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Invariants, bitangents, and matrix
representations of plane quartics with

3-cyclic automorphisms

Dun Liang

Abstract. In this work we compute the Dixmier invariants and bitan-
gents of the plane quartics with 3,6 or 9-cyclic automorphisms. We find
that a quartic curve with 6-cyclic automorphism will have 3 horizontal
bitangents which form an asyzygetic triple. We also discuss the linear
matrix representation problem of such curves, and find a degree 6 equa-
tion of 1 variable which solves the symbolic solution of the linear matrix
representation problem for the curve with 6-cyclic automorphism.
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1. Introduction

The study of the geometry of plane quartics is one of the most beautiful
achievements in classical algebraic geometry. Back to the late 19th and early
20th century, there were many studies on the existence and configurations
of the 28 bitangents of a plane quartic such as [11], [8], [9], [23], and so on.
For the invariants of plane quartics, Shioda computed the ring of invari-
ants in [22]. However, the algebraic invariants of plane quartics were found
much later by [1], [16] and [3]. In this work we compute the invariants and
bitangents of plane quartics with 3-cyclic automorphism, and discuss the
linear matrix representation problem (see [6],[24],[25]) of such curves. The
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classification of automorphism was given by [12] and [26]. There are many
places one can see the full list, for example, in Section 6.5 of [2].

Explicitly, we consider the curves

C3 = C3(r, s) : y3 = x(x− 1)(x− r)(x− s) for r, s 6= 0, 1 and r 6= s (1)

C6 = C6(r) : y3 = x(x− 1)(x− r)(x− 1 + r) for r 6= 0, 1 (2)

C9 : y3 = x(x3 − 1) (3)

with automorphism group Z/3, Z/6 and Z/9 respectively. The family C3 is
the famous Picard family of quartics (see [10], [17], [18]). Let R3 = End(J3)
be the endomorphism ring of the Jacobian variety J3 of C3. Let ζ3 be the
cubic root of the unity. The main property of the family C3 is that R3 ' OK ,
the ring of integers of some number field K which contains Q(ζ3).

We compute the invariants of these curves. The curves C6 and C9 are
special cases of C3. Thus we also compute the cutting equations of the in-
variants of C6 and C9 as special cases of C3. In modern point of view, a
smooth plane quartic is the canonical model of a smooth projective non-
hyperelliptic curve of genus 3. Let M3 be the moduli space of projective
curves of genus 3, and letMnon

3 be the non-hyperelliptic locus ofM3. Then
the weight zero ratios of the Dixmier invariants I3, I6, I9, I12, I15, I18, I27, as
functions of the coefficients of a given ternary quartic are like an analog of
the j-invariant of a given cubic curve, and thus could be regarded as the
coordinates of Mnon

3 . Let G be a finite group. If we write XG as the sub-
variety ofMnon

3 parametrizing curves with automorphism group containing

XG, then we have XZ/9 ⊂ XZ/3 ⊂Mnon
3 and XZ/6 ⊂ XZ/3 ⊂Mnon

3 . In this

point of view, we are trying to find the “defining equation” of XZ/3, XZ/6

and XZ/9 in Mnon
3 .

The explicit formulae of the Dixmier invariants are listed in Section 3.1.
We use Maxima to compute the Dixmier invariants. Summarizing Section
3.2, we have the following.

Theorem 1.1. The curve C3 satisfies that

I3 = I6 = I12 = I15 = 0,

and I9, I18 are algebraically independent. For the curve C6, the invariants
I9 and I18 satisfy a degree 8 affine equation. Furthermore, the curve C9 is
the curve on which all Dixmier invariants vanish.

The algebraic conditions between the invariants of C6 are computed by
Macaulay2 [5].

We use the idea in [19] to compute the bitangents of a plane quartic. This
program is also realized by Macaulay2. We summarize Section 4.2 as the
following theorem.

Theorem 1.2. The curve C9 has all 28 explicit equations for the bitan-
gents whose coefficients are radical expressions over Q. The curve C6 has 3
horizontal explicit bitangents which form a triple of asyzygetic sets.
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The definition of asyzygetic sets comes from the theory of theta charac-
teristics. For details one can see [15]. Our definition in Section 4.1 is a
geometric description as in [19].

For the linear matrix determinant representation problem of such curves,
we use the idea in [20]. The problem asks whether the equation of a plane
curve C could be written of the form

det(xA+ yB + zC)

for some symmetric matrices A,B,C of constants. Our result is Theorem
5.2 as follows:

Theorem 1.3. The matrix representation of C6 could be explicitly written
over an extension field of K(r, s) = Q(r, s) defined by a degree 6 polynomial
f(z) ∈ K(r, s)[z].

2. Automorphisms of plane quartics

We consider the algebraic varieties over the algebraic closure K = Q of
the rational field Q in the complex numbers C since we are interested in
the geometric properties of such varieties. However, some of the algorithms
we use later in this work will be realized over Q only. In this section, let
K = Q.

Let C be a smooth projective curve over K. If the genus g(C) of C is 3,
and C is non-hyperelliptic, then the canonical model of C is a plane quartic
and is isomorphic to C. Let x, y, z be the coordinates of the projective
plane P2. If we want to emphasize the coordinates, we also write P2 as
P2
(x,y,z). Let k[x, y, z]d be the homogeneous degree d-part of the polynomial

ring K[x, y, z]. Thus k[x, y, z]d ' Symd((K∨)3), the 3rd symmetric product
of K∨ = HomK(K,K) ' K. We write Pdn := Symd((K∨)n). Thus, let FC =
Fc(x, y, z) be the equation of C, we say both FC ∈ P4

3 and FC ∈ K[x, y, z]4.
An element F ∈ K[x, y, z]4 should be written as

F (x, y, z) =
∑

i+j+k=4

aijkx
iyjzk.

Let C, D be two smooth non-hyperelliptic genus g curves over K. The
canonical models κC , κD of C and D are closed subvarieties of degree 2g−2
in Pg−1. Since C and D are non-hyperelliptic, we have C ' κC and D ' κD.
The theory of algebraic curves says that C and D are isomorphic as algebraic
varieties if and only if κC could be transformed to κD by a non-degenerated
projective linear transformation on the coordinates of Pg−1. In particular, an
automorphism of a non-hyperelliptic curve C is a projective automorphism
on the canonical model κC of C.

In this work we consider non-hyperelliptic genus 3 curves with cyclic au-
tomorphism groups Z/3, Z/6 and Z/9.
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The genus 3 non-hyperelliptic curves with Z/3-automorphisms form a
2-dimensional family

C3 = C3(r, s) : y3 = x(x− 1)(x− r)(x− s).
This is a family of smooth quartics written on the affine chart {z = 1} of
the projective plane P2

(x,y,z) with K-parameters r and s.

Also we have the 1-dimensional family

C6 = C6(r) : y3 = x(x− 1)(x− r)(x− 1 + r)

of curves with automorphism group Z/6 and the curve

C9 : y3 = x(x3 − 1)

whose automorphsm group is Z/9. Let ζn be the n-th root of unity in
C. According to [7] and [13], the action of Z/3 on C3 is given by the
transformation y 7→ ζ3 · y. For C6, the Z/6-action is defined by x 7→ x − r
and y 7→ ζ3 · y. For C9, the Z/9-action is given by x 7→ ζ3 · x and y 7→ ζ9 · y.

In the following sections we will compute the invariants and bitangents
of C3, C6 and C9.

3. Dixmier invariants of C3, C6 and C9

3.1. Dixmier invariants of plane quartics. First, we introduce some
notation, following [4]. In general, let f ∈ K[x1, . . . , xn] be a polynomial,
we use Df to denote the differential operator determined by f . Explicitly,
let

f = f(x1, . . . , xn) =
∑

(i1,...,in)∈Zn
+

ai1,...,inx
i1
1 · · ·x

in
n , (4)

where ai1,...,in ∈ K are coefficient of the monomial xi11 · · ·xinn for (i1, . . . , in) ∈
Zn+ and (4) is a finite sum. For the rest of this paper, we will not emphasize
that the powers i1, . . . , in are non-negative integers again.

The map Df means

Df : K[x1, . . . , xn] −→ K[x1, . . . , xn]

g(x1, . . . , xn) 7−→
∑

(i1,...,in)∈Zn
+

ai1,...,in
∂i1+···+in

∂xi11 · · · ∂x
in
n

g(x1, . . . , xn).

If we use D(f, g) to denote Df (g) for all f, g ∈ K[x1, . . . , xn], then the map

D : K[x1, . . . , xn]×K[x1, . . . , xn] −→ K[x1, . . . , xn]

has some obvious properties as follows:

• D is bilinear.
• Let deg(f) be the degree of f for all f ∈ K[x1, . . . , xn]. Let f, g ∈
K[x1, . . . , xn]. If deg(f) > deg(g), then Df (g) = 0. If deg(f) >

deg(g), then Df (g) ≤ deg(g) − deg(f). Let f = xi11 · · ·xinn and
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g = xj11 · · ·x
jn
n be two monomials such that deg(f) = deg(g), then

Df (g) = i1! · · · in!δfg where δfg is the Kronecker delta of f and g.

For any f ∈ K[x1, . . . , xn], let H(f) be the half Hessian matrix of f . For
example, if f ∈ K[x, y, z], then

H(f) =
1

2
·


∂2

∂x2
∂2

∂x∂y

∂2

∂x∂z
∂2

∂x∂y

∂2

∂y2
∂2

∂y∂z
∂2

∂x∂z

∂2

∂y∂z

∂2

∂z2

 .

Let H∗(f) be the adjoint matrix of H(f).
Another notation is the dot product of two matrices. Let A = (aij)n×n

and B = (bij)n×n be two n × n matrices. Then the dot product “〈 , 〉” is
defined by

〈A,B 〉 :=
∑

1≤i,j≤n
aijbji.

With these notations, we describe the Dixmier invariants of plane quar-
tics.

Let f, g ∈ K[x, y, z]2 be two quadratic homogeneous polynomials. Define

J1,1(f, g) = 〈H(f), H(g) 〉,
J2,2(f, g) = 〈H∗(f), H∗(g) 〉,
J3,0(f, g) = J3,0(f) = det(H(f)),

J0,3(f, g) = J0,3(g) = det(H(g)).

Let F ∈ K[x, y]r, G ∈ K[x, y]s be two homogeneous polynomials of degree
r and s, respectively. For k ≤ min{r, s}, define (F,G)k as

(r − k)!(s− k)!

r!s!

(
∂2

∂x1∂y2
− ∂2

∂y1∂x2

)k
F (x1, y1)G(x2, y2)

∣∣∣∣∣
(xi,yi)=(x,y),i,1,2

(5)
Let P = P (x, y) ∈ K[x, y]4 be a quartic binary form. Let Q = (P, P )4

defined as (5). Also we let

Σ(P ) =
1

2
(P, P )4, Ψ(P ) =

1

6
(P,Q)4

∆(P ) = Σ(P )3 − 27Ψ(P )2
(6)

Then ∆(P ) is the discriminant of P .
Let u, v be two K-variables. For quartic f ∈ K[x, y, z]4, let

g = g(x, y) = f(x, y,−ux− vy).

Then g(x, y) is a homogeneous polynomial of degree 4 with respect to the
variables x and y, and the coefficients of g are expressions of u and v. Thus
we can define Σ(g) and Ψ(g) as in (6). Since Σ and Ψ are expressions of the
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coefficients, we have Σ(g) and Ψ(g) are expressions of u and v. An explicit
computation shows that Σ(g) and Ψ(g) are polynomials of degree 2 and 3
in the polynomial ring K[u, v] respectively. Let σ(u, v, w) and ψ(u, v, w)
be the homogenization of Σ(g) for w, and ψ(u, v, w) be the homogenization
of Ψ(g) for w. Then σ(u, v, w) ∈ K[u, v, w]2 and ψ(u, v, w) ∈ K[u, v, w]3.
Finally, we substitute u = x, v = y, w = z into σ(u, v, w) and ψ(u, v, w). For
f ∈ K[x, y, z]4, we define

σ(f) = σ = σ(x, y, z) ∈ K[x, y, z]2

ψ(f) = ψ = ψ(x, y, z) ∈ K[x, y, z]3
(7)

Definition 3.1. Let f ∈ K[x, y, z]4, let σ, ψ defined as in ( 7). Let ρ =
Df (ψ) and τ = Dρ(f). The Dixmier invariants are defined as

I3 = Dσ(f), I9 = J1,1(τ, ρ), I15 = J3,0(τ),

I6 = Dψ(H)− 8I23 , I12 = J0,3(ρ), I18 = J2,2(τ, ρ)

I27 = ∆ = σ3 − 27ψ2

(8)

3.2. The Dixmier invariants of C3, C6 and C9. We use Maxima to
compute the Dixmier invariants of C3, C6 and C9. And we use elimina-
tion in Macaulay2 to compute the conditions of the invariants with certain
automorphisms.

Proposition 3.2. The Dixmier invariants of

C3(r, s) : y3 = x(x− 1)(x− r)(x− s)
are

I3 = I6 = I12 = I15 = 0

I9 = − r3 s5

55296 + r2 s5

36864 + r s5

36864 −
s5

55296 −
77r4 s4

331776 + 169r3 s4

331776 −
97r2 s4

110592 + 169r s4

331776 −
77s4

331776 −
r5 s3

55296 + 169r4 s3

331776 + r3 s3

13824 + r2 s3

13824 + 169r s3

331776 −
s3

55296 + r5 s2

36864 −
97r4 s2

110592 +
r3 s2

13824 −
97r2 s2

110592 + r s2

36864 + r5s
36864 + 169r4s

331776 + 169r3s
331776 + r2s

36864 −
r5

55296 −
77r4

331776 −
r3

55296

I18 = r6 s10

402653184 −
r5 s10

134217728 + r4 s10

67108864 −
7r3 s10

402653184 + r2 s10

67108864 −
r s10

134217728 +
s10

402653184 + r7 s9

1358954496 −
163r6 s9

10871635968 + 19r5 s9

1207959552 −
155r4 s9

10871635968 −
155r3 s9

10871635968 +
19r2 s9

1207959552 −
163r s9

10871635968 + s9

1358954496 + 229r8 s8

48922361856 −
539r7 s8

24461180928 + 2711r6 s8

24461180928 −
13241r5 s8

97844723712 + 20231r4 s8

97844723712−
13241r3 s8

97844723712 + 2711r2 s8

24461180928−
539r s8

24461180928 + 229s8

48922361856 +
r9 s7

1358954496 −
539r8 s7

24461180928 + 1913r7 s7

48922361856 −
5927r6 s7

32614907904 −
1705r5 s7

97844723712 −
1705r4 s7

97844723712 −
5927r3 s7

32614907904 + 1913r2 s7

48922361856 −
539r s7

24461180928 + s7

1358954496 + r10 s6

402653184 −
163r9 s6

10871635968 +
2711r8 s6

24461180928−
5927r7 s6

32614907904 + 20383r6 s6

32614907904−
35327r5 s6

97844723712 + 20383r4 s6

32614907904−
5927r3 s6

32614907904 +
2711r2 s6

24461180928 −
163r s6

10871635968 + s6

402653184 −
r10 s5

134217728 + 19r9 s5

1207959552 −
13241r8 s5

97844723712 −
1705r7 s5

97844723712 −
35327r6 s5

97844723712 −
35327r5 s5

97844723712 −
1705r4 s5

97844723712 −
13241r3 s5

97844723712 + 19r2 s5

1207959552 −
r s5

134217728 + r10 s4

67108864 −
155r9 s4

10871635968 + 20231r8 s4

97844723712 −
1705r7 s4

97844723712 + 20383r6 s4

32614907904 −
1705r5 s4

97844723712 + 20231r4 s4

97844723712 −
155r3 s4

10871635968 + r2 s4

67108864 −
7r10 s3

402653184 −
155r9 s3

10871635968 −
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13241r8 s3

97844723712 −
5927r7 s3

32614907904 −
5927r6 s3

32614907904 −
13241r5 s3

97844723712 −
155r4 s3

10871635968 −
7r3 s3

402653184 +
r10 s2

67108864 + 19r9 s2

1207959552 + 2711r8 s2

24461180928 + 1913r7 s2

48922361856 + 2711r6 s2

24461180928 + 19r5 s2

1207959552 +
r4 s2

67108864 −
r10s

134217728 −
163r9s

10871635968 −
539r8s

24461180928 −
539r7s

24461180928 −
163r6s

10871635968 −
r5s

134217728 + r10

402653184 + r9

1358954496 + 229r8

48922361856 + r7

1358954496 + r6

402653184

The elimination of the ideal generated by I9 and I18 with respect to r and
s is the 0 ideal, which shows that I9 and I18 are algebraically independent.

We can compute the invariants of C6 by substitute s = 1 − r into the
invariants of C3.

Proposition 3.3. The Dixmier invariants of

C6(r) : y3 = x(x− 1)(x− r)(x− 1 + r)

are

I3 = I6 = I12 = I15 = 0

I9 = −65r8−260r7+1150r6−2540r5+3959r4−3988r3+2326r2−712r+89
331776

I18 = 25r16

3057647616 −
25r15

382205952 + 1325r14

3057647616 −
1925r13

1019215872 + 79229r12

12230590464 −
105737r11

6115295232 + 447307r10

12230590464 −
31385r9

509607936 + 998905r8

12230590464 −
57233r7

679477248 + 817465r6

12230590464 −
123275r5

3057647616 + 221939r4

12230590464 −
1337r3

226492416 + 16037r2

12230590464 −
17r

95551488 + 17
1528823808

The elimination of the ideal generated by I9 and I18 with respect to r is
irreducible and generated by

4000000I89 − 1998092052000I79 − 676000000I69I18 − 71509053768117831I69 +
224328787434000I59I18 + 42841500000I49I

2
18 − 395361312253919627346I59 +

8460248600243212740I49I18 − 8372335651553250I39I
2
18 −

1206702250000I29I
3
18 + 36392104317997507611465I49 +

31914880192757153442492I39I18 − 332936970436116610650I29I
2
18 +

103850637726127500I9I
3
18 + 12745792515625I418 −

826890695963630262273456I39 − 9875439964247275663003440I29I18 −
644187721569909674246640I9I

2
18 + 4362752394549791982000I318 −

168880832609781468337056I29 + 30826420907787244648372032I9I18 +
474410438868202394564990304I218 + 2545539129474834804480I9 +
6939213188282316797541120I18 + 960605665900794374400.

For C9, we have

Proposition 3.4. The Dixmier invariants of

C9 : y3 = x(x3 − 1)

are all zero.
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4. The Bitangents of C3, C6 and C9

4.1. The bitangents of plane quartics. The classical theory of plane
quartics says that it has 28 bitangents. Recall that a line L is a bitangent
of a plane curve C if it tangents C at two points p1, p2 where p1 and p2 could
be coincide. Recall that a point is called an undulation point (see [21]) of a
plane curve if a tangent line at that point meets the curve with multiplicity
four or higher, this time the tangent line is called an undulation line of the
curve. Thus, if p1 and p2 are coincide, then this point is an undulation point
of C and L is an undulation line.

Explicitly, let f = f(x, y, z) ∈ K[x, y, z]4 be the equation of a plane
quartic C. Let L : ax + by + cz = 0, a, b, c ∈ K be a line in P2

(x,y,z). Thus

the point (a, b, c) ∈ P2
(a,b,c) determines the line L. Thus, in order to find all

bitangents, we should consider all the affine charts a 6= 0, b 6= 0 and c 6= 0.
For example, if we consider c 6= 0, and say c = 1. This time L : ax+by+z = 0
gives the condition z = −ax− by. Substitute this relation into f(x, y, z) we
have a quadratic form f(x, y,−ax − by) ∈ R[x, y, z]2 where R = K[a, b]. If
L is a bitangent for some a, b ∈ K, then there exist λ0, λ1, λ2 ∈ K such that

f(x, y,−ax− by) = (λ0x
2 + λ1xy + λ2y

2)2. (9)

The other two affine charts a 6= 0, b 6= 0 should be considered in a similar
way to find bitangents of the form ax+ by = 0. From now on let us consider
the equation (9).

Definition 4.1. For any quartic f ∈ K[x, y, z]4, let I(f) be the ideal of
K[a, b, λ0, λ1, λ2] generated by comparing the coefficients of both sides of the
monomials of x, y in the expansion of ( 9). Let J(f) be elimination ideal of
I with respect to λ0, λ1, λ2 in K[a, b].

The ideal J(f) gives the conditions of L being a bitangent of C. In general
one cannot solve a, b over Q, and even there exists L such that a, b ∈ Q, the
tangency points p1, p2 are not Q-rational points of C.

There is a description of the relative positions of the bitangents of C. Let
L1, . . . , L28 be the bitangents of C, be careful that the number 28 counts
the overlaps of the bitangents. Let Li, Lj , Lk, where i, j, k = 1, . . . , 28 are
distinct, be a triple of bitangents. For each Lν , ν = 1, . . . , 28, let pν1 , pν2 be
the two tangency points of Lν and C. Then Li, Lj , Lk determine 6 points
on C. Generically a plane conic is determined by 5 points.

Definition 4.2. If the 6 points pi1 , pi2 , pj1 , pj2 , pk1 , pk2 lie on a plane conic,
then we say the triple Li, Lj , Lk are syzygetic, or else we say they are
asyzygetic.

4.2. The Bitangents of C3, C6 and C9. Before we use the computer to
comply the algorithm above, let us observe an obvious bitangent of

C3(r, s) : y3 = x(x− 1)(x− r)(x− s).
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In the algorithm above, we considered the generic case on the affine chart
z 6= 0. But if we expand C3 and homogenize it with respect to z, then we
have

F3(r, s) : rsx z3− rs x2 z2− s x2 z2− r x2 z2 + y3z+ s x3z+ r x3z+x3z−x4.
(10)

Substitute z = 0 into (10) we get x4 = (x2)2, which is a square. Thus
z = 0 is a bitangent of C3. To compute the tangent point, we observe that
x2 = 0 implies that x = 0. Substitute x = 0, z = 0 into (10) we get 0. This
means that the intersection of C3 and the line z = 0 is the point (0, y, 0), or
(0, 1, 0) ∈ P2

(x,y,z). This is the only undulation point of C3.

In [21], the invariants of a generic plane quartic is constructed in order to
determine if it has an undulation point. The expression is the determinant
of a 21× 21 matrix. On the other hand, a quartic curve with homogeneous
equation F (x, y, z) = 0 has an undualtion point if and only if it could be
written as the form

F (x, y, z) = U1(x, y, z)
4 + V3(x, y, z)W1(x, y, z)

where U1 and W1 are linear forms and V3 is a cubic form. But according to
(10), let U1 = x, W1 = z, and V3 = x(x− z)(x− rz)(x− sz)− x4− y3, then

F3 = U4
1 + V3W1.

So z = 0 is an undulation line of C3.
Beyond this undulation line, there are another 27 bitangents of C3. Let

J(C3) be the ideal defined as Definition 4.1. This time the coefficient list
becomes K[r, s], but we still can define J(C3) by the same analogos. We can
compute the primary decomposition of J(C3) using Macaulay2. The inputs
are as the following.

R = QQ[r,a,b,k_0,k_1,k_2][x,y,z]

f = -r^2*x*z^3+r*x*z^3+r^2*x^2*z^2-r*x^2*z^2-x^2*z^2+y^3*z

+2*x^3*z-x^4

g = (k_0*x^2+k_1*x*y+k_2*y^2)^2

h = substitute(f,{z => -a*x-b*y})

H= h-g

Coe = coefficients H

L = flatten entries Coe#1

S = QQ[r,a,b,k_0,k_1,k_2]

I = ideal L

psi=map(S,R)

phi=map(R,S)

J = psi I

E=eliminate(J,{k_0,k_1,k_2})

T = QQ[r,a,b]

xi=map(T,S)

U = xi E
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primaryDecomposition U

The primary decomposition of J(C3) has two components, one of them is
the ideal < a = 0, b = 0 >, which gives the undulation line z = 0. Another
component is irreducible in general. Let J ′ be this component, and let J ′a
be the elimination of J ′ with respect to b. Then one can see that a satisfies
the degree 9 equation

r4s4a9 − 12r4s3a7 − 12r3s4a7 − 8r4s3a6 − 8r3s4a6 − 12r3s3a7 − 8r4s2a6 −
120r3s3a6 − 8r2s4a6 + 30r4s2a5 − 156r3s3a5 + 30r2s4a5 − 8r3s2a6 −
8r2s3a6 + 48r4s2a4 − 96r3s3a4 + 48r2s4a4 − 156r3s2a5 − 156r2s3a5 +
16r4s2a3 − 32r3s3a3 + 16r2s4a3 + 48r4sa4 − 168r3s2a4 − 168r2s3a4 +
48rs4a4 + 30r2s2a5 + 68r4sa3 − 68r3s2a3 − 68r2s3a3 + 68rs4a3 − 96r3sa4 −
168r2s2a4 − 96rs3a4 + 24r4sa2 − 24r3s2a2 − 24r2s3a2 + 24rs4a2 + 16r4a3 −
68r3sa3 − 216r2s2a3 − 68rs3a3 + 16s4a3 + 48r2sa4 + 48rs2a4 + 24r4a2 +
24r3sa2 − 96r2s2a2 + 24rs3a2 + 24s4a2 − 32r3a3 − 68r2sa3 − 68rs2a3 −
32s3a3 + 9r4a+ 12r3sa− 42r2s2a+ 12rs3a+ 9s4a− 24r3a2 − 96r2sa2 −
96rs2a2 − 24s3a2 + 16r2a3 + 68rsa3 + 16s2a3 + 12r3a− 12r2sa− 12rs2a+
12s3a−24r2a2 +24rsa2−24s2a2 +8r3−8r2s−8rs2 +8s3−42r2a−12rsa−
42s2a+24ra2 +24sa2−8r2 +16rs−8s2 +12ra+12sa−8r−8s+9a+8 = 0

which is able to be output by Macaulay2. This equation is irreducible over
Q. In the following cases, we try to find explicit bitangents for special cases
of C3(r, s).

Theorem 4.3. The curve

C9 : y3 = x(x3 − 1) (11)

has all 28 explicit equations for the bitangents whose coefficients are radical
expressions over Q, the group Z/9 acts on the configuration of the bitangents.

Proof. Let J(C9) be the ideal of K[a, b] defined as Definition 4.1. Let J ′ be
the component of J(C9) beyond < a = 0, b = 0 >. Let J ′a be the elimination
of J ′ with respect to b. Then a satisfies the following equation.

a9 − 96a6 + 48a3 + 64. (12)

Let u = a3, then u satisfies the cubic equation

u3 − 96u2 + 48u+ 64. (13)

This equation is solvable. For example, using Maxima, we have
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u1 = −

(√
3 i + 1

) (
32 · 3 7

2 i + 31968
) 2

3 − 64
(

32 · 3 7
2 i + 31968

) 1
3 − 112 · 3 5

2 i + 1008

2
(

32 · 3 7
2 i + 31968

) 1
3

,

u2 =

(√
3 i− 1

) (
32 · 3 7

2 i + 31968
) 2

3

+ 64
(

32 · 3 7
2 i + 31968

) 1
3 − 112 · 3 5

2 i− 1008

2
(

32 · 3 7
2 i + 31968

) 1
3

,

u3 =

(
32 · 3 7

2 i + 31968
) 2

3

+ 32 ·
(

32 · 3 7
2 i + 31968

) 1
3

+ 1008(
32 · 3 7

2 i + 31968
) 1

3

Taking the cube root of each ui we can get all 9 solutions of a.
Similarly we have an equation

b27 − 29496b18 + 401808b9 − 64 = 0 (14)

and let v = b9 we have a cubic equation

v3 − 29496v2 + 401808v − 64 = 0.

This time one has to take the ninth root of all the three solutions vi’s ,
i = 1, 2, 3 of this equation. At the end, one has to judge which pairs (a, b)
among the solutions give a bitangent ax+ by + z = 0 of the original curve.
We list the Macaulay2 input as the following.

R = QQ[r,s,b,k_0,k_1,k_2][x,y,z]

f = r*s*x*z^3-r*s*x^2*z^2-s*x^2*z^2-r*x^2*z^2+y^3*z+s*x^3*z

+r*x^3*z+x^3*z-x^4

g = (k_0*x^2+k_1*x*y+k_2*y^2)^2

h = substitute(f,{z => -b*y})

H= h-g

Coe = coefficients H

L = flatten entries Coe#1

S = QQ[r,s,b,k_0,k_1,k_2]

I = ideal L

psi=map(S,R)

phi=map(R,S)

J = psi I

E=eliminate(J,{k_0,k_1,k_2})

T = QQ[r,s,b]

xi=map(T,S)

U = xi E

primaryDecomposition U

The equations (12) and (14) contain terms of degree 3n and 9n for a and
b, respectively. Thus if ax+by+z = 0 is a bitangent, so is ζ3 ·ax+ζ9 ·by+z =
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0. But this means a(ζ3 · x) + b(ζ9 · y) + z = 0, which means this bitangent
is in the orbit of the Z/9-action. This means the group Z/9 acts on the
configuration of the bitangents. �

There is no canonical method to find explicit bitangents for special cases.
Our observation is that we can try to find r, s ∈ K such that the bitangent
is “horizontal”, that is, for those bitangents such that a = 0. The equation
of the bitangent becomes bx + z = 0. Repeat the same idea in Section 4.1,
we get the following result.

Theorem 4.4. The family C3 has a horizontal bitangent when r−s = ±1 or
r+s = 1. In each of these cases, the slope b satisfies a cubic equation whose
coefficients are polynomials of s, thus there are 3 horizontal bitangents.

Proof. Let F3 be the polynomial defined in (10). Generically, a = 0 is not
a solution to the degree 9 equation of a. However, when a = 0, we have
L : by + z = 0. Then z = −by. Using the same idea as in Section 4.1, we
have the equation

F3(x, y,−by) = (λ0x
2 + λ1xy + λ2y

2)2. (15)

Let I(F3) be the ideal of R[b, λ0, λ1, λ2] generated by comparing the coeffi-
cients of both sides of the monomials of x, y in the expansion of (15). Let
J(F3) be elimination ideal of I(F3) with respect to λ0, λ1, λ2 in R[b]. Then
the primary decomposition of J(F3) as an ideal in K[r, s, b] is

〈b〉, 〈r − s− 1, s2b3 − 4〉
〈r + s− 1, s4b3 − 2s3b3 + s2b3 − 4〉
〈r − s+ 1, s2b3 − 2sb3 + b3 − 4〉.

(16)

�

The first ideal of (16) corresponds to the bitangent z = 0. The third ideal
of (16) gives r + s − 1 = 0, which implies s = r − 1, this is the family C6.
Furthermore, we have a result on the positions of the horizontal bitangents
of C6.

Theorem 4.5. The three horizontal bitangents of C6 form an asyzygetic
triple. Furthermore, the automprhism group Z/6 acts on this asyzygetic
triple.

Proof. Let

F6 : −r2x z3 + rx z3 + r2 x2 z2− r x2 z2−x2 z2 +y3z+ 2x3z−x4 ∈ R[x, y, z]4

be the homogenization of C6 with respect to z where R = K[r]. As before,
we have the equation

F6(x, y,−by) = (λ0x
2 + λ1xy + λ2y

2)2 (17)

Let I(F6) be the ideal of R[b, λ0, λ1, λ2] generated by comparing the coef-
ficients of both sides of the monomials of x, y in the expansion of (17). In
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Theorem 4.4 we have proved that for C6 the condition of being a horizontal
bitangent for the line bx+ z = 0 is given by the ideal

〈 r + s− 1, s4b3 − 2s3b3 + s2b3 − 4 〉.
Substitute s = 1−r into the second generator of this ideal, we have a relation

p(r, b) = b3 r4 − 2b3 r3 + b3 r2 − 4

This time, let J (F6) be intersection of the elimination ideal of I(F6) with
respect to r, b in K[λ0, λ1, λ2] and the ideal 〈p(r, b)〉. Macaulay2 outputs

J (F6) = 〈 〉,
which means that generically there is no conic λ0x

2 + λ1xy + λ2y
2 satisfies

the conditions of passing through the 6 tangent points at the same time.
Consider the action x 7→ −x − r and y 7→ ζ3 · y on C6. The equation

p(r, b) only contains degree 3n terms, so as we have seen, the transformation
y 7→ ζ3 · y will transform a bitangent to another. On the other hand, since
a = 0, a transformation x 7→ −x− r will fix a horizontal bitangent z = −by.
Thus Z/6 acts on the configuration of this asyzygetic triple. �

Remark 4.6. In general, there is another way to check whether 6 points
lie on a common conic in P2. Let pi = (xi, yi, zi) ∈ P2

(x,y,z), i = 1, . . . , 6 be 6

points in the projective plane. Let V be the Veronese map

V : P2
(x,y,z) −→ P5

(x, y, z) 7−→ (x2, y2, z2, xy, yz, zx)
.

If we regard V(p) as a row matrix for any p = (x, y, z) ∈ P2, then for the
given 6 poins p1, ..., p6, we have a 6× 6 matrix

V :=


V(p1)
V(p2)
V(p3)
V(p4)
V(p5)
V(p6)

 =


x21 y21 z21 x1y1 y1z1 z1x1
x22 y22 z22 x2y2 y2z2 z2x2
x23 y23 z23 x3y3 y3z3 z3x3
x24 y24 z24 x4y4 y4z4 z4x4
x25 y25 z25 x5y5 y5z5 z5x5
x26 y26 z26 x6y6 y6z6 z6x6

 .

For our problem, let p1, ..., p6 be the 6 points of tangency of the three
horizontal bitangents in Theorem 4.5. From the proof of Theorem 4.5 we
see that there is a symbolic solution of these three bitangents, and since the
algorithm of finding the points of tangency is essentially solving a quadratic
equation, we can find the symbolic solutions of the points of tangency. But
this algorithm costs too much for a popular processor. We can compute it
in special values. For example, let r = 1

8 , we can compute the determinant

using Maxima, the result is1

V = −

√
−25
√

3 i− 25
√

25
√

3 i− 25
(

120052
10
3 3

7
2 4

2
3 i + 3241352

10
3 4

2
3

)
2

247
6

√
3 i + 2

247
6

1This value could be simplified, we put the original result from Maxima.
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which is not zero.

5. Discussion on the matrix representation problem

We discuss the matrix representation problem of the curves C3 and C6

using the idea in [20]. In order to coincide the notations with respect to
[20], we exchange y and z, and write C3 as

C3 : z3 = x(x− 1)(x− r)(x− s).

Homogenize C3 with respect to y we have

C3 : f(x, y, z) := F3(r, s) = x(x− y)(x− ry)(x− sy)− yz3 = 0. (18)

This time we have

f(x, 0, 0) = x4 and f(x, y, 0) =
4∏
i=1

(x+ βiy) (19)

where β1 = 0, β2 = −1, β3 = −r, β4 = −s. The matrix representation prob-
lem for C3 asks whether the polynomial f(x, y, z) in (18) could be written
of the form

f(x, y, z) = det(xA+ yB + zC)

where A,B,C are symmetric matrices. Here the entries of the matrices A,B
and C belong to the algebraic closure of the rational function field K(r, s).
According to Section 2 in [20], if (19) holds, then one can assume that

A =


1

1
1

1

 , B =


0
−1

−r
−s

 , C =


c11 c12 c13 c14
c12 c22 c23 c24
c13 c23 c33 c34
c14 c24 c34 c44

 .

and we also have that

cii = βi ·
∂f
∂z (−βi, 1, 0)
∂f
∂y (−βi, 1, 0)

, i = 1, 2, 3, 4. (20)

But for (18) we have ∂f
∂z = −3yz2, which implies if z = 0, then cii = 0 for

i = 1, 2, 3, 4 by (20).
For convinience we denote

D =


c12 c13 c14

c23 c24
c34

 =


a b d

c e
f

 ,

then C = D + tD where tD is the matrix transpose of D since cii = 0 for
i = 1, 2, 3, 4.
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Using Maxima, we directly compute the coefficients of

det(xA+ yB + zC) = det


x az bz dz
az x− y cz ez
bz cz x− ry fz
dz ez fz x− sy


and compare the coefficients with f(x, y, z) in (18), the output is a system
of equations

− c2s− b2s− a2s− e2r − d2r − a2r − f2 − d2 − b2 = 0, (21)

a2rs+ b2s+ d2r = 0, (22)

2abcs+ 2ader + 2bdf − 1 = 0, (23)

f2 + e2 + d2 + c2 + b2 + a2 = 0, (24)

− 2cef − 2bdf − 2ade− 2abc = 0, (25)

− a2 f2 + 2abef + 2acdf − b2 e2 + 2bcde− c2 d2 = 0. (26)

We add the first equation with the fourth one, and rewrite the system of as
6 equations

a2rs+ b2s+ d2r = 0, (27)

a2(1− r)(s− 1− s) + c2(1− s) + e2(1− r) = 0 (28)

2abcs+ 2ader + 2bdf − 1 = 0, (29)

f2 + e2 + d2 + c2 + b2 + a2 = 0, (30)

cef + bdf + ade+ abc = 0, (31)

a2f2 − 2af(be+ cd) + (be− cd)2 = 0. (32)

of the 6 variables a, b, c, d, e, f .
It is too complicated to solve this entire system. Our computation are

proceeded under the following principle:

• We only seek for one solution to the equation system (27)-(32), thus
if there is an ”either-or” argument in any step, we can choose one of
them as our solution.

We eliminate a, f , and get a system of 4 equations with respect to the 4
variables b, c, d, e.
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Proposition 5.1. The equation system

b2

r
+

c2

r − 1
+
d2

s
+

e2

s− 1
= 0, (33)

(b− e)4

be
=

(c+ d)4

cd
, (34)

(bc+ de)(bd+ ce) =

(
2(
√
be+

√
cd) ·

∣∣∣∣ bcs+ der bd
bc(1− s) + de(1− r) ce

∣∣∣∣)2

, (35)

(bd+ ce)2 + (bc+ de)2∣∣∣∣ bcs+ der bd
bc(1− s) + de(1− r) ce

∣∣∣∣2
+ (b2 + c2 + d2 + e2) = 0 (36)

with respect to the variables b, c, d, e give solutions to the equation system
( 27)-( 32) where

a =
bd+ ce∣∣∣∣ bcs+ der bd

bc(1− s) + de(1− r) ce

∣∣∣∣ , f = − bc+ de∣∣∣∣ bcs+ der bd
bc(1− s) + de(1− r) ce

∣∣∣∣ .
(37)

Proof. First, the equation (33) is simply from 1
rs(27)− 1

(1−r)(1−s)(28).

Next we regard a, f as unknowns and b, c, d, e, r, s as constants. The
solution (37) is the solution to the linear system (29) and (31). From (31)
we also have

a

f
= −bd+ ce

bc+ de
,

f

a
= − bc+ de

bd+ ce1
. (38)

Substitute (38) into (30) we have (36).
Let g = af , then (32) becomes a quadratic equation

g2 − 2(be+ cd)g + (be− cd)2 = 0

of g whose solution is

af = (
√
be±

√
cd)2

As before, for “±” we choose +, which is

af = (
√
be±

√
cd)2 (39)

Substitute (37) into (39) we get (35).
Last, let us prove (34). The quadratic equation (30) and the linear equa-

tion (31) have an solution

a = −
√
−1(ce+ bd)

√
e2 + d2 + c2 + b2

√
(d2 + c2) e2 + 4bcde+ b2 d2 + b2 c2

(d2 + c2) e2 + 4bcde+ b2 d2 + b2 c2
,

f =

√
−1(bc+ de)

√
e2 + d2 + c2 + b2

√
(d2 + c2) e2 + 4bcde+ b2 d2 + b2 c2

(d2 + c2) e2 + 4bcde+ b2 d2 + b2 c2
.

(40)
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From (40) we have

af =
P

(d2 + c2) e2 + 4bcde+ b2 d2 + b2 c2

where the numerator P equals to minus the product of

cde4−4bcde3+6b2cde2−bd4e−4bcd3e−6bc2d2e−4bc3de−4b3cde−bc4e+b4cd (41)

and

cde4 + 4bcde3 + 6b2cde2 − bd4e+ 4bcd3e− 6bc2d2e+ 4bc3de+ 4b3cde− bc4e+ b4cd.

Dividing (41) by bcde and regrouping the terms, we prove (34). �

As we reminded, it is hard to continue solving this equation system. Our
observation is that for (34), we have an obvious solution

e = b, and d = −c. (42)

From (24) we have b2 + d2 + f2 = −a2− c2− e2, thus we can rewrite (21) as

(a2 + b2 + d2)r + (a2 + b2 + c2)s = a2 + c2 + e2.

Substitute (42) into this equation we have

r + s = 1

which means the curve C3 becomes C6 in this situation.
Next, we subsitude (42) into the equation system (27)-(32), then (31) is

trivial, and (27) is the same as (28). We have a system of 4 equations

a2rs+ b2s+ c2r = 0 (43)

2abc(s− r)− 2bcf − 1 = 0 (44)

a2 + f2 + 2(b2 + c2) = 0 (45)

a2f2 − 2af(b2 − c2) + (b2 + c2)2 = 0 (46)

of the 4 variables a, b, c, f .

Theorem 5.2. The matrix representation of C6 could be explicitly written
over an extension field of K(r, s) = Q(r, s) defined by a degree 6 polynomial
f(z) ∈ K(r, s)[z].

Proof. From (44) we have

(a(s− r)− f) =
1

2bc
,

thus we have

a2(s− r)2 − 2af(s− r) + f2 =
1

4b2c2
. (47)

From (45) we have f2 = −2(b2 + c2)− a2, substitute it into (47) we have

a2[(s− r)2 − 1]− 2af(s− r)− 2(b2 + c2) =
1

4b2c2
. (48)
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From (43) we have

a2 = −b
2

r
− c2

s
(49)

and from (46) we have

af = (b+
√
−1c)2 (50)

if we take one of the solutions of the quadratic equation with respect to af .
Substitute them into (48), we have

4(b2s+ c2r)− 2(s− r)(b+
√
−1c)2 − 2(b2 + c2) =

1

4b2c2
. (51)

This is a degree 6 equation with respect to b and c. Thus, if we know q = b/c,
then the theorem is proved. From (45) and (49) we can solve

f2 = −2(b2 + c2) +
b2

r
+
c2

s
. (52)

The trivial equation
(af)2 = a2 · f2

implies that (50)2 =(49)·(52), which is

(b+
√
−1c)4 =

(
−b

2

r
− c2

s

)
·
(
−2(b2 + c2) +

b2

r
+
c2

s

)
(53)

This equation is homogeneous of degree 4 with respect to b and c, thus if we
set q = b/c, it will become a degree 4 equation of q, which is solvable. �
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Sup. (4) 4 (1971), 181–192. MR292836, Zbl 0216.05904, doi: 10.24033/asens.1209. 638

[16] Ohno, Toshiaki. Application of representation theory of SL(3) to invariant elements
of ternary quartics. Bull. Fac. Sci. Eng. Chuo Univ. 43 (2000), 7–16. MR1818572.
636

[17] Picard, Emile. Sur des fonctions de deux variables indépendantes analogues
aux fonctions modulaires. Acta Math. 2 (1883), no. 1, 114–135. MR1554595, Zbl
15.0432.01, doi: 10.1007/BF02612158. 637

[18] Picard, Emile. Sur les formes quadratiques ternaires indéfinies á indéterminées
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peltangenten. J. Reine Angew. Math. 49 (1855), 265–272. MR1578916, ERAM
049.1315cj, doi: 10.1515/crll.1855.49.265. 636

[24] Vinnikov, Victor. Complete description of determinantal representations of smooth
irreducible curves. Linear Algebra Appl. 125 (1989),103–140. MR1024486, Zbl
0704.14041, doi: 10.1016/0024-3795(89)90035-9. 636

[25] Vinnikov, Victor. Self-adjoint determinantal representations of real plane
curves. Math. Ann. 296 (1993), no. 3, 453–479. MR1225986, Zbl 0789.14029,
doi: 10.1007/BF01445115. 636

http://www.ams.org/mathscinet-getitem?mr=1578918
http://www.emis.de/cgi-bin/MATH-item?049.1317cj
http://dx.doi.org/10.1515/crll.1855.49.279
http://www.ams.org/mathscinet-getitem?mr=1350073
http://www.emis.de/cgi-bin/MATH-item?0905.14013
http://dx.doi.org/10.1007/978-3-0348-9051-9
http://www.ams.org/mathscinet-getitem?mr=1578697
http://www.emis.de/cgi-bin/MATH-item?040.1107cj
http://dx.doi.org/10.1515/crll.1850.40.237
http://www.ams.org/mathscinet-getitem?mr=1580369
http://dx.doi.org/10.1515/crll.1895.114.50
http://www.ams.org/mathscinet-getitem?mr=555703
http://www.emis.de/cgi-bin/MATH-item?0494.14012
http://dx.doi.org/10.1007/BFb0066649
http://maxima.sourceforge.net/docs/manual/maxima.html
http://maxima.sourceforge.net/docs/manual/maxima.html
http://www.ams.org/mathscinet-getitem?mr=292836
http://www.emis.de/cgi-bin/MATH-item?0216.05904
http://dx.doi.org/10.24033/asens.1209
http://www.ams.org/mathscinet-getitem?mr=1818572
http://www.ams.org/mathscinet-getitem?mr=1554595
http://www.emis.de/cgi-bin/MATH-item?15.0432.01
http://www.emis.de/cgi-bin/MATH-item?15.0432.01
http://dx.doi.org/10.1007/BF02612158
http://www.ams.org/mathscinet-getitem?mr=1554651
http://www.emis.de/cgi-bin/MATH-item?16.0385.01
http://dx.doi.org/10.1007/bf02421555
http://www.ams.org/mathscinet-getitem?mr=2781949
http://www.emis.de/cgi-bin/MATH-item?1214.14049
http://www.emis.de/cgi-bin/MATH-item?1214.14049
http://arXiv.org/abs/1008.4104
http://dx.doi.org/10.1016/j.jsc.2011.01.007
http://www.ams.org/mathscinet-getitem?mr=2962788
http://www.emis.de/cgi-bin/MATH-item?1328.14093
http://arXiv.org/abs/1011.6057
http://dx.doi.org/10.1007/978-3-0348-0411-0_19
http://www.ams.org/mathscinet-getitem?mr=3326583
http://www.emis.de/cgi-bin/MATH-item?1349.14154
http://arXiv.org/abs/1208.5775
http://dx.doi.org/10.1307/mmj/1427203288
http://www.ams.org/mathscinet-getitem?mr=220738
http://www.emis.de/cgi-bin/MATH-item?0188.53304
http://dx.doi.org/10.2307/2373415
http://www.ams.org/mathscinet-getitem?mr=1578916
http://www.emis.de/cgi-bin/MATH-item?049.1315cj
http://www.emis.de/cgi-bin/MATH-item?049.1315cj
http://dx.doi.org/10.1515/crll.1855.49.265
http://www.ams.org/mathscinet-getitem?mr=1024486
http://www.emis.de/cgi-bin/MATH-item?0704.14041
http://www.emis.de/cgi-bin/MATH-item?0704.14041
http://dx.doi.org/10.1016/0024-3795(89)90035-9
http://www.ams.org/mathscinet-getitem?mr=1225986
http://www.emis.de/cgi-bin/MATH-item?0789.14029
http://dx.doi.org/10.1007/BF01445115


INVARIANTS, BITANGENTS, AND MATRIX REPRESENTATIONS 655

[26] Wiman, Anders. Zur Theorie endlichen Gruppen von birationalen Transformationen
in der Ebene. Math. Ann. 48 (1896), no. 1–2, 195–240. MR1510931, Zbl 30.0600.01,
doi: 10.1007/BF01446342. 637

(Dun Liang) School of Mathematics and Statistics, Hengyang Normal Univer-
sity, Hengyang, Hunan 421002, China
liangdun@hynu.edu.cn

This paper is available via http://nyjm.albany.edu/j/2020/26-29.html.

http://www.ams.org/mathscinet-getitem?mr=1510931
http://www.emis.de/cgi-bin/MATH-item?30.0600.01
http://dx.doi.org/10.1007/BF01446342
mailto:liangdun@hynu.edu.cn
http://nyjm.albany.edu/j/2020/26-29.html

	1. Introduction
	2. Automorphisms of plane quartics
	3. Dixmier invariants of C3, C6 and C9
	4. The Bitangents of C3, C6 and C9
	5. Discussion on the matrix representation problem
	References

