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A note on Cartan isometries

Ameer Athavale

Abstract. We record a lifting theorem for the intertwiner of two SΩ-
isometries which are those subnormal operator tuples whose minimal
normal extensions have their Taylor spectra contained in the Shilov
boundary of a certain function algebra associated with Ω, Ω being a
bounded convex domain in Cn containing the origin. The theorem cap-
tures several known lifting results in the literature and yields interesting
new examples of liftings as a consequence of its being applicabile to
Cartesian products Ω of classical Cartan domains in Cn. Further, we
derive intrinsic characterizations of SΩ-isometries where Ω is a classical
Cartan domain of any of the types I, II, III and IV, and we also pro-
vide a neat description of an SΩ-isometry in case Ω is a finite Cartesian
product of such Cartan domains.
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1. Introduction

For H a complex infinite-dimensional separable Hilbert space, we use
B(H) to denote the algebra of bounded linear operators on H. An n-
tuple S = (S1, . . . , Sn) of commuting operators Si in B(H) is said to be
subnormal if there exist a Hilbert space K containing H and an n-tuple
N = (N1, . . . , Nn) of commuting normal operators Ni in B(K) such that
NiH ⊂ H and Ni/H = Si for 1 ≤ i ≤ n.

Suppose S = (S1, . . . , Sn) is a tuple of commuting operators in B(H) and
T = (T1, . . . , Tn) a tuple of commuting operators in B(J ). If there exists a
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bounded linear operator X : H → J such that XSi = TiX for each i, then
X is said to be an intertwiner (for S and T ) and we denote this fact by
XS = TX. If X : H → J and Y : J → H are two intertwiners for S and
T such that XS = TX and Y T = SY , and both X and Y are injective and
have dense ranges, then S is said to be quasisimilar to T . The operator tuple
S is said to be unitarily equivalent to T if one can find a unitary intertwiner
for S and T . Any subnormal operator tuple is known to admit a ‘minimal’
normal extension that is unique up to unitary equivalence (see [12]).

For a bounded domain Ω in Cn, we let

A(Ω) = {f ∈ C(Ω̄) : f is holomorphic on Ω},
where C(Ω̄) denotes the algebra of continuous functions on the closure Ω̄ of
Ω. The Shilov boundary of A(Ω) (or Ω) is defined to be the smallest closed
subset SΩ of Ω̄ such that, for any f ∈ A(Ω),

sup{|f(z)| : z ∈ Ω̄} = sup{|f(z)| : z ∈ SΩ}.
Of special interest to us are domains Ω that are Cartesian products

Ω1 × · · · × Ωm with Ωi ⊂ Cni being a classical Cartan domain of any of
the four types I II, III and IV (refer to [7], [11], [13], [14]); any such do-
main Ω will be referred to as a standard Cartan domain. The open unit ball
Bn in Cn is a classical Cartan domain of type I with its Shilov boundary
coinciding with the unit sphere in Cn. The open unit polydisk Dn in Cn
is a standard Cartan domain with its Shilov boundary coinciding with the
unit polycircle in Cn. The standard Cartan domains are special examples
of bounded symmetric domains and are ‘circled around the origin’ in the
sense that they contain the origin and are invariant under multiplication by

e
√
−1θ, θ ∈ R. It follows from [9, Lemma 5.7] that the Shilov boundary SΩ of

any standard Cartan domain Ω = Ω1×· · ·×Ωm, where each Ωi is a classical
Cartan domain in Cni , is given by SΩ = SΩ1 × · · · × SΩm .

A subnormal tuple S will be referred to as an SΩ-isometry if the Tay-
lor spectrum σ(N) of its minimal normal extension N is contained in the
Shilov boundary SΩ of Ω. We use IH (resp. 0H) to denote the identity
operator (resp. the zero operator) on H. An SBn-isometry is precisely a
spherical isometry, that is, an n-tuple S of commuting operators Si in B(H)
satisfying

∑n
i=1 S

∗
i Si = IH (refer to [3, Proposition 2]). An SDn-isometry

is precisely a toral isometry, that is, an n-tuple S of commuting operators
Si in B(H) satisfying S∗i Si = IH for each i (refer to [18, Proposition 6.2]).
Any SΩ-isomerty with Ω a standard Cartan domain will be referred to as a
Cartan isometry.

We will say that a domain Ω ⊂ Cn satisfies the property (A) if, for any
positive regular Borel measure η supported on the Shilov boundary SΩ of
Ω, the triple (A(Ω)|SΩ, SΩ, η) is regular in the sense of [1], that is, for any
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positive continuous function φ defined on SΩ, there exists a sequence of func-
tions {φm}m≥1 in A(Ω) such that |φm| < φ on SΩ and limm→∞ |φm| = φ
η-almost everywhere.

The discussion in Section 5 of [9] shows that any bounded symmetric do-
main circled around the origin satisfies the property (A).

In Section 2, we state a lifting result for the intertwiner of certain SΩ-
isometries of which Cartan isometries are special examples. In Section 3 we
provide an intrinsic characterization of SΩ-isometries for Cartan domains Ω
of type IV and then characterize SΩ-isometries for Ω a Cartesian product of
the open unit balls and Cartan domains of type IV (see Theorem 3.5). In
Section 4, we characterize SΩ-isometries for Cartan domains of type I and
observe that Theorem 3.5 holds with the open unit balls replaced by Cartan
domains of type I. Finally, in Section 5 we characterize SΩ-isometries for
Cartan domains of type II and of type III and end up with a substantial
generalization of Theorem 3.5. For basic facts pertaining to classical Cartan
domains and bounded symmetric domains in general, the reader is referred
to [11], [13] and [14]. It may be noted that Shilov boundaries are referred
to as ‘characteristic manifolds’ in [11].

2. A lifting theorem for certain SΩ-isometries

The proof of Theorem 2.1 below is similar to the proofs of [4, Theorem
3.2] and [5, Proposition 4.6]; however, unlike there, it circumvents using the
Taylor functional calculus of [19]. Also, unlike in [4] and [5], the Shilov
boundary SΩ of Ω may not coincide with the topological boundary ∂Ω of Ω.

Theorem 2.1. Let Ω be a bounded convex domain in Cn contain-
ing the origin and satisfying the property (A) of Section 1. Let S =
(S1, . . . , Sn) ∈ B(H)n and T = (T1, . . . , Tn) ∈ B(J )n be SΩ-isometries, and

let M = (M1, . . . ,Mn) ∈ B(H̃)n and N = (N1, . . . , Nn) ∈ B(J̃ )n respec-
tively be the minimal normal extensions of S and T . If X : H → J is an
intertwiner for S and T , then X lifts to a (unique) intertwiner X̃ : H̃ → J̃
for M and N ; moreover, ‖X̃‖ = ‖X‖.

Proof. Let f ∈ A(Ω). For any positive integer m ≥ 2, fm defined by
fm(z) = f((1 − 1

m)z) is holomorphic on an open neighborhood of Ω̄. Since

Ω̄ is polynomially convex, fm is the uniform limit (on Ω̄) of a sequence
{pm,k}k of polynomials by the Oka-Weil approximation theorem (see [16],
Chapter VI, Theorem 1.5). If X intertwines S and T , then one clearly has
Xpm,k(S) = pm,k(T )X. If ρM and ρN are respectively the spectral measures
of M and N (supported on SΩ), then ρS = PHρM |H and ρT = PJ ρN |J are
respectively the semi-spectral measure of S and T with PH and PJ being
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appropriate projections, and for any u ∈ H and any v ∈ K one has

‖pm,k(S)u‖2 =

∫
SΩ

|pm,k(z)|2d〈ρS(z)u, u〉

and

‖pm,k(T )v‖2 =

∫
SΩ

|pm,k(z)|2d〈ρT (z)v, v〉.

Choosing v = Xu and using Xpm,k(S) = pm,k(T )X, one has∫
SΩ

|pm,k(z)|2d〈ρT (z)Xu,Xu〉 ≤ ‖X‖2
∫
SΩ

|pm,k(z)|2d〈ρS(z)u, u〉.

Letting first k tend to infinity and then m tend to infinity, one obtains∫
SΩ

|f(z)|2d〈ρT (z)Xu,Xu〉 ≤ ‖X‖2
∫
SΩ

|f(z)|2d〈ρS(z)u, u〉.

Consider η(·) = 〈ρT (·)Xu,Xu〉 + 〈ρS(·)u, u〉. Since (A(Ω)|SΩ, SΩ, η) is a
regular triple, for any positive continuous function φ on SΩ there exists a
sequence of functions {φm}m≥1 in A(Ω) such that |φm| <

√
φ on SΩ and

limm→∞ |φm| =
√
φ η-almost everywhere. Replacing f by φm in the last

integral inequality and letting m tend to infinity, one obtains∫
SΩ

φ(z)d〈ρT (z)Xu,Xu〉 ≤ ‖X‖2
∫
SΩ

φ(z)d〈ρS(z)u, u〉.

That yields 〈ρT (·)Xu,Xu〉 ≤ ‖X‖2〈ρS(·)u, u〉 for every u in H. The desired
conclusion now follows by appealing to [15, Lemma 4.1]. �

In so far as the function algebra A(Ω) is concerned, Theorem 2.1 is an
improvement over [15, Theorem 5.1] by virtue of its using the more widely
applicable property (A) in place of the property ‘approximating in modulus’
as required of a function algebra in [15].

Corollary 2.2. Let Ω be any bounded symmetric domain circled around
the origin (so that Ω can in particular be a standard Cartan domain). Let
S = (S1, . . . , Sn) ∈ B(H)n and T = (T1, . . . , Tn) ∈ B(J )n be SΩ-isometries,

and let M = (M1, . . . ,Mn) ∈ B(H̃)n and N = (N1, . . . , Nn) ∈ B(J̃ )n re-
spectively be the minimal normal extensions of S and T . If X : H → J is an
intertwiner for S and T , then X lifts to a (unique) intertwiner X̃ : H̃ → J̃
for M and N ; moreover, ‖X̃‖ = ‖X‖.

Proof. Any bounded symmetric domain circled around the origin is convex
by [14, Corollary 4.6] and, as noted in Section 1, satisfies the property
(A). �

Remark 2.3. Letting Ω to be the open unit ball Bn in Cn, Corollary
2.2 captures [3, Proposition 8] which is a lifting result for the intertwiner
of spherical isometries. Letting Ω to be the open unit polydisk Dn in Cn,
Corollary 2.2 captures [15, Proposition 5.2] which is a lifting result for the
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intertwiner of toral isometries. In [5], the author introduced a class Ω(n) of
convex domains Ωp in Cn that satisfy the property (A); for n ≥ 2, the class

Ω(n) happens to be distinct from the class of strictly pseudoconvex domains
and the class of bounded symmetric domains in Cn. Letting Ω to be Ωp, The-
orem 2.1 (but not Corollary 2.2) captures [5, Proposition 4.6]. A variant of
Theorem 2.1 that is valid for (not necessarily convex) strictly pseudoconvex
bounded domains Ω with C2 boundary was proved in [4]; however, Theorem
2.1 does apply to strictly pseudoconvex bounded domains that are convex
since any strictly pseudoconvex bounded domain Ω is known to satisfy the
property (A) (refer to [1] and [9]).

Remark 2.4. Arguing as in [15, Theorem 5.2], one can establish the fol-

lowing facts in the context of Theorem 2.1: If X is isometric, then so is X̃;
if X has dense range, then so has X̃; if X is bijective, then so is X̃. Also, it
follows from [3, Lemma 1] that if S and T of Theorem 2.1 are quasisimilar,
then the minimal normal extensions of S and T are unitarily equivalent (cf.
[3, Proposition 9]).

3. Lie sphere isometries: SΩ-isometries for Cartan domains
Ω of type IV

The Lie ball  Ln in Cn is defined by

 Ln =

{
z ∈ Cn :

(
‖z‖2 +

√
‖z‖4 − |〈z, z̄〉|2

)1/2
< 1

}
.

Lie balls  Ln are classical Cartan domains ΩIV (n). We note that  L1 =
D1 = B1. The Shilov boundary S Ln

of  Ln (also referred to as the Lie

sphere) is given by

S Ln
= {(z1, . . . , zn) : zi = xie

√
−1θ, θ ∈ R, xi ∈ R, x2

1 + · · ·+ x2
n = 1}.

We will refer to an S Ln
-isometry as a Lie sphere isometry; thus Lie sphere

isometries are SΩ-isometries for classical Cartan domains Ω of type IV. It
should be noted that S Ln

is contained in SBn so that any Lie sphere isometry
is a spherical isometry! We plan to provide an intrinsic characterization of
a Lie sphere isometry, and for that purpose we need Lemma 3.1 below. (A
result more general than that of Lemma 3.1 is present in the unpublished
work [8]; we present here a direct proof for the reader’s convenience).

Lemma 3.1. Let S = (S1, . . . , Sn) ∈ B(H)n be a subnormal tuple with
the minimal normal extension N = (N1, . . . , Nn) ∈ B(K)n. If S∗i Sj = S∗jSi
(so that S∗i Sj is self-adjoint) for some i and j, then N∗i Nj = N∗jNi (so that

N∗i Nj is also self-adjoint).
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Proof. For arbitrary non-negative integers ki and li (1 ≤ i ≤ n), consider

〈(N∗i Nj −N∗jNi)(N
∗
1
k1 · · ·N∗n

knx), (N∗1
l1 · · ·N∗n

lny)〉 (x, y ∈ H).

Using that Np and N∗q commute for all p and q and Np|H = Sp for every p,
it is easy to see that this inner product reduces to

〈(S∗i Sj − S∗jSi)(S1
l1 · · ·Snlnx), (S1

k1 · · ·Snkny)〉.

Since K is the closed linear span of vectors of the type N∗1
k1 · · ·N∗nknx, the

desired result is obvious. �

Theorem 3.2. For an n-tuple S = (S1, . . . , Sn) of operators Si in B(H),
(a) and (b) below are equivalent.
(a) S is a Lie sphere isometry.
(b) S is a spherical isometry and S∗i Sj is self-adjoint for every i and j.

Proof. Suppose (a) holds so that S = (S1, . . . , Sn) ∈ B(H)n is a Lie
sphere isometry. Then the minimal normal extension N = (N1, . . . , Nn) ∈
B(K)n of S has its Taylor spectrum σ(N) contained in S Ln

. Since for any

(z1, . . . , zn) ∈ S Ln
the equalities |z1|2 + · · · + |zn|2 = 1 and z̄izj − z̄jzi =

0 (1 ≤ i, j ≤ n) hold, one has N∗1N1 + · · ·+N∗nNn = IK and N∗i Nj−N∗jNi =

0K (1 ≤ i, j ≤ n). Compressing these equations to H, (b) is seen to hold.
Conversely, suppose (b) holds. Since one has

∑
i S
∗
i Si = IH, [4, Propo-

sition 2] gives that S is a subnormal tuple with the Taylor spectrum σ(N)
of its minimal normal extension N contained in the unit sphere SBn . The
condition that S∗i Sj is self-adjoint for every i and j guarantees, by Lemma
3.1, that N∗i Nj − N∗jNi = 0K for every i and j. It follows then from the
spectral theory for N that the Taylor spectrum of N is contained in the
set {z ∈ SBn : z̄izj − z̄jzi = 0 for every i and j} which, as an elementary
verification using polar coordinates shows, is the set S Ln

. �

At this stage we introduce a notational convention that will be convenient
to use in the sequel. For a complex polynomial p(z, w) =

∑
α,β aα,βz

αwβ in
the variables z, w ∈ Cn and for any n-tuple S of commuting operators Si in
B(H), p(z, w)(S, S∗) is to be interpreted as

∑
α,β aα,βS

∗βSα. Thus S is a

spherical isometry if and only if (1−
∑n

i=1 ziwi)(S, S
∗) = 0H. A contraction

is an operator S in B(H) for which (I − S∗S) ≡ (1 − zw)(S, S∗) ≥ 0H. As
proved in [2], an n-tuple S of commuting contractions Si in B(H) is subnor-
mal if and only if Πn

i=1(1− ziwi)ki(S, S∗) ≥ 0H for all non-negative integers
ki. Further, with p(z, w) as here and with S a subnormal tuple, the proof of
Lemma 3.1 goes through with S∗i Sj −S∗jSi there replaced by p(z, w)(S, S∗).

We state this generalization (due to Chavan) of [6, Proposition 8] as Lemma
3.3.

Lemma 3.3 [8]. Let S ∈ B(H)n be a subnormal tuple with the minimal
normal extension N ∈ B(K)n. If p(z, w)(S, S∗) = 0H, then p(z, w)(N,N∗) =
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0K.

Lemma 3.4. Let S = (S1, . . . , Sn) be a tuple of commuting operators in
B(H) such that each Si is a coordinate of a subtuple of S that is a spherical
isometry. Then S is subnormal.

Proof. Suppose for each i there exist positive integers j(i, 1), . . . , j(i, pi),
with j(i, k) = i for some k, such that (Sj(i,1), . . . , Sj(i,k) = Si, . . . , Sj(i,pi))
is a spherical isometry. It is clear that each Si is then a contraction. We
need to verify that Πn

i=1(1− ziwi)ki(S, S∗) ≥ 0 for all non-negative integers
ki. The verification results by writing each factor (1− ziwi) as (1− ziwi) =
({1−

∑pi
l=1 zj(i,l)wj(i,l)}+

∑pi
l=1
l 6=k

zj(i,l)wj(i,l)). �

We are now in a position to characterize SΩ-isometries in case Ω is a
Cartesian product of the open unit balls and the Lie balls. A substantial
generalization of Theorem 3.5 below will be achieved in Section 5; however,
the essential ingredients of the relevant argument are present in the proof
of Theorem 3.5 and occur at this stage without the clutter of too many ideas.

Theorem 3.5. Let Ω = Ω1 × · · · × Ωm ⊂ Cn where each Ωi is either the
open unit ball in Cni or the Lie ball in Cni (and where n = n1 + · · ·+ nm).
Let Si = (Si,1, . . . , Si,ni) be an ni-tuple of operators in B(H) for 1 ≤ i ≤ m
and let the operator coordinates of the n-tuple S = (S1; . . . ;Sm) commute
with each other. Then S is an SΩ-isometry if and only if each Si is an
SΩi-isometry.

Proof. We illustrate the proof for the case m = 2, n1 = 2, n2 = 3, Ω1 = B2

and Ω2 =  L3. The general case is then no more than an exercise in notational
book-keeping.

Suppose first that S = (S1;S2) = (S1,1, S1,2;S2,1, S2,2, S2,3) is an SB2× L3
-

isometry so that S is subnormal and the Taylor spectrum σ(N) of its minimal
normal extension N = (N1;N2) = (N1,1, N1,2;N2,1, N2,2, N2,3) ∈ B(K)5 is
contained in SB2× L3

= SB2 × S L3
. By the projection property of the Taylor

spectrum (refer to [19]), the inclusions σ(N1) ⊂ SB2 and σ(N2) ⊂ S L3
hold.

While N1 and N2 may not be the minimal normal extensions of S1 and S2,
they certainly satisfy the relations

2∑
i=1

N∗1,iN1,i = IK,

3∑
j=1

N∗2,jN2,j = IK, N
∗
2,kN2,l = N∗2,lN2,k, 1 ≤ k, l ≤ 3.

Compressing these equations to H, one obtains

2∑
i=1

S∗1,iS1,i = IH,

3∑
j=1

S∗2,jS2,j = IH, S
∗
2,kS2,l = S∗2,lS2,k, 1 ≤ k, l ≤ 3.
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Using our observations in Section 1 related to spherical isometries and ap-
pealing to Theorem 3.2, it follows that S1 is an SB2-isometry and S2 is an
S L3

-isometry.

Conversely, suppose S1 = (S1,1, S1,2) is an SB2-isometry and that S2 =
(S2,1, S2,2, S2,3) an S L3

-isometry. Then the identities for S as recorded above
hold so that

(1−
2∑
i=1

ziwi)(S1, S1
∗) = 0H

and

(1−
3∑
j=1

zjwj)(S2, S2
∗) = 0H, (zlwk − zkwl)(S2, S2

∗) = 0H, 1 ≤ k, l ≤ 3.

While both S1 and S2 are subnormal, the crucial thing to verify is that
S = (S1;S2) is subnormal. But the subnormality of S is now a consequence
of Lemma 3.4. Letting N = (N1;N2) to be the minimal normal extension
of S = (S1;S2) and using Lemma 3.3, we see that N satisfies the same
identities as S. That σ(N) is contained in SB2 × S L3

= SB2× L3
is now a

consequence of the spectral theory for N . �

4. SΩ-isometries for Cartan domains Ω of type I

We use the symbol M(p, q) to denote the set of complex matrices of order
p × q and the symbol In to denote the identity matrix of order n. The
complex tranjugate of a matrix Z will be denoted by Z∗ so that Z∗ is the
transpose Z̄t of the complex conjugate Z̄ of Z. The classical Cartan domain
ΩI(p, q) of type I in Cn is defined by the following conditions:

n = pq, 1 ≤ p ≤ q, ΩI(p, q) = {Z ∈M(p, q) : Ip − ZZ∗ ≥ 0}

The Shilov boundary of ΩI(p, q) is given by

SΩI(p,q) = {Z ∈M(p, q) : Ip − ZZ∗ = 0}.

It will be convenient to rewrite ΩI(p, q) as

{(z1,1, . . . , z1,q; z2,1, . . . , z2,q; . . . ; zp,1, . . . , zp,q) ∈ Cpq : Ip − (zi,j)(zj,i) ≥ 0}

and SΩI(p,q) as

{(z1,1, . . . , z1,q; z2,1, . . . , z2,q; . . . ; zp,1, . . . , zp,q) ∈ Cpq : Ip − (zi,j)(zj,i) = 0}.

The conditions defining the Shilov boundary SΩI(p,q) can be written as

q∑
k=1

zj,kzi,k = δi,j , 1 ≤ i ≤ j ≤ p.
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Formally replacing zi,j by Si,j and zi,j by S∗i,j (where Si,j ∈ B(H)), one is
led to

q∑
k=1

S∗j,kSi,k = δi,jIH, 1 ≤ i ≤ j ≤ p.

Theorem 4.1. For p ≤ q, let Si = (Si,1, . . . , Si,q) be a q-tuple of operators
in B(H) for 1 ≤ i ≤ p and let the operator coordinates of the pq-tuple
S = (S1; . . . ;Sp) commute with each other. Then (a) and (b) below are
equivalent.
(a) S is an SΩI(p,q)-isometry.
(b)

q∑
k=1

S∗j,kSi,k = δi,jIH, 1 ≤ i ≤ j ≤ p.

Proof. Suppose S is an SΩI(p,q)-isometry. Then its minimal normal ex-
tension N = (N1; . . . ;Np) ∈ B(K)pq (with Ni = (Ni,1, . . . , Ni,q) for each
i) has its Taylor spectrum σ(N) contained in SΩI(p,q). Since for any z =

(z1,1, . . . , zp,q) ∈ SΩI(p,q) the equalities
∑q

k=1 zj,kzi,k = δi,j , 1 ≤ i ≤ j ≤ p

hold, one has
∑q

k=1N
∗
j,kNi,k = δi,jIK, 1 ≤ i ≤ j ≤ p. Compressing the last

equations to H, (b) is seen to hold.
Conversely, suppose (b) holds. The conditions in (b) corresponding to

1 ≤ i = j ≤ p guarantee that each Si is a spherical isometry. It then follows
from Lemma 3.4 that S = (S1; . . . ;Sp) is subnormal. If N in the notation
used above is the minimal normal extension of S, then Lemma 3.3 yields
the equalities

∑q
k=1N

∗
j,kNi,k = δi,jIK, 1 ≤ i ≤ j ≤ p. The spectral theory

for N now implies that σ(N) is contained in SΩI(p,q). �

Using Theorems 3.2 and 4.1 and arguing as in the proof of Theorem 3.5,
one can now establish Theorem 4.2 below.

Theorem 4.2. Let Ω = Ω1 × · · · × Ωm ⊂ Cn where each Ωi is a
classical Cartan domain of any of the types I and IV in Cni (and where
n = n1 + · · · + nm). Let Si = (Si,1, . . . , Si,ni) be an ni-tuple of operators
in B(H) for 1 ≤ i ≤ m and let the operator coordinates of the n-tuple
S = (S1; . . . ;Sm) commute with each other. Then S is an SΩ-isometry if
and only if each Si is an SΩi-isometry.

Remark 4.3. Since Ω1,n is the open unit ball in Cn, Theorem 4.1 gen-
eralizes the well-known characterization of an SBn-isometry as a spherical
isometry, the case n = 1 of course yielding the identification of an SB1-
isometry with an isometry. Also, Theorem 4.2 generalizes Theorem 3.5 and,
with Ωi chosen to be the unit disk D1 = B1 in C for each i, yields the
well-known characterization of an SDn-isometry as a toral isometry.
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5. SΩ-isometries for Cartan domains Ω of type II and of
type III

Let S(p) = {Z ∈ M(p, p) : Zt = Z} and let A(p) = {Z ∈ M(p, p) : Zt =
−Z}. The classical Cartan domain ΩII(p) of type II in Cn is defined by the
following conditions:

n = p(p+ 1)/2, p ≥ 1, ΩII(p) = {Z ∈ S(p) : Ip − ZZ∗ ≥ 0}
The classical Cartan domain ΩIII(p) of type III in Cn is defined by the
following conditions:

n = p(p− 1)/2, p ≥ 2, ΩIII(p) = {Z ∈ A(p) : Ip − ZZ∗ ≥ 0}
(Some authors may refer to type II domains as type III domains and vice
versa).

The Shilov boundary of ΩII(p) is given by

SΩII(p) = {Z ∈ S(p) : Ip − ZZ∗ = 0}
and the Shilov boundary of ΩIII(2p) is given by

SΩIII(2p) = {Z ∈ A(2p) : I2p − ZZ∗ = 0}.
(We will comment on SΩIII(2p+1) later.)

We let
zS(p) = (z1,1, . . . , z1,p; z2,2, . . . , z2,p; . . . ; zp,p)

and
zA(p) = (z1,2, . . . , z1,p; z2,3, . . . , z2,p; . . . ; zp−1,p).

It will be convenient to rewrite ΩII(p) as

{zS(p) ∈ Cp(p+1)/2 : With zj,i := zi,j for i ≤ j, Ip − (zi,j)(zj,i) ≥ 0}
and ΩIII(p) as

{zA(p) ∈ Cp(p−1)/2 : With zj,i := −zi,j for i ≤ j, Ip − (zi,j)(zj,i) ≥ 0}.
The conditions defining the Shilov boundary SΩII(p) can be written as fol-
lows:

With zj,i := zi,j for i ≤ j,
p∑

k=1

zj,kzi,k = δi,j , 1 ≤ i ≤ j ≤ p

Also, the conditions defining the Shilov boundary SΩIII(2p) can be written
as follows:

With zj,i := −zi,j for i ≤ j,
2p∑
k=1

zj,kzi,k = δi,j , 1 ≤ i ≤ j ≤ 2p

Formally replacing zi,j by Si,j and zi,j by S∗i,j (where Si,j ∈ B(H)), one is
led to formulate Theorems 5.1 and 5.2 below.
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Theorem 5.1. Let S = (S1,1, . . . , S1,p;S2,2, . . . , S2,p; . . . ;Sp,p) be a p(p+1)
2 -

tuple of commuting operators in B(H). Then (a) and (b) below are equiva-
lent.
(a) S is an SΩII(p)-isometry.
(b) With Sj,i := Si,j for i ≤ j,

p∑
k=1

S∗j,kSi,k = δi,jIH, 1 ≤ i ≤ j ≤ p.

Proof. The necessity of the conditions (b) is by now obvious. For the
sufficiency part we note that the conditions in (b) corresponding to 1 ≤ i =
j ≤ p guarantee that each Sl,m, with l ≤ m, is an operator coordinate of
a p-tuple that is a spherical isometry so that Lemma 3.4 applies. One can
then argue as in the proof of Theorem 4.1. �

Theorem 5.2. Let S = (S1,2, . . . , S1,2p;S2,3; . . . , S2,2p; . . . ;S2p−1,2p) be a
p(2p − 1)-tuple of commuting operators in B(H). Then (a) and (b) below
are equivalent.
(a) S is an SΩIII(2p)-isometry.
(b) With Sj,i := −Si,j for i ≤ j,

2p∑
k=1

S∗j,kSi,k = δi,jIH, 1 ≤ i ≤ j ≤ 2p.

Proof. The necessity of the conditions (b) is obvious. For the sufficiency
part we note that the conditions in (b) corresponding to 1 ≤ i = j ≤ 2p
guarantee that each Sl,m, with l < m, is an operator coordinate of a (2p−1)-
tuple that is a spherical isometry so that Lemma 3.4 applies. One can then
argue as in the proof of Theorem 4.1. �

Remark 5.3. In view of Theorems 3.2, 4.1, 5.1 and 5.2, it is clear that
the argument in the proof of Theorem 3.5 can be pushed through to ac-
commodate the domains ΩII(p) and ΩIII(2p) as well and the statement
of Theorem 4.2 stands generalized by way of letting each Ωi to be any of
ΩI(p, q), ΩIV (n), ΩII(p) and ΩIII(2p).

We now turn our attention to the domains ΩIII(2p + 1). The Shilov
boundary SΩIII(2p+1) is the set

{zA(2p+1) ∈ Cp(2p+1) : With zj,i := −zi,j for i ≤ j, (zi,j) = UKU t for some
unitary matrix U}
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where

K =

[
0 1
−1 0

]
⊕ · · · ⊕

[
0 1
−1 0

]
︸ ︷︷ ︸

p summands

⊕[0].

The matrix Z := (zi,j) = UKU t is such that Z∗Z has 0 as a characteristic
value of multiplicity 1 and 1 as a characteristic value of multiplicity 2p.

For p(2p+1)-tuples zA(2p+1) and wA(2p+1), we let zj,i = −zi,j , wj,i = −wi,j
for i ≤ j and, for the (2p+ 1)× (2p+ 1) antisymmetric matrices Z = (zi,j)
and W = (wi,j), we let q(λ;Z,W ) denote the characteristic polynomial
det(λI2p+1 −W tZ) of W tZ. We write q(λ;Z,W ) as

q(λ;Z,W ) = q0(Z,W ) + q1(Z,W )λ+ · · ·+ q2p+1(Z,W )λ2p+1.

Any qk(Z,W ) is a polynomial in the 2p(2p + 1) variables z1,2, · · · , z2p,2p+1

and w1,2, · · · , w2p,2p+1.

Theorem 5.4. Let S = (S1,2, . . . , S1,2p+1;S2,3, . . . , S2,2p+1; . . . ;S2p,2p+1)
be a p(2p + 1)-tuple of commuting operators in B(H). Then (a) and (b)
below are equivalent.
(a) S is an SΩIII(2p+1)-isometry.
(b)

q0(Z,W )(S, S∗) = 0H;

qm(Z,W )(S, S∗) = (−1)m−1

(
2p

m− 1

)
IH, 1 ≤ m ≤ 2p+ 1.

Proof. Suppose S is an SΩIII(2p+1)-isometry. Then the Taylor spectrum
σ(N) of the minimal normal extension

N = (N1,2, . . . , N1,2p+1;N2,3, . . . , N2,2p+1; . . . ;N2p,2p+1) ∈ B(K)p(2p+1)

of S is contained in SΩIII(2p+1). Since for any zA(2p+1) ∈ SΩIII(2p+1) the
matrix Z∗Z has 0 as a characteristic value of multiplicity 1 and 1 as a char-
acteristic value of multiplicity 2p, the characteristic polynomial q(λ;Z, Z̄) of
Z∗Z coincides with λ(λ− 1)2p and the scalar equalities

q0(Z, Z̄) = 0; qm(Z, Z̄) = (−1)m−1

(
2p

m− 1

)
, 1 ≤ m ≤ 2p+ 1

hold. The operator equalities

q0(Z,W )(N,N∗) = 0K

and

qm(Z,W )(N,N∗) = (−1)m−1

(
2p

m− 1

)
IK, 1 ≤ m ≤ 2p+ 1

follow. Compressing the last equations to H, (b) is seen to hold.
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Conversely, suppose (b) holds. The condition q2p(Z,W )(S, S∗) = −2pIH
gives

S∗1,2S1,2 + · · ·+ S∗2p,2p+1S2p,2p+1 = pIH

so that (1/
√
p)S is a spherical isometry. It follows that (1

√
p)S and hence

S is subnormal. Let N in the notation used above be the minimal normal
extension of S. Now Lemma 3.3 yields

q0(Z,W )(N,N∗) = 0K

and

qm(Z,W )(N,N∗) = (−1)m−1

(
2p

m− 1

)
IK, 1 ≤ m ≤ 2p+ 1.

By the spectral theory for N , the scalar equalities

q0(Z, Z̄) = 0; qm(Z, Z̄) = (−1)m−1

(
2p

m− 1

)
, 1 ≤ m ≤ 2p+ 1

hold for any zA(2p+1) in the Taylor spectrum σ(N) of N . But then the char-

acteristic polynomial q(λ;Z, Z̄) of Z∗Z coincides with λ(λ−1)2p so that Z∗Z
has 0 as a characteristic value of multiplicity 1 and 1 as a characteristic value
of multiplicity 2p. At this stage, we invoke a result originally due to Hua
[10] (see also [17, THEOREM 1]) to assert the existence of a unitary matrix
U such that UZU t = K. But this clearly implies zA(2p+1) ∈ SΩIII(2p+1). �

Remark 5.5. As observed in the proof of Theorem 5.5, any SΩIII(2p+1)-
isometry S is such that (1/

√
p)S is a spherical isometry. This necessitates,

for our purposes, that the following elementary observation be made: Sup-
pose Si is an ni-tuple of operators in B(H) for 1 ≤ i ≤ m with S =
(S1; . . . ;Sm) being an (n1 + · · · + nm)-tuple of commuting operators. If
the set {1, . . . ,m} can be partitioned into sets {p1, . . . , pk} and {q1, . . . , ql}
such that each Spi satisfies the hypotheses of Lemma 3.4 and each Sqj is such
that (1/mj)Sqj is a spherical isometry for some positive number mj , then S
is subnormal. Indeed, the tuple S′ consisting of Spi and (1/mj)Sqj satisfies
the hypotheses of Lemma 3.4 and hence admits a normal extension N with
commuting coordinates Npi and Nqj ; the tuple N with the coordinates Npi

and mjNqj is then a normal extension of S.

Using Theorems 3.2, 4.1, 5.1, 5.2, 5.4, Remark 5.5 and arguing as in the
proof of Theorem 3.5, one can now establish Theorem 5.6 below.

Theorem 5.6. Let Ω = Ω1 × · · · × Ωm ⊂ Cn where each Ωi is a classi-
cal Cartan domain of any of the types I, II, III and IV in Cni (and where
n = n1 + · · · + nm). Let Si = (Si,1, . . . , Si,ni) be an ni-tuple of operators
in B(H) for 1 ≤ i ≤ m and let the operator coordinates of the n-tuple
S = (S1; . . . ;Sm) commute with each other. Then S is an SΩ-isometry if
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and only if each Si is an SΩi-isometry.

It is interesting to note how the “stars-on-the-left” functional calculus,
in conjunction with the known characterization of an SBn-isometry as a
spherical isometry, facilitates our arguments in Sections 3, 4 and 5.

References

[1] Aleksandrov, Aleksei B. Inner functions on compact spaces. Funct. Anal. Appl.
18 (1984), 87–98; translation from Funktsional. Anal. i Prilozhen. 18 (1984), no.
2, 1–13. MR0745695, Zbl 0574.32006, doi: 10.1007/bf01077819. 935, 938

[2] Athavale, Ameer. Holomorphic kernels and commuting operators. Trans.
Amer. Math. Soc. 304 (1987), no. 1, 101–110. MR0906808, Zbl 0675.47003,
doi: 10.2307/2000706. 939

[3] Athavale, Ameer. On the intertwining of joint isometries. J. Operator Theory
23 (1990), no. 2, 339–350. MR1066811, Zbl 0738.47005. 935, 937, 938

[4] Athavale, Ameer. On the intertwining of ∂D-isometries. Complex Anal. Oper.
Theory 2 (2008), no. 3, 417–428. MR2434460, Zbl 1182.47024, doi: 10.1007/s11785-
007-0040-z. 936, 938, 939

[5] Athavale, Ameer. Multivariable isometries related to certain convex domains.
Rocky Mountain J. Math. 48 (2018), no. 1, 19–46. MR3795731, Zbl 06866698,
arXiv:1612.06179, doi: 10.1216/RMJ-2018-48-1-19. 936, 938

[6] Athavale, Ameer; Pedersen, Steen. Moment problems and subnormality.
J. Math. Anal. Appl. 146 (1990), no. 2, 434–441. MR1043112, Zbl 0699.47014,
doi: 10.1016/0022-247x(90)90314-6. 939
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