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A co-reflection of cubical sets into
simplicial sets with applications

to model structures

Krzysztof Kapulkin, Zachery Lindsey
and Liang Ze Wong

Abstract. We show that the category of simplicial sets is a co-reflective
subcategory of the category of cubical sets with connections, with the
inclusion given by a version of the straightening functor. We show that
using the co-reflector, one can transfer any cofibrantly generated model
structure in which cofibrations are monomorphisms to cubical sets, thus
obtaining cubical analogues of the Quillen and Joyal model structures.
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Cubical sets are a well-known alternative to simplicial sets in combinato-
rial homotopy theory. They were in fact studied by Kan before the introduc-
tion of simplicial sets (see, e.g., [8]) and have found manifold applications,
including in formal logic [3, 2], directed homotopy theory [10], and abstract
homotopy theory [1, 7, 12].

While there is only one version of the simplex category ∆, there are many
different versions of the box category �, the site for cubical sets. In each
case, one takes a certain subcategory of Cat, the category of small categories,
generated by the posets of the form {0 ≤ 1}n. One popular choice, pursued
for instance by Cisinski [1] and Jardine [7] is to define � as the smallest
category containing the face and degeneracy maps. The drawback of this
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choice is that the resulting category is not a strict test category (although
it is a test category).

In this paper, we consider the category of cubical sets with connections,
which is known to be a strict test category [12]. A connection is a new kind

of degeneracy map that allows us, e.g., to consider a 1-cube a
f→ b as a

degenerate 2-cube as follows:

b b

a b

f

f

This is the minimal category allowing for the definition of the cubical homo-
topy coherent nerve functor and the Grothendieck construction (also known
as (un)straightening).

Contributions. The first contribution of the present paper is the proof
(cf. Theorem 3.9) that the straightening-over-the-point functor of [9] de-
fines an inclusion of the category of simplicial sets into the category of cu-
bical sets as a co-reflexive subcategory (with the unstraightening as the
co-reflector). The second is a transfer theorem (Theorem 4.1) for model
structures. Specifically, given a cofibrantly generated model structure on
simplicial sets in which each cofibration is a monomorphism, we can right
induce (in the sense of [6, 4]) a Quillen equivalent model structure on cubical
sets. In particular, our theorem gives a model of the homotopy theory of
(∞, 1)-categories in cubical sets. To our knowledge, this is the first such
model.

Organization. This paper is organized as follows. In Section 1, we review
the background on cubical sets. In Section 2, we describe the Grothendieck
construction and carefully analyze its left adjoint. Section 3 contains the
technical heart of the paper, culminating in the proof that the Grothendieck
construction is a co-reflector. Following this, we prove our transfer theorem
in Section 4 and discuss the resulting examples in Section 5.

Acknowledgements. We wish to thank Christian Sattler and the anony-
mous referee for helpful comments.

1. Cubical sets

We write ∆ for the simplex category, i.e., the category whose objects
are non-empty finite ordinals [n] = {0 ≤ 1 ≤ . . . ≤ n} and whose maps
are monotone functions. The category of simplicial sets, denoted sSet, is
the functor category Set∆

op
. We adopt the usual notational conventions

regarding simplicial sets, e.g., writing ∆n for the representable simplicial
sets, ∂∆n for their boundaries, etc.
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Similarly, we write � for the box category with connections. That is, the
objects of � are posets of the form [1]n and the maps are generated (inside
the category of posets) under composition by the following three special
classes:

• faces ∂ni,ε : [1]n−1 → [1]n for i = 1, 2, . . . , n and ε = 0, 1 given by:

∂ni,ε(x1, x2, . . . , xn−1) = (x1, x2, . . . , xi−1, ε, xi, . . . , xn−1);

• degeneracies σni : [1]n → [1]n−1 for i = 1, 2, . . . , n given by:

σni (x1, x2, . . . , xn) = (x1, x2, . . . , xi−1, xi+1, . . . , xn);

• connections γni : [1]n → [1]n−1 for i = 1, 2, . . . , n− 1 given by:

γni (x1, x2, . . . , xn) = (x1, x2, . . . , xi−1,max{xi, xi+1}, xi+2, . . . , xn).

To simplify the notation, we will usually omit the superscript n when writing
specific face, degeneracy, and connection maps. We will refer to face maps
of the form ∂i,1 as positive face maps and to those of the form ∂i,0 as the
negative face maps.

Alternatively, one may describe � as the category generated by the above
maps subject to the following co-cubical identities (cf. [5, (5) and (16)]):

∂j,ε∂i,ε′ = ∂i+1,ε′∂j,ε for j ≤ i;
σiσj = σjσi+1 for j ≤ i;

γjγi =

{
γiγj+1

γiγi+1

for j > i;
for j = i;

σj∂i,ε =

 ∂i−1,εσj
id
∂i,εσj−1

for j < i;
for j = i;
for j > i;

γj∂i,ε =


∂i−1,εγj
id
∂i,εσi
∂j,εγj−1

for j < i− 1;
for j = i− 1, i, ε = 0;
for j = i− 1, i, ε = 1;
for j > i;

σjγi =

 γi−1σj
σiσi
γiσj+1

for j < i;
for j = i;
for j > i.

Clearly, the set �([1]m, [1]n) is a subset of all monotone maps [1]m → [1]n.
The following proposition gives a useful characterization of those monotone
functions that are valid morphisms in �.

Proposition 1.1 (Maltsiniotis, [12, Prop. 2.3]). A monotone map f =
(f1, f2, . . . , fn) : [1]m → [1]n is a morphism in � if and only if each fj : [1]m →
[1] is of the form:

(1) fj = const0 (constant function with value 0);
(2) fj = const1;
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(3) there exists a subset A ⊆ {1, 2, . . . ,m} such that fj = maxA
1 and

if for j < j′ we have fj = maxA and fj′ = maxA′, then maxA <
minA′. �

Moreover, using cubical identities, one can derive the following normal
forms for all cubical maps.

Theorem 1.2 (Grandis-Mauri). Every map in the category � can be fac-
tored uniquely as a composite

(∂k1,ε1 . . . ∂kt,εt)(γj1 . . . γjs)(σi1 . . . σir),

where i1 > . . . > ir ≥ 1, 1 ≤ j1 < . . . < js, and k1 > . . . > kt ≥ 1.

Proof. This is essentially [5, Thm. 5.1] with the opposite ordering of de-
generacy maps, which does not affect the statement. �

We write cSet for the resulting category of cubical sets, i.e., contravariant
functors �op → Set. Following the usual conventions for simplicial sets, we
write �n for the representable cubical sets, represented by [1]n.

The cartesian product of cubical sets is homotopically well-behaved; how-
ever, one does not have �m×�n ∼= �m+n. Thus instead we consider the geo-
metric product defined via the left Kan extension of the functor�×�→ cSet
taking ([1]m, [1]n) to �m+n along the Yoneda embedding as in

�×� cSet

cSet× cSet

⊗

The geometric product defines a monoidal structure on cSet and we will
work with this, rather than the cartesian structure, throughout the paper.

2. Co-reflection: construction

The goal of this section is to define the functors forming the proposed co-
reflection, i.e., an adjunction sSet� cSet with fully faithful left adjoint. This
is a special case of the Grothendieck construction of [9, §3]. Specifically, the
co-reflector will be given by the Grothendieck construction over the point,
i.e.,

∫
∆0 in the notation of [9].

However, the variant of the box category � used in [9] differs from ours,
as it is taken to be the full subcategory of posets on objects of the form
[1]n. Although the necessary results of [9, §2-3] are true for more restrictive
choices of the box category such as the one considered here, we prefer not
to rely on such results and will instead describe the co-reflection directly.

1i.e., fj(x1, x2, . . . , xn) = max{xi | i ∈ A}. Not to be confused with maxA, which is
the largest i in A.



A CO-REFLECTION OF CUBICAL SETS INTO SIMPLICIAL SETS 631

We will construct an adjoint pair of the form

Q : sSet� cSet :

∫
,

where Q arises as the left Kan extension of a cosimplicial object Q• : ∆ →
cSet which we now describe. For n ∈ N and 0 < i < n, there is a canonical
map ∂ni,1 : �i−1 ⊗ �n−i = �n−1 → �n (i.e., the positive ith-face). This

induces a map
⋃

0<i<n

�i−1 ⊗�n−i → �n and we define Qn as the pushout:

⋃
0<i<n

�i−1 ⊗�n−i �n

⋃
0<i<n

�i−1 Qn

where the vertical map is induced by projecting off the last n − i entries.
Thus Qn is a quotient of �n. More precisely, we may define an equivalence
relation ∼ on the set �nm of m-cubes of the combinatorial n-cube as the
reflexive closure of:

(f1, . . . , fn) ∼ (g1, . . . , gn) iff there is j ≤ n such that

f1 = g1, . . . , fj−1 = gj−1, fj = gj = const1.

Proposition 2.1.

(1) The set of m-cubes of Qn is the quotient �nm/∼.
(2) In particular, every m-cube of Qn has a unique representation as a

sequence

(f1, f2, . . . , fj , const1, . . . , const1),

where f1, f2, . . . , fj 6= const1.

Proof. Item 1 is clear by the definition of Qn. Item 2 follows from Item 1
and Proposition 1.1. �

We will write πn : �n → Qn for the quotient map.

Examples 2.2. For n = 0, 1, 2, we can describe/depict Qn’s as follows:

• Q0 = �0;
• Q1 = �1;

• Q2 =

• •

• •

.

Similarly, Q3 can be obtained as a quotient of �3, contracting one of the
squares to a point and one of the remaining squares to a line.
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Proposition 2.3. The assignment [n] 7→ Qn extends to a cosimplicial object
Q• : ∆→ cSet.

Proof. The remaining face maps �n−1 → �n (that is, ∂nn,1 and ∂ni,0 for

i = 1, . . . , n), the last degeneracy σn : �n → �n−1, and the connections
γj : �n → �n−1 descend to maps between the corresponding Qn’s, yielding
a co-simplicial object Q• : ∆ → cSet. This correspondence is as follows,
where in each table the maps in the left column are induced by the maps in
the right column:

Qn−1 → Qn �n−1 → �n
0th face ∂n,1
1st face ∂n,0
2nd face ∂n−1,0

...
...

jth face ∂n−j+1,0
...

...
nth face ∂1,0

Qn → Qn−1 �n → �n−1

0th deg. σn
1st deg. γn−1

2nd deg. γn−2
...

...
jth deg. γn−j

...
...

(n− 1)st deg. γ1

The verification that these indeed obey the co-simplicial identities (i.e.,
form a co-simplicial object) is straightforward using the co-cubical iden-
tities and the equivalence relations defining the Qn’s. For instance, the
co-simplicial identity ∂1∂0 = ∂0∂0 follows from

∂1∂0 := ∂n+1,0∂n,1 ∼ ∂n+1,1∂n,1 =: ∂0∂0,

whereas the co-simplicial identities away from index 0 do not require the
equivalence relation defining Qn. �

Remark 2.4. The other degeneracy maps, (i.e., σi for i = 1, . . . , n− 1) do
not descend to maps between Qn’s, since they do not respect the equivalence
relation ∼ used in the definition of Qn.

Lemma 2.5. Q• : ∆→ cSet is full and faithful.

Proof. Using the above characterization of maps between Qn’s, one easily
checks that the cubical maps that descend to maps Qm → Qn are exactly
those that can be written as composites of maps arising from ∆. �

For X ∈ cSet, define
∫
X ∼= cSet(Q•, X). This gives a functor

∫
: cSet→

sSet whose left adjoint, denoted Q, is given by the left Kan extension of Q•

along the Yoneda embedding ∆ ↪→ sSet.

Remark 2.6. Although it is non-obvious, the functor Q : sSet→ cSet does
not preserve products. In general, the map Q(A × B) → QA × QB is a
monomorphism. However already in the case of A = B = ∆1, it is not an
isomorphism.
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3. Co-reflection: proof

In this section, we show that the unit η of the adjunction Q a
∫

is a
natural isomorphism, establishing sSet as a co-reflective subcategory of cSet
(cf. Theorem 3.9). We begin with a very general criterion for pushouts.

Lemma 3.1. In any category, suppose we have the following commuting
diagram

B A B

D C D

s1

p3

p1

p2 p3

s4 p4

where all pi’s are epimorphisms. Then the right-hand square is a pushout
square.

Proof. Note that s1 being a section of p1 implies that s4 is a section of p4

as well. Consider the commutative diagram of solid arrows:

B A B

D C D

X

s1

p3

p1

p2 p3
x

s4 p4

y

y s4

Then y s4 p3 = x, so y p2 = x p1 = y s4 p3 p1 = y s4 p4 p2. Since p2 is an
epimorphism, we obtain y = y s4 p4, so the diagram with the dashed arrow
also commutes. Since the map p3 p1 = p4 p2 is an epimorphism, the solution
y s4 is unique. �

The next three lemmas deal with the combinatorics of cubical sets.
Fix subsets A,B ⊆ {1, 2, . . . , k}. Let m = k − |A|, n = k − |B|, and ` =

k−|A∪B|. Write σA for the composite of degeneracies σi1 . . . σim : �k → �m
for ij ∈ A, and ∂A for the positive face map �m → �k that is a section of
σA, and similarly for other subsets. All indices will be with respect to the
ambient set {1, 2, . . . , k}, so a p-cube in �m will be denoted (fi1 , fi2 , . . . , fim)
where i1, . . . , im /∈ A.
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Lemma 3.2. The following diagram is a pushout:

�k �m

�n �`

σA

σB σB\A

σA\B

Proof. Take the sections to be the positive face maps ∂A and ∂A\B. The
cubical identities ensure that the conditions of Lemma 3.1 are satisfied. �

Keeping A and B as before, recall the symmetric difference A4B :=
(A \B) ∪ (B \A). Let

C =

{ {
minA4B, . . . , k

}
∪A ∪B if A 6= B;

A otherwise;

and let r = k − |C|. By construction, the degeneracy σC\A : �m → �r
descends to an epimorphism σ̄C\A : Qm → Qr, and the positive face map

∂C\A descends to a section ∂̄C\A of σC\A. Similarly, we have an epimorphism

σ̄C\B : Qn → Qr with a section ∂̄C\B.

Lemma 3.3. The following diagram is a pushout:

�k Qm

Qn Qr

πmσA

πnσB σ̄C\A

σ̄C\B

Proof. If A = B, then πmσA = πnσB, and σ̄C\A = σ̄C\B is the identity on
Qm = Qn = Qr, so the diagram is a pushout.

If A 6= B, we may assume without loss of generality that minA4B ∈
B \ A. Since pushouts in cSet are computed pointwise, it suffices to show
that following diagram is a pushout for all p, where we use the same notation
for the induced maps of p-cubes:

�kp Qmp

Qnp Qrp

πmσA

πnσB σ̄C\A

σ̄C\B

By Proposition 2.1, each element in Qnp is of the form

f = (fi1 , fi2 , . . . , fij , const1, . . . , const1)

where fi` 6= const1 if ` ≤ j. Let ρn : Qnp → �np denote the function sending
f ∈ Qnp to itself in �np . This is a section of πn : �np → Qnp , so the composite

∂̂B : Qnp �np �kp
ρn ∂B
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is a section of πnσB : �kp → Qnp . Note that ρn and ∂̂B do not arise from
maps of cubical sets.

By Lemma 3.1, it suffices to verify that the following diagram commutes:

Qnp �kp

Qrp Qmp

σ̄C\B

∂̂B

πmσA

∂̄C\A

Let f be a p-cube in Qnp , and let g = πm σA ∂̂B f and h = ∂̄C\A σ̄C\B f in
Qmp . Then

gi =

{
fi if i /∈ C;
const1 otherwise;

hi =

{
fi if i /∈ A ∪B;
const1 otherwise.

For i /∈ A such that i < minA4B, we have i /∈ C ⊇ A ∪B, so gi = hi = fi.
For i = minA4B, which is in B \A by assumption, we have i ∈ A∪B ⊆ C,
so gi = hi = const1. But this identifies g with h in Qmp , thus the diagram
commutes. �

Lemma 3.4. Any square of the form

�k Qm

Qn X

can be factored as

�k Qm
′

Qm

Qn
′

Qr

Qn X

p

where the pushout square consists of maps induced by degeneracies.

Proof. By Theorem 1.2, any map �k → �m may be factored as a de-
generacy �k → �m

′
followed by a map �m

′ → �m which descends to
a map Qm

′ → Qm. Factor �k → �n in a similar fashion, then apply
Lemma 3.3. �

Using the above lemma, we can now show that the functor Q : sSet→ cSet
is faithful. The technical part is contained in the following statement.

Proposition 3.5. Given x, y : ∆n → X, if Qx = Qy, then x = y, i.e., Q

induces an injective map sSet(∆n, X)→ cSet(Qn,QX).
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The proof requires the following lemma.

Lemma 3.6. There is no map �n → Q(∂∆n) making the following diagram
commute

�n

Q(∂∆n) Qn

πn

Proof. Immediate, since any map �n → Q(∂∆n) would need to factor
through an (n− 1)-dimensional face. �

Proof of Proposition 3.5. This is proven by skeletal induction with re-
spect to X. The conclusion is clear for n = 0, i.e., when both x and y are
points of X.

If both x and y are degenerate, then the conclusion follows directly by
the inductive hypothesis. Otherwise, if say x is non-degenerate, then the
fact that Qx = Qy while x 6= y contradicts Lemma 3.6. �

Corollary 3.7. The functor Q : sSet→ cSet is faithful. �

Lemma 3.8. For each X ∈ sSet, the unit ηX : X →
∫
QX is an isomor-

phism.

Proof. By Corollary 3.7, it suffices to give a section of the map sSet(∆n, X)→
cSet(Qn,QX).

Given ϕ : Qk → QX, we first precompose with πk : �k → Qk to obtain
ϕπk : �k → QX. We factor ϕπk through one of the components of the
colimit defining QX to obtain the following square on the left, then apply
Lemma 3.4 to obtain the square on the right:

�k Qn

Qk QX

πk

f

Qx

ϕ

=

�k Qn
′

Qn

Qk Qr QX
p

Qx

Taking the positive face map ∂ : Qr → Qn
′

yields a factorization of ϕ as

Qk Qr Qn
′

Qn QX∂ Qx

By Lemma 2.5, the map Qk → Qn is of the form Qf for some f : ∆k → ∆n.
We may then factor xf : ∆k → X uniquely as a degenerate g : ∆k → ∆m

followed by a non-degenerate y : ∆m → X, so that ϕ = Qy ◦ Qg. Note that
this is independent of the choice of ∂ or f , so that we have a well-defined
function ϕ 7→ yg, which is the desired section. �

This gives the main theorem of this section.
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Theorem 3.9. The functors Q a
∫

define a co-reflective inclusion of sSet
into cSet. �

4. Induced model structures

Given any model structure on sSet, we declare a map f in cSet to be:

• a fibration if
∫
f is a fibration of simplicial sets;

• a weak equivalence if
∫
f is a weak equivalence of simplicial sets;

• a cofibration if it has the left lifting property with respect to acyclic
fibrations, as defined above.

If the above three classes of maps define a model structure on cSet, we
refer to such a model structure as right induced by

∫
. The goal of this

section is to prove the following theorem:

Theorem 4.1. Given any cofibranty generated model structure on sSet in
which every cofibration is a monomorphism, the adjunction Q: sSet� cSet :

∫
right induces a Quillen equivalent model structure on cSet.

We precede the proof with several categorical lemmas.

Lemma 4.2. For any X ∈ cSet, the counit εX : Q
∫
X → X is a monomor-

phism.

Proof. Unwinding the definitions, we see that k-cubes of Q
∫
X are repre-

sented by composable pairs of the form �k → Qn → X. Two such k-cubes
are identified by εX if they fit into a commutative square of the form

�k Qn

Qm X

This square can be factored as in Lemma 3.4, which shows that the two
k-cubes of Q

∫
X are identified in the colimit. �

Lemma 4.3. The functor
∫

: cSet→ sSet preserves pushouts of two monomor-
phisms.

Proof. Consider a pushout square in cSet where A → Bi are monomor-
phisms:

A B1

B2 P

The pushout inclusions are monomorphisms and Qn is a quotient of a repre-
sentable. Hence any map Qn → P must factor through one of the inclusions
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Bi ↪→ P . It follows that each of the functors cSet(Qn,−) : cSet → Set
preserves this pushout. Since colimits in sSet are computed pointwise,

∫
preserves this pushout as well. �

Lemma 4.4. The functor
∫

: cSet → sSet preserves transfinite composi-
tions.

Proof. It suffices to show that the result holds pointwise, i.e., for functors
cSet(Qn,−) : cSet → Set. Each Qn is compact, as a quotient of a repre-
sentable, and hence cSet(Qn,−) preserves filtered colimits. �

Lemma 4.5. The functor Q : sSet→ cSet preserves monomorphisms.

Proof. Immediate by induction on skeleta. �

At this point, we fix a model structure on sSet and let J∆ be the generating
set of its acyclic cofibrations. We set J = Q(J∆) and run the Small Object
Argument on J to generate a factorization system (Sat(J),RLP(J)) on cSet.

Lemma 4.6. Let A→ B be an acyclic cofibration of simplicial sets and let

QA X

QB Y

be a pushout square in cSet. Then the map X → Y is a weak equivalence
(i.e., its image under

∫
is a weak equivalence).

Proof. Applying
∫

to the span QB ← QA → X and taking the pushout,
we obtain a diagram

A
∫
X

B B ∪A
∫
X

and, in particular,
∫
X → B ∪A

∫
A is an acyclic cofibration. We use its

image under Q to factor the original square

QA Q
∫
X X

QB Q(B ∪A
∫
X) Y

Since Q is a left adjoint, the left hand square is a pushout and hence by
the pasting lemma for pushouts (the formal dual of the pasting lemma for
pullbacks, cf. [11, Ex. III.4.8]) so is the right hand square. Moreover, the
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right hand square is a pushout of monomorphisms (by Lemmas 4.2 and 4.5)
and hence it is preserved by

∫
.

Thus by Lemma 3.8, the map
∫
X →

∫
Y is isomorphic to

∫
X → B ∪A∫

X, hence an equivalence. �

Lemma 4.7. Every morphism in Sat(J) is a weak equivalence of cubical
sets.

Proof. The class Sat(J) is obtained by closing the set J under retracts,
pushouts, and transfinite compositions. Each morphism in J is a weak
equivalence by Lemma 3.8. The closure under retracts is clear, the closure
under pushouts follows from Lemma 4.6, and the closure under transfinite
composition by Lemma 4.4 and the analogous property for simplicial sets.

�

Proof of Theorem 4.1. By [6, Cor. 3.1.7], any cofibrantly generated model
structure on sSet is an accessible model structure. Using [6, Prop. 2.1.4.(1)],2

to obtain the right induced model structure, it suffices to verify that maps
with the left lifting property with respect to fibrations are weak equivalences,
which is exactly the statement of Lemma 4.7.

The functor
∫

is a right Quillen functor by the definition of the model
structure on cSet. The unit of Q a

∫
is a weak equivalence by Lemma 3.8.

Applying Lemma 3.8, we also see that for any cubical set X, the map∫
εX :

∫
Q
∫
X →

∫
X is an isomorphism, and hence the counit is a weak

equivalence as well. �

5. Examples

By Theorem 4.1, we immediately obtain the following:

Corollary 5.1. Both the Joyal and the Quillen model structures on sSet
right induce Quillen equivalent model structures on cSet. �

Let cSetIJ and cSetIQ denote these model structures, respectively. The
following diagram summarizes the four model structures involved:

sSetQ cSetIQ

sSetJ cSetIJ

Q

id id

Q

∫
id id

∫
2Although the article [6] contains an error, it was fixed in [4], and thus its results can

be applied in our setting.
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where all adjunctions are Quillen adjunctions and the horizontal functors
are Quillen equivalences.

Cofibrations in these model structures are always monomorphisms, since
by adjointness they are generated by the images of boundary inclusions
∂∆n ↪→ ∆n under Q. However not all monomorphisms are cofibrations and
in fact very few cubical sets are cofibrant.

Example 5.2. The cubical set �2 is cofibrant in neither cSetIJ nor cSetIQ.
Indeed, by construction each 2-cube of a cofibrant cubical set has a degen-
erate face among its four main faces, which is not the case for �2.

To our knowledge, the model structure cSetIJ is the first model structure
on cSet presenting the homotopy theory of (∞, 1)-categories. However, there
is a well-established model structure on cSet for the homotopy theory of∞-
groupoids, namely, the Grothendieck model structure, denoted cSetG.

In the remainder of this section, we will show that the adjoint pair of
identity functors defines a Quillen equivalence between cSetG and cSetIQ.
We begin by describing the Grothendieck model structure. Following [2,
Thm. 1.7], it is a cofibrantly generated model structure in which the cofibra-
tions are the monomorphisms and fibrations have the right lifting property
with respect to the open box inclusions uni,ε → �n (open boxes are defined

in the standard way).
For our purposes however, it is better to see the Grothendieck model

structure as left induced by a certain functor cSet → sSet, which we shall
next describe.

The embedding � ↪→ Cat
N→ sSet defines a co-cubical object in the cat-

egory of simplicial sets, explicitly given by [1]n 7→ (∆1)n. This yields an
adjoint pair

T: cSet� sSet :U

with T given by the left Kan extension of � ↪→ sSet along the Yoneda embed-
ding, and (UX)n = cSet((∆1)n, X). By [1, Prop. 8.4.28 and Lem. 8.4.29],
one sees that the Grothendieck model structure on cSet is indeed left induced
by T and further, by [1, Thm. 8.4.30], T is in fact a Quillen equivalence.

Thus we can compare the two model structures for ∞-groupoids on cSet
directly.

Proposition 5.3. The adjunction id : cSetIQ � cSetG : id is a Quillen
equivalence.

Proof. As noted above, the cofibrations in the induced model structure are
monomorphisms and hence cofibrations in the Grothendieck model struc-
ture. It thus suffices to check that the maps QΛni → Qn are weak equiva-
lences in the Grothendieck model structure. This follows by showing that
both TQΛni and TQn are contractible simplicial sets. Indeed, using the fact
that both T and Q, as well as the geometric realization functor |− | : sSet→
Top are left adjoints, we see that |TQn| is a quotient of [0, 1]n homeomorphic
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to ∆n (the topological simplex), whereas |TQΛni | is homeomorphic to |Λni |
(the topological horn). �
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