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Characterisations of the weak
expectation property
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Abstract. We use representations of operator systems as quotients
to deduce various characterisations of the weak expectation property
(WEP) for C∗-algebras. By Kirchberg’s work on WEP, these results
give new formulations of Connes’ embedding problem.
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Dedication

Arveson introduced operator systems and was the first to fully appreciate
and exploit the extent that many questions and results in the theory of
C*-algebras could be reduced to the study of the matrix-order structure on
these subspaces of C*-algebras. In this paper we exploit his viewpoint.

Bill’s kindness and humor will be surely missed, but his vision lives on.
He was a major founder of the “completely” revolution and he has influ-
enced how many mathematicians think about certain problems and, more
personally, how we behave professionally. We are a better field in many
ways because of his influence.
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1. Introduction

The results of this paper were presented by the third author at the
GPOTS2013 conference dedicated to the memory of W. B. Arveson.

In this paper we deduce various characterisations of Lance’s weak expec-
tation property (WEP) for C*-algebras [21].

Using certain finite dimensional operator systems, their operator system
duals, introduced by Choi-Effros, and a more recent construction of operator
system quotients, we reduce questions about whether or not C*-algebras
possess WEP to certain finite lifting problems. We show that there are
many apparently different lifting problems that are all equivalent to the C*-
algebra possessing WEP, and hence these lifting problems are all equivalent
for C*-algebras.

Lance’s original definition of WEP requires that every faithful representa-
tion of the C*-algebra possesses a so-called weak expectation or, equivalently,
that the universal representation, which is somewhat cumbersome, possesses
a weak expectation. Given a unital C*-algebra A and a faithful unital rep-
resentation π : A → B(H), then a weak expectation is a completely positive
map φ : B(H)→ π(A)′′ such that φ(π(a)) = π(a) for every a ∈ A.

One advantage of our results is that they give new characterisations of
WEP in terms of a fixed given representation. Thus, one is free to choose a
preferred faithful representation of the C*-algebra to attempt to determine
if it has WEP. These results expand on earlier work of the first three authors
[8] and of the second author [15] that also obtained such representation-free
characterisations of WEP.

One major motivation for the desire to obtain such a plethora of charac-
terisations of WEP are the results of Kirchberg, who proved that Connes’
embedding conjecture is equivalent to determining if certain C*-algebras
have WEP. Thus, a wealth of characterisations of WEP could help to re-
solve this conjecture.

Our technique is to first characterise WEP in terms of operator system
tensor products with certain “universal” finite dimensional operator sys-
tems. These universal operator systems have no completely order isomor-
phic representations on finite dimensional spaces, but we then realise them
as quotients of finite dimensional operator subsystems of matrix algebras.
This leads to characterisations of the C*-algebras possessing WEP as the
C*-algebras for which these quotient maps remain quotient after tensoring
with the algebra (see Theorem 4.3 for a precise formulation). Thus, WEP
is realised as an “exactness” property for these operator system quotients
or, equivalently, as a “lifting” property from a quotient. Because the liftings
lie in finite dimensional matrix algebras, the question of the existence or
non-existence of liftings can be reduced to a question about the existence of
liftings satisfying elementary linear constraints.

As in the work of the second author, many of these characterisations of
WEP reduce to interpolation or decomposition properties of the C*-algebra
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of the type studied by F. Riesz in other contexts. In ordered function space
theory, or in general, in ordered topological lattice theory, the vast use of
Riesz interpolation and decomposition properties dates back to F. Riesz’s
studies in the late ’30’s [29]. The reader may refer to [1] and the bibliography
therein for broad applications of this concept. We also refer to [15] for a non-
commutative Riesz interpolation property that characterises WEP. In this
paper we give a characterisation of WEP in terms of a Riesz decomposition
property.

2. Operator System Preliminaries

In this section, we introduce basic terminology and notation, and recall
previous constructions and results that will be needed in the sequel. If V
is a vector space, we let Mn,m(V ) be the space of all n by m matrices with
entries in V . We set Mn(V ) = Mn,n(V ) and Mn = Mn(C). We let (Ei,j)i,j
be the canonical matrix unit system in Mn. For a map φ : V →W between
vector spaces, we let φ(n) : Mn(V ) → Mn(W ) be the nth ampliation of

φ given by φ(n)((xi,j)i,j) = (φ(xi,j))i,j . For a Hilbert space H, we denote
by B(H) the algebra of all bounded linear operators on H. An operator
system is a subspace S of B(H) for some Hilbert space H which contains
the identity operator I and is closed under taking adjoints. The embedding
of Mn(S) into B(Hn) gives rise to the cone Mn(S)+ of all positive operators
in Mn(S). The family (Mn(S)+)n∈N of cones is called the operator system
structure of S. Every complex ∗-vector space equipped with a family of
matricial cones and an order unit satisfying natural axioms can, by virtue of
the Choi-Effros Theorem [5], be represented faithfully as an operator system
acting on some Hilbert space. When a particular embedding is not specified,
the order unit of an operator system will be denoted by 1. A map φ : S → T
between operator systems is called completely positive if φ(n) positive, that
is, φ(n)(Mn(S)+) ⊆Mn(T )+, for every n ∈ N. A linear bijection φ : S → T
of operator systems S and T is a complete order isomorphism if both φ
and φ−1 are completely positive. We refer the reader to [25] for further
properties of operator systems and completely positive maps.

An operator system tensor product S⊗τ T of operator systems S and T is
an operator system structure on the algebraic tensor product S⊗T satisfying
a set of natural axioms. We refer the reader to [16], where a detailed study of
such tensor products was undertaken. Suppose that S1 ⊆ T1 and S2 ⊆ T2 are
inclusions of operator systems. Let ιj : Sj → Tj denote the inclusion maps
ιj(xj) = xj for xj ∈ Sj , j = 1, 2, so that the map ι1⊗ι2 : S1⊗S2 → T1⊗T2 is
a linear inclusion of vector spaces. If τ and σ are operator system structures
on S1 ⊗ S2 and T1 ⊗ T2 respectively, then we use the notation

S1 ⊗τ S2 ⊆+ T1 ⊗σ T2
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to express the fact that ι1⊗ ι2 : S1⊗τ S2 → T1⊗σ T2 is a (unital) completely
positive map. This notation is motivated by the fact that ι1 ⊗ ι2 is a com-
pletely positive map if and only if, for every n, the cone Mn(S1 ⊗τ S2)+ is
contained in the cone Mn(T1 ⊗σ T2)+. If, in addition, ι1 ⊗ ι2 is a complete
order isomorphism onto its range, then we write

S1 ⊗τ S2 ⊆coi T1 ⊗σ T2 .

In particular, if τ and σ are two operator system structures on S ⊗ T , then

S⊗τ T = S⊗σ T means S⊗τ T ⊆coi S⊗σ T and S⊗σ T ⊆coi S⊗τ T .

When S1 ⊗τ S2 ⊆+ S1 ⊗σ S2, then we will also write τ ≥ σ and say that
τ majorises σ.

In the sequel, we will use extensively the following operator system tensor
products introduced in [16]:

(a) The minimal tensor product min. If S ⊆ B(H) and T ⊆ B(K), where
H and K are Hilbert spaces, then S ⊗min T is the operator system arising
from the natural inclusion of S ⊗ T into B(H⊗K).

(b) The maximal tensor product max. For each n ∈ N, let Dn = {A∗(P ⊗
Q)A : A ∈Mn,km(C), P ∈Mk(S)+, Q ∈Mm(T )+}. The Archimedanisation
[26] of the family (Dn)n∈N of cones is an operator system structure on S⊗T ;
the corresponding operator system is denoted by S ⊗max T .

(c) The commuting tensor product c. By definition, an element X ∈
Mn(S ⊗ T ) belongs to the positive cone Mn(S ⊗c T )+ if (φ · ψ)(n)(X) is
a positive operator for all completely positive maps φ : S → B(H) and
ψ : T → B(H) with commuting ranges. Here, the linear map φ ·ψ : S⊗T →
B(H) is given by φ · ψ(x⊗ y) = φ(x)ψ(y), x ∈ S, y ∈ T .

The tensor products min, c, and max are functorial in the sense that if
τ denotes any of them, and φ : S1 → S2 and ψ : T1 → T2 are completely
positive maps, then the tensor product map φ⊗ ψ : S1 ⊗τ T1 → S2 ⊗τ T2 is
completely positive. We will use repeatedly the following fact, extablished
in [16]: If S is an operator system and A is a C*-algebra, then S ⊗c A =
S ⊗max A.

The three tensor products mentioned above satisfy the relations

S ⊗max T ⊆+ S ⊗c T ⊆+ S ⊗min T

for all operator systems S and T .
For every operator system S, we denote by Sd the (normed space) dual

of S. The space Mn(Sd) can be naturally identified with a subspace of
the space L(S,Mn) of all linear maps from S into Mn. Taking the pre-
image of the cone of all completely positive maps in L(S,Mn), we obtain a
family (Mn(Sd)+)n∈N of matricial cones on Sd. We have, in particular, that
(Sd)+ consists of all positive functionals on S; the elements φ ∈ (Sd)+ with
φ(1) = 1 are called states of S. An important case arises when S is finite
dimensional; in this case, Sd is an operator system when equipped with the
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family of matricial cones just described and has an order unit given by any
faithful state on S [5, Corollary 4.5].

We now move to the notion of quotients in the operator system category.

Definition 2.1. A linear subspace J ⊆ S of an operator system S is called
a kernel if there is an operator system T and a completely positive linear
map φ : S → T such that J = kerφ.

If J ⊆ S is kernel, then one may endow the ∗-vector space S/J with an
operator system structure such that the canonical quotient map qJ : S →
S/J is unital and completely positive [17]. An element (xi,j +J ) is positive
in Mn(S/J ) if and only if for every ε > 0, there exist elements yi,j ∈ J
such that (xi,j + yi,j) + ε1n ∈ Mn(S)+. Moreover, if J ⊆ kerφ for some
completely positive map φ : S → T , then there exists a completely positive
map φ̇ : S/J → T such that φ = φ̇ ◦ qJ . A null subspace of S [14] is a
subspace J which does not contain positive elements other than 0. It was
shown in [14] that every null subspace is a kernel.

Definition 2.2. A unital completely positive map φ : S → T is called a
complete quotient map if the natural quotient map φ̇ : S/ kerφ → T is a
complete order isomorphism.

Definition 2.3. Given an operator system T an element (ti,j) ∈ Mn(T )
will be called strongly positive if there exists ε > 0 such that (ti,j) − ε1n ∈
Mn(T )+.

Thus, an element of a C*-algebra is strongly positive if and only if it
is positive and invertible and an element of an operator system is strongly
positive if and only if its image under every unital completely positive map
into a C*-algebra is positive and invertible.

We will write (ti,j) � 0 to denote that (ti,j) is strongly positive. Given
two self-adjoint elements (xi,j) and (yi,j) we will write (xi,j) � (yi,j) or
(yi,j)� (xi,j) to indicate that (xi,j − yi,j) is strongly positive.

The concept of strongly positive element leads to the following useful
characterisation of complete quotient maps [8, Proposition 3.2].

Proposition 2.4. Let S and T be operator systems and let φ : S → T be a
unital completely positive surjection. Then φ is a complete quotient map if
and only if, for every positive integer n, every strongly positive element of
Mn(T )+ has a strongly positive pre-image.

We will frequently use the following result [10, Lemma 5.1].

Lemma 2.5. Let R,S, T and U be operator systems and assume that we are
given linear maps ψ : R → S, θ : S → T , µ : R → U and ν : U → T , such
that ν is a complete quotient map, µ is a complete order isomorphism, θ is
a linear isomorphism, θ−1 is completely positive and θ ◦ ψ = ν ◦ µ. Then ψ
is a complete quotient map if and only if θ is a complete order isomorphism.
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We recall the universal C*-algebra C∗u(S) of an operator system S: it is
the unique (up to a *-isomorphism) C*-algebra containing S and having the
property that whenever ϕ : S → B(H) is a unital completely positive map,
there exists a unique *-homomorphism π : C∗u(S)→ B(H) extending ϕ.

3. Characterisations of WEP via Group C∗-Algebras

If G is a discrete group, we let C∗(G) denote, as is customary, the (full)
group C*-algebra of G. Of particular interest are free groups with finitely
many, say n, or countably many, generators, which we denote by Fn and
F∞, respectively.

Kirchberg [19, Proposition 1.1(iii)] proved that a C*-algebra A possesses
the weak expectation property (WEP) if and only if C∗(F∞) ⊗min A =
C∗(F∞) ⊗max A. We will not use Lance’s original definition of WEP in
this paper, only Kirchberg’s characterisation. In this sense our paper is re-
ally about characterisations of C*-algebras that satisfy Kirchberg’s tensor
formula and it is only and it is only because of Kirchberg’s theorem that
these are characterisations of WEP.

Kirchberg’s Conjecture, on the other hand, asserts that the C*-algebra
C∗(F∞) possesses WEP, i.e., that C∗(F∞) ⊗min C

∗(F∞) = C∗(F∞) ⊗max

C∗(F∞). Kirchberg proved that Connes’ Embedding Conjecture, which is a
statement about type II1-factors, is equivalent to the statement that C∗(F∞)
possesses WEP. Consequently, many author’s refer to what we are calling
Kirchberg’s Conjecture as Connes’ Embedding Problem. We prefer to dis-
tinguish between the two to stress that we are using Kirchberg’s formulation.

A C∗-algebra A is said to have the quotient weak expectation property
(QWEP) if A is a quotient of a C∗-algebra B that has WEP. In many ways
QWEP is a better behaved notion than WEP, as QWEP enjoys a number
of permanence properties that are not necessarily shared by WEP: see, for
example, [23, Proposition 4.1].

Lifting properties will play an important role in the sequel. If J is an
ideal in a unital C∗-algebra B and if qJ : B → B/J is the canonical quotient
homomorphism, then a unital completely positive map φ : S → B/J of
an operator system S into B/J is said to be liftable if there is a unital
completely positive map ψ : S → B such that φ = qJ ◦ψ. A unital C∗-algebra
A has the lifting property (LP) if every unital completely positive map φ
of A into B/J is liftable, for every unital C*-algebra B and every closed
ideal J ⊆ B. A unital C∗-algebra A has the local lifting property (LLP) if
for every unital completely positive map φ of A into B/J , the restriction
of φ to any finite dimensional operator subsystem S ⊆ A is liftable. In the
operator system context, these lifting properties were studied in [17].

If A1 and A2 are unital C*-algebras, we denote by A1∗A2 the free product
C*-algebra, amalgamated over the unit. The same notation is used for free
products of groups. The following result, which combines results of Boca [2]
and Pisier [28, Theorem 1.11], will be useful for us in the sequel.
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Theorem 3.1. Let A1, . . . ,An be unital C*-algebras and ϕi : Ai → B(H)
be unital completely positive maps, i = 1, . . . , n. Then there exists a unital
completely positive map ϕ : A1 ∗ · · · ∗ An → B(H) such that ϕ|Ai = ϕi.
Furthermore, if each Aj is a separable C∗-algebra with LP, then A1 ∗· · ·∗An
has LP.

Example 3.2. The following group C∗-algebras have property LP:

(1) C∗(Fn), for all n ∈ N ∪ {∞};
(2) C∗(SL2(Z));
(3) C∗(∗nj=1Z2), where ∗nj=1Z2 is the n-fold free product of n copies of

Z2, n ∈ N.

Proof. The fact that C∗(Fn) and C∗(SL2(Z)) have the lifting property (LP)
for all n ∈ N ∪ {∞} was established by Kirchberg [19]. There are alternate
proofs for the assertion that C∗(Fn) has LP: see [23, 28], for example.

Suppose that φ : C∗(Z2) → B/J is a unital completely positive map,
where B is a unital C*-algebra and J ⊆ B is a closed ideal. Let b ∈ B be
a selfadjoint contractive lifting of φ(h), where h is the generator of C∗(Z2).

Then the linear map φ̃ : C∗(Z2) → B given by φ̃(h) = b is unital and
completely positive (see, e.g. Proposition 4.1 (2)), which is clearly a positive
lifting of φ. To complete the proof observe that, because C∗(∗nj=1Z2) =

∗nj=1C
∗(Z2), Theorem 3.1 implies that C∗(∗nj=1Z2) has LP. �

We next record some observations that allow us to replace F∞ in the
formulation of Kirchberg’s Conjecture by other discrete groups and, sub-
sequently, to replace WEP by QWEP. Some of the results are certainly
well-known, but we include their proofs for completeness.

Proposition 3.3. Let G1 and G2 be countable discrete groups that con-
tain F2. If C∗(G1) ⊗min C

∗(G2) = C∗(G1) ⊗max C
∗(G2), then Kirchberg’s

Conjecture is true.

Proof. Since F2 contains F∞ as a subgroup, it follows by our assumption
that G1 and G2 do as well. By [28, Proposition 8.8], for i = 1, 2 there exists
a canonical compete order embedding ϕi : C∗(F∞) → C∗(Gi) and a unital
completely positive projection Pi : C∗(Gi) → C∗(F∞). Thus, there is a
chain of completely positive maps

C∗(F∞)⊗min C
∗(F∞)

ϕ1⊗ϕ2−→ C∗(G1)⊗min C
∗(G2) =

C∗(G1)⊗max C
∗(G2)

P1⊗P2−→ C∗(F∞)⊗max C
∗(F∞),

and the result follows. �

Definition 3.4. Consider the following two properties of a unital C∗-algebra
A:

(1) A has WEP;
(2) C∗(G)⊗min A = C∗(G)⊗max A.
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We say that a countable discrete group G detects WEP if (2) implies (1)
and that G characterises WEP if (2) and (1) are equivalent.

Proposition 3.5. Every countable discrete group G that contains F2 as a
subgroup detects WEP. If, in addition, C∗(G) has the local lifting property,
then G characterises WEP.

Proof. Suppose that G contains F2 and that A is a unital C∗-algebra for
which C∗(G)⊗minA = C∗(G)⊗maxA. Since F2 contains F∞ as a subgroup,
it follows by our assumption that G does so as well. By [28, Proposition 8.8],
there exists a canonical compete order embedding ϕ : C∗(F∞)→ C∗(G) and
a unital completely positive projection P : C∗(G) → C∗(F∞). Thus, there
is a chain of completely positive maps

C∗(F∞)⊗min A
ϕ⊗id→ C∗(G)⊗min A = C∗(G)⊗max A

P⊗id→ C∗(F∞)⊗max A,

and so C∗(F∞)⊗min A = C∗(F∞)⊗max A.
If C∗(G) has the local lifting property and A has WEP, then C∗(G)⊗min

A = C∗(G)⊗max A, by [19, Proposition 1.1(i)]. �

Example 3.6. The following countable discrete groups characterise WEP:

(1) SL2(Z);
(2) ∗nj=1Z2, if n ≥ 3.

Proof. Recall that Example 3.2 shows that C∗(SL2(Z)) and C∗(∗nj=1Z2)
have the lifting property, which is stronger than the local lifting property.
Moreover, SL2(Z) contains a copy of F2 (see, e.g., [19, p.486]) as does ∗nj=1Z2

for n ≥ 3 (see, e.g., [12]). Thus, Proposition 3.5 applies to each of these
groups. �

Remark. That the free product of n copies of Z2 detects WEP was also
established by T. Fritz in [12] using a different method.

Since SL3(Z) also contains F2 this group detects WEP, but it is not known
if C∗(SL3(Z)) has the lifting property. It would be interesting to know
whether SL3(Z) characterises WEP. More generally, since every countable
discrete group G that contains F2 as a subgroup and has the local lifting
property characterises WEP (Proposition 3.5) it would be interesting to
know if these two sufficient conditions are in fact necessary. A small step in
this direction is the following proposition.

Proposition 3.7. If a finitely generated discrete subgroup G of GLn(C)
detects WEP, then G ⊇ F2 and C∗(G) is a non-exact C∗-algebra.

Proof. If a finitely generated discrete subgroup G of GLn(C) does not con-
tain F2 as a subgroup, then G contains a normal subgroup H such that H
is solvable and G/H is finite (this is the “Tits Alternative”). As solvable
and finite groups are amenable, G is an extension of an amenable group by
an amenable group and is, therefore, amenable. Hence, C∗(G) is nuclear
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and therefore G cannot detect WEP. The only alternative, thus, is that G
contains F2 as a subgroup.

Because G is a finitely generated linear group, every finitely generated
subgroup of G is maximally almost periodic (see, e.g., [19]). Thus, if C∗(G)
were exact, then it would in fact be nuclear [19, Theorem 7.5]; but then G
cannot detect WEP. �

Observe that the argument of Proposition 3.7 applies to any countable
discrete group G for which the Tits Alternative holds and it yields the
inclusion G ⊇ F2.

Proposition 3.8. The following statements are equivalent for a countable
discrete group G that contains F2 and such that C∗(G) has the local lifting
property:

(1) Kirchberg’s Conjecture is true;
(2) C∗(G) has WEP;
(3) C∗(G) has QWEP.

Proof. (1) ⇒(2). If Kirchberg’s conjecture is true, then C∗(F∞) has WEP
and, hence by Proposition 3.5, C∗(G)⊗min C

∗(F∞) = C∗(G)⊗max C
∗(F∞)

and so by Kirchberg’s theorem, C∗(G) has WEP.
(2) ⇒(3). Trivial
(3) ⇒(1). Assume C∗(G) has QWEP. Let C∗(G) ⊆ C∗(G)∗∗ ⊆ B(Hu),

where Hu is the Hilbert space of the universal representation of C∗(G).
Then C∗(G)∗∗ has QWEP also [19, Corollary 3.3(v)]. Since C∗(G) has
the lifting property, C∗(G) is a unital C∗-subalgebra with LLP of a von
Neumann subalgebra C∗(G)∗∗ of B(Hu) with QWEP. Therefore, by [19,
Corollary 3.8(ii)], there is a unital completely positive map φ : B(Hu) →
C∗(G)∗∗ such that φ(a) = a for every a ∈ C∗(G). Thus, C∗(G) has WEP.
Now by Kirchberg’s criterion for WEP [19, Proposition 1.1(iii)], C∗(G)⊗min

C∗(F∞) = C∗(G) ⊗max C
∗(F∞). Therefore, Propositon 3.3 implies that

Kirchberg’s Conjecture is true. �

Corollary 3.9. Kirchberg’s conjecture is true if and only if C∗(F2) is a
quotient of a C∗-algebra with WEP.

4. Characterisations of WEP via Noncommutative n-Cubes

Let Fn be the free group on n generators and ∗nj=1Z2, be the n-fold free

product of the group Z2 of two elements (n ∈ N). Following [17], we let

Sn = span{1, ui, u∗i : 1 = 1, . . . , n} ⊆ C∗(Fn),

where u1, . . . , un are the generators of Fn viewed as elements of C∗(Fn) and
u−1i = u∗i , i = 1, . . . , n. We also let [9] NC(n) be the operator system

NC(n) = span{1, hi : i = 1, . . . , n} ⊆ C∗(∗nj=1Z2),

where h1, . . . , hn are the canonical generators of ∗nj=1Z2 (that is, hi is the
non-trivial element of the ith copy of Z2 in ∗nj=1Z2, viewed as an element of
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C∗(∗nj=1Z2)). The operator system NC(n) is called the operator system of
the noncommutative n-cube.

We note that Sn and NC(n) are characterised by the following universal
properties [9], [17]:

Proposition 4.1. Let S be operator system.

(1) If x1, . . . , xn ∈ S are contractions then there exists a (unique) unital
completely positive map ϕ : Sn → S such that ϕ(ui) = xi, i =
1, . . . , n.

(2) If x1, . . . , xn ∈ S are selfadjoint contractions then there exists a
(unique) unital completely positive map ϕ′ : NC(n) → S such that
ϕ′(hi) = xi, i = 1, . . . , n.

In fact, in [9], NC(n) is originally defined via this above universal prop-
erty.

By [9, Proposition 5.7], the linear map ψ : Sn → NC(n) given by ψ(1) = 1
and ψ(ui) = ψ(u∗i ) = hi, i = 1, . . . , n, is a complete quotient map. Note
that

kerψ = S0n
def
=

{
n∑

i=−n
λiui : λ0 = 0, λi + λ−i = 0, i = 1, . . . , n

}
.

Let Tn+1 be the tridiagonal operator system in Mn+1, that is, Tn+1 =
span{Ei,j : |i − j| ≤ 1}, where {Ei,j}i,j denote the standard matrix unit
system. By [10, Theorem 4.2], the linear map φ : Tn+1 → Sn given by
φ(Ei,j) = 1

n+1uj−i, is a complete quotient map. Note that

kerφ =

{
n+1∑
i=1

λiEi,i :
n+1∑
i=1

λi = 0

}
.

The symbols φ and ψ will be used to denote the maps introduced above.
Let

Kn+1
def
=

{
n+1∑
i=1

aiEi,i +

n∑
i=1

(biEi,i+1 − biEi+1,i) :

n+1∑
i=1

ai = 0

}
⊆ Tn+1.

Proposition 4.2. The map ρ
def
= ψ ◦ φ : Tn+1 → NC(n) is a complete

quotient map with kernel Kn+1.

Proof. Since φ and ψ are complete quotient maps, their composition is also
a complete quotient (indeed, if X ∈ Mk(NC(n)) is strongly positive then
by [8, Proposition 3.2] it has a strongly positive lifting Y ∈Mk(Sn) and, by
the same result, Y has a strongly positive lifting in Mk(Tn+1)). The image

of an element u =
∑n+1

i=1 aiEi,i +
∑n

i=1(biEi,i+1 + ciEi+1,i) under ψ ◦ φ is

ψ(φ(u)) =
1

n+ 1

n+1∑
i=1

ai1 +
1

n+ 1

n∑
i=1

(bi + ci)hi;
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thus, ψ(φ(u)) = 0 precisely when
∑n+1

i=1 ai = 0 and bi + ci = 0, i = 1, . . . , n.
�

Theorem 4.3. The following statements are equivalent for a C*-algebra A:

(1) NC(n)⊗min A = NC(n)⊗max A;
(2) the map ρ ⊗min id : Tn+1 ⊗min A → NC(n) ⊗min A is a complete

quotient map.

Moreover, if n ≥ 3, then these statements are also equivalent to:

(3) A possesses WEP.

Proof. The map ρ⊗min id is completely positive by the functoriality of min.
On the other hand, ρ⊗max id : Tn+1⊗maxA → NC(n)⊗maxA is a complete
quotient map by [10, Proposition 1.6]. By [10, Proposition 4.1], and the fact
that Tn+1⊗cA = Tn+1⊗maxA (see [16, Proposition 6.7]), the canonical map
Tn+1 ⊗max A → Tn+1 ⊗min A is a complete order isomorphism. It follows
from Lemma 2.5 that (1) and (2) are equivalent.

Suppose n ≥ 3 and set B = C∗(∗nj=1Z2). Assume (3) holds. The group

∗nj=1Z2 contains F2 (see, for example, [12]) and hence, by Proposition 3.5 and

Example 3.2 (3), B ⊗min A = B ⊗max A. By the injectivity of min, we have
NC(n) ⊗min A ⊆coi B ⊗min A, and by [9, Lemma 6.2], NC(n) ⊗max A ⊆coi

B ⊗max A. It now follows that NC(n)⊗min A = NC(n)⊗max A.
Finally, assume (1). By [9, Proposition 2.2], B = C∗e (NC(n)). The

natural inclusion of vector spaces NC(n)⊗minA → B⊗maxA is completely
positive as it is the composition of the completely positive maps NC(n)⊗min

A → NC(n)⊗max A and NC(n)⊗max A → B ⊗max A. It follows from [17,
Proposition 9.5] that the natural map B ⊗min A → B ⊗max A is completely
positive and hence B ⊗min A = B ⊗max A. Proposition 3.5 now shows that
A has WEP. �

Corollary 4.4. The operator system NC(n) has the lifting property for
every n ∈ N and NC(n) ⊗min B(H) = NC(n) ⊗max B(H) for every n ∈ N
and every Hilbert space H.

Proof. If ϕ : NC(n)→ B/J is a unital completely positive map, then the
images of the generators of NC(n) are hermitian contractions in B/J . But
each hermitian contraction in B/J can be lifted to a hermitian contraction
in B and these elements induce a unital completely positive lifting of φ by
Proposition 4.1(2). The tensor equality follows from Theorem 4.3 and the
fact that B(H) possesses WEP. �

Corollary 4.5. The map ρ ⊗min id : T3 ⊗min A → NC(2) ⊗min A is a
complete quotient map for every unital C∗-algebra A. Hence, if A0, A1, A2 ∈
Mk(A) are such that 1 ⊗ A0 + h1 ⊗ A1 + h2 ⊗ A2 is strongly positive in
NC(2) ⊗min Mk(A), then there exist elements A,B,C,X, Y ∈ Mk(A) with
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A+B + C = A0, X +X∗ = A1, Y + Y ∗ = A2 such that the matrix A X 0
X∗ B Y
0 Y ∗ C


is strongly positive in M3k(A).

Proof. By [9, Theorem 6.3], NC(2) is (min, c)-nuclear and now [16, Propo-
sition 6.7] shows that NC(2) ⊗min A = NC(2) ⊗max A. By Theorem 4.3,
ρ⊗min id : T3 ⊗min A → NC(2)⊗min A is a complete quotient map. Hence,
if u = 1 ⊗ A0 + h1 ⊗ A1 + h2 ⊗ A2 is strongly positive in NC(2) ⊗min

Mk(A), then [8, Proposition 3.2] and Proposition 2.4 implies that there
exist A,B,C,X, Y ∈Mk(A) such that

v = E1,1⊗A+E2,2⊗B+E3,3⊗C+E1,2⊗X+E2,1⊗X∗+E2,3⊗Y +E3,2⊗Y ∗

is strongly positive in T3 ⊗min A and

u = (ρ⊗ id)(k)(v) =
1

3
(1⊗ (A+B +C) + h1 ⊗ (X +X∗) + h2 ⊗ (Y + Y ∗)).

It follows that 1
3(A + B + C) = A0,

1
3(X + X∗) = A1,

1
3(Y + Y ∗) = A2.

Rescaling A,B,C,X and Y by a factor of 1
3 shows the claim. �

Corollary 4.6. The following statements are equivalent for a unital C∗-
algebra A:

(1) A has WEP;
(2) whenever A0, A1, A2, A3 ∈Mk(A) are such that 1⊗A0 + h1 ⊗A1 +

h2⊗A2+h3⊗A3 is strongly positive in NC(3)⊗minMk(A), then there
exist elements A,B,C,D,X, Y, Z ∈Mk(A) with A+B+C+D = A0,
X +X∗ = A1, Y + Y ∗ = A2 and Z + Z∗ = A3 such that the matrix

A X 0 0
X∗ B Y 0
0 Y ∗ C Z
0 0 Z∗ D


is strongly positive in M4k(A).

Proof. As in the proof of Corollary 4.5, one can see that (2) is equivalent to
the canonical map ρ⊗min id : T4 ⊗min A → NC(3)⊗min A being a complete
quotient map. By Theorem 4.3, the latter condition is equivalent to A
having WEP. �

We next include a characterisation of WEP in terms of liftings of strongly
positive elements. We recall that the numerical radius w(x) of an element
x of an operator system S is given by w(x) = sup{|f(x)| : f a state of S}.

Lemma 4.7. If S, T and R are operator systems and τ ∈ {min, c}, then
((S ⊕ T )⊗τ R)+ = ((S ⊗τ R)⊕ (T ⊗τ R))+.
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Proof. It is clear that there is a linear identification ι : (S ⊕ T ) ⊗ R →
(S ⊗ R) ⊕ (T ⊗ R). Suppose that u ∈ ((S ⊗c R) ⊕ (T ⊗c R))+, and write
u = (u1, u2), with u1 ∈ (S⊗cR)+ and u2 ∈ (T ⊗cR)+. Let f : S⊕T → B(H)
and g : R → B(H) be completely positive maps with commuting ranges. Let
f1 = f |S and f2 = f |T . Then f1 and f2 are completely positive and hence
f1·g(u1) ≥ 0 and f2·g(u2) ≥ 0. But then f ·g(ι−1(u)) = f1·g(u1)+f2·g(u2) ≥
0.

Conversely, assume that u ∈ ((S ⊕ T ) ⊗c R)+. Write ι(u) = (u1, u2).
If f1 : S → B(H) and g : R → B(H) are completely positive maps with
commuting ranges, then the map f : S ⊕ T → B(H) given by f((x, y)) =
f1(x) is completely positive and hence f1 · g(u1) = f · g(u) ≥ 0. Thus,
u1 ∈ (S ⊗c R)+; similarly, u2 ∈ (T ⊗c R)+.

The statement regarding min is immediate from the injectivity of this
tensor product. �

Theorem 4.8. The following statements are equivalent for a unital C∗-
algebra A:

(1) A has WEP;
(2) whenever

X = 1⊗A0 + u1 ⊗A1 + u∗1 ⊗A∗1 + u2 ⊗A2 + u∗2 ⊗A∗2
is a strongly positive element of Mk(S2 ⊗min A), where A0, A1, A2 ∈
Mk(A), there exist strongly positive elements B,C ∈ Mk(A) such
that

A0 =
1

2
(B + C), w(B−

1
2A1B

− 1
2 ) <

1

2
and w(C−

1
2A2C

− 1
2 ) <

1

2
.

(3) whenever A1, A2 ∈ Mk(A) satisfy w(A1, A2) < 1/2 then there exist
positive invertible elements B,C ∈Mk(A) such that

1

2
(B + C) = I, w(B−

1
2A1B

− 1
2 ) < 1/2 and w(C−

1
2A2C

− 1
2 ) < 1/2.

Proof. We first prove the equivalence of (1) and (2). Let

J = span{(1,−1)} ⊆ S1 ⊕ S1.

It follows from [15, Corollary 4.4] and [15, Proposition 4.7] that J is a
kernel and S2 = (S1 ⊕ S1)/J . Let q : S1 ⊕ S1 → S2 be the corresponding
(complete) quotient map. By [9, Proposition 3.3], S1 is (min, c)-nuclear and
hence S1⊗minA = S1⊗maxA. On the other hand, for every operator system
S and every unital C*-algebra B, we have that Mk(S⊗minB) = S⊗minMk(B)
and Mk(S ⊗max B) = S ⊗maxMk(B), k ∈ N. It now follows from Lemma 4.7
that (S1 ⊕ S1)⊗min A = (S1 ⊕ S1)⊗max A. In the diagram

(S1 ⊕ S1)⊗min A = (S1 ⊕ S1)⊗max A
↓ ↓

S2 ⊗min A ← S2 ⊗max A,
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the right arrow denotes a complete quotient map by [10, Proposition 1.6],
while the left arrow denotes the completely positive map q ⊗min id arising
from the functoriality of min. By Lemma 2.5, S2 ⊗min A = S2 ⊗max A if
and only if q ⊗min id is a complete quotient map. By [14, Theorem 5.9], it
suffices to show that (2) is equivalent to q⊗min id being a complete quotient
map.

To this end, suppose that q⊗min id is a complete quotient and let X be the
strongly positive element of Mk(S2⊗minA) given in (2). By [8, Proposition
3.2], there exists a strongly positive element Y ∈ Mk((S1 ⊕ S1) ⊗min A)

with (q ⊗min id)(k)(Y ) = X. By virtue of Lemma 4.7, write Y = (Y1, Y2),
where Y1 and Y2 are strongly positive elements of S1 ⊗min Mk(A). Write
Y1 = 1⊗B + ζ ⊗B1 + ζ̄ ⊗B2 and Y2 = 1⊗C + ζ ⊗C1 + ζ̄ ⊗C2, where we
have denoted by ζ the generator of S1, viewed as the identity function on
the unit circle T. It follows that

1⊗ 1

2
(B + C) + u1 ⊗B1 + u∗1 ⊗B2 + u2 ⊗ C1 + u∗2 ⊗ C2 = X,

which shows that 1
2(B + C) = A0, B1 = B∗2 = A1, C1 = C∗2 = A2.

Suppose that Y1 ≥ δ1. Then, for every z ∈ T we have that B+zA1+z̄A∗1 ≥
δI in Mk(A). Taking z = ±1, we see that B ≥ δ1 and hence B is invertible.

Thus, I + zB−
1
2A1B

− 1
2 + z̄B−

1
2A∗1B

− 1
2 ≥ δ

‖B‖I in Mk(A), for every z ∈ T.

By [8, Theorem 1.1], this implies that w(B−
1
2A1B

− 1
2 ) < 1

2 . Similarly, C is

invertible and w(C−
1
2A2C

− 1
2 ) < 1

2 .
Conversely, if (2) is satisfied then reversing the steps in the previous two

paragraphs shows that the element Y = (Y1, Y2) is a strongly positive lifting
of X. By [8, Proposition 3.2] and Proposition 2.4, q ⊗min id is a complete
quotient map. This proves the equivalence of (1) and (2).

We now show that (2) and (3) are equivalent.
Recall that w(A1, A2) < 1/2 if and only if

I ⊗ I +A1 ⊗ u1 +A∗1 ⊗ u∗1 +A2 ⊗ u2 +A∗2 ⊗ u∗2
is strictly positive. From this we see that (2) implies (3). Conversely, if (3)
holds then (2) holds for the case that A0 = I. For the general case, use that
fact that the strict positivity implies that A0 is positive and invertible and

conjugate by A
− 1

2
0 . �

Theorem 4.9. The following statements are equivalent for A = C∗(∗mj=1Z2):

(1) ρ⊗min id : Tn+1⊗minA → NC(n)⊗minA is a complete quotient map;
(2) NC(n)⊗min NC(m) = NC(n)⊗c NC(m).

Moreover, if n,m ≥ 3, then these statements are equivalent to:

(3) Kirchberg’s Conjecture holds true.

Proof. (1) ⇒ (2). By Theorem 4.3, NC(n)⊗min A = NC(n)⊗max A. On
the other hand, NC(n)⊗min NC(m) ⊆coi NC(n)⊗min A by the injectivity
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of min, while NC(n)⊗c NC(m) ⊆coi NC(n)⊗max A by [9, Lemma 6.2]. It
follows that NC(n)⊗min NC(m) = NC(n)⊗c NC(m).

(2) ⇒ (1). Set B = C∗(∗nj=1Z2). By [9, Lemma 6.2], we have that

NC(n) ⊗c NC(m) ⊆coi B ⊗max A. The assumption implies that the linear
embedding β : NC(n)⊗minNC(m)→ B⊗max A is completely positive. On
the other hand, NC(n)⊗minNC(m) ⊆coi B⊗minA and β(u⊗v) is unitary, for
all canonical unitary generators u (resp. v) of the operator system NC(n)
(resp. NC(m)). Since u⊗v for such u and v generate B⊗minA, [17, Lemma
9.3] implies that φ has an extension to a *-homomorphism π : B ⊗min A →
B⊗maxA. Thus, every positive element of Mk(NC(n)⊗minA) is sent via π(k)

to a positive element of Mk(NC(n)⊗maxA) and, by Theorem 4.3, ρ⊗min id
is a complete quotient map.

Suppose that n,m ≥ 3. Assuming (2), we have seen that B ⊗min A =
B ⊗max A. By [12, Corollary C.4], C∗(F2) ⊗min C

∗(F2) = C∗(F2) ⊗max

C∗(F2), and hence Kirchberg’s Conjecture holds. Conversely, if Kirchberg’s
Conjecture holds then Sn⊗minSm = Sn⊗maxSm. Denoting for a moment by
ψn (resp. ψm) the canonical quotient map from Sn onto NC(n) introduced
after Proposition 4.1, we have, by [10, Proposition 1.6], that ψn ⊗ ψm :
Sn ⊗max Sm → NC(n) ⊗max NC(m) is a complete quotient map. Let γn :

NC(n) → Sn be the linear map given by γn(hi) =
hi+h

∗
i

2 , i = 1, . . . , n. By
[9, Proposition 5.7], γn is a complete order isomorphism onto its range and
a right inverse of ψn. Moreover, the map γn ⊗ γm : NC(n)⊗min NC(m)→
Sn ⊗min Sm sis completely positive. A standard diagram chase now shows
that (2) holds: namely, NC(n)⊗min NC(m) = NC(n)⊗max NC(m). �

We conclude this section with another realisation of NC(n) as a quotient
of a matrix operator system, which leads to a different characterisation of
WEP. Following [10], let

Wn = span{uiu∗j : i, j = 0, 1, . . . , n} ⊆ C∗(Fn),

where we have set u0 = 1. Let β : Mn+1 →Wn be the linear map given by
β(Ei,j) = 1

n+1u
∗
iuj , i, j = 0, . . . , n. It follows from [10] that β is a complete

quotient map with kernel the space D0
n+1 of all diagonal matrices of trace

zero; thus, β : Mn+1/D
0
n+1 → Wn is a complete order isomorphism. (We

note that the map sending Ei,j to uiu
∗
j was considered in [10] but since

{u∗1, . . . , u∗n} is a set of universal unitaries whenever {u1, . . . , un} is such,
the claims remain true with our definition as well.) Clearly, Sn ⊆ Wn and

Rn+1
def
= β−1(Sn) = span{E1,j , Ej,1, Ej,j : j = 1, . . . , n+ 1}.

Let γ denote the restriction of β to Rn+1. We claim that γ is a complete
quotient map from Rn+1 onto Sn. Indeed, if X is a strongly positive element
of Mk(Sn) then X is also strongly positive as an element of Mk(Wn). By

[8, Proposition 3.2], there exists Y ∈ Mk(Mn+1) such that β(k)(Y ) = X.
However, R ∈Mk(Rn+1) by the definition of Rn+1.
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We note that the map γ is defined by the relations γ(Ei,i) = 1
n+11,

γ(E1,i) = 1
n+1u

∗
i , i = 1, . . . , n+ 1.

Proposition 4.10. The map ψ ◦ γ : Rn+1 → NC(n) is a complete quotient
map with kernel

Ln+1 = span


n+1∑
i=1

aiEi,i +

n+1∑
j=2

bj(E1,j − Ej,1) :

n+1∑
i=1

ai = 0

 .

Proof. Since both γ : Rn+1 → Sn and ψ : Sn → NC(n) are complete
quotient maps, the map ψ ◦γ is also a complete quotient. The identification
of its kernel is straightforward. �

Since the graph underlying the operator system Rn+1 is chordal (in fact,
it is a tree and hence does not have cycles), Rn+1 ⊗min A = Rn+1 ⊗max A
for any unital C*-algebra A (see [16, Proposition 6.7]). Thus, a version
of Theorem 4.3 can be formulated with Rn+1 in the place of Tn+1. The
methods in the proof of Corollary 4.6 can be used to obtain the following
characterisation of WEP.

Corollary 4.11. The following statements are equivalent for a unital C*-
algebra A:

(1) A has WEP;
(2) whenever A0, A1, A2, A3 ∈Mk(A) are such that 1⊗A0 + h1 ⊗A1 +

h2 ⊗ A2 + h3 ⊗ A3 is strongly positive in NC(3)⊗min Mk(A), there
exist elements A,B,C,D,X, Y, Z ∈Mk(A) with A+B+C+D = A0,
X +X∗ = A1, Y + Y ∗ = A2 and Z + Z∗ = A3 such that the matrix

A X Y Z
X∗ B 0 0
Y ∗ 0 C 0
Z∗ 0 0 D


is strongly positive in M4k(A).

Although Corollary 4.6 and Corollary 4.11 both give characterisations of
WEP in terms of “completions” of 4 × 4 matrices, there does not appear
to be a direct connection between the two sets of conditions. In fact, even
though both of these results arise from realising NC(3) as a quotient of T4
and R4, respectively, we shall now show that these later operator systems
are not completely order isomorphic.

Proposition 4.12. The operator systems Rn and Tn are not completely
order isomorphic unless n ∈ {1, 2, 3}.

Proof. For a graph G on n vertices, let SG be the “graph operator system”
(see [16])

SG = span{Ei,j , Ek,k : k = 1, . . . , n, (i, j) ∈ G}.
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We first claim that if G1 and G2 are connected graphs on n vertices and
ϕ : SG1 → SG2 is a complete order isomorphism then there exists a unitary
U ∈ Mn such that U∗SG1U = SG2 . Indeed, since G1 and G2 are connected,
the C*-algebras C∗(SG1) and C∗(SG2) generated by SG1 and SG2 , respectively,
both coincide with Mn. Since Mn is simple, we have that the C*-envelopes
C∗e (SG1) and C∗e (SG2) of SG1 and SG2 , respectively, both coincide with Mn.
The complete order isomorphism ϕ now gives rise to an isomorphism between
their C*-envelopes and hence there exists an isomorphsim ϕ̃ : Mn → Mn

extending ϕ. Let U ∈Mn be a unitary matrix with ϕ̃(A) = U∗AU , A ∈Mn;
then U∗SG1U = SG2 .

Now note that Tn+1 and Rn+1 are both graph operator systems. Let
Pk = U∗Ek,kU , k = 1, . . . , n+ 1, and C = span{Pk : k = 1, . . . , n+ 1}. Since
Tn+1 is a bimodule over the algebra Dn+1 of all diagonal matrices, Rn+1

is a bimodule over C. Note that each Pk is a rank one operator. Assume
that not all of P1, . . . , Pn+1 are equal to a diagonal matrix unit in Rn+1,
suppose, for example, that P1 = (λiλj)

n+1
i,j=1 is not of the form Ek,k. Set

Λ = {k : λk 6= 0}; then span{Ei,j : i, j ∈ Λ} ⊆ Rn+1. However, the only
full matrix subalgebras of Rn+1 are of the form span{E1,1, E1,j , Ej,1, Ej,j},
for some j. Assume, without loss of generality, that j = 1. But then P1E1,3

has λ2λ1 as its (2, 3)-entry, contradicting the definition of Rn+1.
It follows that {Pk}n+1

k=1 = {Ek,k}n+1
k=1 , so that there exists a permutation

π of {1, . . . , n+1} with Pk = Eπ(k),π(k), k = 1, . . . , n+1. If we let Uπ denote
the corresponding permutation unitary, then UπEk,kU

∗
π = Pk = U∗Ek,kU.

Hence, U∗πU
∗Ek,kUUπ = Ek,k for all k and consequently, UUπ is diagonal.

Thus, UπTn+1U
∗
π = U∗Tn+1U = Rn+1. This means that π defines an isomor-

phism of the underlying graphs of Tn+1 and Rn+1. This is a contradiction if
n ≥ 3 since the graph underlying Tn+1 has at least two vertices of degree 2,
while the graph underlying Rn+1 has only one vertex of degree bigger than
1. �

5. NC(n) as a quotient of C2n

In this section we represent NC(n) as an operator system quotient of the
abelian C*-algebra C2n in two different ways and include some consequences
of these results. In the next section we will use these two representations
to give two more characterisations of WEP. We first recall some basic facts
about coproducts of operator systems. Coproducts in this category were
used by D. Kerr and H. Li [18], where the authors described the amal-
gamation process over a joint operator subsystem. T. Fritz demonstrated
some applications of this concept in quantum information theory [11]. A
categorical treatment and further results can be found in the thesis of the
second author [14]. We next extend the results from [11] and [14] to deduce
representations of the coproduct of (finitely) many operator systems.

Let S1, . . . ,Sn be operator systems. Then there exists a unique operator
system U , along with the unital complete order embeddings im : Sm ↪→ U ,
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m = 1, . . . , n, such that the following universal property holds: For any
operator system T and unital completely positive maps ϕm : Sm → T ,
m = 1, . . . , n, there is a unique unital completely positive map ϕ : U → T
such that ϕm = ϕ ◦ im for all m. In fact, using F. Boca’s results [2], it can
be easily shown that the operator system

span{s1 + · · ·+ sn : sm ∈ Sm, m = 1, . . . , n} ⊆ C∗u(S1) ∗ · · · ∗ C∗u(Sn)

satisfies this condition, while its uniqueness is a standard consequence of
its universal property. The operator system U will be called the coproduct
of S1, . . . ,Sn and denoted by qnm=1Sm. We often identify each Sm with its
canonical image im(Sm) in qnm=1Sm.

As in [14], a more concrete realisation of the coproduct can be given in
terms of operator system quotients by null subspaces:

Theorem 5.1. Let S1, . . . ,Sn be operator systems and

J = span{(e,−e, 0, . . . , 0), (e, 0,−e, 0, . . . , 0), ..., (e, 0, . . . , 0,−e)}.
Then J is a kernel and, up to a unital complete order isomorphism,

qnm=1Sm ∼= (S1 ⊕ · · · ⊕ Sn)/J .

Proof. The fact that J is a null subspace (and hence a kernel) is straight-
forward. Note that

(e, . . . , e) + J = (ne, 0, . . . , 0) + J = · · · = (0, . . . , 0, ne) + J .
Therefore, the map ιm : Sm → (⊕nj=1Sj)/J given by s 7→ (0, . . . , ns, . . . , 0)+

J , where the term ns appears at the mth-component, is unital and com-
pletely positive.

We claim that ιm is a complete order embedding. To prove this, first note
that

J = span{xj : j ∈ {1, . . . , n} \ {m}},
where xj has the unit e as its mth-component, −e as its jth-component and
0’s elsewhere (we leave the elementary verification of this to the reader).

Suppose that ιm(s) is positive in (⊕nj=1Sj)/J . We will prove that s is

positive in Sm. Since null subspaces are (completely) proximinal kernels [14,
Proposition 2.4], it follows that ιm(s) has a positive lifting

y = (0, ..., ns, ..., 0) +
∑
j 6=m

ajxj

in ⊕nj=1Sj . Using the definition of xj , we see that

y = (−a1e, . . . ,−am−1e, ns+ Σj 6=maje,−am+1e, . . . ,−ane).
Now it is clear that aj ≤ 0, j 6= m, and hence ns ≥ −Σj 6=mame ≥ 0. This
proves that ιm is an order embedding. A similar argument shows that ιm is
a complete order embedding.

As a second step, we show that (⊕nj=1Sj)/J has the universal property of
the coproduct. Let T be an operator system and ϕm : Sm → T be a unital
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completely positive map, m = 1, . . . , n. Let ϕ̃ : ⊕nj=1Sj → T be given by

ϕ̃(s1, . . . , sn) = (1/n)
∑n

j=1 ϕj(sj). Then J ⊆ ker ϕ̃ and hence there exists

a unital completely positive map ϕ : (⊕nj=1Si)/J → T such that

ϕ((s1, . . . , sn) + J ) =
1

n

n∑
j=1

ϕj(sj).

It is now elementary to see that ϕm = ϕ ◦ ιm for every m. Since coproducts
are unique up to a complete order isomorphism, the result follows. �

It is easy to verify that coproducts satisfy the associative law. The univer-
sal property of coproducts ensures that, for the operator systems S1, . . . ,Sn,
there is a canonical C*-algebraic identification

C∗u(qni=1Si) ∼= C∗u(S1) ∗ · · · ∗ C∗u(Sn),

where ∗ denotes free product amalgamated over the unit. In fact, we have
the following stronger result.

Theorem 5.2. Let Si be an operator subsystem of a C*-algebra Ai, i =
1, . . . , n. Let

S def
= span{s1 + · · ·+ sn : si ∈ Si, i = 1, . . . , n} ⊆ A1 ∗ · · · ∗ An.

Then the canonical map qnj=1Sj → ∗nj=1Aj associated with the inclusions
im : Sm ↪→ Am, m = 1, . . . , n, is a unital complete order embedding with
image S. If, moreover, each Si is spanned by unitaries that generate Ai as
a C*-algebra, then qni=1Si is spanned by unitaries that generate A1 ∗ · · · ∗An
as a C*-algebra, and

C∗e (qni=1Si) ∼= A1 ∗ · · · ∗ An.

Proof. We shall prove that S has the desired universal property. Let T ⊆
B(H) be an operator system and ϕm : Sm → T be a unital completely
positive map, m = 1, . . . , n. Let ϕ̃m : Am → B(H) be a unital completely
positive extension of ϕ and let ϕ : A1 ∗ · · · ∗ An → B(H) be the unital
completely positive map arising from Theorem 3.1. Clearly, ϕ|S has the
desired properties and has image inside T .

Suppose that each Am is generated by a family of unitaries in Sm. Since
the free product A1 ∗ · · · ∗ An is generated by A1 ∪ · · · ∪ An, it is generated
by the unitaries in qni=1Si. The remaining part of the theorem is a direct
consequence of [14, Proposition 5.6]. �

Corollary 5.3. Let Gi be a discrete group generated by the set ui, for each
i = 1, . . . , n. Set u = u1∪· · ·∪un, viewed as a generating set for G1∗· · ·∗Gn.
Then S(u) = qni=1S(ui).

Proof. The claims follow from Theorem 5.2. �
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Since the characters (i.e., the one dimensional unitary representations) of
Zk can be identified with distinct kth-roots of unity, the Fourier transform
gives a C*-algebraic identification C∗(Zk) ∼= Ck; see, e.g., [6, Section VII.1].

Corollary 5.4. We have a complete order isomorphism

qni=1Ck ∼= span{e, ai1, ai2, . . . , ain : i = 1, . . . , k − 1} ⊆ C∗(Zk ∗ · · · ∗ Zk)

where the free product consists of n terms and aij, j = 1, . . . , k, are the

canonical generators of C∗(Zk). In particular, for every n,

(1) qni=1 C2 ∼= NC(n) unitally and completely order isomorphically.

Proof. The assertion follows from Corollary 5.3 by setting each Gi = Zk.
�

As the unital complete order isomorphism in Corollary 5.4 is based on
the Fourier transform, it will be convenient to have a more concrete realisa-
tion. Consider NC(n) with its standard basis {e, h1, . . . , hn}, where hk is a
universal selfadjoint contraction, k = 1, . . . , n. Let

pk =
1 + hk

2
, so that p⊥k =

1− hk
2

, k = 1, . . . , n.

As usual, {ek}2nk=1 denotes the standard basis of C2n.

Theorem 5.5. Let θ : C2n → NC(n) be the linear map given by

θ(e2k−1) =
1

n
pk, θ(e2k) =

1

n
p⊥k , k = 1, . . . , n.

Then θ is a completely positive complete quotient map onto NC(n) with
kernel

Jn = span{(e,−e, 0, . . . , 0), (e, 0,−e, . . . , 0), . . . , (e, 0, 0, . . . ,−e)}.

Proof. Write ik for the canonical inclusion of the kth copy of C2 into
qnj=1C2, and {f1, f2} for the standard basis of C2. By (1), we have a canon-

ical complete order unital isomorphism NC(n) ∼= qnj=1C2, under which the

element hk ∈ NC(n) is identified with the element ik(f1 − f2) ∈ qnj=1C2.
On the other hand, by Theorem 5.1, there is a unital complete order

isomorphism ϕ : qnj=1C2 → C2n/Jn, such that ϕ ◦ ik = ιk (where ιk is the

order embedding defined in Theorem 5.1). Now note that

ϕ(hk) = ϕ(ik(f1 − f2)) = n(e2k−1 − e2k) + Jn.

On the other hand,

ϕ(1) = ϕ(ik(f1 + f2)) = n(e2k−1 + e2k) + Jn.

It follows that

ϕ(pk) = ne2k−1 and ϕ(p⊥k ) = ne2k.

Thus, the map θ is the inverse of ϕ and the proof is complete. �
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It is now possible to give another proof of Corollary 4.4. Since NC(n) =
qni=1C2 = C2n/J , where J is the null subspace as in Theorem 5.1, and the
lifting property is preserved under quotients by null subspaces [14, Theorem
6.9], the lifting result follows. The tensor identity follows from the local
lifting property criteria given in [17, Theorem 8.5].

Our next aim is to represent NC(n) as a quotient of C2n in a different
way than the one exhibited in Theorem 5.5. We first note a general fact
about quotients.

Proposition 5.6. Let S be a finite dimensional operator system, J1 ⊆ S
be a null space, q : S → S/J1 be the quotient map and J2 ⊆ S/J1 be a
null space. Then q−1(J2) is a null space in S and (S/J1)/J2 is canonically
completely order isomorphic to S/q−1(J2).

Proof. Note that q−1(J2) is finite dimensional as both J1 and J2 are. Let
y ∈ q−1(J2) be such that y ∈ S+. Then q(y) ∈ J2 and q(y) ∈ (S/J1)+;
since J2 is a null space, q(y) = 0, or y ∈ J1. Since J1 is a null space, we
have that y = 0.

Since J1 ⊆ q−1(J2), there exists a unital completely positive map φ :
S/J1 → S/q−1(J2) given by φ(x + J1) = x + q−1(J2), x ∈ S. If q(x) =
x + J1 ∈ J2 then x ∈ q−1(J2); thus, J2 ⊆ kerφ. Let ψ : (S/J1)/J2 →
S/q−1(J2) be the induced untal completely positive map. The map ψ is
bijective, and it remains to show that ψ−1 is completely positive. To this
end, let (xij + q−1(J2))i,j ∈ Mn(S/q−1(J2))+. This means that for every
ε > 0 there exist yij ∈ q−1(J2) such that (xij + yij)i,j + ε1n ∈ Mn(S)+. It
follows that (xij + yij +J1)i,j + ε1n ∈Mn(S/J1)+, which shows that ψ is a
complete order isomorphism. �

The following is easy to verify.

Lemma 5.7. Let S and T be operator systems and J ⊆ S be a kernel.
Then J ⊕ 0 is a kernel in S ⊕ T and, up to a complete order isomorphism,
(S/J )⊕ T = (S ⊕ T )/(J ⊕ 0).

Theorem 5.8. Let e be the unit of C2 and, for n ∈ N, let

Qn = span{(e,−e, 0, 0, . . . ), (e, e,−e, 0, . . . ), . . . , (e, . . . , e,−e)} ⊆ C2n.

Then Qn is a null subspace of C2n and NC(n) is completely order isomorphic
to C2n/Qn.

Proof. Let ẽ be the unit of C2n−2/Qn−1. We use induction. The case n = 2
is in [15]. Assuming Qn−1 is a null subspace of C2n−2, we have that Qn−1⊕0
is a null subspace of C2n. Let q : C2n → C2n/(Qn−1 ⊕ 0) be the quotient

map. Then I
def
= span{(e, . . . , e,−e) + (Qn−1⊕0)} is easily seen to be a null

space in C2n/(Qn−1 ⊕ 0) and Qn = q−1(I); by Proposition 5.6, Qn is a null
space in C2n.
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Now, using successively the definition of NC(n), the induction hypothesis,
[15, Proposition 4.7], Lemma 5.7 and Proposition 5.6, we have

NC(n) = NC(n− 1)q C2 = (C2n−2/Qn−1)q C2

= ((C2n−2/Qn−1)⊕ C2)/span{(ẽ,−e)}
=

(
C2n/(Qn−1 ⊕ 0)

)
/I = C2n/Qn.

�

We note that the kernels Jn and Qn are different, hence Theorems 5.5
and 5.8 provide two distinct realisations of NC(n) as a quotient of C2n.

By a matrix operator system we shall mean an operator subsystem S of
a matrix algebra. It was observed in [9, Proposition 5.13] that the non-
commutative cube NC(n) can be realised as the dual of a matrix operator
system. We next provide a multivariable version of [9, Proposition 5.11];
that latter result identified NC(2) with a dual of a diagonal matrix operator
system. This result can also be found in Ozawa [24].

Theorem 5.9. Let

Rn,k = {(a11, . . . , a1k, . . . , an1 , . . . , ank) ∈ Cnk :
k∑
i=1

ali =
k∑
i=1

ami , for all l,m}.

Then R∗n,k ∼= qni=1Ck unitally and completely order isomorphically. In par-
ticular, if

R = {(a1, a2, . . . , a2n−1, a2n) ∈ C2n : a1 + a2 = · · · = a2n−1 + a2n}

then R∗ = NC(n) unitally and completely order isomorphically.

Proof. Since qni=1Ck = (Ck ⊕ · · · ⊕ Ck)/J ∼= Cnk/J where J is the null
subspace defined in Theorem 5.1, and, by [14, Proposition 2.7], the adjoint
of a complete quotient map is a complete order embedding, it follows that

(qni=1Ck)∗ ↪→ (Cnk)∗ ∼= Cnk.

Clearly the image of this map is precisely the subspace described in the
theorem. Moreover, by defining the Archimedean order unit of (C2n)∗ to
be the positive linear functional which maps each element to the sum of its
entries, it is elementary to see that the identification is unital. �

6. The Riesz decomposition property

In [15] the second author characterised WEP in terms of a relative non-
commutative Riesz interpolation property. In this section we characterise
WEP in terms of a relative non-commutative Riesz decomposition property.
Recall that an element s in an operator system is called strongly positive,
denoted by s� 0, if s ≥ δe for some δ > 0. By s� t, we mean s− t� 0,
and by s1, s2 � t, we mean s1 � t and s2 � t.
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Definition 6.1. Let B be a unital C*-algebra.
(i) A ordered tuple (a1, a2, b1, . . . , bn, x1, . . . , xn) of elements of B, where

x1, . . . , xn are strongly positive, will be called a Riesz decomposition scheme
if

(1) a1 � x1 + · · ·+ xn
(2) a2 � x1 + · · ·+ xn
(3) xi � bi, i = 1, . . . , n.

(ii) Let A be a unital C*-subalgebra of B. We say that A has the n-Riesz
decomposition property in B if, whenever (a1, a2, b1, . . . , bn, x1, . . . , xn) is a
Riesz decomposition scheme, where a1, a2, b1, . . . , bn ∈ A and x1, . . . , xn ∈ B,
then there exist strongly positive elements y1, . . . , yn ∈ A such that (a1, a2, b1,
. . . , bn, y1, . . . , yn) is a Riesz decomposition scheme.

We say that A has the complete n-Riesz decomposition property in B if
Mk(A) has the n-Riesz decomposition property in Mk(B) for every k.

Although the definition is given for an arbitrary pair of C*-algebras A and
B withA ⊆ B, we will be mostly concerned with the case where B is injective.
In fact, injective objects are universal in the sense that if A is represented as
a unital C*-subalgebra of both B1 and B2, where B1 and B2 are injective, and
A has the complete n-Riesz decomposition property in B1, then A has the
complete n-Riesz decomposition in B2. This follows from a straightforward
application of Arveson’s extension theorem. In particular, we see that A
has the complete n-Riesz decomposition property in an injective C*-algebra
B if and only if A has the complete n-Riesz decomposition in I(A).

In the sequel, the non-commutative cubes will be identified with the ma-
trix quotients via Theorem 5.5:

(2) NC(n) = qni=1C2 ∼= C2n/Jn
where Jn denote the (n− 1)-dimensional null-subspace spanned by

(1, 1,−1,−1, 0, ..., 0), (1, 1, 0, 0,−1,−1, 0, ..., 0), ..., (1, 1, 0, ..., 0,−1,−1).

If x ∈ C2n, we let ẋ = x+Jn be the image of x under the quotient map; note
that via the identification (2), ẋ can be viewed as an element of NC(n).

We recall that {ei}2ni=1 is the standard basis of C2n. It is elementary to
verify that {ė1, ė2, ė3, ė5, ..., ė2n−1} is a basis for NC(n). We will need the
following positivity criteria for elements in an operator system of the form
S ⊗max NC(n).

Proposition 6.2. Let S be an operator system and

u = s1⊗ ė1 + s2⊗ ė2− s3⊗ ė3− s5⊗ ė5− · · · − s2n−1⊗ ė2n−1 ∈ S ⊗NC(n).

Then u � 0 in S ⊗max NC(n) if and only if there are strongly positive
elements x3, x5, . . . , x2n−1 in S such that

(s1, s2, s3, s5 . . . , s2n−1, x3, x5, . . . , x2n−1)

is a Riesz decomposition scheme.
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Proof. Denote by q the quotient map from C2n onto NC(n) = C2n/Jn
and suppose that u � 0 in S ⊗max (C2n/Jn). By [10, Proposition 1.6],
id⊗q : S ⊗max C2n → S ⊗max (C2n/Jn) is a complete quotient map. Thus,
by Proposition 2.4 u lifts to a strongly positive element of S⊗maxC2n. Since

ė = (n, n, 0, . . . , 0) + Jn = nė1 + nė2,

we have that

u = s1 ⊗ ė1 + s2 ⊗ ė2 −
n−1∑
i=1

s2i+1 ⊗ ė2i+1.

Taking into account that

Jn = span{e1 + e2 − e2i+1 − e2i+2 : i = 1, . . . , n− 1},

we see that a strongly positive lifting of u in S ⊗max C2n has the form

s1 ⊗ e1 + s2 ⊗ e2 −
n−1∑
i=1

s2i+1 ⊗ e2i+1

+
n−1∑
i=1

(−x2i+1)⊗ (e1 + e2 − e2i+1 − e2i+2)

for some x3, x5, . . . , x2n−1 in S. Since S ⊗max C2n = S ⊗min C2n, we deduce

s1 − x3 − · · · − x2n−1 � 0
s2 − x3 − · · · − x2n−1 � 0

−s3 + x3 � 0
x3 � 0

−s5 + x5 � 0
x5 � 0

...
−s2n−1 + x2n−1 � 0

x2n−1 � 0


=⇒

s1 � x3 + · · ·+ x2n−1
s2 � x3 + · · ·+ x2n−1
x3, x5, . . . , x2n−1 � 0
s2i+1 � x2i+1, i = 1, . . . , n− 1.

and we have obtained our decomposition.
Conversely, whenever s1, s2, s3, s5, . . . , s2n−1 have the property that

s1, s2 � x3 + · · ·+ x2n−1

and

s2i+1 � x2i+1, i = 1, 2, . . . , n− 1,

for some strongly positive elements x3, . . . , x2n−1, by reversing the argument
in the previous paragraph, we deduce that u is strongly positive. �

Proposition 6.3. Let A and B be unital C*-algebras with A ⊆ B. Then
A has the 1-Riesz decomposition property in B. In other words, for any
a1, a2, a3 ∈ A, whenever there is x strongly positive in B satisfying a1, a2 �
x, a3 � x then this x can be chosen to be a strongly positive element of A.
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Proof. Suppose that a1, a2, a3 ∈ A and x ∈ B+ are such that a1, a2 � x,
a3 � x. By Proposition 6.2, a1 ⊗ ė1 + a2 ⊗ ė2 − a3 ⊗ ė3 is strongly positive
in B ⊗max NC(2). By [9, Proposition 6.3], NC(2) is C*-nuclear, and hence
a1⊗ ė1+a2⊗ ė2−a3⊗ ė3 is strongly positive in B⊗minNC(2). The injectivity
of the minimal tensor product now ensures that a1⊗ ė1 +a2⊗ ė2−a3⊗ ė3 is
strongly positive in A⊗minNC(2). Another application of the C*-nuclearity
of NC(2) and Proposition 6.2 establishes the claim. �

While the n-Riesz decomposition is automatically satisfied if n = 1, higher
values of n require, as shown in the following theorem, an additional assump-
tion on A.

Theorem 6.4. For a unital C*-subalgebra A ⊆ B(H), the following state-
ments are equivalent:

(i) A has WEP;
(ii) A has the complete 2-Riesz decomposition property in B(H);
(iii) A has the complete n-Riesz decomposition property in B(H) for every

n ∈ N.

In contrast to the original definition of WEP given in [22], the charac-
terisation given in Theorem 6.4 only makes reference to a single concrete
representation of A. Moreover, we shall see below that B(H) can be re-
placed by an arbitrary C*-algebra having WEP. The proof of the theorem
will be based on the following result:

Proposition 6.5. Let B be a unital C*-algebra and A ⊆ B be a unital
C*-subalgebra. The following are equivalent:

(i) A has the (complete) n− 1-Riesz decomposition property in B;
(ii) There is a canonical (complete) order embedding

A⊗max NC(n) ⊆coi B ⊗max NC(n).

Proof. We first skip “complete” and prove the equivalence of (i) and (ii).
Since Mk(A) is a unital C*-subalgebra of Mk(B) and

Mk(C ⊗max T ) = Mk(C)⊗max T
canonically for every C*-algebra C and any operator system T , the equiva-
lence of the statements with the term “complete” added will be automati-
cally satisfied.

We identify NC(n) with C2n/Jn and fix the basis {y1, y2, x1, . . . , xn−1}
where y1 = ė1, y2 = ė2 and xi = ė2i+1, i = 1, . . . , n− 1.

(i)⇒(ii) We need to prove the following: if an element

u = a1 ⊗ y1 + a2 ⊗ y2 +
n−1∑
i=1

ci ⊗ xi,

where a1, a2, c1, . . . , cn−1 ∈ A, is strongly positive in B ⊗max NC(n) then
it is also strongly positive in A ⊗max NC(n). Since cones are closed with
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respect to the order norm, the desired embedding will then be automat-
ically satisfied. Proposition 6.2 implies that there exist positive elements
z1, . . . , zn−1 in B such that (a1, a2, c1, . . . , cn−1, z1, . . . , zn−1) is a Riesz de-
composition scheme. Using (i), we conclude that z1, . . . , zn−1 can be chosen
from A. Finally Proposition 6.2 implies that that u is strongly positive in
A⊗max NC(n).

(ii)⇒(i) Suppose that a1, a2, c1, . . . , cn−1 ∈ A and z1, . . . , zn−1 are strongly
positive in B are such that the tuple (a1, a2, c1, . . . , cn−1, z1, . . . , zn−1) is
a Riesz decomposition scheme. Proposition 6.2 implies that the element
u = a1 ⊗ y1 + a2 ⊗ y2 −

∑n−1
i=1 ci ⊗ xi is strongly positive in B ⊗max NC(n).

By assumption, u is strongly positive in A⊗maxNC(n). Now, using Propo-
sition 6.2 once again, it is easy to see that a Riesz decomposition scheme
exists all of whose entries belong to A. �

Proof of Theorem 6.4. By Proposition 6.5, it suffices to prove that A has
WEP if and only if

A⊗max NC(n) ⊆ B(H)⊗max NC(n)

completely order isomorphically for all n, and, equivalently for n = 3. This
follows from Corollary 4.4 and Theorem 4.3. �

Remark 6.6. In Theorem 6.4, B(H) can be replaced by any injective C*-
algebra containing A and, in particular, with the injective envelope I(A) of
A. Thus, for a unital C*-algebra A the following are equivalent:

(i) A has WEP;
(ii) A has the complete 2-Riesz decomposition property in I(A);
(iii) A has the complete n-Riesz decomposition property in I(A) for every

n ∈ N.

The proof is identical to that of Theorem 6.4 after noting that the mini-
mal and the maximal tensor products of non-commutative cubes with any
injective C*-algebra coincide.

Corollary 6.7. Let B be a unital C*-algebra and A ⊆ B be a unital C*-
subalgebra. Suppose that B has WEP. Then A has WEP if and only if it
has the complete 2-Riesz decomposition property in B.

Proof. By Proposition 6.5, it suffices to prove that A has WEP if and only
if

A⊗max NC(3) ⊆coi B ⊗max NC(3).

Since B has WEP, Theorem 4.3 implies that B⊗minNC(3) = B⊗maxNC(3).
Therefore, the embedding of A ⊗max NC(3) into B ⊗max NC(3) being a
complete order inclusion is equivalent to the statement that the minimal
and and the maximal tensor products of A with NC(3) coincides. Thus the
result follows from Theorem 4.3. �

Corollary 6.8. (i) Every unital C*-algebra A has the n-Riesz decomposi-
tion property in its bidual A∗∗, for every n ∈ N.
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(ii) If A has WEP, then A has the complete n-Riesz decomposition in B
for every C*-algebra B containing A and every n ∈ N.

Proof. (i) This is a direct consequence of [17, Lemma 6.5] and Proposition
6.5.

(ii) Fix a C*-algebra B with A ⊆ B and n ≥ 2. By Theorem 4.3, A⊗min

NC(n) = A ⊗max NC(n). A standard diagramme chase now shows that
A ⊗max NC(n) ⊆coi B ⊗max NC(n). Proposition 6.5 shows that A has the
complete n− 1-Riesz decomposition property in B. �

We will next formulate the Connes Embedding Problem in terms of the
Riesz decomposition property. Since C∗(F2) is a residually finite dimensional
(for brevity, RFD) C*-algebra [3], there is a C*-algebraic embedding

C∗(F2) ↪→
∞∏
k=1

Mn(k),

for some sequence (n(k))k∈N of natural numbers.

Theorem 6.9. Connes’ embedding problem has an affirmative solution if
and only if C∗(F2) has the complete 2-Riesz decomposition property in the
C∗-algebra

∏∞
k=1Mn(k).

Proof. The claim follows from Corollary 6.7 and the fact that
∏∞
k=1Mn(k)

has WEP, or by using Remark 6.6 and the fact that this algebra is injective.
�

We will finish this section with a comparison of the Riesz decomposition
and the Riesz interpolation properties. Recall that a unital C*-subalgebra
A of a C*-algebra B is said to have the relative (k,m)-tight Riesz interpola-
tion property in B (for brevity, the TR(k,m)-property in B) [15] if, whenever
a1, . . . , am, b1, . . . , bk ∈ A are selfadjoint elements, the existence of a selfad-
joint element x ∈ B satisfying

a1, . . . , am � x� b1, . . . , bk

implies the existence of a selfadjoint element y ∈ A such that a1, . . . , am �
y � b1, . . . , bk. Likewise, we say that A has the complete TR(k,m)-property
in B if Mn(A) has the TR(k,m)-property in Mn(B) for every n ∈ N.

Theorem 6.10. The following are equivalent, for a unital C*-subalgebra
A ⊆ B(H):

(i) A has the complete 2-Riesz decomposition property in B(H);
(ii) A has the complete TR(2, 3)-property in B(H);
(iii) A has the complete TR(k,m)-property in B(H) for every k and m;
(iv) A has WEP.

Proof. The assertion is a direct consequence of Theorem 6.4 and [15, The-
orem 7.4]. �
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