
New York Journal of Mathematics
New York J. Math. 25 (2019) 949–963.

On the multiple holomorph of
a finite almost simple group

Cindy (Sin Yi) Tsang

Abstract. Let G be a group. Let Perm(G) denote its symmetric group
and write Hol(G) for the normalizer of the subgroup of left translations
in Perm(G). The multiple holomorph NHol(G) of G is defined to be the
normalizer of Hol(G) in Perm(G). In this paper, we shall show that the
quotient group NHol(G)/Hol(G) has order two whenever G is finite and
almost simple. As an application of our techniques, we shall also develop
a method to count the number of Hopf-Galois structures of isomorphic
type on a finite almost simple field extension in terms of fixed point free
endomorphisms.
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1. Introduction

Let G be a group and write Perm(G) for its symmetric group. Recall that
a subgroup N of Perm(G) is said to be regular if the map

ξN : N −→ G; ξN (η) = η(1G)
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is bijective, or equivalently, if the N -action on G is both transitive and free.
For example, both λ(G) and ρ(G) are regular subgroups of Perm(G), where{

λ : G −→ Perm(G); λ(σ) = (x 7→ σx)

ρ : G −→ Perm(G); ρ(σ) = (x 7→ xσ−1)

denote the left and right regular representations of G, respectively. Plainly,
we have λ(G) are ρ(G) are equal precisely when G is abelian. Recall further
that the holomorph of G is defined to be

Hol(G) = ρ(G) o Aut(G). (1.1)

Alternatively, it is not hard to verify that

NormPerm(G)(λ(G)) = Hol(G) = NormPerm(G)(ρ(G)).

Then, it seems natural to ask whether Perm(G) has other regular subgroups
which also have normalizer equal to Hol(G). Given any regular subgroup N
of Perm(G), observe that the bijection ξN induces an isomorphism

ΞN : Perm(N) −→ Perm(G); ΞN (π) = ξN ◦ π ◦ ξ−1
N (1.2)

under which λ(N) is sent to N . Thus, in turn ΞN induces an isomorphism

Hol(N) ' NormPerm(G)(N),

and so we have

NormPerm(G)(N) = Hol(G) implies Hol(N) ' Hol(G).

However, in general, the converse is false, and non-isomorphic groups (of the
same order) can have isomorphic holomorphs. Let us restrict to the regular
subgroups N which are isomorphic to G, and consider

H0(G) =

{
regular subgroups N of Perm(G) isomorphic to G

and such that NormPerm(G)(N) = Hol(G)

}
.

This set was first studied by G. A. Miller [13]. More specifically, he defined
the multiple holomorph of G to be

NHol(G) = NormPerm(G)(Hol(G)),

which clearly acts on H0(G) via conjugation, and he showed that this action
is transitive so the quotient group

T (G) =
NHol(G)

Hol(G)

acts regularly on H0(G); or see Section 2 below for a proof. In [13], he also
determined the structure of T (G) for finite abelian groups G. Later in [14],
W. H. Mills extended this to all finitely generated abelian groups G, which
was also redone in [4] using a different approach. Initially, the study of T (G)
did not attract much attention, except in [13] and [14]. But recently in [12],
T. Kohl revitalized this line of research by computing T (G) for dihedral and
dicyclic groups G. In turn, his work motivated the calculation of T (G) for



THE MULTIPLE HOLOMORPH OF A FINITE ALMOST SIMPLE GROUP 951

some other families of finite groups G; see [5] and [3]. In this paper, we shall
continue this research and compute T (G) for finite almost simple groups G.

To explain our motivation, first notice that elements of H0(G) are normal
subgroups of Hol(G); this is known and also see Section 2 below for a proof.
Instead of H0(G), let us consider the possibly larger sets

H1(G) = {normal and regular subgroups of Hol(G)},
H2(G) = {regular subgroups of Hol(G) isomorphic to G}.

Then, we have the inclusions

H0(G) ⊂ H1(G) and H0(G) ⊂ H2(G).

If G is finite and non-abelian simple, then we know that

H2(G) = {λ(G), ρ(G)}
by the proof of [6, Theorem 4], and this in turn implies that

H0(G) = {λ(G), ρ(G)} whence T (G) ' Z/2Z. (1.3)

Inspired by this observation, it seems natural to ask whether the same or at
least a similar phenomenon holds for other finite groups G which are close to
being non-abelian simple. Let us consider the following three generalizations
of non-abelian simple groups.

Definition 1.1. A group G is said to be

(1) quasisimple if G = [G,G] and G/Z(G) is simple, where [G,G] is the
commutator subgroup and Z(G) is the center of G.

(2) characteristically simple if it has no non-trivial proper characteristic
subgroup; let us note that for finite G, this is equivalent to G = Tn

for some simple group T and natural number n.
(3) almost simple if Inn(T ) ≤ G ≤ Aut(T ) for some non-abelian simple

group T , where Inn(T ) denotes the inner automorphism group of T ;
let us remark that Inn(T ) is the socle of G in this case, as shown in
Lemma 4.2 below, for example.

If G is finite and quasisimple, then we know that

H2(G) = {λ(G), ρ(G)}
by [16, (1.1) and Theorem 1.3], whence (1.3) holds as above. However, if G
is finite and non-abelian characteristically simple or almost simple, then the
size of H2(G) can be arbitrarily large as the order of G increases, by [17] and
[6, Theorem 5]. Nevertheless, if G is finite and non-abelian characteristically
simple, then we know that

H1(G) = {λ(G), ρ(G)}
by a special case of [5, Theorem 7.7], and thus (1.3) holds as well. Our result
is that if G is finite and almost simple, then the same phenomenon occurs.
More specifically, we shall prove:
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Theorem 1.2. Let G be any finite almost simple group. Then, we have

H1(G) = {λ(G), ρ(G)}.
In particular, the statement (1.3) holds.

In order to compute H1(G), we shall develop a way to describe the regular
subgroups of Hol(G), and not just the ones which are normal; see Section 3.
Regular subgroups of Hol(G) themselves are directly related to Hopf-Galois
structures on field extensions. In particular, by [10] and [1], given any finite
Galois extension L/K with Galois group G, there exists an explicit bijection
between the Hopf-Galois structures on L/K of so-called type G and elements
of H2(G). We shall refer the reader to [7, Chapter 2] for more details. Let us
mention in passing that there is also a connection between regular subgroups
of Hol(G) and the non-degenerate set-theoretic solutions of the Yang-Baxter
equation; see [11].

Therefore, other than H0(G) and H1(G), it is also of interest to determine
H2(G). If G is finite and non-abelian characteristically simple, then this was
already solved in [17]. However, if G is finite and almost simple, then as far
as the author is aware, the only known result is [6, Theorem 5 and Corollary
6], which states that for all n ≥ 5, we have

#H2(Sn) = 2 · (1 + #{σ ∈ An : σ has order two})

= 2 ·
∑

0≤k≤n/2
k is even

n!

(n− 2k)! · 2k · k!
.

Here Sn and An, respectively, denote the symmetric and alternating groups
on n letters. Using the techniques to be developed in Section 3, which were
largely motivated by [6], we shall also generalize the above result as follows.
Recall that an endomorphism f on G is said to be fixed point free if

f(σ) = σ holds precisely when σ = 1G.

Let Endfpf(G) denote the set of all such endomorphisms. Also, write Inn(G)
for the inner automorphism group G. Then, we shall prove:

Theorem 1.3. Let G be any finite almost simple group such that Inn(G) is
the only subgroup isomorphic to G in Aut(G). Then, we have

#H2(G) = 2 ·#Endfpf(G).

Moreover, in the case that Soc(G) has prime index p in G, we have

#Endfpf(G) = 1 + #{σ ∈ Soc(G) : σ has order p}
+ (p− 2)/(p− 1) ·#{σ ∈ G \ Soc(G) : σ has order p},

where Soc(G) denotes the socle of G.

It is well-known, or by Lemma 4.3 below, that for G = Aut(T ) with T a
non-abelian simple group, we have Aut(G) ' G, and so the first hypothesis
of Theorem 1.3 is obviously satisfied. Now, consider the 26 sporadic simple
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groups T . Their outer automorphism group Out(T ) and element structures
are available on the world-web-wide Atlas [18]. In particular, exactly 12 of
them have non-trivial Out(T ), in which case the order is two. By plugging
in p = 2 in Theorem 1.3, we then obtain the values of #H2(G), as given in
the table below. The notation for the sporadic groups is the same as in [18].

T no. of elements of order two in T #H2(G) for G = Aut(T )

M12 891 1, 784
M22 1, 155 2, 312
HS 21, 175 42, 352
J2 2, 835 5, 672

McL 22, 275 44, 552
Suz 2, 915, 055 5, 830, 112
He 212, 415 424, 832
HN 75, 603, 375 151, 206, 752
Fi22 37, 706, 175 75, 412, 352
Fi’24 7, 824, 165, 773, 823 15, 648, 331, 547, 648
O’N 2, 857, 239 5, 714, 480
J3 26, 163 52, 328

Since #H2(T ) = 2 for all finite non-abelian simple groups T , the number
#H2(G) is now known for all almost simple groups G of sporadic type.

Finally, let us remark that if G/Soc(G) is not cyclic (of prime order), then
the enumeration of Endfpf(G) becomes much more complicated. Currently,
the author does not have a systematic way of treating the general case.

2. Preliminaries on the multiple holomorph

In this section, we shall give a proof of the fact that the action of NHol(G)
on the set H0(G) via conjugation is transitive, and the fact that elements of
H0(G) are normal subgroups of Hol(G). Both of them are already known in
the literature and are consequences of the next simple observation.

Lemma 2.1. Isomorphic regular subgroups of Perm(G) are conjugates.

Proof. LetN1 andN2 be any two isomorphic regular subgroups of Perm(G).
Let ϕ : N1 −→ N2 be an isomorphism and note that the isomorphism

Ξϕ : Perm(N1) −→ Perm(N2); Ξϕ(π) = ϕ ◦ π ◦ ϕ−1

sends λ(N1) to λ(N2). For i = 1, 2, recall that the isomorphism ΞNi defined
as in (1.2) sends λ(Ni) to Ni. It follows that ΞN2 ◦Ξϕ ◦Ξ−1

N1
maps N1 to N2.

We then deduce that N1 and N2 are conjugates via ξN2 ◦ ϕ ◦ ξ−1
N1

. �

Lemma 2.1 implies that the regular subgroups of Perm(G) isomorphic to
G are precisely the conjugates of λ(G). For any π ∈ Perm(G), we have

NormPerm(G)(πλ(G)π−1) = πHol(G)π−1,
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which is equal to Hol(G) if and only if π ∈ NHol(G). It follows that

H0(G) = {πλ(G)π−1 : π ∈ NHol(G)} (2.1)

and thus clearly NHol(G) acts transitively on H0(G) via conjugation. Since
the stabilizer of any element of H0(G) under this action is equal to Hol(G),
the quotient T (G) acts regularly on H0(G). For any π ∈ Perm(G), we have

πλ(G)π−1 CHol(G) ⇐⇒

{
πλ(G)π−1 ≤ Hol(G),

Hol(G) ≤ NormPerm(G)(πλ(G)π−1).

Since λ(G) ≤ Hol(G), both of the conditions on the right are clearly satisfied
for π ∈ NHol(G), and so elements of H0(G) are normal subgroups of Hol(G).
In the case that G is finite, the second condition on the right is satisfied only
for π ∈ NHol(G), whence we have the alternative description

H0(G) = {N CHol(G) : N ' G and N is regular}
for H0(G) in addition to (2.1), and in particular H0(G) = H1(G) ∩H2(G).

3. Descriptions of regular subgroups in the holomorph

In this section, Let Γ be a group of the same cardinality as G. Then, the
regular subgroups of Hol(G) isomorphic to Γ are precisely the images of the
homomorphisms in the set

Reg(Γ,Hol(G)) = {injective β ∈ Hom(Γ,Hol(G)) : β(Γ) is regular}.
Note that for G and Γ finite, the map β is automatically injective when β(Γ)
is regular. Below, we shall give two different ways of describing this set, and
it shall be helpful to recall the definition of Hol(G) given in (1.1).

The first description uses bijective crossed homomorphisms.

Definition 3.1. Given f ∈ Hom(Γ,Aut(G)), a map g ∈ Map(Γ, G) is said
to be a crossed homomorphism with respect to f if

g(γδ) = g(γ) · f(γ)(g(δ)) for all γ, δ ∈ Γ.

Write Z1
f (Γ, G) for the set of all such maps. Also, let Z1

f (Γ, G)∗ and Z1
f (Γ, G)◦,

respectively, denote the subsets consisting of those maps which are bijective
and injective. Note that these two subsets coincide when G and Γ are finite.

Proposition 3.2. For f ∈ Map(Γ,Aut(G)) and g ∈ Map(Γ, G), define

β(f,g) : Γ −→ Hol(G); β(f,g)(γ) = ρ(g(γ)) · f(γ).

Then, we have

Map(Γ,Hol(G)) = {β(f,g) : f ∈ Map(Γ,Aut(G)), g ∈ Map(Γ, G)},
Hom(Γ,Hol(G)) = {β(f,g) : f ∈ Hom(Γ,Aut(G)), g ∈ Z1

f (Γ, G)},
Reg(Γ,Hol(G)) = {injective β(f,g) : f ∈ Hom(Γ,Aut(G)), g ∈ Z1

f (Γ, G)∗}.

Proof. This follows easily from (1.1); or see [16, Proposition 2.1] for a proof
and note that the argument there does not require G and Γ to be finite. �
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The second description uses fixed point free pairs of homomorphisms. The
use of such pairs already appeared in [2, 6, 8] and our Proposition 3.4 below
is largely motivated by the arguments on [6, pp. 83–84].

Definition 3.3. For any groups Γ1 and Γ2, a pair (f, h) of homomorphisms
from Γ1 to Γ2 is said to be fixed point free if the equality f(γ) = h(γ) holds
precisely when γ = 1Γ1 .

Let Out(G) denote the outer automorphism group of G and write

πG : Aut(G) −→ Out(G); πG(ϕ) = ϕ · Inn(G)

for the natural quotient map. Given f ∈ Hom(Γ,Aut(G)), define

Homf(Γ,Aut(G)) = {h ∈ Hom(Γ,Aut(G)) : πG ◦ f = πG ◦ h}, (3.1)

Homf(Γ,Aut(G))◦ = {h ∈ Homf(Γ,Aut(G)) : (f, h) is fixed point free}.

In view of Proposition 3.2, it is enough to consider Z1
f (Γ, G)∗, which in turn

is equal to Z1
f (Γ, G)◦ when G and Γ are finite. In the case that G has trivial

center, the next proposition, which may be viewed as a generalization of [16,
Propositions 2.4 and 2.5], gives an alternative description of this latter set.

Proposition 3.4. Let f ∈ Hom(Γ,Aut(G)). For g ∈ Z1
f (Γ, G), define

h(f,g) : Γ −→ Aut(G); h(f,g)(γ) = conj(g(γ)) · f(γ),

where conj(·) = λ(·)ρ(·). Then, the map h(f,g) is always a homomorphism.
Moreover, in the case that G has trivial center, the maps

Z1
f (Γ, G) −→ Homf(Γ,Aut(G)); g 7→ h(f,g) (3.2)

Z1
f (Γ, G)◦ −→ Homf(Γ,Aut(G))◦; g 7→ h(f,g) (3.3)

are well-defined bijections.

Proof. First, let g ∈ Z1
f (Γ, G). For any γ, δ ∈ Γ, we have

h(f,g)(γδ) = conj(g(γδ)) · f(γδ)
= conj(g(γ))f(γ) · f(γ)−1conj(f(γ)(g(δ)))f(γ) · f(δ)
= conj(g(γ))f(γ) · conj(g(δ))f(δ)

= h(f,g)(γ)h(f,g)(δ).

This means that h(f,g) is a homomorphism and that (3.2) is well-defined.
Now, suppose that G has trivial center, in which case conj : G −→ Inn(G)

is an isomorphism. Given h ∈ Homf(Γ,Aut(G)), define

g : Γ −→ G; g(γ) = conj−1(h(γ)f(γ)−1),
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where h(γ)f(γ)−1 ∈ Inn(G) since πG ◦ h = πG ◦ f. For any γ, δ ∈ Γ, we have

conj(g(γδ)) = h(γδ)f(γδ)−1

= h(γ)f(γ)−1 · f(γ)h(δ)f(δ)−1f(γ)−1

= conj(g(γ)) · conj(f(γ)(g(δ)))

= conj(g(γ) · f(γ)(g(δ))),

and hence g is a crossed homomorphism with respect to f. Clearly h = h(f,g)

and so this shows that (3.2) is surjective. Let g1, g2, g ∈ Z1
f (Γ, G). For any

γ ∈ Γ, since conj is an isomorphism, we have

g1(γ) = g2(γ) ⇐⇒ conj(g1(γ)) = conj(g2(γ)) ⇐⇒ h(f,g1)(γ) = h(f,g2)(γ)

and so (3.2) is also injective. For any γ1, γ2 ∈ Γ, similarly

g(γ1) = g(γ2) ⇐⇒ conj(g(γ1)) = conj(g(γ2)) ⇐⇒ h(f,g)(γ
−1
1 γ2) = f(γ−1

1 γ2)

and this implies that (3.3) is a well-defined bijection as well. �

In the case that G is finite, observe that

#H2(G) =
1

|Aut(G)|
·#Reg(G,Hol(G)).

From Proposition 3.2, we then deduce that

#H2(G) =
1

|Aut(G)|
·#{(f, g) : f ∈ Hom(G,Aut(G)), g ∈ Z1

f (G,G)∗}.

By Proposition 3.4, when G has trivial center, we further have

#H2(G) =
1

|Aut(G)|
·#
{

(f, h) :
f ∈ Hom(G,Aut(G))
h ∈ Homf(G,Aut(G))◦

}
. (3.4)

This formula shall be useful for the proof of Theorem 1.3.
Finally, we shall give a necessary condition for a subgroup of Hol(G) to

be normal in terms of the notation of Propositions 3.2 and 3.4.

Proposition 3.5. Let f ∈ Hom(Γ,Aut(G)) and g ∈ Z1
f (Γ, G) be such that

the subgroup β(f,g)(Γ) is normal in Hol(G). Then, both of the subgroups f(Γ)
and h(f,g)(Γ) are also normal in Aut(G).

Proof. Consider γ ∈ Γ and ϕ ∈ Aut(G). Since β(f,g)(Γ) is normal in Hol(G),
there exists γϕ ∈ Γ such that

ϕβ(f,g)(γ)ϕ−1 = β(f,g)(γϕ).

Rewriting this equation yields

ρ(ϕ(g(γ))) · ϕf(γ)ϕ−1 = ρ(g(γϕ)) · f(γϕ).

Since (1.1) is a semi-direct product, this in turn gives

ϕ(g(γ)) = g(γϕ) and ϕf(γ)ϕ−1 = f(γϕ).
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The latter shows that f(Γ) is normal in Aut(G). The above also implies that

ϕh(f,g)(γ)ϕ−1 = conj(ϕ(g(γ))) · ϕf(γ)ϕ−1 = conj(g(γϕ)) · f(γϕ) = h(f,g)(γϕ),

and hence h(f,g)(Γ) is normal in Aut(G) as well. �

4. Basic properties of almost simple groups

In this section, let S be an almost simple group and let T be a non-abelian
simple group such that Inn(T ) ≤ S ≤ Aut(T ). Notice that Inn(T ) is normal
in Aut(T ) and thus is normal in S as well. Recall the known fact, which is
easily verified, that for any ϕ ∈ Aut(T ), we have

ϕ ◦ ψ = ψ ◦ ϕ for all ψ ∈ Inn(T ) implies ϕ = IdT . (4.1)

This implies the next three basic properties of S which we shall need. They
are known but we shall give a proof for the convenience of the reader.

Lemma 4.1. The center of S is trivial.

Proof. This follows directly from (4.1). �

Lemma 4.2. Every non-trivial normal subgroup of S contains Inn(T ).

Proof. Let R be a normal subgroup of S such that R 6⊃ Inn(T ), or equiv-
alently R ∩ Inn(T ) 6= Inn(T ). Then, since R ∩ Inn(T ) is normal in Inn(T ),
and Inn(T ) ' T is simple, this means that R ∩ Inn(T ) = 1. For any ϕ ∈ R,
because both R and Inn(T ) are normal in S, we have

ψ ◦ ϕ ◦ ψ−1 ◦ ϕ−1 ∈ R ∩ Inn(T ) for all ψ ∈ Inn(T ).

We then deduce from (4.1) that ϕ = IdT and so R is trivial. �

Lemma 4.3. There is an injective homomorphism

ι : Aut(S) −→ Aut(T )

such that the composition

S Inn(S) Aut(S) Aut(T )inclusion ι

is the inclusion map, where the first arrow is the map ϕ 7→ (x 7→ ϕxϕ−1).

Proof. Put T# = Inn(T ), which is the socle of S by Lemma 4.2, and thus is
a characteristic subgroup of S. We then have a well-defined homomorphism

Aut(S) −→ Aut(T#); θ 7→ θ|T# . (4.2)

Suppose that θ is in its kernel. For any ϕ ∈ S, we have

θ(ϕ) ◦ ψ ◦ θ(ϕ)−1 = θ(ϕ ◦ ψ ◦ ϕ−1) = ϕ ◦ ψ ◦ ϕ−1 for all ψ ∈ T#.

From (4.1), we deduce that θ(ϕ) = ϕ, whence θ = IdS . This shows that the
homomorphism (4.2) is injective. Let us identify T and T# via σ 7→ conj(σ),
where conj(·) = λ(·)ρ(·). We then obtain an injective homomorphism

ι : Aut(S) −→ Aut(T )
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from (4.2). Since for any ϕ ∈ S and σ ∈ T , we have the relation

ϕ ◦ conj(σ) ◦ ϕ−1 = conj(ϕ(σ)) in Aut(T ),

the stated composition is indeed the inclusion map. �

5. Proof of the theorems

In this section, we shall prove Theorems 1.2 and 1.3.

5.1. Some consequences of the CFSG. Our proof relies on the follow-
ing consequences of the classification theorem of finite simple groups.

Lemma 5.1. Let T be a finite non-abelian simple group.

(a) There is no fixed point free automorphism on T .
(b) The outer automorphism group Out(T ) of T is solvable.
(c) The inequality |T |/|Out(T )| ≥ 30 holds.

Proof. They are all consequences of the classification theorem of finite sim-
ple groups; see [9, Theorems 1.46 and 1.48] for parts (a),(b) and [15, Lemma
2.2] for part (c). �

Lemma 5.1 (c) in particular implies the following corollaries.

Corollary 5.2. Let T be a finite non-abelian simple group. Then, any finite
group S of order less than 30|Aut(T )| cannot have subgroups T1 and T2, both
of which are isomorphic to T , such that T1 ∩ T2 = 1.

Proof. Suppose that S is a finite group having subgroups T1 and T2, both
of which are isomorphic to T , such that T1 ∩ T2 = 1. Then, we have

|T1T2| = |T1||T2| = |Inn(T )||T | = |Aut(T )||T |/|Out(T )|.

Since T1T2 is a subset of S, from Lemma 5.1 (c), it follows that S must have
order at least 30|Aut(T )|. �

Corollary 5.3. Let T be a finite non-abelian simple group. Then, the inner
automorphism group Inn(T ) is the only subgroup isomorphic to T in Aut(T ).

Proof. Let R be a subgroup of Aut(T ) isomorphic to T . Since Inn(T ) ∩R
is normal in R, and it cannot be trivial by Corollary 5.2, it has to be equal
to the entire R. It follows that R ⊂ Inn(T ), and we have equality because
these are finite groups of the same order. �

5.2. Proof of Theorem 1.2. Let G be any finite almost simple group, say

Inn(T ) ≤ G ≤ Aut(T ),

where T is a finite non-abelian simple group. From Lemma 4.3, we see that
the group Aut(G) is also almost simple, as well as that

Inn(T#) ≤ Aut(G) ≤ Aut(T#),
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where T# is a group isomorphic to T . Now, consider a regular subgroup N
of Hol(G). By Proposition 3.2, we may write it as

N = {ρ(g(γ)) · f(γ) : γ ∈ Γ}, where

{
f ∈ Hom(Γ,Aut(G))

g ∈ Z1
f (Γ, G)∗

and Γ is a group isomorphic to N . By Proposition 3.4, we may define

h ∈ Hom(Γ,Aut(G)); h(γ) = conj(g(γ)) · f(γ),

and (f, h) is fixed point free since G has trivial center by Lemma 4.1.
Observe that plainly{

N ⊂ ρ(G) if f(Γ) is trivial,

N ⊂ λ(G) if h(Γ) is trivial,

which must be equalities because N is regular. In what follows, assume that
both f(Γ) and h(Γ) are non-trivial. Also, suppose for contradiction that N is
normal in Hol(G). Then, by Proposition 3.5, both f(Γ) and h(Γ) are normal
subgroups of Aut(G), so they contain Inn(T#) by Lemma 4.2. We have

Inn(T#) ≤ f(Γ), h(Γ) ≤ Aut(G) ≤ Aut(T#), (5.1)

which means that f(Γ) and h(Γ) are almost simple as well.

(a) Suppose that both ker(f) and ker(h) are non-trivial.
Note that ker(f) ∩ ker(h) = 1 because (f, h) is fixed point free. This
means that f restricts to an injective homomorphism

res(f) : ker(h) −→ Aut(G), and f(ker(h)) is non-trivial.

Since f(ker(h)) is normal in f(Γ), by Lemma 4.2 and (5.1), we have

Inn(T#) ≤ f(ker(h)),

whence there is a subgroup ∆h of ker(h) isomorphic to T . Similarly,
there is a subgroup ∆f of ker(f) isomorphic to T . But

∆f ∩∆h ⊂ ker(f) ∩ ker(h) and so ∆f ∩∆h = 1.

This contradicts Corollary 5.2 because |Γ| = |G| and G is contained
in Aut(T ) by assumption.

(b) Suppose that ker(f) is trivial but ker(h) is non-trivial.
Note that f is injective, so f induces an isomorphism

Γ

ker(h)
' f(Γ)

f(ker(h))
, and f(ker(h)) is non-trivial. (5.2)

On the one hand, the quotient on the left in (5.2) is isomorphic to
h(Γ) and so is insolvable by (5.1). On the other hand, since f(ker(h))
is normal in f(Γ), by Lemma 4.2 and (5.1), we have

Inn(T#) ≤ f(ker(h)).
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There are natural homomorphisms

f(Γ)

Inn(T#)

surjective−−−−−−→ f(Γ)

f(ker(h))
and

f(Γ)

Inn(T#)

injective−−−−−→ Out(T#).

Since Out(T#) is solvable by Lemma 5.1 (b), this implies that the
quotient on the right in (5.2) is solvable, which is a contradiction.

(c) Suppose that ker(h) is trivial but ker(f) is non-trivial.
By symmetry, we obtain a contradiction as in case (b).

(d) Suppose that both ker(f) are ker(h) are trivial.
Note that Inn(T#) is the only subgroup isomorphic to T in Aut(G)
by Corollary 5.3. Similarly, since Γ ' f(Γ), from (5.1) we see that Γ
contains a unique subgroup ∆ isomorphic to T . Since both f and h
are injective, they restrict to isomorphisms

res(f), res(h) : ∆ −→ Inn(T#), and res(f)−1 ◦ res(h) ∈ Aut(∆)

is fixed point free because (f, h) is fixed point free. This contradicts
Lemma 5.1 (a).

We have thus shown that for N to be normal in Hol(G), either f(Γ) or h(Γ)
must be trivial, and consequently N is equal to λ(G) or ρ(G). Hence, indeed
λ(G) are ρ(G) are the only elements of H1(G), as desired.

5.3. Proof of Theorem 1.3: The first claim. Let G be any finite almost
simple group. Since G has trivial center by Lemma 4.1, we have

#H2(G) =
1

|Aut(G)|
·#
{

(f, h) :
f ∈ Hom(G,Aut(G))
h ∈ Homf(G,Aut(G))◦

}
(5.3)

as in (3.4). Consider a pair (f, h) as above. We must have ker(f)∩ker(h) = 1
because (f, h) is fixed point free. From Lemma 4.2, we then deduce that at
least one of f and h is injective.

Suppose now that Inn(G) is the only subgroup isomorphic to G in Aut(G).
If h is injective, then h(G) must be equal to Inn(G), and by definition (3.1),
we deduce that f(G) has to lie in Inn(G). Since Inn(G) ' G, we may then
identify any pair (f, h) in (5.3) with h injective as a pair (f, h), where

f ∈ End(G) and h ∈ Aut(G) are such that (f, h) is fixed point free.

It follows that

#{(f, h) : f ∈ Hom(G,Aut(G)), h ∈ Homf(G,Aut(G))◦, h is injective}
= #{(f, h) : f ∈ End(G), h ∈ Aut(G), (f, h) is fixed point free}
= #{(f, h) : f ∈ End(G), h ∈ Aut(G), h−1 ◦ f ∈ Endfpf(G)}
= |Aut(G)| ·#Endfpf(G).

By the symmetry between f and h, we similarly have

#{(f, h) : f ∈ Hom(G,Aut(G)), h ∈ Homf(G,Aut(G))◦, f is injective}
= |Aut(G)| ·#Endfpf(G).
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We now conclude that

#H2(G) =
1

|Aut(G)|
· 2 · |Aut(G)| ·#Endfpf(G) = 2 ·#Endfpf(G)

and this proves the first claim in Theorem 1.3.

5.4. Proof of Theorem 1.3: The second claim. Observe that

Endfpf(G) =
⊔
HCG

{f ∈ Endfpf(G) : ker(f) = H}

and let us begin by proving the following general statement.

Lemma 5.4. Let G be a group and let p be a prime. Then, for any normal
subgroup H of G of index p and any element σ of G of order p, we have

#{f ∈ Endfpf(G) : ker(f) = H and f(G) = 〈σ〉} =

{
p− 1 if σ ∈ H,
p− 2 if σ /∈ H.

Proof. Fix an element τ ∈ G such that τH generates G/H. Then, we have
exactly p− 1 endomorphisms f1, . . . , fp−1 on G with kernel equal to H and
image equal to 〈σ〉. Explicitly, for each 1 ≤ k ≤ p− 1, we may define fk by

fk(H) = {1},
fk(τH) = {σk},

...

fk(τ
p−1H) = {σk(p−1)}.

Observe that fk is not fixed point free if and only if

σki ∈ τ iH for some i = 1, . . . , p− 1.

Since σ and τH have order p, this in turn is equivalent to σk ∈ τH, and{
σk /∈ τH for all k = 1, . . . , p− 1 if σ ∈ H,
σk ∈ τH for exactly one k = 1, . . . , p− 1 if σ /∈ H.

We then see that the claim holds. �

Now, let G be any finite almost simple group such that Soc(G) has prime
index p in G, in which case by Lemma 4.2, there are exactly three normal
subgroups in G, namely 1, Soc(G), and G. Hence, we have

#Endfpf(G) =
∑

H∈{1,Soc(G),G}

#{f ∈ Endfpf(G) : ker(f) = H}.

Observe that

#{f ∈ Endfpf(G) : ker(f) = 1} = 0,

#{f ∈ Endfpf(G) : ker(f) = G} = 1,
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where the former follows from Lemma 5.1 (a) and the latter is trivial. For
the case H = Soc(G), let us first rewrite

#{f ∈ Endfpf(G) : ker(f) = Soc(G)}

=
∑

P≤G,|P |=p

#{f ∈ Endfpf(G) : ker(f) = Soc(G) and f(G) = P}

=
1

p− 1

∑
σ∈G,|σ|=p

#{f ∈ Endfpf(G) : ker(f) = Soc(G) and f(G) = 〈σ〉}.

Applying Lemma 5.4 then yields

#{f ∈ Endfpf(G) : ker(f) = Soc(G)}

=
1

p− 1

 ∑
σ∈Soc(G),|σ|=p

(p− 1) +
∑

σ/∈Soc(G),|σ|=p

(p− 2)


= #{σ ∈ Soc(G) : σ has order p}

+ (p− 2)/(p− 1) ·#{σ ∈ G \ Soc(G) : σ has order p}.

This completes the proof of the second claim in Theorem 1.3.
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