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Bisector surfaces and circumscribed
spheres of tetrahedra derived by
translation curves in Sol geometry

Jenő Szirmai

Abstract. In the present paper we study the Sol geometry, which is
one of the eight homogeneous Thurston 3-geometries. We determine
the equation of the translation-like bisector surface of any two points.
We prove that the isosceles property of a translation triangle is not
equivalent to two angles of the triangle being equal, and that the triangle
inequalities do not remain valid for translation triangles in general.
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1. Introduction

The Dirichlet-Voronoi (briefly, D-V) cell is a fundamental concept in ge-
ometry and crystallography. In particular, it plays important roles in the
study of ball packings and ball coverings. In 3-dimensional spaces of con-
stant curvature, the D-V cells have been widely investigated, but in the other

Thurston geometries S2×R, H2×R, Nil, Sol, S̃L2R there are few results on
this topic. Let X be one of the above five geometries and let Γ be a discrete
group of isometries of X. We distinguish two different distance functions:
dg is the usual geodesic distance function, and dt is the translation distance
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function (see Section 3). So we obtain two types of the D-V cells from the
two different distance functions.

We define the Dirichlet-Voronoi cell with kernel point K of a given discrete
isometry group Γ:

Definition 1.1. We say that the point set

D(K) =
{
Y ∈ X : di(K,Y ) ≤ di(Kg, Y ) for all g ∈ Γ

}
⊂ X

is the Dirichlet-Voronoi cell of Γ around its kernel point K where di (i ∈
{g, t}) is the geodesic or translation distance function of X.

The first step to get the D-V cell of a given point set of X is the deter-
mination of the translation or geodesic-like bisector (or equidistant) surface
of two arbitrary points of X because these surface types contain the faces
of D-V cells.

In [13], [14], [15] we studied the geodesic-like equidistant surfaces in S2×
R, H2×R and Nil geometries, but there were no results concerning the

translation-like equidistant surfaces in Nil, S̃L2R and Sol geometries.
In the Thurston spaces, one can introduce in a natural way (see [8])

translations mapping any point to any other point. Consider a unit tangent
vector at the origin. Translations carry this vector to a tangent vector any
other point. If a curve t→ (x(t), y(t), z(t)) has just the translated vector as
its tangent vector at each point, then the curve is called a translation curve.
This assumption leads to a system of first order differential equations. Thus
translation curves are simpler than geodesics and differ from them in Nil,

S̃L2R and Sol geometries. In E3, S3, H3, S2×R and H2×R geometries,
the translation and geodesic curves coincide with each other. But in the

Nil, S̃L2R and Sol geometries, translation curves are in many ways more
natural than geodesics.

In this paper we study the translation-like bisector surfaces of two points in
Sol geometry, determine their equations and visualize them. The translation-
like bisector surfaces play an important role in the construction of the D-V
cells because their faces lie on bisector surfaces. The D-V-cells are relevant
in the study of tilings, ball packing and ball covering. E.g. if the point set
is the orbit of a point - generated by a discrete isometry group of Sol - then
we obtain a monohedral D-V cell decomposition (tiling) of the considered
space and it is interesting to examine its optimal ball packing and covering
(see [18], [17]).

Moreover, we prove, that the isosceles property of a translation triangle is
not equivalent to two angles of the triangle being equal and that the triangle
inequalities do not remain valid for translation triangles in general.

Using the above bisector surfaces we develop a procedure to determine the
centre and the radius of the circumscribed translation sphere of an arbitrary
Sol tetrahedron. This is useful to determine the least dense ball covering
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radius of a given periodic polyhedral Sol tiling because the tiling can be
decomposed into tetrahedra.

Remark 1.2. We note here, that nowadays the Sol geometry is a widely
investigated space concerning its manifolds, tilings, geodesic and translation
ball packings and probability theory (see e.g. [2], [3], [6], [10], [11], [12], [17]
and the references given there).

2. On Sol geometry

In this Section we summarize the significant notions and notations of real
Sol geometry (see [8], [16]).

Sol is defined as a 3-dimensional real Lie group with multiplication

(a, b, c)(x, y, z) = (x+ ae−z, y + bez, z + c). (2.1)

We note that the conjugacy by (x, y, z) leaves invariant the plane (a, b, c)
with fixed c:

(x, y, z)−1(a, b, c)(x, y, z) = (x(1− e−c) + ae−z, y(1− ec) + bez, c). (2.2)

Moreover, for c = 0, the action of (x, y, z) is only by its z-component, where
(x, y, z)−1 = (−xez,−ye−z,−z). Thus the (a, b, 0) plane is distinguished as
a base plane in Sol, or by other words, (x, y, 0) is normal subgroup of Sol.
Sol multiplication can also be affinely (projectively) interpreted by “right
translations” on its points as the following matrix formula shows, according
to (2.1):

(1, a, b, c)→ (1, a, b, c)


1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1

 = (1, x+ ae−z, y + bez, z + c)

(2.3)
by row-column multiplication. This defines “translations” L(R) = {(x, y, z) :
x, y, z ∈ R} on the points of space Sol = {(a, b, c) : a, b, c ∈ R}. These
translations are not commutative, in general. Here we can consider L as pro-
jective collineation group with right actions in homogeneous coordinates as
usual in classical affine-projective geometry. We will use the Cartesian homo-
geneous coordinate simplex E0(e0), E

∞
1 (e1), E

∞
2 (e2), E

∞
3 (e3), ({ei} ⊂ V4

with the unit point E(e = e0 + e1 + e2 + e3)) which is distinguished by an
origin E0 and by the ideal points of coordinate axes, respectively. Thus Sol
can be visualized in the affine 3-space A3 (so in Euclidean space E3) as well.

In this affine-projective context E. Molnár has derived in [8] the usual
infinitesimal arc-length square at any point of Sol, by pull back translation,
as follows

(ds)2 := e2z(dx)2 + e−2z(dy)2 + (dz)2. (2.4)

Hence, we get a Riemannian metric invariant under translations, by the
symmetric metric tensor field g on Sol by components as usual.
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The geodesic curves of the Sol geometry are generally defined as having
locally minimal arc length between their any two (near enough) points. The
equation systems of the parametrized geodesic curves g(x(t), y(t), z(t)) in our
model can be determined by the Levi-Civita theory of Riemann geometry
(see [1]). We can assume, that the starting point of a geodesic curve is the
origin because we can transform a curve into an arbitrary starting point by
translation (2.1);

x(0) = y(0) = z(0) = 0; ẋ(0) = u, ẏ(0) = v, ż(0) = w;

u2 + v2 + w2 = 1.

The geodesic curves in Sol geometry have the following equations, de-
pending on the initial conditions:

(1)

u 6= 0, v 6= 0, 0 < |w| =
√

1− u2 − v2 < 1;

x(t) = u

∫ t

0
e−2z(τ)dτ, y(t) = v

∫ t

0
e−2z(τ)dτ,

z(t) comes from the separable differential equation

dz

±
√

1− u2e−2z − v2e2z
= dt,

iff w ≶ 0, whose solution is a non-elementary function.

(2)

u 6= 0, v 6= 0, w = 0;

x(t) = ut, y(t) = vt, z(t) = 0.

(3)

v = 0, 0 < |w| =
√

1− u2 < 1;

x(t) = u
sinh t

cosh t+ w sinh t
, y(t) = 0, z(t) = log (cosh t+ w sinh t).

(4)

u = 0, 0 < |w| =
√

1− v2 < 1;

x(t) = 0, y(t) = v
sinh t

cosh t− w sinh t
, z(t) = − log (cosh t− w sinh t).

(5)

u = 0, v = 0, |w| = 1;

x(t) = 0, y(t) = 0, z(t) = ±t, for w = ±1.

It will be important for us that the full isometry group Isom(Sol) has
eight components, since the stabilizer of the origin is isomorphic to the di-
hedral group D4, generated by two involutive (involutory) transformations,
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preserving (2.4):

(1) y ↔ −y; (2) x↔ y; z ↔ −z; i.e. first by 3× 3 matrices :

(1)

1 0 0
0 −1 0
0 0 1

 ; (2)

0 1 0
1 0 0
0 0 −1

 ;
(2.5)

with its product, generating a cyclic group C4 of order 4 0 1 0
−1 0 0
0 0 −1

 ;

−1 0 0
0 −1 0
0 0 1

 ;

0 −1 0
1 0 0
0 0 −1

 ; Id =

1 0 0
0 1 0
0 0 1

 .

Or we write by collineations fixing the origin O = (1, 0, 0, 0):

(1)


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (2)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 of form (2.3). (2.6)

A general isometry of Sol to the origin O is defined by a product γOτX , first
γO of form (2.6) then τX of (2.3). To a general point A = (1, a, b, c), this
will be a product τ−1A γOτX , mapping A into X = (1, x, y, z).

Conjugacy of translation τ by an above isometry γ, as τγ = γ−1τγ also
denotes it, will also be used by (2.3) and (2.6) or also by coordinates with
above conventions.

We remark only that the role of x and y can be exchanged throughout
the paper, but this leads to the mirror interpretation of Sol. As formula
(2.4) fixes the metric of Sol, the change above is not an isometry of a fixed
Sol interpretation. Other conventions are also accepted and used in the
literature.

Sol is an affine metric space (affine-projective one in the sense of the
unified formulation of [8]). Therefore, its linear, affine, unimodular, etc.
transformations are defined as those of the embedding affine space.

2.1. Translation curves. We consider a Sol curve (1, x(t), y(t), z(t)) with
a given starting tangent vector at the origin O = (1, 0, 0, 0)

u = ẋ(0), v = ẏ(0), w = ż(0). (2.7)

For a translation curve let its tangent vector at the point (1, x(t), y(t), z(t))
be defined by the matrix (2.3) with the following equation:

(0, u, v, w)


1 x(t) y(t) z(t)

0 e−z(t) 0 0

0 0 ez(t) 0
0 0 0 1

 = (0, ẋ(t), ẏ(t), ż(t)). (2.8)

Thus, translation curves in Sol geometry (see [9] and [10]) are defined by the

first order differential equation system ẋ(t) = ue−z(t), ẏ(t) = vez(t), ż(t) =
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w, whose solution is the following:

x(t) = − u
w

(e−wt − 1), y(t) =
v

w
(ewt − 1), z(t) = wt, if w 6= 0 and

x(t) = ut, y(t) = vt, z(t) = z(0) = 0 if w = 0.
(2.9)

We assume that the starting point of a translation curve is the origin, be-
cause we can transform a curve into an arbitrary starting point by transla-
tion (2.3), moreover, unit velocity translation can be assumed :

x(0) = y(0) = z(0) = 0;

u = ẋ(0) = cos θ cosφ, v = ẏ(0) = cos θ sinφ, w = ż(0) = sin θ;

−π < φ ≤ π, −π
2
≤ θ ≤ π

2
.

(2.10)

Definition 2.1. The translation distance dt(P1, P2) between the points P1

and P2 is defined by the arc length of the above translation curve from P1 to
P2.

Thus we obtain the parametric equation of the translation curve segment
t(φ, θ, t) with starting point at the origin in direction

t(φ, θ) = (cos θ cosφ, cos θ sinφ, sin θ) (2.11)

where t ∈ [0, r] r ∈ R+. If θ 6= 0 then the system of equation is: x(φ, θ, t) = − cot θ cosφ(e−t sin θ − 1),
y(φ, θ, t) = cot θ sinφ(et sin θ − 1),
z(φ, θ, t) = t sin θ.

If θ = 0 then : x(t) = t cosφ, y(t) = t sinφ, z(t) = 0.

(2.12)

Definition 2.2. The sphere of radius r > 0 with centre at the origin (de-
noted by StO(r)) with the usual longitude and altitude parameters −π < φ ≤
π, −π

2 ≤ θ ≤ π
2 , respectively, by (2.10), is specified by the equations (2.12)

where t = r.

Definition 2.3. The body of the translation sphere of centre O and of radius
r in the Sol space is called translation ball, denoted by Bt

O(r), i.e. Q ∈ Bt
O(r)

iff 0 ≤ dt(O,Q) ≤ r.

In [17] we proved the volume formula of the translation ball Bt
O(r) of

radius r:

Theorem 2.4.

V ol(Bt
O(r)) =

∫
V

dx dy dz =

=

∫ r

0

∫ π
2

−π
2

∫ π

−π

cos θ

sin2 θ
(eρ sin θ + e−ρ sin θ − 2) dφ dθ dρ =

= 4π

∫ r

0

∫ π
2

−π
2

cos θ

sin2 θ
(cosh(ρ sin θ)− 1) dθ dρ.
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Figure 1. Translation ball of radius r = 5/2 and its plane
sections parallel to [x,y] coordinate plane in Sol space

An easy power series expansion with substitution ρ sin θ =: z can also
be applied, no more detailed. From the equation of the translation spheres
StO(r) (see (2.12)) it follows that the plane sections of following spheres, given
by parameters θ and r, parallel to [x, y] plane are ellipses by the equations
(see Fig. 1, r = 5/2):

x2

k21
+
y2

k22
= 1 where

k21 = (− cot θ(e−r sin θ − 1))2, k22 = (cot θ(er sin θ − 1))2.

(2.13)

3. Translation-like bisector surfaces

One of our further goals is to examine and visualize the Dirichlet-Voronoi
cells of Sol geometry. In order to get D-V cells we have to determine its
“faces” that are parts of bisector (or equidistant) surfaces of given point
pairs. The definition below comes naturally:

Definition 3.1. The equidistant surface SP1P2 of two arbitrary points P1, P2 ∈
Sol consists of all points P ′ ∈ Sol, for which dt(P1, P

′) = dt(P ′, P2).

It can be assumed by the homogeneity of Sol that the starting point
of a given translation curve segment is E0 = P1 = (1, 0, 0, 0). The other
endpoint will be given by its homogeneous coordinates P2 = (1, a, b, c). We
consider the translation curve segment tP1P2 and determine its parameters
(φ, θ, t) expressed by the real coordinates a, b, c of P2. We obtain directly
by equation system (2.12) the following Lemma (see [19]):

Lemma 3.2. (1) Let (1, a, b, c) (b, c ∈ R \ {0}, a ∈ R) be the homo-
geneous coordinates of the point P ∈ Sol. The parameters of the
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E
0
=P1

P2

E
0
=P1

P2

Figure 2. Translation-like bisector (equidistant surface)
with P1 = (1, 0, 0, 0) and P2 = (1,−1, 1, 1/2).

corresponding translation curve tE0P are the following

φ = arccot
(
− a

b

ec − 1

e−c − 1

)
, θ = arccot

( b

sinφ(ec − 1)

)
,

t =
c

sin θ
, where − π < φ ≤ π, −π/2 ≤ θ ≤ π/2, t ∈ R+.

(3.1)

(2) Let (1, a, 0, c) (a, c ∈ R \ {0}) be the homogeneous coordinates of
the point P ∈ Sol. The parameters of the corresponding translation
curve tE0P are the following

φ = 0 or π, θ = arccot
(
∓ a

(e−c − 1)

)
,

t =
c

sin θ
, where − π/2 ≤ θ ≤ π/2, t ∈ R+.

(3.2)

(3) Let (1, a, b, 0) (a, b ∈ R) be the homogeneous coordinates of the point
P ∈ Sol. The parameters of the corresponding translation curve
tE0P are the following

φ = arccos
( x√

a2 + b2

)
, θ = 0,

t =
√
a2 + b2, where − π < φ ≤ π, t ∈ R+. �

(3.3)

In order to determine the translation-like bisector surface SP1P2(x, y, z)
of two given point E0 = P1 = (1, 0, 0, 0) and P2 = (1, a, b, c) we define
translation TP2 as elements of the isometry group of Sol, that maps the
origin E0 onto P (see Fig. 2), moreover let P3 = (1, x, y, z) a point in Sol
space.
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This isometry TP2 and its inverse (up to a positive determinant factor)
can be given by:

TP2 =


1 a b c
0 e−c 0 0
0 0 ec 0
0 0 0 1

 , T−1P2
=


1 −aec −be−c −c
0 ec 0 0
0 0 e−c 0
0 0 0 1

 , (3.4)

and the images T−1P2
(Pi) of points Pi (i ∈ {1, 2, 3}) are the following (see

also Fig. 2):

T−1P2
(P1 = E0) = P 2

1 = (1,−aec,−be−c,−c), T−1P2
(P2) = E0 = (1, 0, 0, 0),

T−1P2
(P3) = P 2

3 = (1, (x− a)ec, (y − b)e−c, (z − c).
(3.5)

It is clear that P3 = (1, x, y, z) ∈ SP1P2 iff dt(P1, P3) = dt(P3, P2) ⇒
dt(P1, P3) = dt(E0, P

2
3 ) where P 2

3 = T−1P2
(P3) (see (3.4), (3.5)).

This method leads to

Lemma 3.3. The implicit equation of the equidistant surface SP1P2(x, y, z)
of two points P1 = (1, 0, 0, 0) and P2 = (1, a, b, c) in Sol space (see Fig. 2,3):

(1) c 6= 0

z 6= 0, c :
|c− z|
|ec − ez|

√
(a− x)2e2(c+z) + (ec − ez)2 + (b− y)2 =

=
|z|

|ez − 1|
√
x2e2z + (ez − 1)2 + y2,

z = c :
√

(x− a)2e2c + (y − b)2e−2c =
|z|

|ez − 1|
√
x2e2z + (ez − 1)2 + y2,

z = 0 :
|c|

|ec − 1|
√

(a− x)2e2c + (ec − 1)2 + (b− y)2 =
√
x2 + y2,

(3.6)
(2) c = 0

z 6= 0 :
|z|

|ez − 1|
√

(a− x)2e2z + (ez − 1)2 + (b− y)2 =

=
|z|

|ez − 1|
√
x2e2z + (ez − 1)2 + y2 ⇔ e2za(a− 2x) + b(b− 2y) = 0,

z = 0 :
√

(x− a)2 + (y − b)2 =
√
x2 + y2 ⇔ xa+ yb− a2 + b2

2
. �

(3.7)

3.1. On isosceles and equilateral translation triangles. We consider
3 points A1, A2, A3 in the projective model of Sol space. The translation
segments connecting the points Ai and Aj (i < j, i, j, k ∈ {1, 2, 3}) are
called sides of the translation triangle A1A2A3. The length of the side ak
(k ∈ {1, 2, 3}) of a translation triangle A1A2A3 is the translation distance
dt(Ai, Aj) between the vertices Ai and Aj (i < j, i, j, k ∈ {1, 2, 3}, k 6= i, j).
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E
0
=P1

P2

E
0
=P1

P2

E
0
=P1

P2

Figure 3. Translation-like bisectors (equidistant surfaces)
of point pairs (P1, P2) with coordinates ((1, 0, 0, 0), (1, 0, 0, 2))
(left) and ((1, 0, 0, 0), (1, 1, 1, 0)) (right)

Similarly to the Euclidean geometry we can define the notions of isosceles
and equilateral translation triangles.

An isosceles translation triangle is a triangle with (at least) two equal
sides and a triangle with all sides equal is called an equilateral translation
triangle (see Fig. 4) in the Sol space.

We note here, that if in a translation triangle A1A2A3 e.g. a1 = a2 then
the bisector surface SA1A2 contains the vertex A3 (see Fig. 4).

A1E
0
=

A2

E
0
=

A3

A1

A3

A2

S A2A1

Figure 4. Equilateral translation triangle with vertices
A1 = (1, 0, 0, 0), A2 = (1, 2, 1,−3/4), A3 = (1, 1,≈
1.46717,≈ 1.04627) (left) and the above triangle with bi-
sector SA1A2 containing the vertex A3 (right).
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In the Euclidean space the isosceles property of a triangle is equivalent
to two angles of the triangle being equal therefore has both two equal sides
and two equal angles. An equilateral triangle is a special case of an isosceles
triangle having not just two, but all three sides and angles equal.

Proposition 3.4. The isosceles property of a translation triangle is not
equivalent to two angles of the triangle being equal in the Sol space.

Proof. The coordinates y3, z3 of the vertex A3 can be determined by the
equation system dt(A1, A2) = dt(A1, A3) = dt(A2, A3), y

3 ≈ 1.46717, z3 ≈
1.04627 (a3 = dt(A1, A2) = a2 = dt(A1, A3) = a1 = dt(A2, A3) ≈ 2.09436)
(see Fig. 4).

The interior angles of translation triangles are denoted at the vertex Ai by
ωi (i ∈ {1, 2, 3}). We note here that the angle of two intersecting translation
curves depends on the orientation of their tangent vectors.

In order to determine the interior angles of a translation triangle A1A2A3

and its interior angle sum
∑3

i=1(ωi), we apply the method (we do not dis-
cuss here) developed in [19] using the infinitesimal arc-length square of Sol
geometry (see (2.4)).

Our method (see [19]) provides the following results:

ω1 ≈ 0.94694, ω2 ≈ 1.04250, ω3 ≈ 1.44910,
3∑
i=1

(ωi) ≈ 3.43854 > π.

From the above results follows the statement. We note here, that if the
vertices of the translation triangle lie in the [x, y] plane than the Euclidean
isosceles property true in the Sol geometry, as well. �

Using the above method, we obtain the following

Lemma 3.5. The triangle inequalities do not remain valid for translation
triangles in general.

Proof. We consider the translation triangle A1A2A3 where A1 = (1, 0, 0, 0),
A2 = (1,−1, 2, 1), A3 = (1, 3/4, 3/4, 1/2). We obtain directly by equation
systems (3.1), (3.2), (3.3) (see Lemma 3.2 and [19]) the lengths of the trans-
lation segments AiAj (i, j ∈ {1, 2, 3}, i < j):

dt(A1A2) ≈ 2.20396, dt(A1A3) ≈ 1.22167, dt(A2A3) ≈ 3.74623,

therefore dt(A1A2) + dt(A1A3) < dt(A2A3).
(3.8)

�

We note here that if the vertices of a translation triangle lie on the [x, y]
plane of the model then the corresponding triangle inequalities are true (see
(2.12) and Lemma 3.2).
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3.2. The locus of all points equidistant from three given points. A
point is said to be equidistant from a set of objects if the distances between
that point and each object in the set are equal. Here we study that case
where the objects are vertices of a Sol translation triangle A1A2A3 and
determine the locus of all points that are equidistant from A1, A2 and A3.

We consider 3 points A1, A2, A3 that do not all lie in the same transla-
tion curve in the projective model of Sol space. The translation segments
connecting the points Ai and Aj (i < j, i, j, k ∈ {1, 2, 3}, k 6= i, j) are called
sides of the translation triangle A1A2A3. The locus of all points that are
equidistant from the vertices A1, A2 and A3 is denoted by C.

In the previous section we determined the equation of translation-like
bisector (equidistant) surface to any two points in the Sol space. It is clear,
that all points on the locus C must lie on the equidistant surfaces SAiAj ,
(i < j, i, j ∈ {1, 2, 3}) therefore C = SA1A2 ∩ SA1A3 and the coordinates
of each of the points of that locus and only those points must satisfy the
corresponding equations of Lemma 3.3. Thus, the non-empty point set C can
be determined and can be visualized for any given translation triangle (see
Fig. 5 and 6). If the vertices of the translation triangle lie on the [x, y] plane

A
2

A
3

A
1

A
3

A
1

A
2 C

Figure 5. Translation triangle with vertices A1 =
(1, 0, 0, 0), A2 = (1, 2, 1,−3/4), A3 = (1, 1,−1/2, 2/3) with
translation-like bisector surfaces SA1A2 and SA1A3 (left) and
a part of the locus C = SA1A2∩SA1A3 of all points equidistant
from three given points A1, A2, A3 (right).

A1 = (1, 0, 0, 0), A2 = (1, a, b, 0), A3 = (1, a1, b1, 0) then the parametric
equation (z ∈ R) of C is the following (see Lemma 3.3 and Fig.6):

C(z) =
(bb1(b− b1)e−2z + a2b1 − a21b)

2(ab1 − a1b)
,
(−aa1(a− a1)e2z + ab21 − a1b2)

2(ab1 − a1b)
, z
)
.

(3.9)
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C

Figure 6. Translation triangle with vertices A1 =
(1, 0, 0, 0), A2 = (1, 1/3, 1/5, 0), A3 = (1, 1/2,−2/7, 0) with
translation-like bisector surfaces SA1A2 and SA1A3 (left) and
a part of the locus C = SA1A2∩SA1A3 of all points equidistant
from three given points A1, A2, A3 (right).

3.3. Translation tetrahedra and their circumscribed spheres. We
consider 4 points A1, A2, A3, A4 in the projective model of Sol space (see
Section 2). These points are the vertices of a translation tetrahedron in the
Sol space if any two translation segments connecting the points Ai and Aj
(i < j, i, j ∈ {1, 2, 3, 4}) do not have common inner points and any three
vertices do not lie in a same translation curve. Now, the translation seg-
ments AiAj are called edges of the translation tetrahedron A1A2A3A4. The
circumscribed sphere of a translation tetrahedron is a translation sphere
(see Definition 2.2, (2.12) and Fig. 1) that touches each of the tetrahedron’s
vertices. As in the Euclidean case the radius of a translation sphere cir-
cumscribed around a tetrahedron T is called the circumradius of T , and the
center point of this sphere is called the circumcenter of T .

Lemma 3.6. For any translation tetrahedron there exists uniquely a trans-
lation sphere (called the circumsphere) on which all four vertices lie.

Proof. The Lemma follows directly from the properties of the translation
distance function (see Definition 2.1 and (2.12)). The procedure to deter-
mine the radius and the circumcenter of a given translation tetrahedron is
the folowing:

The circumcenter C = (1, x, y, z) of a given translation tetrahedronA1A2A3A4

(Ai = (1, xi, yi, zi), i ∈ {1, 2, 3, 4}) have to hold the following system of
equation:

dt(A1, C) = dt(A2, C) = dt(A3, C) = dt(A4, C), (3.10)
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Figure 7. Translation tetrahedron with vertices
A1 = (1, 0, 0, 0), A2 = (1,

√
3/8, 1/8, 1/40),

A3 = (1, 1/8,
√

3/8,−1/40), A4 = (1, 1/20, 3/20, 1/5)
and its circumscribed sphere of radius r ≈ 0.14688 with
circumcenter C = (1,≈ 0.08198,≈ 0.10540,≈ 0.06319).
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Figure 8. Translation tetrahedron with vertices
A1 = (1, 0, 0, 0), A2 = (1,

√
3/8, 1/8, 1/40),

A3 = (1, 1/8,
√

3/8,−1/40), A4 = (1,−3/20,−3/20,
3/10) and its circumscribed sphere of radius r ≈ 0.36332
with circumcenter C = (1,≈ 0.04904,≈ 0.17721,≈ 0.32593).

therefore it lies on the translation-like bisector surfaces SAi,Aj (i < j, i, j ∈
{1, 2, 3, 4}) which equations are determined in Lemma 3.3. The coordinates
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x, y, z of the circumcenter of the circumscribed sphere around the tetrahe-
dron A1A2A3A4 are obtained by the system of equation derived from the
facts:

C ∈ SA1A2 ,SA1A3 ,SA1A4 . (3.11)

Finally, we get the circumradius r as the translation distance e.g. r =
dt(A1, C).

We apply the above procedure to two tetrahedra determined their centres
and the radii of their circumscribed balls that are described in Fig. 7 and
8. �
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[10] Molnár, Emil; Szirmai, Jenö. Symmetries in the 8 homogeneous 3-geometries.
Symmetry Cult. Sci. 21 (2010), no. 1–3, 87–117. Zbl 1274.52026. 109, 111
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