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Invariants, bitangents, and matrix
representations of plane quartics with
3-cyclic automorphisms

Dun Liang

ABSTRACT. In this work we compute the Dixmier invariants and bitan-
gents of the plane quartics with 3,6 or 9-cyclic automorphisms. We find
that a quartic curve with 6-cyclic automorphism will have 3 horizontal
bitangents which form an asyzygetic triple. We also discuss the linear
matrix representation problem of such curves, and find a degree 6 equa-
tion of 1 variable which solves the symbolic solution of the linear matrix
representation problem for the curve with 6-cyclic automorphism.
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1. Introduction

The study of the geometry of plane quartics is one of the most beautiful
achievements in classical algebraic geometry. Back to the late 19" and early
20" century, there were many studies on the existence and configurations
of the 28 bitangents of a plane quartic such as [11], [8], [9], [23], and so on.
For the invariants of plane quartics, Shioda computed the ring of invari-
ants in [22]. However, the algebraic invariants of plane quartics were found
much later by [1], [16] and [3]. In this work we compute the invariants and
bitangents of plane quartics with 3-cyclic automorphism, and discuss the
linear matrix representation problem (see [6],[24],[25]) of such curves. The
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classification of automorphism was given by [12] and [26]. There are many
places one can see the full list, for example, in Section 6.5 of [2].
Explicitly, we consider the curves

C3=0Cs(r,s): yd=ax(x—1)(z—r)(x—s)forr,s#0,1landr#s (1)
Ce = Cg(r) : v =x(x—1)(z—r)(x—1+7r)forr£0,1 (2)
Cy: ?JS = x(xg -1) (3)

with automorphism group Z/3, Z/6 and Z/9 respectively. The family Cj is
the famous Picard family of quartics (see [10], [17], [18]). Let R3 = End(J3)
be the endomorphism ring of the Jacobian variety J3 of C5. Let (3 be the
cubic root of the unity. The main property of the family Cj5 is that R3 ~ O,
the ring of integers of some number field K which contains Q((3).

We compute the invariants of these curves. The curves Cg and Cy are
special cases of C3. Thus we also compute the cutting equations of the in-
variants of Cg and Cg as special cases of C3. In modern point of view, a
smooth plane quartic is the canonical model of a smooth projective non-
hyperelliptic curve of genus 3. Let M3 be the moduli space of projective
curves of genus 3, and let M3°" be the non-hyperelliptic locus of M3. Then
the weight zero ratios of the Dixmier invariants I3, Ig, Ig, 12, I15, I1s, Io7, as
functions of the coefficients of a given ternary quartic are like an analog of
the j-invariant of a given cubic curve, and thus could be regarded as the
coordinates of MJ°". Let G be a finite group. If we write X as the sub-
variety of M3°" parametrizing curves with automorphism group containing
XY, then we have XZ/% ¢ X2/ ¢ M3°® and X2%/¢ ¢ X%/3 ¢ M%°". In this
point of view, we are trying to find the “defining equation” of X%/3, XZ2/6
and X%/9 in ME™,

The explicit formulae of the Dixmier invariants are listed in Section 3.1.
We use Maxima to compute the Dixmier invariants. Summarizing Section
3.2, we have the following.

Theorem 1.1. The curve C3 satisfies that
I3 =1s = I = I15 =0,

and Ig, I1g are algebraically independent. For the curve Cg, the invariants
Iy and Iig satisfy a degree 8 affine equation. Furthermore, the curve Cy is
the curve on which all Dizxmier invariants vanish.

The algebraic conditions between the invariants of Cg are computed by
Macaulay?2 [5].

We use the idea in [19] to compute the bitangents of a plane quartic. This
program is also realized by Macaulay2. We summarize Section 4.2 as the
following theorem.

Theorem 1.2. The curve Cy has all 28 explicit equations for the bitan-
gents whose coefficients are radical expressions over Q. The curve Cg has 3
horizontal explicit bitangents which form a triple of asyzygetic sets.
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The definition of asyzygetic sets comes from the theory of theta charac-
teristics. For details one can see [15]. Our definition in Section 4.1 is a
geometric description as in [19].

For the linear matrix determinant representation problem of such curves,
we use the idea in [20]. The problem asks whether the equation of a plane
curve C could be written of the form

det(zA +yB + 2C)

for some symmetric matrices A, B, C of constants. Our result is Theorem
5.2 as follows:

Theorem 1.3. The matriz representation of Cs could be explicitly written

over an extension field of K(r,s) = Q(r,s) defined by a degree 6 polynomial
f(z) € K(r,s)[z].

2. Automorphisms of plane quartics

We consider the algebraic varieties over the algebraic closure K = Q of
the rational field Q in the complex numbers C since we are interested in
the geometric properties of such varieties. However, some of the algorithms
we use later in this work will be realized over Q only. In this section, let
K=Q.

Let C be a smooth projective curve over K. If the genus ¢(C) of C is 3,
and C is non-hyperelliptic, then the canonical model of C' is a plane quartic
and is isomorphic to C. Let x,y,z be the coordinates of the projective
plane P2. If we want to emphasize the coordinates, we also write P? as

P?x .2)" Let k[x,y, z]4 be the homogeneous degree d-part of the polynomial

ring K|[xz,y,2]. Thus k[z,y, z]q =~ Sym?((KV)?), the 3rd symmetric product

of K¥ = Homg (K, K) ~ K. We write P? := Sym?((K")"). Thus, let Fo =

F.(z,y, z) be the equation of C, we say both Fx € P§ and F¢ € K|z, y, 2]4.
An element F' € K|z,y, z|4 should be written as

ik
F(l'a Y, Z) = Z aijszyjz .
i+j+hk=4

Let C, D be two smooth non-hyperelliptic genus g curves over K. The
canonical models k¢, kp of C' and D are closed subvarieties of degree 2g — 2
in P97, Since C and D are non-hyperelliptic, we have C' ~ k¢ and D ~ kp.
The theory of algebraic curves says that C' and D are isomorphic as algebraic
varieties if and only if k¢ could be transformed to kp by a non-degenerated
projective linear transformation on the coordinates of P9~1. In particular, an
automorphism of a non-hyperelliptic curve C is a projective automorphism
on the canonical model k¢ of C.

In this work we consider non-hyperelliptic genus 3 curves with cyclic au-
tomorphism groups Z/3, Z/6 and Z/9.
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The genus 3 non-hyperelliptic curves with Z/3-automorphisms form a
2-dimensional family

C3=Cs(r,s): y>=x(x—1)(z—7r)(z—s).

This is a family of smooth quartics written on the affine chart {z = 1} of
the projective plane P%m %) with K-parameters r and s.

Also we have the 1-dimensional family
Co=Cs(r): v =a(—1)(z—r)(z—1+7)
of curves with automorphism group Z/6 and the curve
Co: yP=a(@®-1)
whose automorphsm group is Z/9. Let (, be the n-th root of unity in
C. According to [7] and [13], the action of Z/3 on C5 is given by the
transformation y — (3 -y. For Cg, the Z/6-action is defined by = — = —r
and y — (3 -y. For Cy, the Z/9-action is given by x + (3-2z and y — (g - y.

In the following sections we will compute the invariants and bitangents
of Cg, CG and Cg.

3. Dixmier invariants of C3, Cg and Cy

3.1. Dixmier invariants of plane quartics. First, we introduce some
notation, following [4]. In general, let f € K|[z1,...,x,| be a polynomial,
we use Dy to denote the differential operator determined by f. Explicitly,
let

F=Ff@nnm) = Y an (4)
(i1 y-nnrin ) ELT
where a;, . ;, € K are coefficient of the monomial :cli1 e xfl” for (i1,...,in) €
Z% and (4) is a finite sum. For the rest of this paper, we will not emphasize
that the powers 41, ...,%, are non-negative integers again.

The map Dy means
Dy: Klzy,...,x] — Klzy,..., 2]

iy, i ————9(T1, ..., Tp).
"ozl Oy

g(z1, ..., xy) — Z

(i1,0vnyin) LT
If we use D(f,g) to denote Dy (g) for all f,g € K[z1,...,x,], then the map
D:Klxy,...,zp] X K[z1,...,25] — Klz1,..., 2]

has some obvious properties as follows:

e D is bilinear.

o Let deg(f) be the degree of f for all f € K[xy,...,z,]. Let f,g €
Klxy,...,xy]. If deg(f) > deg(g), then D¢(g) = 0. If deg(f) >
deg(g), then D¢(g) < deg(g) — deg(f). Let f = gt gin and
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g = :U]f ...2J" be two monomials such that deg(f) = deg(g), then
D¢(g) =i1!---inld55 where ¢4 is the Kronecker delta of f and g.
For any f € K[z1,...,xy], let H(f) be the half Hessian matrix of f. For
example, if f € K[x,y, 2|, then

0xdz Oydz 022

Let H*(f) be the adjoint matrix of H(f).

Another notation is the dot product of two matrices. Let A = (aij)nxn
and B = (bjj)nxn be two n x n matrices. Then the dot product “(,)” is
defined by

<A,B> = Z aijbji.
1<i,j<n
With these notations, we describe the Dixmier invariants of plane quar-
tics.
Let f,g € K[z,y, z]2 be two quadratic homogeneous polynomials. Define

J1a(f,9) = (H(f), H(g)),
Jo2(f,9) = (H*(f), H (9)),
J30(f,9) = J30(f) = det(H(f)),
Jo(f:9) = Jos(g) = det(H(g)).
Let F € K|[z,y),, G € K[z, y]s be two homogeneous polynomials of degree
r and s, respectively. For k < min{r, s}, define (F,G)* as
(r—k)!(s—k)! ( 0? 0?

rls!

k
) F(z1,y1)G(72, y2)

0x10Ys B 0y10x2 (25,y:)=(,y)i,1,2

(5)
Let P = P(x,y) € K[z,y]s be a quartic binary form. Let Q = (P, P)*
defined as (5). Also we let

S(P) = J(P.P), W(P) = (PQ)’

(6)
A(P) = X(P)3 — 27¥(P)?

Then A(P) is the discriminant of P.
Let u,v be two K-variables. For quartic f € K|z, y, 2|4, let
g = g(xvy) = f(a:,y, —ur — Uy)
Then g(x,y) is a homogeneous polynomial of degree 4 with respect to the

variables x and y, and the coefficients of g are expressions of v and v. Thus
we can define ¥(g) and ¥(g) as in (6). Since ¥ and ¥ are expressions of the
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coefficients, we have X(g) and ¥(g) are expressions of u and v. An explicit
computation shows that 3(g) and ¥(g) are polynomials of degree 2 and 3
in the polynomial ring K[u,v] respectively. Let o(u,v,w) and ¥(u,v,w)
be the homogenization of ¥(g) for w, and v (u, v, w) be the homogenization
of ¥(g) for w. Then o(u,v,w) € K|u,v,wls and ¢ (u,v,w) € Klu,v,w]s.
Finally, we substitute u = z,v = y,w = z into o(u, v, w) and ¥ (u, v, w). For
f € Klz,y, z]4, we define
O'(f):O':O'([E,y,Z) GK[xay)Z]Z (7)
¢(f) = ¢ = ’¢(xaya Z) € K[Ji,y, Z]3
Definition 3.1. Let f € Klz,y,z]a, let o, 1 defined as in (7). Let p =
D¢ (1)) and 7 = D,(f). The Dizmier invariants are defined as

Is = Dy(f), Ig=Jii(1,p), Iis=J30(T),
Is = Dy(H) =815, o= Jos(p), Iis=Joa(r,p) (8)
Iy = A =03 — 274)?

3.2. The Dixmier invariants of C3, Cg and Cy. We use Maxima to
compute the Dixmier invariants of C3, Cg and Cy. And we use elimina-
tion in Macaulay2 to compute the conditions of the invariants with certain
automorphisms.

Proposition 3.2. The Dizxmier invariants of
Cs3(r,s) 1 y* = x(x — 1)(z —7)(x — 5)

are
I3=16=I12=I15:0
_ s°  Tirtst 169r3 s* 9772 5% 169r s*
Ig 55296 + 36864 j_ 36864 55296 331776 +33317763 110592 + 331776
77s* 169r4 s3 1691 s 97rt 52
331776 55296 + 331776 + 1 13824 + T 13824 + 331776 55296 + % 36864 110592 +

rd 77t r3

3 52 9712 s> 169r4s + 169735 + o o
331776 36864 55296 331776 55296

13824 = 110592 + 36864 + 36864 + 331776

Tia — 76 10 B0 rdsl0 310 r2sl0 rsl0 n
18 = 702653184 _ 134217728 ' 67108864 402653184 ' 67108864 134217728
st + r’s9 16318 s° + 19r°s° 15514 59 15513 s° 4
402653184 T 1358954496 10871635968 ' 1207959552 10871635968 ~ 10871635968
19r2 s 163r s¥ + 59 + 22988 539r7 §8 + 2711788
1207959552 10871635068 ' 1358954496 ' 48922361856 ~ 24461180928 T 24461180928
1324175 &8 + 2023174 58 1324173 &8 + 2711728 539rs® + 22958 +
97844723712 T 97844723712 97844723712 24461180928 ~ 24461180928 ' 48922361856
r9s7 539r8 57 + 191377 s 592707 1705r°s7 170574 sT
1358954496 24461180928 " 48922361856 ~ 32614907904 ~ 97844723712~ 97844723712
592773 s7 + 1913r2s7  539rs” + s7 + rl0s6 16312
32614907904 T 48922361856 24461180928 " 1358954406 ' 402653184 10871635968
271178 58 592777 5 + 2038375 5% 3532715 56 + 2038314 56 592773 8 +
24461180928 ~ 32614907904 ' 32614907904 ~ 97844723712 ' 32614907904 32614907904
2711725  163rsS + 6 I i 19r9s5 13241785
24461180928 ~ 10871635968 ' 402653184 ~ 134217728 T 1207959552 97844723712
170577 s®  35327r8s> 3532715 s° 1705r* s° 1324173 s5 + 19r2s°
07844723712 ~ 97844723712 ~ 97844723712 ~ 97844723712 ~ 97844723712 ' 1207959552
rs® + r0st 15519 5% + 2023178 s* 170517 s* + 2038319 s*
134217728 " 67108864 ~ 10871635968 97844723712 97844723712 " 32614907904
17057° s* + 2023174 s* 15578 5% + r? st ri0s3 1551983
07844723712 " 97844723712 ~ 10871635968 67108864 402653184 ~ 10871635968
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1324178 s3 5927r7 53 592776 s3 1324175 s3 15514 3 rd s3

97844723712 32614907004 32614907004 97844723712 10871635068 402653184 T
r10 g2 1979 s2 + 271178 52 + 1913r7 s2 + 271176 52 + 1975 52 +
67108864 " 1207959552 ' 24461180928 ' 48922361856 ' 24461180928 ' 1207959552
rts? r10s o 163195 o 53913 s o 539r"s o 163rSs .
67108864 ~ 134217728 ~ 10871635968 ~ 24461180928 ~ 24461180928 ~ 10871635968
5 10 9 2297,8 7 6

131217728 T 102653184 T 1358051496 T 18022361856 T 1358054406 T 102653184
The elimination of the ideal generated by Iy and Ig with respect to r and
s is the 0 ideal, which shows that Iy and I3 are algebraically independent.

We can compute the invariants of Cg by substitute s = 1 — r into the
invariants of Cj.

Proposition 3.3. The Dizxmier invariants of

Ce(r) : Y = z(x—1)(z—r)(x—1+r)

are
I3s=1s=1I3=1I5=0

Io — _ 65r8—260r74+1150r% —2540r54-3959r* — 3988134232612 — 7127489

9= 331776

Tie — 25716 95415 + 1325014 1925¢13 + 7922912

18 = 3057647616 382205952 ' 3057647616 1019215872 ' 12230590464

10573711 447307010 313857 + 99890518  57233r7 + 817465r6

6115295232 " 12230590464 ~ 509607936 ' 12230590464 ~ 679477248 ' 12230590464

123275r° + 22193974 1337r3 + 1603772 17r + 17
3057647616 ' 12230590464 ~ 226492416 ' 12230590464 ~ 95551488 ' 1528823808

The elimination of the ideal generated by Iy and I1g with respect to r is
irreducible and generated by

40000001§ — 1998092052000 — 67600000015 I15 — 715090537681178311§ +
22432878743400013 I1s + 4284150000014 I35 — 39536131225391962734615 +
846024860024321274015 I1s — 837233565155325013 1% —
120670225000012 I35 + 3639210431799750761146515 +
3191488019275715344249213 5 — 33293697043611661065012 1% +
10385063772612750019 I35 + 127457925156251 15 —
8268906959636302622734565 — 987543996424727566300344013 113 —
64418772156990967424664010 I + 4362752394549791982000135 —
16888083260978146833705612 + 3082642090778724464837203219115 +
474410438868202394564990304 1% + 25455391294748348044801 +
6939213188282316797541120115 + 960605665900794374400.

For Cy, we have
Proposition 3.4. The Dixmier invariants of
Co:y®=ux(x®—1)

are all zero.
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4. The Bitangents of C5, Cg and Cy

4.1. The bitangents of plane quartics. The classical theory of plane
quartics says that it has 28 bitangents. Recall that a line L is a bitangent
of a plane curve C if it tangents C' at two points p1, ps where p; and ps could
be coincide. Recall that a point is called an undulation point (see [21]) of a
plane curve if a tangent line at that point meets the curve with multiplicity
four or higher, this time the tangent line is called an undulation line of the
curve. Thus, if p; and po are coincide, then this point is an undulation point
of C and L is an undulation line.

Explicitly, let f = f(x,y,2) € K[z,y,z]s be the equation of a plane

quartic C. Let L : ax +by+ cz =0, a,b,c € K be a line in P?zyz). Thus
the point (a, b, c) € }P’%a bo) determines the line L. Thus, in order to find all

bitangents, we should consider all the affine charts a #0,b#0 and ¢ # 0.
For example, if we consider ¢ # 0, and say ¢ = 1. This time L : ax+by+2z =0
gives the condition z = —ax — by. Substitute this relation into f(z,y, z) we
have a quadratic form f(z,y, —ax — by) € R[z,y, z]2 where R = K]Ja,b]. If
L is a bitangent for some a,b € K, then there exist Ag, A1, Ag € K such that

fla,y, —az —by) = (Aoz® + Aizy + Aoy?)”. (9)

The other two affine charts a # 0, b # 0 should be considered in a similar
way to find bitangents of the form ax + by = 0. From now on let us consider
the equation (9).

Definition 4.1. For any quartic f € Klx,y, z]4, let I(f) be the ideal of
Kla,b, Ao, M1, A2] generated by comparing the coefficients of both sides of the
monomials of x,y in the expansion of (9). Let J(f) be elimination ideal of
I with respect to Ao, A1, A2 in KJa,b].

The ideal J(f) gives the conditions of L being a bitangent of C'. In general
one cannot solve a, b over Q, and even there exists L such that a,b € Q, the
tangency points p1, ps are not Q-rational points of C.

There is a description of the relative positions of the bitangents of C'. Let
Lyq,...,Lag be the bitangents of C, be careful that the number 28 counts
the overlaps of the bitangents. Let L;, Lj, Ly, where 4,j,k = 1,...,28 are
distinct, be a triple of bitangents. For each L,, v =1,...,28, let p,,, p,, be
the two tangency points of L, and C. Then L;, L;, L, determine 6 points
on C. Generically a plane conic is determined by 5 points.

Definition 4.2. If the 6 points p;,, Piy, Pj1sPjss Phy» Pke i€ 01 a plane conic,
then we say the triple L;, L;j, Lj, are syzygetic, or else we say they are
asyzygetic.

4.2. The Bitangents of C3, Cg and Cy. Before we use the computer to
comply the algorithm above, let us observe an obvious bitangent of

Cs(r,s): y> = ax(z — 1)(z —r)(x — 5).
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In the algorithm above, we considered the generic case on the affine chart
z # 0. But if we expand C3 and homogenize it with respect to z, then we
have

Fy(r,s) rsxzd —rsa?2? —sa? 2 —ra? 2yt sz vrads +ady — 2t

(10)
Substitute z = 0 into (10) we get x* = (22?)2, which is a square. Thus
z = 0 is a bitangent of C's. To compute the tangent point, we observe that
2?2 = 0 implies that x = 0. Substitute x = 0,z = 0 into (10) we get 0. This
means that the intersection of C3 and the line z = 0 is the point (0, y,0), or
(0,1,0) € Pfx,%z). This is the only undulation point of Cs.

In [21], the invariants of a generic plane quartic is constructed in order to
determine if it has an undulation point. The expression is the determinant
of a 21 x 21 matrix. On the other hand, a quartic curve with homogeneous
equation F'(x,y,z) = 0 has an undualtion point if and only if it could be
written as the form

F(fl?,y, Z) = Ul(x7y7 Z)4 + Vg(x,y,z)Wl(w,y,z)

where U; and Wj are linear forms and V3 is a cubic form. But according to
(10), let Uy = 2, W1 = 2, and V3 = z(z — 2)(z — r2)(z — s2) — 2% — 9>, then

By = U} 4+ V3Wy.

So z = 0 is an undulation line of Cf.

Beyond this undulation line, there are another 27 bitangents of C5. Let
J(C3) be the ideal defined as Definition 4.1. This time the coefficient list
becomes K|r, s|, but we still can define J(C3) by the same analogos. We can
compute the primary decomposition of J(C3) using Macaulay2. The inputs
are as the following.

R = QQ[r,a,b,k_0,k_1,k_2] [x,y,2]

f = —r72%x*z7 3+r¥xkz2T3+r T 2%X T 2%Z27 2-rkx T 2% 27 2-X" 2%z 2+y " 3%z
+2%x"3%z-x"4

g = (k_0*x"2+k_1*x*y+k_2xy~2) "2

h = substitute(f,{z => -a*x-b*yl})

H= h-g
Coe = coefficients H

L = flatten entries Coe#l
S = QQ[r,a,b,k_0,k_1,k_2]
I = ideal L

psi=map(S,R)
phi=map(R,S)

J=psil
E=eliminate(J,{k_0,k_1,k_2})
T = QQ[r,a,b]

xi=map(T,S)

U=xiE
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primaryDecomposition U

The primary decomposition of J(C3) has two components, one of them is
the ideal < a = 0,b = 0 >, which gives the undulation line z = 0. Another
component is irreducible in general. Let J’ be this component, and let J/,
be the elimination of J’ with respect to b. Then one can see that a satisfies
the degree 9 equation

rista? — 12r%s3a” — 12r3s%a7 — 8r*s3a8 — 8r3stab — 1213s3a” — 8rts2ab —
120735308 — 8r2s%ab 4 30r*s2a® — 15613530 + 30r2s*a® — 8r3s2af —
825305 + 48r*s2a* — 9613 s3a* + 48r2stat — 15613s%2a® — 15612s3a® +
16745243 — 32r3s3a3 4+ 16125%a3 + 48rtsa* — 168r3s2a* — 168r2s3a* +
48rsta* + 30r2s2a® + 68r*sa® — 68r3s%a® — 68r2s3a3 + 68rsta’ — 9613sat —
168r2s2a* — 96rs3at + 24rtsa® — 24r352a® — 24r2s3a® + 24rs*a® + 16r4a® —
68r3sa3 — 2161r2s%a® — 68rs3a® + 16s*a3 + 48r2sa* + 48rs2a* + 24ra? +
241r3sa? — 961r2s%a? + 24rs3a? + 24s5*a® — 32r3a® — 68r2sa® — 68rs?a’® —
32s3a3 + 9ria + 12r3sa — 42r2s%a + 12rs3a + 9s*a — 24r3a® — 9612sa® —
96rs2a® — 24s3a® 4 1612a3 + 68rsa’ + 16s%a3 + 12r3a — 12r2sa — 12rs’a +
12530 — 241202 + 24rsa® — 24s%a% + 813 — 8r2s — 8rs? 4+ 853 — 42r2a — 12rsa —
425204 24ra® +24sa® — 8r? + 16rs — 8s® + 12ra+12sa — 8 — 85+ 9a+8 = 0

which is able to be output by Macaulay2. This equation is irreducible over
Q. In the following cases, we try to find explicit bitangents for special cases
of C3(r, s).

Theorem 4.3. The curve
Cy:y® =x(z® — 1) (11)

has all 28 explicit equations for the bitangents whose coefficients are radical
expressions over Q, the group Z./9 acts on the configuration of the bitangents.

Proof. Let J(Cy) be the ideal of Kla, b] defined as Definition 4.1. Let J' be
the component of J(Cy) beyond < a = 0,b =0 >. Let J/ be the elimination
of J' with respect to b. Then a satisfies the following equation.

a® — 96a° + 484> + 64. (12)
Let u = a®, then u satisfies the cubic equation
u® — 96u” 4 48u + 64. (13)

This equation is solvable. For example, using Maxima, we have
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1
3

2
(V3i+1) (32-3%i+31968) " —64(32-3%1+31968) " — 11238+ 1008

)
2(32 334 31968)§

Uy = — 1 )
7 % 7 % 5
(VBi—1) (32-3%i+31968) " +64(32-3%i+31968) " — 11238 - 1008
U = T s
2(32 3Fi4 31968) ’
%
(32 3%i+ 31968) 132. (32 3%i4 31968) +1008
us =

(32-3%1+31968) ;
Taking the cube root of each u; we can get all 9 solutions of a.
Similarly we have an equation
b2 — 294960 + 401808b? — 64 = 0 (14)
and let v = b we have a cubic equation
v3 — 294960% + 401808v — 64 = 0.

This time one has to take the ninth root of all the three solutions wv;’s
i =1,2,3 of this equation. At the end, one has to judge which pairs (a, b)
among the solutions give a bitangent ax + by + z = 0 of the original curve.
We list the Macaulay2 input as the following.

R = QQ[r,s,b,k_0,k_1,k_2][x,y,z]

f = rxs¥xx*z73-r*s*x 2%z 2-8%x " 2%Z27 2-r*x " 2%27 2+y " 3%z+s*xX " 3*Z
+r*x”"3%2z+x"3*z-x"4

g = (k_O*x"2+k_1*x*y+k_2%y~2) "2

h = substitute(f,{z => -b*y})

H= h-g
Coe = coefficients H

L = flatten entries Coe#l
S = QQ[r,s,b,k_0,k_1,k_2]
I = ideal L

psi=map(S,R)
phi=map(R,S)

J=psil
E=eliminate(J,{k_0,k_1,k_23})
T = QQ[r,s,b]

xi=map(T,S)

U=xiE

primaryDecomposition U

The equations (12) and (14) contain terms of degree 3n and 9n for a and
b, respectively. Thus if ax+by+z = 0 is a bitangent, so is (3-ax+(o-by+2z =
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0. But this means a((3 - ) + b((o - y) + z = 0, which means this bitangent
is in the orbit of the Z/9-action. This means the group Z/9 acts on the
configuration of the bitangents. (|

There is no canonical method to find explicit bitangents for special cases.
Our observation is that we can try to find 7, s € K such that the bitangent
is “horizontal”, that is, for those bitangents such that a = 0. The equation
of the bitangent becomes bx + z = 0. Repeat the same idea in Section 4.1,
we get the following result.

Theorem 4.4. The family Cs has a horizontal bitangent when r—s = +1 or
r+s=1. In each of these cases, the slope b satisfies a cubic equation whose
coefficients are polynomials of s, thus there are 3 horizontal bitangents.

Proof. Let F3 be the polynomial defined in (10). Generically, a = 0 is not
a solution to the degree 9 equation of a. However, when a = 0, we have
L :by+ 2 =0. Then z = —by. Using the same idea as in Section 4.1, we
have the equation
F3(z,y, —by) = (Aoz” + Mizy + Aoy®)”. (15)
Let I(F3) be the ideal of R[b, Ao, A1, A2] generated by comparing the coeffi-
cients of both sides of the monomials of z,y in the expansion of (15). Let
J(F3) be elimination ideal of I(F3) with respect to Ag, A1, A2 in R[b]. Then
the primary decomposition of J(F3) as an ideal in K[r, s, b| is
by, (r—s—1,5b>—4)
(r+s—1,5% — 253 4+ s%b> — 4) (16)
(r—s+41,8%% — 250> + b° — 4).
[l

The first ideal of (16) corresponds to the bitangent z = 0. The third ideal
of (16) gives r + s — 1 = 0, which implies s = r — 1, this is the family Cg.
Furthermore, we have a result on the positions of the horizontal bitangents
of CG-

Theorem 4.5. The three horizontal bitangents of Cg form an asyzygetic
triple. Furthermore, the automprhism group Z/6 acts on this asyzygetic
triple.

Proof. Let

FG:—rza:z3+rwz3+r2x2z2 2,2

—rxz —x222+y3Z+2$32—$4 € R[x,y,z]4

be the homogenization of Cg with respect to z where R = K{r|. As before,
we have the equation

Fﬁ(xa Y, _by) = ()\01’2 + >\1$y + )‘2y2)2 (17)

Let I(Fs) be the ideal of R[b, \g, A1, A2| generated by comparing the coef-
ficients of both sides of the monomials of z,y in the expansion of (17). In
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Theorem 4.4 we have proved that for C the condition of being a horizontal
bitangent for the line bz + z = 0 is given by the ideal
(r+s—1, s> — 25303 + 263 — 4).
Substitute s = 1—r into the second generator of this ideal, we have a relation
p(r,b) =031t — 26313 4 b3 1% — 4
This time, let _# (F) be intersection of the elimination ideal of I(Fg) with
respect to 7, b in K[Ag, A1, A2] and the ideal (p(r,b)). Macaulay2 outputs

A (Fe) = (),

which means that generically there is no conic Agz? + A1zy + A2y? satisfies
the conditions of passing through the 6 tangent points at the same time.
Consider the action  — —x — r and y — (3 -y on Cg. The equation
p(r,b) only contains degree 3n terms, so as we have seen, the transformation
y — (3 -y will transform a bitangent to another. On the other hand, since

a = 0, a transformation x — —x —r will fix a horizontal bitangent z = —by.
Thus Z/6 acts on the configuration of this asyzygetic triple. O
Remark 4.6. In general, there is another way to check whether 6 points
lie on a common conic in P?. Let p; = (24,5, 2;) € ]P’%x’y’z),i =1,...,6 be6
points in the projective plane. Let V be the Veronese map
V: P? — P>
(z,9,2)

(‘TJyJ'Z) '_> (x27y27227xy7y272x) .

If we regard V(p) as a row matrix for any p = (x,7,2) € P2, then for the
given 6 poins pi, ..., pg, we have a 6 X 6 matrix

V(p1) 22 yd 2 my oma am

V(p2) 93% y% Z% T2Y2 Y222 Z2X2
V.= V(p3) _ 95% ?J?Q, Z% Tr3Yy3 Ys3z3 Z373
=|v =15 73 3

(p4) Ty Yy Ry TaYs Y4R4 2474

V(ps) x? Y2 22 wsys yszs 25T

V(ps) TE Y 26 weYs Y66 26T6

For our problem, let p1,...,ps be the 6 points of tangency of the three
horizontal bitangents in Theorem 4.5. From the proof of Theorem 4.5 we
see that there is a symbolic solution of these three bitangents, and since the
algorithm of finding the points of tangency is essentially solving a quadratic
equation, we can find the symbolic solutions of the points of tangency. But
this algorithm costs too much for a popular processor. We can compute it
in special values. For example, let 7 = 1, we can compute the determinant

8
using Maxima, the result is!

V—25v3i — 25/25/31 — 25 (120052? 33 43 i + 32413527 4%)
- 2% /3i+ 2%

IThis value could be simplified, we put the original result from Maxima.

V:
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which is not zero.

5. Discussion on the matrix representation problem

We discuss the matrix representation problem of the curves C'5 and Cg
using the idea in [20]. In order to coincide the notations with respect to
[20], we exchange y and z, and write C5 as

Cz: 22=gz(x—1)(z—7r)(z—s).
Homogenize C3 with respect to y we have
Csz:  f(z,y,2):=F(r,s) =z(z —y)(x —ry)(z —sy) —yz> =0. (18)

This time we have
4

f(2,0,0) =z and f(x,y,0) = [[(x+ Biy) (19)
i=1
where 81 = 0,82 = —1, 3 = —r, B4 = —s. The matrix representation prob-

lem for C5 asks whether the polynomial f(z,y,z) in (18) could be written
of the form

f(z,y,2) =det(xA +yB + 2C)
where A, B, C' are symmetric matrices. Here the entries of the matrices A, B

and C belong to the algebraic closure of the rational function field K (r, s).
According to Section 2 in [20], if (19) holds, then one can assume that

1 0 €11 Cl12 €13 Cl4
1 —1 c c c c
A B= = | G2 C2 Cm on
1 - C13 C23 (€33 C34
1 -5 Cl4 C24 C34 Cay

and we also have that

ci = ;- 5 , i=1,234. (20)
But for (18) we have % = —3yz?, which implies if z = 0, then ¢;; = 0 for
i=1,2,3,4 by (20).

For convinience we denote

C12 C13 Ci4 a b d
C C cC e

D= 23 24 — 7
34 f

then C = D + 'D where 'D is the matrix transpose of D since c; = 0 for
i=1,2,3,4.



650 DUN LIANG

Using Maxima, we directly compute the coefficients of

x az bz dz

_ az T —Y cz ez

det(zA+yB + 2C) = det S
dz ez fz  x—sy

and compare the coefficients with f(z,y, z) in (18), the output is a system
of equations

—c*s —b%s —a’s — e*r — dPr —a’r — f2 —d* —b* =0,
a’rs+ s+ d*r =0,

2abes + 2ader + 2bdf —1 =0,

PP+ +E+02+a%=0,

— 2cef — 2bdf — 2ade — 2abc = 0,

—a? f% 4+ 2abef + 2acdf — b2 €2 + 2bede — ? d* = 0.

We add the first equation with the fourth one, and rewrite the system of as
6 equations

a’rs 4+ b%s + d*r =0,
a?(1—7r)(s—1—s)+*(1—s)+e*(1—7)=0
2abces + 2ader + 2bdf — 1 = 0,

PPyl +d+E+0+d®=0,

cef + bdf + ade 4+ abc = 0,

a?f? — 2af(be + cd) + (be — cd)? = 0.

of the 6 variables a,b,c,d, e, f.
It is too complicated to solve this entire system. Our computation are
proceeded under the following principle:

e We only seek for one solution to the equation system (27)-(32), thus
if there is an ”either-or” argument in any step, we can choose one of
them as our solution.

We eliminate a, f, and get a system of 4 equations with respect to the 4
variables b, ¢, d, e.
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Proposition 5.1. The equation system

b2 2 d? e2

rr—1 " s s—1_ 0 (33)
b—et (et d)
be cd (34)
2
(be + de)(bd + ce) = (2(\/% + Ved) - ‘bc(l _bg i 327("1 _T) v ) . (35)

(bd + ce)? + (be + de)?

bes + der bd
be(l —s) +de(1—1r) ce

(P +E+d+e?) =0 (36)

with respect to the variables b, c,d, e give solutions to the equation system

(27)-(32) where

. bd + ce Fo o bc + de
B bes + der bd| T bes + der bd|
be(l —s)+de(l1—r) ce be(l —s)+de(l—r) ce
(37)

Proof. First, the equation (33) is simply from %(27)—%(28).

Next we regard a, f as unknowns and b,c,d,e,r,s as constants. The
solution (37) is the solution to the linear system (29) and (31). From (31)
we also have

a _ bd+ce i_ibc+de (38)
f be+de’ a  bd+cel

Substitute (38) into (30) we have (36).
Let g = af, then (32) becomes a quadratic equation

g% —2(be + cd)g + (be — cd)* = 0

of g whose solution is
af = (Vbe £ Ved)?

As before, for “+” we choose +, which is
af = (Vbe £ Ved)? (39)

Substitute (37) into (39) we get (35).
Last, let us prove (34). The quadratic equation (30) and the linear equa-
tion (31) have an solution

V—1(ce + bd) Ve + d2 + 2 + b2 \/(d? + 2) €2 + dbcde + b2 d? + b2 2
T (d? + ¢?) e + 4bede + b2 d? + b% 2 ’
V—=1(bc+de) VeZ + d2 + 2 + b2 \/(d? + c2) €2 + dbcde + b2 d? + b2 2

(d2 + 2) €2 + 4bede + b2 d? + b2 2 '

f=
(40)
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From (40) we have

af = P

(d? + ¢2) €2 + 4bcde + b2 d? + b2 2
where the numerator P equals to minus the product of
cde* —4bede® +6b%cde? —bd* e —4bede —6bc?d*e —4bc®de —4b> cde —bcte+-bed (41)

and
cde* 4 4bede® + 6b%cde® — bd*e + 4bed®e — 6bc?d%e + 4bcPde + 4b3cde — bete + bed.
Dividing (41) by bede and regrouping the terms, we prove (34). O

As we reminded, it is hard to continue solving this equation system. Our
observation is that for (34), we have an obvious solution

e=b, and d=—c (42)
From (24) we have b? +d? + f? = —a% — ¢? — €2, thus we can rewrite (21) as
(a® + 0% +d*)r + (a* +b* + *)s = a® + 2 + €2
Substitute (42) into this equation we have
r+s=1

which means the curve C3 becomes Cg in this situation.
Next, we subsitude (42) into the equation system (27)-(32), then (31) is
trivial, and (27) is the same as (28). We have a system of 4 equations

a’rs +b*s + r =0 (43)

2abc(s — 1) —2bef —1 =0 (44)

A+ 21202 +2) =0 (45)

a?f? —2af(b? — ) + (B* +*)? =0 (46)
of the 4 variables a, b, c, f.

Theorem 5.2. The matriz representation of Cs could be explicitly written
over an extension field of K(r,s) = Q(r,s) defined by a degree 6 polynomial
f(z) € K(r,s)[z].

Proof. From (44) we have

1
(als —r) — ) = 5
thus we have
a?(s—r)? —2af(s—r)+ 2= L (47)
4b2¢?
From (45) we have f? = —2(b% + c?) — a?, substitute it into (47) we have
a®[(s—r)2 —1] = 2af(s —r) — 2(b* + %) = ! (48)

T 4h2e2T
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From (43) we have

v P
2
= —— = — 4
a - (49)
and from (46) we have

af = (b+v—1c)? (50)

if we take one of the solutions of the quadratic equation with respect to af.
Substitute them into (48), we have

4(%s + APr) —2(s — ) (b + V—1¢)? — 2(b% + &2)

1
T 42 (51)

This is a degree 6 equation with respect to b and c¢. Thus, if we know ¢ = b/c,
then the theorem is proved. From (45) and (49) we can solve

2 2 2 b
fe=-=2( —i—c)—|—7+—. (52)

s
The trivial equation

(af)?=a®- f?
implies that (50)% =(49)-(52), which is

(b+V—1e)* = <—b2 — Cj) : <—2(b2 +c2) + Zf - Cj) (53)

r

This equation is homogeneous of degree 4 with respect to b and ¢, thus if we
set ¢ = b/c, it will become a degree 4 equation of ¢, which is solvable. [
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