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On a question of Perlis and Stuart
regarding arithmetic equivalence

Guillermo Mantilla-Soler

Abstract. Let K be a number field. The K-arithmetic type of a
rational prime ` is the tuple AK(`) = (fK

1 , ..., f
K
g` ) of the residue degrees

of ` in K, written in ascending order. A well known result of Perlis
from the 70’s states that two number fields have the same Dedekind
zeta function if and only if for almost all primes ` the arithmetic types
of ` in both fields coincide. By the end of the 90’s Perlis and Stuart
asked if having the same zeta function implies that for ramified primes
the sum of the ramification degrees coincide. Here we study and answer
their question for a nontrivial and interesting class of cases.
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1. Introduction

Two number fields are called arithmetically equivalent if they have the
same Dedekind zeta function. It is of continuous interest to several authors,
see for instance recent works by [2], [13], [1] and others, to study arith-
metic equivalence in number fields, and their geometric counterparts from
the point of view of function fields.

Let K be a number field and let ` be a rational prime. Recall that the
arithmetic type of ` in K is the ordered tuple

AK(`) := (fK1 , ..., f
K
gK )

where the fKi ’s are the residue degrees of ` in K and

fK1 ≤ ... ≤ fKgK .
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Let eKi be the ramification degree of ` corresponding to the residue degree
fKi . In the early 70’s Perlis showed that the Dedekind zeta function of a
number field is completely determined by the residue degrees over every ra-
tional prime. Further, he gave a group theoretic characterization for the
equivalence to occur:

Suppose that K,K ′ are two number fields and let N be the compositum of
their Galois closures. Let G = Gal(N/Q), and let H, H1 be the correspond-
ing subgroups of K and K ′ via the Galois correspondence
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Definition 1.1. We say that K and K ′ are quasi-conjugate if the groups
H and H1 are quasi-conjugate in G i.e., if for every conjugacy class C of G
we have that

#(C ∩H) = #(C ∩H1).

Remark 1.2. Notice that if H and H1 are conjugate subgroups in G then
they are quasi-conjugate. Also, since conjugacy classes are a partition of G
we have that #H = #H1 whenever H and H1 are quasi-conjugate

Theorem 1.3 ([8]). Let K,K ′ be two number fields. Then, the following
are equivalent:

(a) The fields K,K ′ are arithmetically equivalent.
(b) For almost every prime ` the arithmetic types of ` in K and K ′ are

the same.
(c) The fields K,K ′ are quasi-conjugate.

One useful application of the above theorem is that of easily checking when
a field K is arithmetically solitary, i.e., there is no field K ′ non-isomorphic
and arithmetically equivalent to K. For example, using this and some group
theory, Perlis [8] has proved that if the degree of K is at most 6 then it is
arithmetically solitary. Moreover if K is septic and it is not arithmetically
solitary then K is a PSL2(F7) septic field i.e., the Galois group of its Galois
closure is the simple group of order 168 (see [5] or [12]).

1.1. The question and its answer. In the late 90’s Perlis and Stuart gave
a new surprising characterization for arithmetic equivalence; They showed
that it is enough to know the length of the arithmetic types, at almost every
prime, to know the Dedekind zeta function. Explicitly:
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Theorem 1.4 (Perlis, Stuart [11]). Let K,K ′ be number fields. Then, K,K ′

are arithmetically equivalent if and only if for almost every prime ` the
number of prime factors lying over ` in OK and OK′ is the same.

Perlis and Stuart asked if not only the residue degrees or the number
of prime factors are determined by the zeta function, but if the ramifica-
tion degrees are determined as well. This is not the case, as shown by
Perlis. However, Perlis and Stuart pointed out that it was not known if
the sum of the ramification degrees can differ. Suppose that K,K ′ are
arithmetically equivalent number fields and let ` be a rational prime. Let
AK(`) = (f1, ..., fg) = AK′(`) be the common arithmetic type tuples for `.

Let (eK1 , ..., e
K
g ) and (eK

′
1 , ..., eK

′
g ) be the corresponding tuples of ramifica-

tion degrees. Based on their work on split and arithmetic equivalence, and
the examples they studied, Perlis and Stuart ended their paper with the
following question:

Question 1.5 (Perlis, Stuart [11]). Does it follow that the sum of the ram-
ification degrees is the same for all prime `?

eK1 + ...+ eKg = eK
′

1 + ...+ eK
′

g

In principle the only obvious restriction on the ramification degrees is
given by the following:

f1e
K
1 + ...+ fge

K
g = f1e

K′
1 + ...+ fge

K′
g = [K : Q].

1.1.1. Septic fields. Since number fields of degree less than 7 are arith-
metically solitary the first interesting case of study for Question 1.5 is that of
septic number fields. As it turns out, in degree 7, under certain restrictions
on the ramification types Question 1.5 is positively answered:

Theorem (cf. Theorem 3.4). Let K be a degree 7 number field, and let ` be
a rational prime. Suppose that the arithmetic type of ` in K does not belong
to

{(1, 3), (1, 1, 2), (1, 1, 1, 2)}.
Then for any K ′ arithmetically equivalent to K

eK1 + ...+ eKg = eK
′

1 + ...+ eK
′

g .

From this and from the fact that septic fields that are non arithmetically
solitary have a Galois closure with simple Galois group, we obtain:

Corollary (cf. Corollary 3.5). Let K,K ′ be degree 7 arithmetically equiva-
lent number fields. Suppose ` is a rational prime which is not wildly ramified
in either K or K ′, and let v` the usual `-adic valuation. If eK1 + ...+ eKg 6=
eK

′
1 + ...+ eK

′
g then v`(disc(OK)) ∈ {2, 4}.
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1.2. What about general non arithmetically solitary septic fields?
Based on the above results we use an algorithm that searches for possible
examples giving a negative answer to Question 1.5. First we search for pairs
of septic fields with same discriminant, and signature, with not too many
ramified primes; actually to make things easier we start with only two prime
factors. Moreover, using the remark after Corollary 3.5, we take the prime
` = 2 as one of the two primes. Similarly, thanks to Corollary 3.5, we
know the valuation of the discriminant at the other prime divisor as well.
Among the candidates found, we select the ones such that their ramified
primes have arithmetic type belonging to the list appearing in Theorem 3.4.
From those, we take the PSL2(F7) fields and see if there is any couple of
arithmetically equivalent fields for which the sum of ramification degrees
differ. More explicitly:

1.2.1. Algorithm. The input is a list of septic fields up to some discrimi-
nant bound, and the output is either a list either empty or containing pairs
of examples, within the discriminant bound, giving a negative answer to
Question 1.5.

(i) Look in the list for number fields with discriminant of the form 22ap2b

where a ∈ {3, 4} and b ∈ {1, 2}.

(ii) Select pairs of fields from step (i) that have equal signature and
discriminant and such that their ramification types, at 2 or p, be-
long to the list appearing in Theorem 3.4.

(iii) From (ii) select the ones that have Galois group PSL2(F7).

(iv) Verify, using Theorem 3.8, whether or not the fields obtained in (iii)
are arithmetically equivalent.

(v) From each pair of arithmetically equivalent fields obtained check
whether or not there are pairs for which the sum of ramification de-
grees, at the ramified primes, are different.

Using the algorithm described above with John Jones’ data base of num-
ber fields, and writing some MAGMA code, we found out that Theorem 3.4
is optimal for getting a positive answer to Question 1.5; in other words:

Theorem (cf. Theorem 3.7). For each tuple F ∈ {(1, 3), (1, 1, 2), (1, 1, 1, 2)}
there are examples of pairs (K,K ′) of non-isomorphic arithmetically equiv-
alent number fields, and a prime `, with common arithmetic type F in K
and K ′ such that

eK1 + ...+ eKg 6= eK
′

1 + ...+ eK
′

g .
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1.2.2. Overview of the contents. In Section §2 we recall most of the
standard facts of Arithmetic equivalence from the point of Galois represen-
tations. Nothing in this section is new and it is well known to experts but
we could not find a suitable reference that contains these results in the con-
text of GQ representations. For example, even though that from the point
of view of Galois representations Theorem 2.5 is elementary we have not
found a presentation of that result in such a natural form. In Section §3 we
give proofs of our main results and exhibit examples, found following the
algorithm described above, that give a negative answer to Question 1.5.

2. Arithmetic equivalence via Galois representations

Suppose that the Dedekind zeta function of a number field K is written
as

ζK(s) :=

∞∑
n=0

an(K)

ns
.

Then interpreting the zeta function as a counting function it should be true,
as in the case of Tate’s isogeny theorem, that ζK(s) is completely determined
by the values a`(K) at primes `. Since a`(K) is equal to the number of 1’s
appearing in the tuple AK(`) knowing the values a`(K) is a priori weaker
than knowing the arithmetic type of ` in K. However, as suggested above,
the knowledge of the a`(K) for almost all ` indeed determines the function
ζK(s). In this section, using the rudiments of Galois representations, we
briefly recall how these results can be obtained.

Let K be a degree n number field, and let us denote by K̃ its Galois closure
over Q. We start by recalling the construction of an n-dimensional com-
plex Galois representation ρK of the absolute Galois group GQ such that
the Artin L-function associated to ρK is ζK(s). Let Emb(K) be the set
of complex embeddings of K. The absolute Galois group GQ acts continu-
ously on Emb(K) via composition. The continuity follows since the kernel
of the action is the open group G

K̃
. Since n = #Emb(K) the above gives

a continuous permutation representation GQ : πK → Sn, which by compo-
sition with the permutation representation ιn : Sn → GLn(C) produces an
n-dimensional complex representation

ρK : GQ → GLn(C).

Definition 2.1. Let K be a number field. The continuous C[GQ]-module
TK is the GQ-module attached to the representation ρK . In other words,

TK :=
⊕

σ∈Emb

Cσ with the action of GQ on each element of the basis given

by composition.

The relevance of this representation to our purposes is that the Artin
formalism gives us the following:
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Proposition 2.2. Let K be a number field and let us denote by L(ρ, s) the
Artin L-function attached to a representation ρ. Then L(ρK , s) = ζK(s).

Proof. By Galois correspondence ρK factorizes through

ResQ
K̃

(ρK) : Gal(K̃/Q)→ GLn(C).

Again, by basic Galois theory, the action of Gal(K̃/Q) in Emb(K) is iso-

morphic to the permutation representation of Gal(K̃/Q) in the set of cosets

Gal(K̃/Q)/Gal(K̃/K). Hence, ResQ
K̃

(ρK) ∼= Ind
Gal(K̃/Q)

Gal(K̃/K)
1
Gal(K̃/K)

. Thanks

to Artin’s formalism

L(ρK , s) = L
(

ResQ
K̃

(ρK), s
)

= L
(

Ind
Gal(K̃/Q)

Gal(K̃/K)
1
Gal(K̃/K)

, s
)

=

L(1
Gal(K̃/K)

, s) = ζK(s).

�

Since the Dedekind zeta function is an Artin L-function then its prime
terms correspond to traces of Frobenius elements:

Corollary 2.3. Let K be a number field and ` be a prime unramified1 under
ρK . Let Frob` be the conjugacy class of the element Frobenius at `. Then,

Trace(ρK(Frob`)) = a`(K).

Proposition 2.2 gives not only a simple way to express the trace of Frobe-
nius but it also gives a useful generalization of the above corollary to calcu-
late its characteristic polynomial det(X − ρK(Frob`)).

Lemma 2.4. Let K be a number field and ` be a prime, unramified in K,
and let (f1, ..., fg) be the arithmetic type of ` in K. Then,

det(X − ρK(Frob`)) =

g∏
i=1

(Xfi − 1).

Proof. Let B1, ..., Bg be the primes in OK lying over the prime `. Then,
the `-factor in the Euler product for ζK(s) is given by

g∏
i=1

(1− ||Bi||−s)−1 =

g∏
i=1

(1− `−sfi)−1.

On the other hand, since ζK(s) is also the Artin L-function of the represen-
tation ρK , the `-factor above is also equal to det(I − `−sρK(Frob`))

−1. The
result follows from substituting `−s by X.

�

1This is the same as being unramified in K since the conductor of ρK is the discriminant
of K.



564 GUILLERMO MANTILLA-SOLER

2.0.1. An analogy with the isogeny theorem. The zeta function ζK(s)
is the Artin L-function of the trivial representation of Gal(K/K), however
knowing this is not very useful in our context since for two different num-
ber fields we would get representations from different groups. By looking
at a Galois representation of GQ for which ζK(s) is its Artin L-function
one can actually obtain results about the number field in question. This,
as straightforward as it is, gives a simpler characterization for arithmetic
equivalence which is completely reminiscent of Tate’s isogeny theorem on
rational elliptic curves, where the GQ−module TK plays the role of Tate’s
module.

Theorem 2.5. Let K, K1 be two number fields. The following are equiva-
lent:

(i) There is a C-isomorphism of TK ∼= TK1 as GQ-modules.
(ii) ζK(s) = ζK1(s).
(iii) For almost all primes `, a`(K) = a`(K1).
(iv) For almost all primes `, #Spec(OK)(F`) = #Spec(OK1)(F`) i.e., K

and K1 have the same number of F` points.

Proof. We first make the following observations:

• By the uniqueness theorem for Dirichlet series we have that ζK(s) =
ζK1(s) implies that a`(K) = a`(K1) for all prime `.
• Thanks to Corollary 2.3 a`(K) = a`(K1) for all primes ` implies

that

Trace(ρK(Frob`)) = Trace(ρK1(Frob`))

for almost all primes `.
• By Chebotarev’s density theorem

Trace(ρK(Frob`)) = Trace(ρK1(Frob`))

for almost all primes ` is equivalent to Trace(ρK(g)) = Trace(ρK1(g))
for all g ∈ GQ.
• Since Artin representations have finite images, the fact that

Trace(ρK(g)) = Trace(ρK1(g))

for all g ∈ GQ implies that ρK and ρK1 are isomorphic representa-
tions.
• If the representations ρK and ρK1 are isomorphic then, thanks to

Proposition 2.2, ζK(s) = ζK1(s).

The above argument shows the equivalence between (i), (ii) and (iii). Sup-
pose that K is defined by a monic polynomial p(x) ∈ Z[x], and suppose that
` - disc(p). The equivalence with (iv) follows since

#Spec(OK)(F`) = {α ∈ F` | f(α) = 0} = #{f ∈ AK(`) | f = 1} = a`(K).

�
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Remark 2.6. Conditions (iii) or (iv) in Theorem 2.5 are a priori weaker con-
ditions for arithmetic equivalence than the ones given by Perlis and others;
even though condition (iii) seems quite natural as an equivalence for the
equality between Dedekind zeta functions it’s not normally mentioned in
this form. Here it is the usual formulation of this equivalence:

Corollary 2.7. Let K,K1 be two number fields. Then K and K1 are arith-
metically equivalent if and only if for almost all rational primes `

#{f ∈ AK(`) | f = 1} = #{f ∈ AK1(`) | f = 1}.

Proof. Since

a`(K) = #{B ∈ Max(OK) | [OK : B] = `} = #{f ∈ AK(`) | f = 1}

the result follows from Theorem 2.5 �

2.0.2. Invariants under arithmetic equivalence. Some of the invari-
ants determined by arithmetic equivalence are the degree, the discriminant,
the signature, the Galois closure, the roots of unity and the unit group (see
for example [6, III, §1, Theorem 1.1]). All of them can be easily explained
by the Galois representation ρK . For instance the degree is the dimension of
ρK , the number of real embeddings of K is Trace(ρK(complex conjugation)),
the discriminant is equal to the conductor of ρK (see [14, VI, §3, Corollary
1]), etc.

Other invariants determined under arithmetic equivalence are the rational
trace form, or under some ramification conditions the integral trace form.
To see how those can be deduced also from ρK the reader can see [7] or [10].

Quasi-conjugate subgroups. The classic group theoretical characterization of
Perlis [8] and Gassmann [3] for arithmetic equivalence, see Theorem 1.3 (c)-
(a), can be made quite clear from the point of view of the representation
ρK . More precisely:

Corollary 2.8. Let K,K1 be number fields and let N be a Galois number
field such that KK1 ⊆ N. Let G := Gal(N/Q), and H, H1 be the sub-
groups of G corresponding to K and K1 via Galois correspondence. Then
ζK(s) = ζK1(s) if and only if H and H1 are quasi-conjugate in G.

Proof. Since N is Galois over Q it contains K̃ and K̃1. Using Artin’s for-
malism as in the proof of Proposition 2.2 we see that ζK(s) = L(ρK , s) =

L
(

ResQN (ρK), s
)

= L
(
IndGH1H , s

)
, resp. the analogous statement for H1.

Therefore, thanks to Lemma 2.9, if H and H1 are quasi conjugate then
ζK(s) = ζK1(s). On the other hand if ζK(s) = ζK1(s) then we see, from
Theorem 2.5, that the representations ρK and ρK1 are isomorphic. Re-
stricting this isomorphism to GN = Gal(Q/N) it follows, from Lemma
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2.9, that H and H1 are quasi-conjugate since ResQN (ρK) ∼= IndGH1H and

ResQN (ρK) ∼= IndGH1
1H1 �

Lemma 2.9. Let G be a finite group and let H and H1 two subgroups. Then
H and H1 are quasi-conjugate if and only if IndGH1H ∼= IndGH1

1H1 .

Proof. Let χH be the character afforded by the representation IndGH1H and
let C be a conjugacy class in G. A calculation shows that

χH(C) =
#(C ∩H)#G

#C#H
.

Taking the trivial conjugacy class we see that the order of H is determined
by the representation, hence the result follows from the above equality and
from the definition of quasi-conjugate subgroups(see Remark 1.2). �

3. Proofs of our results

Let K be a number field with maximal order OK and let ` be a rational
prime. Recall that the arithmetic type of ` in K is the tuple AK(`) =
(fK1 , ..., f

K
g`

) written in ascending order where gK` is the number of prime

factors of ` in OK and the f ′is are the residue degrees of `. Let eKi be the
ramification degree corresponding to the residue degree fKi . We call the
factorization type of a prime ` the ordered pair

{(f1, ..., fg), (e1, ..., eg)}

where the first tuple is the arithmetic type and the second is the tuple of
ramification indices corresponding to each residue degree. In this section we
study the possible factorization types for primes in septic number fields.

3.1. PSL2(F7) number fields. Since septic number fields that are not
arithmetically solitary are PSL2(F7) fields it is of interest for us to study
what happens with ramification in PSL2(F7) number fields.

Proposition 3.1. Let K be a septic number field with Galois closure having
Galois group isomorphic to PSL2(F7). If ` is a rational prime, then its
factorization type is not equal to T := {(1, 2, 2), (3, 1, 1)}

Proof. Let ` be a prime and suppose that its factorization type is equal to
T . Let P1, P2 and P3 be the primes in OK lying over ` and such that

`OK = P 3
1P2P3.

Let L be the Galois closure of K over Q. For each i = 1, 2, 3 let ei, fi and gi
be respectively the ramification index, inertia degree and number of prime
factors in OL of the prime Pi. By the hypothesis on K and ` we have that

eifigi = 24
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for all i = 1, 2, 3. Moreover, if e, f and g are the respective values for the
extension L/Q and the prime ` then

e = 3e1 = e2 = e3

f = f1 = 2f2 = 2f3

g = g1 + g2 + g3

It follows from the above equations that g2 = g3 and that 2g1 = 3g2. In
particular, g = 7

2g2 is a multiple of 7. Therefore ef , which is the order of a
decomposition group over ` in the extension L/Q, must be a divisor of 24.
Since 3 | e and 2 | f we have that ef ∈ {6, 12, 24}. Now, let Di ≤ Gal(L/K)
be a decomposition subgroup of for the prime Pi. Since decomposition
groups can be extended there is, for the prime `, a decomposition subgroup
Ei ≤ Gal(L/Q) ∼= PSL2(F7) such that Ei∩Gal(L/K) = Di. Thus the group
Ei, which has order ef , has for each i a subgroup of order eifi. We recall
the lattice of sub-groups of PSL2(F7), modulo conjugacy:

{1}

Z/2Z

Z/3Z

Z/7Z

(Z/2Z)2(Z/2Z)2Z/4Z

S3

Z/7ZoZ/3Z

D8A4 A4

H2
∼= S4H1

∼= S4

PSL2(F7)

We show separately that none of the possibilities, {6, 12, 24}, can occur
as the value of ef :

• ef = 12. It follows from the equations above that e2f2 = 6. Hence,
the order 12 group Ei has an order 6 subgroup. This is a contradic-
tion since A4 has no subgroups of order 6 and, see diagram above,
every subgroup of PSL2(F7) of order 12 is isomorphic to A12.

• ef = 24. It follows from the equations above that g1 = 3, e2f2 = 12
and g2 = g3 = 2. Since none of the gi’s is equal to 1 the group
Gal(L/K) can’t be conjugate to a decomposition group over `; oth-
erwise K would be the fixed field of a decomposition group of a prime
B in OL lying over `. In particular the prime P := B∩OK would have
only one prime factor in OK , which is a contradiction since P = Pi
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for some i. Therefore we may assume that Ei is not conjugate to
Gal(L/K). Looking at the lattice of subgroups of PSL2(F7) we see
that no subgroup of order 12 is the intersection of two non-conjugate
subgroups of order 24.

• ef = 6. It follows from the equations above that e1f1 = 3 and
e2f2 = 2. From the lattice of subgroups we see that the intersection
of a group of order 24 with one of order 6 can’t have order 2.

�

Proposition 3.2. Let K be a septic number field with Galois closure having
Galois group isomorphic to PSL2(F7). If ` is a rational prime, then its
factorization type is not equal to either {(1, 2), (3, 2)} or {(1, 2), (5, 1)}.

Proof. The case {(1, 2), (5, 1)} is clear since 5 - 168. Let ` be a prime and
suppose that its factorization type is equal to {(1, 2), (3, 2)}. Let P1 and P2

be the primes in OK lying over ` and such that

`OK = P 3
1P

2
2 .

Let L be the Galois closure of K over Q. For each i = 1, 2 let ei, fi and gi
be respectively the ramification index, inertia degree and number of prime
factors in OL of the prime Pi. By the hypothesis on K and ` we have that

eifigi = 24

for all i = 1, 2. Moreover, if e, f and g are the respective values for the
extension L/Q and the prime ` then

e = 3e1 = 2e2

f = f1 = 2f2

g = g1 + g2.

It follows from the above equations that 4g1 = 3g2. In particular, g = 7
4g2 is

a multiple of 7. Therefore ef , which is the order of a decomposition group
over ` in the extension L/Q, must be a divisor of 24. Since 6 | e and 2 | f
we have that ef ∈ {12, 24}. As before, we deal with each possible value of
ef separately:

• ef = 12. It follows from the equations above that e = 6. Since the
inertia subgroup at ` has order e = 6 and A4 has no subgroups of
order 6 this case can’t happen.

• ef = 24. From the equations we have that e1f1 = 8 and e2f2 = 6.
Furthermore, either e = 12 or e = 6. In the former case e2 = 6 and
then we would have a group of order 12, inertia, with a subgroup of
order 6 which is impossible in PSL2(F7). In the latter case e1 = 2
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and f1 = 4, therefore D1 is an order 8 group with a cyclic quotient of
order 4; this is a contradiction since PSL2(F7) has no such subgroup.

�

Remark 3.3. Similarly to Proposition 3.2 there is no PSL2(F7) septic field
K and a prime ` such that its factorization type is {(1, 2), (1, 3)}. This,
together with the last proposition, shows that in K the arithmetic type of
a prime ` can never be (1, 2). We do not prove this here since we already
have the necessary material to prove one or our main results:

Theorem 3.4. Let K be a degree 7 number field, and let ` be a rational
prime. Suppose that the arithmetic type of ` in K does not belong to

{(1, 3), (1, 1, 2), (1, 1, 1, 2)}.

Then for any K ′ arithmetically equivalent to K

eK1 + ...+ eKg = eK
′

1 + ...+ eK
′

g .

Proof. Let (f1, ..., fg) be the arithmetic type of ` in either field. The arith-
metic type together with the ramification degrees gives a partition of 7,
f1e1 + ...+fgeg = 7, so we analyze each partition of 7 of size g and see what
are the possibilities for sum of the ramification degrees given the knowledge
of the arithmetic type.

• g = 1.
In this case the ramification degree is completely determined by

the value of the residue degree.
• g = 7.

· 1 + 1 + 1 + 1 + 1 + 1 + 1. In this case all the ramification degrees
are equal to 1.

• g = 6.
· 1 + 1 + 1 + 1 + 1 + 2. In this case all the five ramification

degrees are 1 and the last one is completely determined by its
corresponding residue degree.

• g = 5. In principle for this case one could have different ramification
degrees for same arithmetic types, however the sum of the ramifica-
tion degrees is the same:
· 1 + 1 + 1 + 1 + 3. In this case four residue degrees are 1, and

so they are their corresponding ramification degrees. In either
case for this partition the last residue degree determine the last
ramification degree. Moreover if the last residue degree is 3 the
sum of the ramification degrees is 5 otherwise it’s 7.
· 1 + 1 + 1 + 2 + 2. In this case three residue degrees are 1, and

so they are their corresponding ramification degrees. For this
partition the knowledge of the arithmetic type determines the
remaining ramification degrees (they are 1 or 2). On the other
hand the only way in which this partition could have the same
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arithmetic type of the above partition is that all the residue
degrees are equal to 1(four of them are already 1 and the re-
maining one must divide 2 and 3). In such a case the remaining
ramification degrees are equal to 2 and the sum of the ramifi-
cation degrees is 7 which coincides with the previous case.

For the partitions of size 4, 3, 2 we list all the possible candidates to factor-
ization type:

{(f1, ..., fg), (e1, ..., eg)} where f1e1 + ...fgeg = 7.

We only list possibilities where at least one of the entries in the ramification
tuples is bigger than 1. We finish by collecting the sets with equal arithmetic
types such that their ramification tuples add to different values.

• g = 4.

· 1 + 1 + 1 + 4: {(1, 1, 1, 1), (1, 1, 1, 4)}, {(1, 1, 1, 2), (1, 1, 1, 2)}.
· 1 + 1 + 2 + 3: {(1, 1, 1, 1), (1, 1, 2, 3)}, {(1, 1, 1, 3), (1, 1, 2, 1)},
{(1, 1, 1, 2), (1, 1, 3, 1)}.
· 1 + 2 + 2 + 2: {(1, 1, 1, 1), (1, 2, 2, 2)}, {(1, 1, 1, 2), (1, 2, 2, 1)},
{(1, 1, 2, 2), (1, 2, 1, 1)}.

In this case we have the pair

{(1, 1, 1, 2), (1, 1, 1, 2)}, {(1, 1, 1, 2), (1, 1, 3, 1)}

with ramification sums equal to 5 and 6 respectively and the pair

{(1, 1, 1, 2), (1, 1, 1, 2)}, {(1, 1, 1, 2), (1, 2, 2, 1)}

with the same pattern as the first pair.

• g = 3.

· 1 + 1 + 5. {(1, 1, 1), (1, 1, 5)}.
· 1+2+4: {(1, 1, 1), (1, 2, 4)}, {(1, 1, 2), (1, 2, 2)}, {(1, 1, 2), (1, 4, 1)},
{(1, 1, 4), (1, 2, 1)}, {(1, 2, 2), (1, 1, 2)}.
· 1 + 3 + 3: {(1, 1, 1), (1, 3, 3)}, {(1, 1, 3), (1, 3, 1)}.
· 2+2+3: {(1, 1, 1), (1, 2, 3)}, {(1, 1, 2), (2, 3, 1)}, {(1, 1, 3), (2, 2, 1)},
{(1, 2, 2), (3, 1, 1)}, {(1, 2, 3), (2, 1, 1)}.

In this case we have the pair

{(1, 1, 2), (1, 2, 2)}, {(1, 1, 2), (1, 4, 1)}

with ramification sums equal to 5 and 6 respectively and the pair

{(1, 1, 2), (1, 2, 2)}, {(1, 1, 2), (2, 3, 1)}
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with the same pattern as the first pair. Additionally we have

{(1, 2, 2), (1, 1, 2)}, {(1, 2, 2), (3, 1, 1)}.
Since non arithmetically solitary septic number fields are PSL2(F7)
number fields (see for instance [5] or [12]) it follows from Proposition
3.1 that a number field that is not arithmetically solitary can not
have a prime with factorization type equal to {(1, 2, 2), (3, 1, 1)}.

• g = 2.

· 1 + 6: {(1, 1), (1, 6)}, {(1, 2), (1, 3)}, {(1, 3), (1, 2)}
· 2 + 5: {(1, 1), (2, 5)}, {(1, 5), (2, 1)}, {(1, 2), (5, 1)}
· 3 + 4: {(1, 1), (3, 4)}, {(1, 2), (3, 2)}, {(1, 3), (4, 1)},
{(1, 4), (3, 1)}, {(2, 3), (2, 1)}.

In this case we have the pair

{(1, 3), (1, 2)}, {(1, 3), (4, 1)}
with ramification sums equal to 3 and 5 respectively and the trio

{(1, 2), (1, 3)}, {(1, 2), (3, 2)}, {(1, 2), (5, 1)}.
These last cases are covered thanks to Proposition 3.2. See also
Remark 3.3.

�

Using that not arithmetically solitary septic fields have simple Galois
group we narrow the possibilities of prime powers appearing in the discrim-
inant of fields for which Question 1.5 could have a negative answer.

Corollary 3.5. Let K,K ′ be degree 7 arithmetically equivalent number
fields. Suppose ` is a rational prime which is not wildly ramified in either K

or K ′, and let v` the usual `-adic valuation. If eK1 + ...+eKg 6= eK
′

1 + ...+eK
′

g

then v`(disc(OK)) ∈ {2, 4}.

Proof. Thanks to Theorem 3.4 we see that the sum of the inertia degrees, at
every prime `, in either field is either 3,4 or 5. Since for non wildly ramified
primes v`(disc(OK)) = [K : Q] − (f1 + ... + fg) we see that v`(disc(OK)) ∈
{2, 3, 4}. On the other hand a septic field with simple Galois group must
have square discriminant since its Galois closure embeds in A7, hence the
result. �

Remark 3.6. From Theorem 3.4 we see that the only primes that could give
a negative answer to Question 1.5 and that are wildly ramified in both fields
are 2 and 3. For instance, if ` = 2 a similar argument as the above shows
that v`(disc(OK)) ∈ {6, 8}.

Finally we show that Theorem 3.4 is the best we can get in terms of Perlis
and Stuart’s question:
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Theorem 3.7. For each tuple F ∈ {(1, 3), (1, 1, 2), (1, 1, 1, 2)} there are ex-
amples of pairs (K,K ′) of non-isomorphic arithmetically equivalent number
fields, and a prime `, with common arithmetic type F in K and K ′ such
that

eK1 + ...+ eKg 6= eK
′

1 + ...+ eK
′

g .

Proof. For i = 1, 2 consider the pairs of septic number fields (Ki, K
′
i) de-

fined by the following pairs of polynomials (fi, gi) respectively:

• f1 := x7 − 3x6 + 4x5 − 5x4 + 3x3 − x2 − 2x+ 1 and g1 := x7 − x5 −
2x4 − 2x3 + 2x2 − x+ 4.

• f2 := x7−7x5−14x4−7x3−7x+2 and g2 := x7−14x3−14x2+7x+22.

The first two fields have discriminant 266912 and the second two have dis-
criminant 2878. A calculation, done in MAGMA, shows that [KiK

′
i : Q] ≤

28. Since the fields have prime degree over Q it follows, thanks to Theorem
3.8 below, that Ki and K ′i are arithmetically equivalent.

For the given prime `, and the given field, the factorization type

{(f1, ..., fg), (e1, ..., eg)}
is:

(1) ` = 2
(a) K1; {(1, 3), (4, 1)}.
(b) K ′1; {(1, 3), (1, 2)}.

(2) ` = 691
(a) K1; {(1, 1, 1, 2), (1, 1, 1, 2)}.
(b) K ′1; {(1, 1, 1, 2), (2, 1, 2, 1)}.

(3) ` = 2
(a) K2; {(1, 1, 2), (1, 4, 1)}.
(b) K ′2; {(1, 1, 2), (1, 2, 2)}.

�

Theorem 3.8 (Perlis [9]). Let K,K ′ be two number fields. Suppose that they
have the same prime degree p over Q. Then K and K ′ are arithmetically
equivalent if and only if the degree of KK ′ over Q is strictly less than p2.
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