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Acylindrical hyperbolicity of subgroups

Abhijit Pal and Rahul Pandey

ABSTRACT. Suppose G is a finitely generated group and H is a sub-
group of G. Let 872G denote the contracting boundary of G with the
topology of fellow travelling quasi-geodesics defined by Cashen-Mackay
[7]. In this article, we show that if the limit set A(H) of H in 879G
is compact and contains at least three points then the action of the
subgroup H on the space of distinct triples ©3(A(H)) is properly dis-
continuous. By applying a result of B. Sun [24], if the limit set A(H)
is compact and the action of H on 87 ©G is non-elementary then H
becomes an acylindrically hyperbolic group.
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1. Introduction

The Gromov boundary of a word hyperbolic group is now a well studied
object and it plays a crucial role in bordification of finitely generated groups.
Recent efforts have been made to define a boundary of a geodesic space which
is a generalization of the Gromov boundary. A geodeisc ray v in a metric
space is said to be Morse if for any K > 1,e¢ > 0 there exists a constant
N = N(K,e¢) such that any (K, €)-quasi-geodesic with end points on v lie
in the N-neighborhood of 7. Cordes, in [9], defined a boundary of a proper
geodesic space by taking all asymptotic Morse geodesic rays starting from a
fixed point and it was called Morse boundary. Cordes, in [9], equipped the
boundary with direct limit topology motivated by the contracting boundary
of CAT(0) spaces defined by Charney and Sultan in [8]. Direct limit topology
on the Morse boundary has several drawbacks. In general, it is not even
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first countable and hence not metrizable. To rectify this situation, Cashen-
Mackay in [7] introduced a new topology on the Morse boundary which
was called topology of fellow travelling quasi-geodesics. They worked with
contracting quasi-geodesic rays from a fixed base point to define a boundary
at infinity and it was called to be contracting boundary. As a set, both Morse
boundary and contracting boundary are the same but with two topologies;
the topology of fellow travelling quasi-geodesics is coarser than the direct
limit topology. Cashen-Mackay, in [7], showed that the Morse boundary of a
finitely generated group with the topology of fellow travelling quasi-geodesics
is metrizable.

Osin, in [20], introduced the notion of acylindrically hyperbolic groups.
An action of a group G on a metric space (X, d) is said to be acylindrical
if for every € > 0 there exists R, N > 0 such that if d(z,y) > R then the
set {g € G :d(x,gr) < e and d(y, gy) < €} contains at most IV elements. A
group G is called acylindrically hyperbolic if it admits an acylindrical action
on a hyperbolic metric space X such that the limit set of G on the Gromov
boundary 0X contains at least three points. Recently, Sun in [24] gave a
dynamical characterization of acylindrically hyperbolic groups motivated by
the works of Bowditch [3], Freden[14], Tukia[25], and Yaman [26]. An action
of a group G on a compact metrizable space M by homeomorphism is called
a convergence group action if the induced diagonal action on the space of
distinct triples

O3(M) = {(z1, 22, m3) € M> | 21 # 29, 3 # w3, 71 # T3}

is properly discontinuous. The action of a group G on a metric space M is
said to be elementary if it fixes a subset of M with at most two elements;
otherwise the action is called non-elementary. Sun, in [24], proved that a
group G having non-elementary convergence group action on some compact
metrizable space M is acylindrically hyperbolic (See Corollary 1.3 of [24]).

We denote the contracting boundary of a finitely generated group G with
fellow travelling quasi-geodesics topology by 07°G. 972G is metrizable
(Corollary 8.6 of [7]). Let H be a subgroup of G' and take the limit set A(H)
of H in 8 C@. Each element of group G acts on or 2@ by homeomorphism
and each element of H leaves A(H) invariant. Thus, H acts homeomorphi-
cally on A(H). In this article, we will analyze the action of the subgroup H
on A(H) when A(H) is a compact subset of 97 9G.

Theorem 1.1. Suppose G is a finitely generated group. Let H be a subgroup
of G such that the limit set A(H) in 072G contains at least three elements.
If A(H) is compact subset then the action of the subgroup H on the space of
distinct triples ©3(A(H)) is properly discontinuous.

If the the action of the subgroup H on 872G is non-elementary then the
limit set A(H) of H in 872G contains at least three points. One imme-
diate corollary we can deduce from Theorem 1.1 by applying Sun’s result
(Corollary 1.3 of [24]) is the following:
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Corollary 1.2. Let H be a subgroup of a finitely generated group G such
that the limit set A(H) is compact in contracting boundary 07 °G of G. If
the action of the subgroup H on 8596’ is non-elementary then H is an
acylindrically hyperbolic group.

The action of a word hyperbolic group G on its Gromov boundary 9G is
convergence and hence any subgroup of a word hyperbolic group has conver-
gence action on 0G. A quasiconvex subgroup H of a word hyperbolic group
G is itself word hyperbolic and the limit set A(H ), being homeomorphic to
OH, is compact. An example of a non-hyperbolic subgroup of a word hyper-
bolic group with limit set compact can be obtained from Rips’ construction
in [22].

Example 1.3. Rips, in [22], showed that given any infinite finitely presented
group @, there exists a short exact sequence

1-N->G—->Q—1,

such that G is word hyperbolic group and N is finitely generated non- hy-
perbolic group. The limit set A(N), being closed, is compact. In fact, as N
is a normal subgroup of G, A(N) = JG.

Example 1.4. In the Example 1.3, the subgroup IV of the word hyperbolic
group G is finitely generated. In [12], Das and Mj constructed an infinitely
generated malnormal subgroup K of a free group F5 of rank 2, whose limit
set A(K) is whole OF». See section 3 of [12] for a detailed discussion about
this example. The limit set A(K) is compact.

By the work of Olshanski, Osin & Sapir in [19], there exists a finitely
generated group G (Tarski Monster Group) which is not virtually cyclic,
every proper subgroup of G is cyclic, Morse and hence 079G # ¢ (Theorem
1.12 of [19]). The group G is not acylindrcally hyperbolic but all infinite
subgroups of G, being cyclic, are elementary.

Example 1.5. Let A be a Tarski Monster Group in which every proper
subgroup is infinite cyclic and 979A # ¢ (See Theorem 1.12 of [19]). Let
M be a proper infinite subgroup of A. Then M is cyclic and A(M) consists of
two points. By Rips construction in [22], given any infinite finitely presented
group @, there exists a short exact sequence 1 - N — B — () — 1 such that
B is a word hyperbolic group and N is a finitely generated non-hyperbolic
group. The limit set A(N) is compact. Consider the group G = A x B
and the subgroup H = M x N of G. The subgroup H is contained in the
hyperbolic group M * B and the subgroup M * B is Morse in G. Hence, the
limit set A(H) is compact in the contracting boundary 972G of G. The
group G is acylindrically hyperbolic but not a hyperbolic group.

In the Examples 1.3, 1.4 & 1.5, the subgroups are non-elementary and are
contained in a hyperbolic group. The limit sets of these subgroups, being
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contained in the Gromov boundary of a hyperbolic group, are compact. It
is a trivial fact that non-elementary subgroups of a hyperbolic group are
acylindrically hyperbolic and one does not need Corollary 1.2 to prove it.
Thus, the above examples are not new and not much interesting. In [7],
Cashen-Mackay proved that a finitely generated group G has compact con-
tracting boundary 979G if and only if the group G is hyperbolic. By using
the ideas of proof in Theorem 1.1, we will give another proof of the fact that
a group G is hyperbolic if its contracting boundary 879G is compact (See
Theorem 5.2). If H is a Morse subgroup of G then A(H) is homeomorphic
to 07 CH. Thus, for a Morse subgroup H of a finitely generated group, the
limit set A(H) is compact if and only if H is hyperbolic. To find examples
which would make Theorem 1.1 interesting, one should look for non-Morse
subgroups in non-hyperbolic groups or non-acylindrically hyperbolic groups
with non-trivial Morse boundary.

Problem 1.6. Find a finitely generated group G and a subgroup H of G
such that the followings hold:

(i) G is not acylindrically hyperbolic and 872G # ¢,

(ii) the limit set A(H) is compact in 979G and contains at least three points,
(iii) H is not contained in any hyperbolic subgroup of G.

By the work of Dahmani-Guiradel-Osin [11] and Sisto [23], it is known
that an acylindrically hyperbolic group always contain non-elementary hy-
perbolic Morse subgroups and hence contracting boundary of an acylindri-
cally hyperbolic group is always non-empty. Let G be a finitely generated
group and H be a subgroup of G. If the limit set A(H) of H in 079G is a
compact set and the action of the subgroup H on 97 2@ is non-elementary
then, by Corollary 1.2, the subgroup H is acylindrically hyperbolic and
hence 97 CH # ¢.

Problem 1.7. Does there exists a finitely generated group G and a subgroup
H of G such that 979 H = ¢ but the limit set A(H) is a non-empty subset
of 379G ?

The groups Z @ Z and Baumslag-Solitar group BS(1,2) have empty con-
tracting boundaries. In [13], Drutu and Sapir proved that if no asymptotic
cone of a group contains a cut point then that group has an empty con-
tracting boundary. Consider the standard embedding Z&Z — PSL(2,7Z][i))
defined on generators as

(1,0) (é 1),(0,1)»—> <é i)

The group PSL(2,Z][i]) is a discrete subgroup of PSL(2,C) which is ori-
entation preserving isometry group of hyperbolic 3-space H3. The limit set
of Z @ 7 in the boundary at infinity OH? of H? is the singleton set {oo}.
The contracting boundary 97 ¢(PSL(2,Z[i])) is non-empty but the limit set
AMZ @ Z) in 0F(PSL(2,Z]i])) is empty.
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Let G be a group hyperbolic relative to H (in the sense of Bowditch). The
group G acts properly discontinuously on a proper hyperbolic metric space
X and G has convergence & geometrically finite action on the Gromov
boundary dXg. The boundary 0X¢g of X is called the Bowditch boundary
or relatively hyperbolic boundary of G and is denoted by 0, G. Consider
the group G = Z x (Z ® Z) and the subgroup H = Z & Z of G. The group
G is hyperbolic relative to H. Here, the limit set A,¢;(H) of H in 0,¢(G)
is a singleton set whereas 97 CH = ¢ and the limit set A(H) = ¢ in 97 2G.
For a group G hyperbolic relative to H with 87 CH = ¢, Cashen-Mackay [7]
proved that 879G is embedded in the set of all conical limit points for the
action of G on 0,¢G.

Let G be a finitely generated group and H be a subgroup of it. To
understand the relationship between 97 2H and the limit set A(H), it is
worth to study whether there exists a continuous extension 0.i : 97 H —
072G of the inclusion i : H < G. Such continuous extensions are called
Cannon—Thurston maps, the name derived from the work of J. Cannon and
W. Thurston in [6]. The Cannon—Thurston maps were extensively studied
by Mahan Mj, we refer the reader to the introduction section of the article
[17] by Mj for a detailed discussion of results and problems oriented with
Cannon—Thurston maps.

Example 1.8. (i) Let ¥ be a closed orientable surface of genus 2 and
f ¥ — X be a pseudo-Anosov homeomorphism. Consider the map-
x,O)w?f?Blll}): z€X}”
m1(My) are hyperbolic groups. The group 7 (My) is the HNN extension
<m(X),t ]| tat™! = fi(a) for all a € 71(X) >, where f, is the isomorphism
on 71(X) induced from f. By the work of Cannon and Thurston, in [6], it fol-
lows that there exists a Cannon-Thurston map for the embedding 7 (X) —
m1(My) (See Section 4 of [6], see also Theorem 4.3 of [16] for a more general
statement). Now consider the group Let H =< m(2),z,y | zy = yz > and
G =< m(My),z,y | xy = yx >. Both the groups H and G are hyperbolic
relative to Z @ Z. By Theorem 2.10 of [21], there exists a continuous ex-
tension Oy.eji @ OpeyH — O0,e)G of the inclusion i : H — (. The contracting
boundary 8Cf CH of H is embedded in 0, H and the contracting boundary
072G of G is embedded in 9,,G (See Theorem 7.6 of [7]). In this example,
Oreri(0F CH) is contained in &7 G To see this fact, let us take a contracting
geodesic ray a : [0,00) — H in H with «(0) = e, where e is the identity
element of H. The ray « being contracting implies that the intersections of
« with the left cosets of Z @ Z are uniformly bounded. Thus there exists a
number D, > 0 and disjoint subintervals [s,,t,]| with ¢, < s,4+1 such that
a([sp, tp]) lie in a left coset of ZBZ, a(([ty, Snt1])) lie in a left coset of w1 (%)
in H and length of every a|, . is at most Do. Let u, € (tn, Spt1), the

ping torus M =T The fundamental groups m(X) and

sequence {a(uy,)} converges to a(oc) in HU 87 <2H. As Cannon-Thurston
map exists, the sequence {i(a(uy))} converges to d.i(a(o0)) in G U 9, G.
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Let /3, be a geodesic in G joining e and i(a(uy)). Then 3, is of the form
le, a(s1)]Ua([s1,t1])Ue(tr), as2)]U...U[a(ty), a(uy)], where [a(t;), a(sjq1)]
and [a(ty), a(uy)] are geodesics in left cosets of 71 (My). The geodesics in left
cosets of 71 (M) are uniformly contracting as m (M) is a hyperbolic group.
Note that any quasi-geodesic in G joining e and i(a(u,)) passes through
points a(s;), a(t;). As length of every |, ¢,) is at most D, and each geo-
desic in left cosets of w1 (My) are uniformly contracting, the geodesic 3, is
uniformly contracting for every n. The sequence {f3,} of geodesics converge
to the uniformly contracting geodesic § : [0,00) — G where 3([0,00)) =
e, a(s1)]Ua([s1, t1])U[a(t1), a(82)]U.... Thus, d,eri(a(oc)) = B(o0) € 37 9G.
For this example, there exists a continuous extension 9, : 07 2H — 97 <G
of i : H — G and the restriction of the map 0,¢¢ on 3fQH is same as
Oci. Note that for the inclusion j : m1(X) < G, due to the existence of
its Cannon-Thurston map, 0.j(m1 (X)) = A(m1(X)). Hence, the limit set
A(m1 (X)) is compact in 97 9G.

(i) Consider the group G =< 7 (%), z,y,t | vy = yz, tr = xt, ty = yt,tat ™! =
f«(a) ¥V a € m1(¥) > . The group H is hyperbolic relative to Z & Z and the
group G is hyperbolic relative to Z & Z & Z (See Figure 1 of [2]). By The-
orem 2.10 of [21], there exists a continuous extension Oyeji : OpetH — OpetG
of the inclusion i : H < . The inclusion i preserves parabolic limit points.
Hence, 0,¢i(07 €H) is contained in the set of conical limit points for the ac-
tion of G on 0, G. But here 0,4i(072H) may not be contained in 97 <G,
as for a geodesic v in G connecting two points of a contracting geodesic ray
in H, the intersection of v with left cosets of Z ®Z @ Z may not be uniformly
bounded. The groups H and G here are also C AT (0) groups with isolated
flats. By changing the relatively hyperbolic boundary with visual boundary
of CAT(0) spaces on which the groups act, Beeker, Cordes, Gardam, Gupta,
Stark in [2] showed that a Cannon-Thurston map does not exist for the pair
(G, H) (see Theorem 5.6 of [2] for a more general statement).

Problem 1.9. Find an example of a finitely generated group G and a non-
Morse subgroup H of G such that G is neither hyperbolic nor relatively
hyperbolic and a Cannon-Thurston map 9,3 : 97 CH — 079G exists for the
inclusion 7 : H — G.

Acknowledgements: We thank the anonymous referee for his/her valuable
comments and suggestions which has helped in improving the exposition of
this article from an earlier draft. Research of the first author was supported
by DST-INSPIRE Grant IFA12-MA-19.

2. Morse & contracting quasi-geodesics
We begin with several definitions.

Definition 2.1. Suppose (X, dx) and (Y, dy) are two metric spaces.
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(1) (Quasi-isometry): Let K > 1, > 0. Amap f: X — Y is said to be
a (K, €)-quasi-isometric embedding if

L (a,0) — e < dy (f(a), 7)) < Kdx(a,b) +¢

for all a,b € X. In addition, if for each y € Y there exists z € X such
that dy (y, f(z)) < K then f is said to be a (K, €)-quasi-isometry
between X and Y.

(2) (Quasi-geodesic): A map ¢ : I — X, where I is any interval in R
with usual metric, is said to be (K, €)-quasi-geodesic if ¢ is a (K €)-
quasi-isometric embedding.

Definition 2.2. (Morse quasi-geodesic): A quasi-geodesic v in a geodesic
metric space X is called N-Morse if there exists a function N : R>1 xR>g —
R>g such that if ¢ is any (K, €)-quasi-geodesic with endpoints on «y then g lies
in the closed N (K, €¢)-neighborhood of 7v. We call N to be the Morse Gauge
of .

A function p is called sublinear if it is non-decreasing, eventually non-
negative, and lim,_.op(r)/r = 0.

Definition 2.3. (Contracting quasi-geodesic): Let v : I — X be a quasi-
geodesic in a geodesic metric space X. Let 7, : X — P(y([)) be defined as
my(x) = {z € v |d(z,2) = d(x,v(I))}, where P(y(I)) denotes the power set
of v(I). The map 7, is called to be the closest point projection to v(I). For
a sublinear function p, we say that v is p-contracting if for all x and y in X:

d(z,y) < d(z,7(1)) = diam(mp)(x) Umy1)(y)) < pld(z,7(1)))-
We say that a quasi-geodesic v is contracting if it is p-contracting for some

sublinear function p.

Note: In the above two definitions one can take any subset Z of X instead
of quasi-geodesics and then we have the definitions of Morse and contracting
subsets.

Theorem 2.4. (Theorem 1.4 of [1]) Let Z be a subset of a geodesic metric
space X. The followings are equivalent:

(1) Z is Morse.
(2) Z is contracting.

Examples of contracting (or Morse) quasi-geodesics include quasi-geodesics
in hyperbolic spaces, axis of pseudo-Anosov mapping classes in Teichmiiller
space [15] etc.

3. Contracting boundary and topology on it

Definition 3.1. Given a sublinear function p and constants L > 1 and
A >0, define:

k(p, L, A) := maz{3A,3L% 1+ inf{R > 0] for all » > R,3L%p(r) <r}}
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Define:
K (p,L,A) := (L* +2)(2k(p, L, A) + A).

Notation: If f and g are functions then we say f =< g if there exists a
constant C' > 0 such that f(z) < Cg(Cx+c¢)+ C forall x . If f < g and
f = g then we write f < g.

Lemma 3.2. (Lemma 6.3 of [1]) Given a sublinear function p and a con-
stant C' > 0 there exists a sublinear function p' < p such that if Z C X and
Z'" C X have Hausdorff distance at most C' and Z is p—contracting then Z'
is p'—contracting.

Lemma 3.3. (Lemma 3.6 of [7]) Given a sublinear function p there is a
sublinear function p < p' such that every subsegment of a p-contracting
geodesic is p'-contracting.

Lemma 3.4. (Lemma 4.4 of [7]) Suppose o : [0,00) — X is a continuous,
p-contracting, (L, A)-quasi-geodesic ray and [ : [0,00) — X is a continu-
ous (L, A)-quasi-geodesic ray in X such that d(«(0),3(0)) < k(p, L, A). If
there are r,s € [0,00) such that d(«(r),5(s)) < k(p, L, A) then the Haus-
dorff distance days(a[0,7], 8]0, s]) < k' (p, L, A). If a[0,00) and B[0,00) are
asymptotic then their Hausdorff distance is at most k'(p, L, A).

Lemma 3.5. (Lemma 4.6 of [7]) Let a be a p contracting geodesic ray, and
let B be a continuous (L, A) quasi-geodesic with ag = [y = o. Given some
numbers r and J, suppose there exists a point x € a with d(x,0) > R and
d(xz,B) < J. Lety be the last point on the subsegment of « between o and x
such that d(y, B) = k(p, L, A). Then there exists a function \(¢p,p,q) defined
for sublinear function ¢, p > 1 and q > 0 such that X is monotonically
increasing in p,q and:

d(x,y) <2J + XN, L, A).
Thus:

In the statement of Lemma 4.6 of [7], 5 was taken to be a quasi-geodesic
ray while the same proof works for any finite quasi-geodesic segment.

Definition 3.6. (Contracting Boundary, 9.X): Let X be a proper geodesic
metric space with basepoint o. Define 0.X to be the set of contracting
quasi-geodesic rays based at o modulo Hausdorff equivalence.

Proposition 3.7. (Lemma 5.2 of [7]) For each ¢ € 0.X :
(1) The set of contracting geodesic rays in ¢ is non-empty.

(2) There is a sublinear function:

pc(r) == sup diam(ma(z) Uma(y))

a?‘x7y

Here the supremum is taken over geodesics a € ( and points x and
y such that d(z,y) < d(z,a) <r
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(3) Ewvery geodesic in ¢ is pc-contracting.
Notation : Let Nfo = {xz € X| d(o,z) > r} for a metric space (X, d).

Definition 3.8. (Topology of fellow travelling quasi-geodesics, Cashen-
Mackay, Definitions 5.3, 5.4 of [7]): Let X be a proper geodesic metric
space. Take ¢ € 9.X. Fix a geodesic ray o¢ € (. For each r > 1, define
U(¢,r) to be the set of points n € 9.X such that for all L > 1 and A > 0
and every continuous (L, A)-quasi-geodesic ray 8 € n we have

d(B,a® N Nyo) < k(p¢, L, A). (*)
Define a topology on 9.X by
FQ:={U C 9.X | for all ¢ € U, there exists r > 1,U(¢,r) CU}  (*¥)

The contracting boundary equipped with this topology is called topology of
fellow travelling quasi-geodesics by Cashen-Mackay [7] and is denoted by
orex.

A bordification of a Hausdorff topological space X is a a Hausdorff space
X containing X as an open, dense subset. The contracting boundary of a
proper geodesic metric space provides a bordification of X by X := XU0.X
as follows (Definition 5.14 of [7]):

For x € X, we take a neighborhood basis for  to be metric balls about z.

For ( € 0.X, we take a neighborhood basis for ¢ to be the sets (/j(C,T)
consisting of U(¢, ) and points x € X such that d(y, NSona®) < k(p¢, L, A)
for every L > 1, A > 0, and continuous (L, A)-quasi-geodesic segment 7 with
endpoints o and .

Consider 7 := {U C XUJ.X |Vx € XNU,3r > 0,B(x;r) CU and V( €
UNod.X,3r >1,U(r) CU}. T defines a topology on X and X with
respect to this topology 7, is first countable, Hausdorff and X is dense open
set in X. (See Proposition 5.15 of [7])

Proposition 3.9. (Proposition 5.15 of [7]) X := X U 9.X topologized as
above defines a first countable bordification of X such that the induced topol-
ogy on 0.X is the topology of fellow-travelling quasi-geodesics.

Definition 3.10. (Limit set, A(G)): If G is a finitely generated group acting
properly discontinuously on a proper geodesic metric space X with basepoint
o we define the limit set A(G) := Go\Go, the topological frontier of orbit

of o under the G-action in X.

Definition 3.11. (Definition 3.11 of [10], Asymptotic and Bi-asymptotic
geodesics) Let v : (—oo0,00) — X be a bi-infinite geodesic in X with (0)
a closest point to basepoint o along . Let ¢ € 0.X. We say ~ is for-
ward asymptotic to ¢ if for any contracting geodesic ray 7¢ : [0,00) — X
representing ¢ with 7¢(0) = o, there exists K > 0 such that

dHaus(’Y([Ov OO)), ’Y§<[O7 OO))) <K
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We define backwards asymptotic similarly. If v is both forward and backward
asymptotic to ¢ and 7 respectively, then we say ~ is bi-asymptotic to the
ordered pair (¢,n). If v is bi-asymptotic to (¢,n) then we will call v to be
bi-infinite geodesic joining ¢,n and we denote it by [(, n].

The following lemma says that any two points of contracting boundary
can be joined by a contracting bi-infinite geodesic. See sections 3.3 and 3.4
of [10] for a detailed discussion about limiting geodesics.

Lemma 3.12. (Lemma 3.4 of [10]) Let X be proper geodesic metric space
and , n be two distinct points in 0.X. Then there exists a contracting
bi-infinite geodesic joining ( and 7.

Theorem 3.13. Let X be a proper geodesic metric space with 0.X # ().
Consider a sequence of geodesics {yn} with end points (,,n, € X U 0.X.
Suppose (, — (,nn — 1 in the topology of fellow travelling quasi-geodesics
and ¢ #n. Then v, passes through a bounded set.

Proof. Assume (,n € 0.X. Let k1 = k(p¢,3,0), ka = k(py,3,0) and k =
max{k1, ko}. Fix a base point o in X. For points z,y € X U0.X, we denote
[z,y] by a geodesic segment, geodesic ray or bi-infinite geodesic ray joining
x and y, depending on whether x and y, none, exactly one or both lies in
0.X. If v is any parametrized path and z,y € 7 then [z,y], stands for the
segment of v between x and y.

Let v be a bi-infinite geodesic joining 1 and ¢ with contracting function p.
Let p, and p be nearest point projections from o to 7, and 7 respectively.
We will prove that the sequence {d(o, py)} is bounded.

Let ap, := [0, pn| U [pnaCn]’an a = [o,p] U [p, C]’Y’ oy, = [0,pn] U [pnann]'Yn’
and o/ := [0,p] U [p,n]. Paths ay, o, @ and o/ are continuous (3,0) quasi-
geodesics. We parametrize them by it’s arc length.

Since ¢, — (,mn — n in the topology of fellow travelling quasi-geodesics
(*),(**), for any r > 1 there exists N(= N(r)) such that for all n > N

d(an,ac([r, ) <k , d(al,a([r,))) <k, (3.1)

where a¢, o are geodesic rays from o representing ¢, n respectively. As o, o
are (3,0) quasi-geodesics, by Proposition 3.4, o€ and «, a” and o lie in
a bounded Hausdorff distance, say M, of each other. Then, as «a,a’ are
(3,0)-quasi-geodesics

Aom,a[5 (r — M), 00))) < b+ M, d(al o' ([3 (r — M), 00))) <+ M.

Let k1 = k+ M and r; = %(r — M). By Lemma 3.3 and Theorem 2.4,
depending on the contracting function p of -, there exists a Morse gauge
say N, such that every subsegment of v is N,-Morse. We choose r large
such that r > 2ky + 3d(o,p) + N(3,2k1) + 1. Thus, there exists a number

N = N(r) > 0 such that for any n > N, we have the following:
d(an, a([r1,00))) < ki, d(aj,a’([r1,00))) < ky (3.2)
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Thus, for n > N, there exist z, € ap,yn € a([r1,)),z], € al,y, €

a/([r1,00)) such that d(zy,,yn) < ki and d(z),,y),) < k1.

Case 1: Suppose &y, € [P, Cnly, and a), € [Pn, Nnly, -

Path [y),, 2}, ] U[z],, Zn]~y, U2, yn] is (1, 2k1)-quasi-geodesic joining y;, and
Yn. By Lemma 3.3, [y}, yn]y is p/- contracting, where p’ < p. By Theorem
2.4, the Hausdorfl distance between [z],, 2]+, and [y),,yn], is bounded, say
it is M7 and this bound Mj is independent of n and depends only on the
contracting function p. Now p € [y),,yn]y, then there exists a point say
Zp € [2],, Tnly, such that d(p, z,) < M. As p, is a nearest point projection
of 0 on 7y, d(o,p,) < My +d(o,p).

Case 2: Suppose z, € [0,p,] and z, € [pn,Nn]a, for some number n.

Consider the path [z}, pn]y, U [Pn, Znlar , it is a (3,0)-quasi-geodesic. As
d(xna yn) < kl and d(l‘;w yqlz) < kla the path [y;m x/n] U [x;wpn}’}’n U [pn, ',L‘TL]OZQz U
[Tn, yn] is a (3, 2k;1)-quasi-geodesic. Now d(p,y,) > r1 — d(o,p) and hence
d(yn,0) > r1 — 2d(o,p). As d(xn,yn) < ki, therefore d(o,p,) > d(o,z,) >
r1 — k1 — 2d(o,p) and hence

d(pvpn) >ry — kl - 3d(0a p)

Thus, the (3,0)-quasi-geodesic path [2],, pp]y, U[pn, Tnla, lie outside the ball
B(p;r1—k1—3d(o,p)). Again, as d(zy, yn) < k1 and d(z,,y),) < ki, the path
[Wh, 20, U [, D)y U [P, Tnlar, U [T, yn] lie outside the closed ball B(p;r1 —
2k1 — 3d(o,p)). This says that the subsegment B(p;r; — 2k1 — 3d(0,p)) N~y

is not N, Morse, a contradiction. Thus, Case 2 is not possible.

Case 3: Now assume that z,, € [0,p,] and 2], € [0, p,] for some number n.
Then, following same argument as in first part of case 2 we get

d(p,zn) > 11 — k1 — d(o,p) & d(p,x;,) > r1 — k1 — d(0,p)

The path [y, 2, U [}, Tn]ar U [Zn, yn] is a (1,2k1) quasi-geodesic and it lie
outside the closed ball B(p;r1 — 2k1 — 3d(0,p)) which says that the segment
B(p;r1 — 2k1 — d(o,p)) N+ is not N,-Morse, a contradiction.

Thus, for all large n, z, € [pn,(nly, and z, € [pp,nnly, and we return to
Case 1.

If one of ¢ or n is in X then correspondingly one of the end points of =, lie
in a bounded set. Hence, for all n, 7, passes through a bounded set. Also,
note that the sequence {d(o,p,)} is bounded if either ¢ or n or both lie in
X. O

Corollary 3.14. Let {y,} be a sequence of bi-infinite contracting geodesics
with end points My € 0.X. Suppose &, — (,nn — 1, ¢ # 1 in the topology
of fellow travelling quasi-geodesics. Let vy be a bi-infinite contracting geodesic
joining ¢ and 1. Then given any x € v, there exists a number N such that
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for alln > N, d(x,~y,) is less than some constant K, where K depends only
on contracting function of .

Proof. Let p, and p be a nearest point projections from o to v, and ~
respectively. We use the notations of Theorem 3.13. Take r; > max{d(o, p)+
d(p,x),2ky + 3d(o,p) + N(3,2k1) + 1}. There exists a number N; > 0
depending on r such that for all n > N;

d(an,a([rl,oo))) <k , d(a;wa/([Thoo))) <k

Thus, for n > Ni, there exist z, € an,yn € a((r1,)),2], € al,y,, €

o' ((r1,00)) such that d(z,,y,) < k1 and d(a),,y.,) < k1. We have proved in
Theorem 3.13 that the sequence {d(o,p,)} is bounded. Thus, there exists a
number Ny > 0 such that for all n > Na, z,, 2, does not lie in [0, p,]. Let
N = max{Ni, Na}. For all n > N, the geodesic [2],, ], lie in a bounded
K-Hausdorff distance from [y}, yn]y, where K eventually depends only on
contracting function of . Note that by the choice of r1, x € [y}, yn]y. Thus,
d(z,v) < d(z,[z), xn]y,) < K for all n > N. O

Lemma 3.15. Let X be proper geodesic metric space with non empty con-
tracting boundary and o be a fixed base point in X. Suppose {(,} is a
sequence in 0. X converging to ¢ in the topology of fellow travelling quasi-
geodesics. Suppose for each n, there exists a continuous (3,0)-quasi-geodesic
By starting from o and representing (, such that B, is the concatenation of
a geodesic [o,p,] and a geodesic ray v,. Assume also that the sequence
{d(o,pn)} is bounded. Let g, be a point on (3, such that d(o,q,) — oo.
Then the following holds:

(i) Given any r > 1 there exists N = N(r) such that for alln > N,

d(Yn, ozc([r, 00))) < k/(pg, 2L +1,A)

where 7y, is any continuous (L, A)-quasi-geodesic with end points o and gy
and af is a contracting geodesic representing ¢ starting from the base point
0.
(i) The sequence {q,} converges to (.

Proof. (i) We first prove the following claim:

Claim: Let n € 9.X and (8 be a continuous (3, 0)-quasi-geodesic ray repre-
senting 7 such that ( is concatenation of a geodesic [0, p| and a geodesic ray
v starting from p € X. Then f§ is contracting as it represents an element
of the contracting boundary 9.X. We parametrize § : [0,00) — X by arc
length where 3(0) = o. Consider a point ¢ € [0, 00) which lies in v. Let v
be any continuous (L, A)-quasi-geodesic joining 3(0) = o and ¢q. Then there
exists a (2L + 1, A)-quasi-geodesic ray of the form (g ] * pt, where (u) € v
and y is a geodesic ray starting from ~y(u), such that | ) * p is asymptotic
to 8 and d(o,q) < 2d(o,p) + d(o,v(u)).

Proof of claim: For all n, there exist points () € v and S(sy) € B([n,o0))
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such that d(7, Bljn,c0) = d(v(tn), B(sn)). If py is a geodesic between ~(t,)
and B(tn) then ¥|(g,] * ftn is a (2L + 1, A)-quasi-geodesic. An application of
Arzela-Ascoli theorem tells that there exists a quasi-geodesic ray of the form
Yljo,u] * # Where v(u) € v and p is a geodesic ray starting from (u). Each
7|[0,tn} * 1y, lie R-neighborhood of 3, where R depends on L, A and the con-
traction function of 3. Thus, 7||g , *p also lie in the R-neighborhood of 3 and
hence it is asymptotic to 5. Note that d(p,q) = d(p, B(sn)) — d(q, B(sn)) <
d(p, B(sn)) — d(y(tn), B(sn)) < d(p,~(ty)). Thus, for all n, we have

d(o,q) < d(o,p) +d(p,q) < d(o,p) + d(p,¥(tn)) < 2d(0,p) + d(0,7(tn)).

Taking n — oo, we get d(o0,q) < 2d(o,p)+d(o,7v(u)). Hence, we have proved
the claim.

Let 7, : [0,s,] — X represents the arc length re-parametrization of the
quasi-geodesic y,. For each n, from the Claim it follows that there ex-
ists a (2L + 1, A)-quasi-geodesic ray of the form (4, * pn asymptotic
to By, where u, € [0,5,]. Thus, yu|[0u,) * fn also represents (. Cn — ¢
implies that d(vnl0,u,] * fin, @([r,00)) < k(pe, 2L + 1, A) for all large n.
There exists x,, € ’7n|[0,un] % fi, such that d(z,,as([r,00)) < k. If z, € py,
then by Lemma 3.4, d(v(un),at) < K/, where k' = K(pc,2L + 1, A) (as
in Definition 3.1). Now, d(o,¢,) < 2d(o,p,) + d(o,v(uy,)) and {d(o,pn)}
bounded implies that d(o,v,(u,)) — oo as d(o,qn,) — oo. Thus, for all
large n, d(yn(un),a([r,00)) < k. If z,, € v,([0,u,)) then from definition
d(vn, 4 ([r,00))) < k < K.

(ii) Given r > 1, our aim is to find large number N such that for all n > N,
the distance d(7y,, NFoNat) < k(p¢, L, A), for any continuous (L, A)-quasi-
geodesic v, joining o to g,. That will show ¢, — (.

If r < k(pe, L, A) then d(as(r), ) < d(a(r),0) = r < k(pc, L, A) for
all numbers n. Hence, in this case, d(v,, Nfo N a®) < k(pc, L, A) for all
numbers n.

Given r > 1, only interesting pairs (L, A) are those for which r >
k(pc, L, A). Definition 3.1 of r(p¢, L, A) gives 3L?,34 < k(pc,L,A) < r
ie. L < /T, A<Z. Set

Ri:= sup {2k'(pc,2L+1,A) + Xp¢, L, A)} < o0, (3.3)
L<\/5,A<%
where ) is the function as in Lemma 3.5.

Let R = r+ R;. From (i) we get a number N = N(R) such that for all
n > N we have

d(yn, Ngona®) < w'(pe, 2L + 1, A) (3.4)

for every continuous (L, A)-quasi-geodesic 7, joining o to ¢,. Note that N is
independent of L, A. There exist points 2, € 7, and z,, € a*([R, c0)) such
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that d(zy, zn,) < K’ (p¢, 2L + 1, A). Let y,, be the last point of a* between o
and oS (x,) such that d(yn,vn) = k(p¢, L, A). From Lemma 3.5,

d(o,yn) > R —2k'(pc,2L +1,A) — XNp¢, L, A) > R— Ry = .
Thus, d(y,, NoNa®) < k(p¢, L, A) for all n > N. O

4. Approximate barycenters

Let X be a proper geodesic metric space. Assume |[07<X| > 3. Let
(a,b,c) be a distinct triple in X U7 2X. By joining the points a, b, ¢ with
geodesics, we have a A(a,b,c) whose vertices are a,b,c. The A(a,b,c) is
called ideal triangle if a,b,c € 97 2X. If the sides of the triangle A(a, b, c)
are contracting geodesics, by taking the maximum of contracting functions,
we can assume that the sides of A(a,b,c) are p-contracting for a single
sub-linear function p.

Definition 4.1. (Approximate barycenter of triangles): Given § > 0. An
element x in X is said to be a d-barycenter for a triangle A(a,b,c) in
X U 079X if the distance of 2 from the sides of A(a, b, c) is at most 4.

Lemma 4.2. (Lemma 11, Lemma 12 of [18]) Let A(a,b,c) be a triangle
in X U7 2X such that its sides are p-contracting geodesics. There exists
d = d(p) > 0 such that the set of d-barycenters of A(a,b,c) is non-empty
and its diameter is bounded above by some constant depending only on p.

A geodesic metric space X is said to be d-hyperbolic if every geodesic
triangle in X has a d-barycenter. X is said to be hyperbolic if it is ¢-
hyperbolic for some § > 0. Hyperbolicity of a geodesic metric space can
be also defined in terms of uniform ‘thin’ triangles. We refer the reader to
see Proposition 1.17 of Chapter III.H in [5] and Section 6 in [4] for different
equivalent notions of hyperbolicity. A finitely generated group G is said to
be hyperbolic group if its Cayley graph with respect to some finite generating
set is a hyperbolic metric space.

5. Main result

Let G be a finitely generated group G. Cashen-Mackay in [7] proved that
the contracting boundary 979G is a metrizable space. Let H < G be a
finitely generated subgroup such that A(H) C 879G. Then the limit set
A(H) is also metrizable by equipping it with subspace topology inherited
from 879G, Let us assume that A(H) contains three distinct points. Then
the space ©3(A(H)) of distinct triples of A(H) is non-empty.

Theorem 5.1. If A(H) C 079G is compact and A(H) contains at least
three distinct points, then the action of the subgroup H on Os(A(H)) is
properly discontinuous.
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Proof. Towards contradiction we assume that the action of the subgroup
H on O©3(A(H)) is not properly discontinuous. Then there exists a com-
pact set K C O3(A(H)) and a sequence {h,} of distinct elements of H
such that h, K N K # (). This implies that there exists sequence of points
{(an,bn,cn)} and {(al,b),,c,)} in K such that hy(an,bp,cn)=(al,, b, ).
Since O3(A(H)) is metric space and K C O3(A(H)) is compact, by sequen-
tial compactness of K, {(ay, by, c¢,)} subsequentially converges to a point say
(a,b,c)e K. Also {(al,,bl,,c),)} subsequentially converging to (a’,V/,¢) € K.
So, after passing to a subsequence, we can assume (a,, by, ¢,) — (a,b, c) and
(@, by ) — (a8, ).

Let A(a,b,c), A(d', b, ) be ideal triangles corresponding to the points
(a,b,c) and (a’, V', ') respectively. We can take the sides of A(a,b,c) and
A(d', b, ) to be uniformly contracting (take maximum of contracting func-
tions of sides of the triangles). So we have points say B, ) and By
in the Cayley graph of G such that these points are §-approximate barycen-
ters of A(a,b,c) and A(d’,V, ) respectively for some § > 0. The con-
stant ¢ depends only on the contraction functions of sides of A(a,b,c) and
A(a', b, ). Now consider geodesic triangles A,, and A/ corresponding to
points (an, by, c,) and (al, b, c) respectively. As (an,bn,cn) — (a,b,c),
by Corollary 3.14, there exists M such that B,y ) and BEGJLC) are d + M
barycenter for the triangles A, and A/ respectively. Let 8’ = § + M.
Claim: The sequence {h,(B.p¢))} lie in a bounded set.

Proof of Claim:
Let z,, y, and z, be respective points on the sides [ay, by|,[bn, ¢n] and [an, ¢;,]
of triangles A, such that

d(B(a,b,c)a .an) < 5/7 d(B(a,b,c)u yn) < 5/7 d(B(a,b,c)v ZTL) < &'

Suppose the sequence {h,(B(q,))} does not lie in a bounded set. Then the
sequence {h,(x,)} will also not lie in a bounded set. The point h,(z,) lies
on a bi-infinite geodesic, say «,, joining points a), and b/,. Also consider p,
to be the nearest point projection of o on «,,. Take the path o/, which is
concatenation of any geodesic between o to p, and then the subsegment of
oy, which contains h,(x,). Each o/, is a (3,0) quasi-geodesic. By applying
Lemma 3.15, passing to a subsequence if necessary, we get that h,(x,) con-
verges either to a’ or V' in &7 2G. Let us take hy(z,) — a’. Similarly, after
passing to a subsequence if necessary, we get that h,(y,) converges either
to b or ¢. But as d(hy(zy), hn(yn)) = d(xn, yn) < 28" we must have either
a =borad =dc. If hy(x,) = V, after passing to a subsequence if necessary,
we get that h,(z,) converges either to a’ or ¢ and hence v/ = a' or V' = ¢.
This leads to a contradiction as we have assumed o', ¥’ and ¢’ to be distinct.
Hence, the claim.
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Since the sequence {h,} was taken to be distinct, the above claim gives
that the sequence {h,(Bp,))} is bounded and since the space (Cayley
graph of finitely generated group G) is proper, this contradicts the fact that
H acts properly discontinuously on the Cayley graph of G.

Hence, the subgroup H acts properly discontinuously on O3(A(H)). O

Cashen-Mackay, in [7], proved that if a finitely generated group has com-
pact contracting boundary then it is a hyperbolic group (See Theorem 10.1
of [7]). In order to prove it, Cashen-Mackay first proved that in a finitely
generated group with compact contracting boundary, the geodesic rays are
contracting and then they proved that the geodesic rays are uniformly con-
tracting. The proof of geodesic rays uniformly contracting, given in [7], is
hard and complicated. By assuming geodesic rays contracting in a finitely
generated group with compact contracting boundary, we give a simpler way
of proving the group to be hyperbolic.

Theorem 5.2. Let G be a finitely generated group such that ﬁcfQG s com-
pact. Then G is a hyperbolic group.

Proof. Let Cs(G) denote the Cayley graph of G with respect to some finite
generating set S. First note that the space Cs(G) U 97 @ is sequentially
compact : let {z,} be a sequence of points in G U Cg(G). If for infinitely
many n’s, T, € 97 <G then there exists a convergent subsequence of {z,},
as 079G is compact metrizable space. So, let us assume {x,} € Cgs(G)
and d(e,z,) — oco. Let v, be a geodesic in Cg(G) joining e to z,. Since
Cs(G) is proper, by Arzela-Ascoli theorem, {7, } has a subsequence, {7y, },
converging uniformly on compact sets to a geodesic ray, say -y, starting from
e. The geodesic v is contracting (Theorem 10.1 of [7]). Let 7 represent the
point ¢ in the contracting boundary. Then z,, — (.

Suppose G is not hyperbolic group then there exists a sequence of un-
bounded positive numbers (d,,) and a sequence of triangles {A(xy, Yn, 2n)}
in Cs(G) such that the triangle A(xy,, yn, 2,) has a §,,-barycenter in G where
dp is minimal i.e. if 0] < 0, then the A(zy,yn,2n) has no &),-barycenter.
Let ¢, € G be a d,-barycenter of the triangle A(zy,, yn, 2, ). After multipli-
cation with g, ! barycenters of A(z,,Yn, z,) Will come at e, the identity of
G. So, without loss of generality, we can assume e to be a §,-barycenter of
the triangle A(zn, Yn, 2n). Let 4} be a geodesic joining x,, and y,, , 72 be a
geodesic joining ¥, and z, and 73 be a geodesic joining 2, and z,,. Let pL, p?
and p> be a nearest point projection from e onto sides v}, v2 and 42 respec-
tively. Let af :=[e,p}] y}l[p}”zn], aén::[e,p}l] * vk ipl yn» Similarly we define

2 2 3 Wy
Yn? Oézn, (%

o 5, and a%n. Here “x” means concatenation of two paths. All
these paths are continuous (3,0) quasi-geodesic. Since ¢,, — 00, at least one
of the sequence among {d(e,z,)}, {d(e,yn)} and {d(e, zy,)} is unbounded.
If exactly one sequence is unbounded and rest are bounded then sequences
{d(e,v})}, {d(e,¥2)} and {d(e,~2)} are bounded, contradiction to &, — co.

Case 1: The sequences {d(e,y,)} and {d(e,z,)} are unbounded while



ACYLINDRICAL HYPERBOLICITY OF SUBGROUPS 1229

{d(e,z)} is bounded. The space Cs(G) U 972G is sequentially compact,
hence the sequences {y,} and {z,} have subsequence converging to points
in 079G, Assume, without loss generality, that y, — ¢ and 2z, — (o in
07 CG. If ¢ # ¢ then by application of Theorem 3.13 gives that {d(e,v2)}
is bounded. Since {d(e,z,)} is bounded, we get that {d(e,~.)}, {d(e,v2)},
{d(e,~2)} are bounded, which gives contradiction to d,, — oc.

Suppose (1 = (2 = (. Given r, by definition of z,,y, — (, there exists
N = N(r) such that for n > N

d(allln, Nfon ac) ) d(agn, Nfon ac) , d(agn, Nfon ag) < k(p¢,3,0)  (5.1)

There exists r; > r and s; > 0, where ¢ = 1,2,3, such that all the dis-
tances d(aC(r1)7a;n(51)),d(ozc(rg),ain(SQ)),d(ag(rg),agn(s;;)) are at most
k(pc,3,0). Let rp=min{ri,r2,73}. As ot is Morse, therefore there ex-
ists a positive number k| = nl(pg) and t; < s; such that the distances
d(ag(rm),a%}n(tl)), d(ag(rm),azn(tg)), d(ac(rm)jagn(tg)) are at most Ki.
The lengths of a;n|[07tﬂ, ain\[07t2], agnl[o,tg] tend to infinity as r — oco. By
choosing r large enough we have d(a‘(rm),7,) < 6, for all n > N(r) and
for all ¢ € {1,2,3}. This contradicts the minimality of ¢, for n > N(r).
Therefore (1 # (o.

Case 2: Suppose all the three sequences {d(e, yn)}, {d(e, zn)}, {d(e,zn)}
are unbounded. As in previous case, assume that x, — (1, y, — (2 and
zn — (3 in 8Z:QG. If (1 # (2 # (3 # (4 then it will contradict, as in Case 1,
Op — 00.

Suppose (1 = (2 = (. Given r > 1, by definition of x,,y, — (, there
exists N = N(r) such that for n > N

d(a;n, Nyon aC),d(azn, Nyion ac),d(azn, Nyion ac) < k(p¢,3,0) (5.2)

From the above equation, we get a large r such that for all n > N(r), the
distance of a¢(r) from all three sides of A, is strictly less than 6,. This
contradicts the minimality of ,, for n > N(r), hence (; # (2. Similarly one
can show that (3 # (3 and (3 # (3. O
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