψ(g−1)hψ(g)

= (ψ(hg−1)h−1ψ(gh−1)ψ
(
ψ(gh−1)hψ(hg−1)

)
gψ(g−1)hψ(g)ψ

(
ψ(hg−1)h−1ψ(gh−1)

)
= ψ(hg−1)h−1ψ(gh−1)ψ(h)gψ(g−1)hψ(g)ψ(h−1)

= ψ(hψ(h−1))gψ(g−1)hψ(gψ(h)),

as desired.

The solution R′ψ can be computed using the theory of opposites as in

[16]. Given a brace B = (B, ·, ◦) with (B, ·) nonabelian, one can construct

an opposite brace B′ = (B, ·′, ◦) where a ·′ b = b · a for all a, b ∈ B. One

then obtains a second solution to the YBE, namely

(g, h) 7→
(
(g ◦ h)g−1, (g ◦ h)g−1 ◦ g ◦ h

)
.

One can show that the expression above reduces to R′ψ as in the statement

of the theorem; that R′ψ is the inverse to Rψ can be found in [16, Th. 4.1].

Finally, to show (2), we use the fact that two regular, G-stable subgroups

are brace equivalent if and only if their opposites are brace equivalent [17,

Cor. 7.2]. �

Example 5.2. For any nonabelian group G, let ψ : G → G be the trivial

map as in example 4.8. Then we get the trivial brace on G, and

Rψ(g, h) =
(
ψ(g−1)hψ(g), ψ(hg−1)h−1ψ(g)gψ(g−1)hψ(gh−1

)
) = (h, h−1gh)

R′ψ(g, h) =
(
gψ(g−1)hψ(g)g−1, ψ(h)gψ(h−1)

)
= (ghg−1, g).

Example 5.3. As in example 4.9, let G be the dihedral group of order 8,

i.e., G = D4 = 〈r, s : r4 = s2 = rsrs = 1G〉, ψ(r) = ψ(s) = rs. Using

theorem 5.1 we see, e.g., Rψ(rs, r2) = (r2, rs). More generally, the values

for the solution Rψ are given in the following table:
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1 r r2 r3 s rs r2s r3s

1 (1, 1) (r, 1) (r2, 1) (r3, 1) (s, 1) (rs, 1) (r2s, 1) (r3s, 1)

r (1, r) (r3, r3) (r2, r) (r, r3) (r2s, r) (rs, r3) (s, r) (r3s, r3)

r2 (1, r2) (r, r2) (r2, r2) (r3, r2) (s, r2) (rs, r2) (r2s, r2) (r3s, r2)

r3 (1, r3) (r3, r) (r2, r3) (r, r) (r2s, r3) (rs, r) (s, r3) (r3s, r)

s (1, s) (r3, s) (r2, s) (r, s) (r2s, r2s) (rs, r2s) (s, r2s) (r3s, r2s)

rs (1, rs) (r, r3s) (r2, rs) (r3, r3s) (s, r3s) (rs, rs) (r2s, r3s) (r3s, rs)

r2s (1, r2s) (r3, r2s) (r2, r2s) (r, r2s) (r2s, r3s) (rs, s) (s, s) (r3s, s)

r3s (1, r3s) (r, rs) (r2, r3s) (r3, rs) (s, rs) (rs, r3s) (r2s, rs) (r3s, r3s)

A table for R′ψ can be similarly constructed using the formula as in Theorem

5.1; alternatively one could compute it by explicitly constructing the inverse

to the table of values above.

6. Examples

We finish with examples, where we explicitly construct the solutions to the

Yang-Baxter equation whose underlying sets are some well-known groups.

We have tried to strike a balance between explicitness and simplicity of

results.

Sometimes, the use of fixed point free abelian endomorphisms will find all

solutions to the Yang-Baxter equation with underlying group G. We explore

this topic in the examples below.

6.1. Abelian groups. The theory presented above gives useful results when

G is nonabelian. In the case where G is abelian,

g ◦ h = gψ(g−1)hψ(g) = gh

giving only the trivial brace. The only solution to the Yang-Baxter equation

we construct is

Rψ(a, b) = (b, a)

as R′ψ = Rψ when G is abelian.

By [3], our construction will yield all possible solutions to the Yang-Baxter

equation if and only if gcd(|G|, φ(|G|)) = 1, where φ is the Euler totient

function. Such a group is necessarily cyclic.

6.2. The dihedral groups Dn. Generalizing the notation from example

4.9, write G = Dn = 〈r, s : rn = s2 = rsrs = 1G〉. Classification of FPF(Dn)

appears in [9, §5]. Here, we will give the Yang-Baxter solutions given by

those maps.

Suppose first that n is odd. Then FPF(Dn) consists only of the trivial

map. Indeed, if ψ ∈ FPF(Dn) is nontrivial then kerψ = 〈r〉. Additionally,
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ψ(s) = ris for some 0 ≤ i ≤ n − 1. But then ψ(ris) = ris is a fixed point,

which is a contradiction.

Thus, the two solutions to the Yang-Baxter equation we obtain when n

is odd are the two from example 5.2.

By the main theorem in [19], the number of regular, G-stable subgroups of

Dn isomorphic to n for n odd is equal to the number of self-inverse elements

in Z×n , from which it follows that our process obtains all such subgroups if

and only if p is a power of an odd prime.

Now suppose that n is even, and write n = 2m. Each element of FPF(Dn)

which does not give the trivial regular subgroup λ(G) is in at least one of

the following four forms.

(1) αi(r) = r2is, αi(s) = 1, 0 ≤ i ≤ m− 1;

(2) βi(r) = r2i+ms, βi(s) = rm, 0 ≤ i ≤ m− 1;

(3) γi(r) = r2i+1s, γi(s) = r2i+1s, 0 ≤ i ≤ m− 1;

(4) δi(r) = r2i+1+ms, δi(s) = r2i+1s, 0 ≤ i ≤ m− 1.

For 0 ≤ i, j ≤ n − 1, gcd(i, n) = 1 let ϕi,j : Dn → Dn be given by

ϕi,j(r) = ri, ϕi,j(s) = rjs. Then Aut(Dn) = {ϕi,j}. If we set i = 1 we have

ϕ−11,jα0ϕ1,j(r) = ϕ−11,jα0(r) = ϕ−11,j (s) = r−js

ϕ−11,jα0ϕ1,j(s) = ϕ−11,jα0(r
js) = ϕ−11,j (s

j).

Hence, if j is even we get ϕ−11,jα0ϕ1,j = αj−2; on the other hand if j is odd

we get ϕ−11,jα0ϕ1,j(s) = r−js and so ϕ−11,jα0ϕ1,j = γ(−j−1/2). By allowing j to

vary we see that {αi, γj} are all equivalent.

Using ϕ1,j it can also be shown that {βi, δj} are all brace equivalent in

a very similar manner. Furthermore, in the case m is even the homomor-

phism ζ : Dn → Dn given by ζ(r) = rm, ζ(s) = rm is a fixed point free

endomorphism whose image is the center of Dn. Additionally,

α0(rζ(r−1))ζ(r) = α0(r
1+m)rm = s1+mrm = rms = β0(r)

α0(sζ(s−1))ζ(s) = α0(r
ms)rm = smrm = rm = β0(s),

so there is only one nontrivial class.

We have

Rα0(risj , rks`) = (sirks`, sk+i+`r−ksirisi+jrksj+k+`)

R′α0
(risj , rks`) = (risi+krksi+`+jri, skrisj+k)

and for m odd we have, since rm ∈ Z(Dn),

Rβ0(risj , rks`) = (sirksi+`, si+k+`r−ksirisi+jrksi+k+`)

R′β0(risj , rks`) = (risi+jrksi+j+`r−i, skrisj+k).
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As mentioned above, in [19], Kohl enumerates all regular, G-stable sub-

groups of Perm(Dn) isomorphic to Dn. Since a regular, G-stable subgroup

arising from ψ ∈ FPF(G) never gives the same brace as one arising from

a regular, G-stable subgroup which does not come from such a ψ, this al-

lows us to determine when we have found all the Yang-Baxter solutions of

dihedral type. More precisely:

Proposition 6.1. With the constructions above, we obtain every Yang-

Baxter solution of dihedral type if and only if one of the following holds:

(1) n = pk for some prime p and positive integer k;

(2) n = 2pk for some odd prime p and positive integer k;

Proof. The main result of [19] indicates that the number R(Dn) of regular,

G-stable subgroups ofDn isomorphic toDn is given by the following formula:

R(Dn) = |Υn| ·


1 v2(n) = 0

2m+ 1 v2(n) = 1

m+ 1 v2(n) = 2

m+ 2 v2(n) > 2

,

where v2(n) is the 2-adic valuation of n, n = 2m where appropriate, and Υn

is the subgroup of self-inverse elements of Z×n . Note that Υn is nontrivial

for n > 3, and |Υn| = 2 if and only if Z×n is cyclic, which holds if and only

if n = 1, 2, pk or 2pk for some odd prime p and k ≥ 1.

On the other hand, in [9], Childs counts the number of regular, G-stable

subgroups arising from fixed point free abelian endomorphisms on Dn. For

our purposes, since the theory of opposites allow us to obtain two regular, G-

stable subgroups from each ψ, we get that the number of subgroups S (Dn)

we obtain is

S (Dn) =


2 v2(n) = 0

4m+ 2 v2(n) = 1

8m+ 2 v2(n) > 1

.

By comparing these, we see that if n is odd we will get every regular, G-

stable subgroup (hence, every Yang-Baxter solution) if and only if |Υn| = 2,

i.e., n is a power of a prime. If v2(n) = 1 we again require |Υn| = 2; since

n ≥ 3 is even this means n = 2pk for some p. If v2(n) = 2 then we would

need (m + 2)|Υn| = 4m + 2. Since |Υn| is necessarily a nontrivial power

of 2 and 4m + 2 ≡ 2 (mod 4), we see that we cannot get all regular, G-

stable subgroups in this manner. Similarly, if v2(n) > 2 then we would need

(m+ 2)|Υn| = 8m+ 2 which cannot happen. �
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6.3. The alternating group A4. It is well-known that G = A4 can be

expressed as a semidirect product V o C3 where V is the (unique) Sylow

2-subgroup of A4 and C3 is generated by a 3-cycle, say x. Then

A4 = {vxi : 0 ≤ i ≤ 2, v ∈ V }.

Let ψ ∈ FPF(G) be nontrivial. Then, for some v ∈ V we have either

ψ(v) = 1G or ψ(v) is an element of order 2, say ψ(v) = w. But v and w are

conjugate in A4, hence ψ(w) = ψ(v) = w, a contradiction. Thus, ψ(v) = 1G
for all v ∈ V .

Since ψ is assumed to be nontrivial, ψ(x) is an element of order 3 which is

not conjugate to x. There are two conjugacy classes for the 3-cycles in A4,

and every 3-cycle is in a different class than its inverse. Thus, each conjugacy

class has four elements; hence, there are four possibilities for ψ(x). One such

example is ψ(x) = x2. The reader can verify that all four choices give valid

fixed-point free abelian endomorphisms.

We omit the technical details above because each of the nontrivial ele-

ments of FPF(G) give the same brace. To see this, suppose ψ1(x) = y and

ψ2(x) = z. Necessarily, y and z are in the same conjugacy class, so there

exists an inner automorphism of G carrying ψ1(x) to ψ2(x).

Including the trivial map, we have:

Proposition 6.2. There are five fixed point free abelian maps on A4 and

two brace equivalence classes of fixed point free abelian maps.

If we use ψ(x) = x2 the solutions obtained are

Rψ(v1x
i, v2x

j) = (xiv2x
j−i, xiv2x

−iv1x
−iv2x

−i−j)

R′ψ(xiv1, x
jv2) = (v1x

−iv2x
i−jv1, x

−jv1x
i+j)

where v1, v2 ∈ V .

As Perm(A4) has 10 regular, G-stable subgroups [6, Th. 7], we see that

the solutions presented above are all of the solutions of type A4.

The situation changes drastically for A5, as we shall see.

6.4. The alternating groups An, n ≥ 5. It is easy to compute the set

FPF(An) for n ≥ 5. In fact, we generalize, computing FPF(G) in the

case G is a simple group. This is well known and can be shown by direct

computation or by considering Hopf-Galois structures on Galois extensions

with simple Galois group [4].

Proposition 6.3. Suppose G is a nonabelian simple group. Then FPF(G)

consists of only the trivial map.
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Proof. If ψ : G→ G is any homomorphism, then kerψ = {1G} or kerψ = G

since kerψ / G. If kerψ = {1G} then ψ(G) = G and hence ψ cannot be

abelian. Thus ψ is trivial. �

Thus, the only solutions to the Yang-Baxter equation obtained via fixed-

point-free abelian maps are the solutions found in example 5.2. Unlike in

the abelian case, we do get multiple solutions. Trivially, this gives us all the

Yang-Baxter equation solutions of type G for G a nonabelian simple group.

6.5. The symmetric groups Sn, n ≥ 5. Let ψ : Sn → Sn be a homo-

morphism. In a manner similar to the previous section, kerψ = {1G}, An,

or Sn. If we assume ψ is nontrivial and fixed point free, then kerψ = An
and ψ is constant on odd permutations. Furthermore, ψ(σ2) = 1G, hence

a nontrivial ψ sends odd permutations to some element of order 2, say τ .

Finally, if τ is odd then ψ(τ) = τ and we have a fixed point. In fact, we

have:

Proposition 6.4. Let

A(2)
n = {τ ∈ An : τ2 = 1An}.

Then there is a bijection between A
(2)
n and FPF(Sn) given by τ 7→ ψτ , where

ψτ (σ) =

{
1 σ ∈ An
τ σ /∈ An

.

Furthermore, ψτ1 and ψτ2 are brace equivalent if and only if τ1 and τ2 have

the same cycle structure.

Proof. From the discussion above it is clear that any ψ ∈ FPF(G) must be

of this form, and it is routine to show that ψτ ∈ FPF(G) for any τ ∈ An
with τ2 = 1G. Any τ1, τ2 ∈ An with τ21 = τ22 = 1G are conjugate if and only

if they have the same cycle structure. Now, if τ2 = ξτ1ξ
−1, ξ ∈ Sn then

the map C(ξ) : Sn → Sn given by conjugation by ξ is an automorphism. If

σ ∈ Sn then

C(ξ)ψ1C(ξ)−1(σ) = C(ξ)ψ1(ξ
−1σξ) = C(ξ)(1G) = 1G = ψ2(σ)

if σ is even; and

C(ξ)ψ1C(ξ)−1(σ) = C(ξ)ψ1(ξ
−1σξ) = C(ξ)τ1 = ξτ1ξ

−1 = τ2 = ψ2(σ)

if σ ∈ Sn is odd. Thus, if τ1, τ2 have the same cycle structure then the

corresponding maps ψ1 and ψ2 are brace equivalent.

Conversely, for n 6= 6 every automorphism of Sn is inner, hence these

account for all the brace equivalences. Finally, if n = 6 every element of

order 2 has the same cycle type, so the result follows. �
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Corollary 6.5. Let τ ∈ An have order at most two. Then

Rτ (σ, π) =


(π, π−1σπ) σ, π ∈ An
(π, τπ−1σπτ) σ ∈ An, π /∈ An
(τπτ, τπ−1τστπτ) σ /∈ An, π ∈ An
(τπτ, π−1τστπ) σ, π /∈ An

, and

R′τ (σ, π) =


(σπσ−1, σ) σ, π ∈ An
(σπσ−1, τστ) σ ∈ An, π /∈ An
(στπτσ−1, σ) σ /∈ An, π ∈ An
(στπτσ−1, τστ) σ, π /∈ An

are solutions to the Yang-Baxter equation.

Here, we get all of the solutions of type Sn. This can be seen from [6,

Th. 5], where the authors find two families of regular, G-stable subgroups

of Perm(G), each parameterized by elements of order 2 in Sn.

6.6. The family of nonabelian metacyclic groups Mp,q. For our last

set of examples we consider the simplest nonabelian metacyclic groups. Let

p, q be primes with p ≡ 1 (mod q), and define

Mp,q = 〈s, t : sp = tq = 1G, tst
−1 = sd〉,

where d is chosen to have order q modulo p. (Note that the group is indepen-

dent of the choice of d: changing its value merely changes the presentation.)

By Sylow theory, the Sylow p-subgroup 〈s〉 is normal in Mp,q, however since

sts−1 /∈ 〈t〉 the Sylow q-subgroups are not normal in Mp,q. Thus, if ψ is any

endomorphism of Mp,q, then kerψ = {1G}, 〈s〉, or Mp,q. Thus for any ψ

fixed point free and abelian, kerψ = 〈s〉 and hence ψ(s) = 1G.

It therefore suffices to determine ψ(t). Since the Sylow p-subgroup is

normal, an element sitj will have order q if and only if j 6= 0. Let us write

ψ(t) = sitj , 0 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1.

Then ψ respects the relations in the presentation of Mp,q, hence is an en-

domorphism. Since ψ(Mp,q) = 〈sitj〉 ∼= Cq the map is abelian. Suppose

ψ(skt`) = skt`. Then

(sitj)` = skt`.

For this to hold we require j` ≡ ` (mod q), so either j = 1 or ` = 0. If ` = 0

then ψ(sk) = sk, so k = 0 and we have the trivial element. If j = 1 then

ψ(sit) = sit and we have a fixed point. Thus:

Proposition 6.6. If ψ ∈ FPF(Mp,q) is nontrivial, then ψ = ψi,j, where

ψi,j(s) = 1, ψi,j(t) = sitj , 0 ≤ i ≤ p− 1, 2 ≤ j ≤ q − 1.
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It follows from [17, Lemma 8.13] that ψi1,j1 is brace equivalent to ψi2,j2 if

and only if i1 = i2. From this we obtain

Corollary 6.7. The set {ψj := ψ0,j : 2 ≤ j ≤ q − 1} is a complete set of

nontrivial brace classes of fixed point free abelian maps.

The endomorphism ψj produces the following solutions to the Yang-

Baxter equation:

Rψj
(skt`, smtn) = (t−j`smtn+j`, tj(n−`)(smtn)−1tjlskt`−j`smtn+j(`−n))

R′ψj
(skt`, smtn) = (skt`−j`smtn+j`(skt`)−1, tjnskt`−jn).

One can see that we get all solutions of metacyclic type by using the

regular, G-stable classification from [5]; alternatively, see [17, §8], which

explicitly shows this.
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