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On postcritically finite
unicritical polynomials

Xavier Buff

Abstract. In this article, we first study arithmetical properties of post-
critically finite unicritical polynomials fa : z 7→ azD + 1 with D ≥ 2.
In particular, we answer a question of Milnor, showing that there ex-
ist non-Galois conjugate parameters a1 ∈ C and a2 ∈ C such that fa1

and fa2 have critical orbits periodic with the same period. We also
answer a question of Baker and DeMarco, proving that the set of pa-
rameters a ∈ C such that 0 and 1 are simultaneously (pre)periodic for
qa : w 7→ w2 + a is equal to {0,−1,−2}.
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Introduction

We study polynomials f : C→ C of degree D ≥ 2 from a dynamical point
of view, i.e., we consider sequences {zn}n≥0 defined by iteration:

z0 ∈ C and zn := f(zn−1) = f◦n(z0).

This sequence is called the orbit of z0 for f .
The point z0 is periodic if there is an integer n ≥ 1 such that f◦n(z0) = z0.

If p is the smallest integer with this property, we call it the period of z0. The
point z0 is (pre)periodic if there exists a (smallest) integer k ≥ 0 such that
f◦k(z0) is periodic of period p. We say that k is the preperiod and that p is
the period.
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Consider the polynomials fa defined by

fa(z) = azD + 1, a ∈ C.

For a 6= 0, those are polynomials of degree D with a unique critical point at
0. We are interested in the sets AD ⊂MD defined by

AD :=
{
a ∈ Cr {0} ; 0 is (pre)periodic for fa

}
and

MD :=
{
a ∈ C ; the orbit of 0 for fa is bounded

}
.

If a ∈ AD, we say that fa is postcritically finite. The set AD is the set of
Misiurewicz parameters and the setMD is the Multibrot set (a generalization
of the Mandelbrot set in degree D).

We shall first prove a Kronecker type result, where the set of roots of
unity is replaced by AD, and the unit disk is replaced by MD.

Proposition 1. If a is an algebraic integer such that a and all its Galois
conjugates are contained in MD, then a ∈ AD ∪ {0}.

Conversely, according to Milnor [M2, Theorem 3.2], if a ∈ AD, then

• a is an algebraic integer,
• its Galois conjugates are in AD,
• the product of a and its Galois conjugates divides D, and
• if 0 is periodic for fa with period p ≥ 2, then a is an algebraic unit.

We prove that for the last statement, one can get rid of the assumption
that 0 is periodic.

Proposition 2. If a ∈ AD and 0 is preperiodic for fa with preperiod k ≥ 2
and period p ≥ 2, then a is an algebraic unit.

In §2 we study the Gleason polynomials
{
Fp ∈ Z[a]

}
p≥1 defined by

Fp(a) := f◦pa (0).

In §3, we study the Misiurewicz polynomials
{
Fk,p ∈ Z[a]

}
k≥2,p≥1 defined

by

Fk,p :=
FDk+p−1 − FDk−1
Fk+p−1 − Fk−1

=
∑

i+j=D−1
F ik+p−1F

j
k−1.

The parameters in AD are the roots of the Gleason and Misiurewicz poly-
nomials. The proof of the preceding proposition is based on the following
two lemmas. The first lemma is due to Gleason. Our proof of the second
lemma corrects the one given in the appendix of [E].

Lemma 3 (Gleason). For p ≥ 2, the polynomial Fp has simple roots.

Lemma 4. If K > k ≥ 1 and ωD = 1 with ω 6= 1, then FK − ωFk has
simple roots.
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Figure 1. Left: the set M2. Right: the set M3

When q divides p, the polynomial Fq divides Fp. Since the roots are
simple,

Fp =
∏
q|p

Gq with Gp :=
∏
q|p

Fµ(p/q)q ∈ Z[a],

where µ is the Möbius function defined by µ(n) = (−1)m if n is the product
of m distinct primes with m ≥ 0 and µ(n) = 0 otherwise. It is tempting to
conjecture that the polynomials Gp are irreducible over Q (see [M2, Remark
3.5]). We show that this is not true in general.

Proposition 5. The polynomial G3 is reducible over Q if and only if D ≡ 1
mod 6. In this case, G3 has exactly two irreducible factors, one of which is
1 + a+ a2.

Note that for D = 2, the linear map z 7→ w = az conjugates the quadratic
polynomial fa to the monic centered polynomial qa : w 7→ w2 + a. We
conclude the article with a proof of the following result, which answers a
question of Baker and DeMarco [BD].

Proposition 6. The set of parameters a ∈ C such that 0 and 1 are simul-
taneously (pre)periodic for qa is {0,−1,−2}.

Acknowledgments. The results presented here were inspired by fruitful
discussions with Adam Epstein and Sarah Koch.

1. A Kronecker type result

We first prove Proposition 1. Our treatment is largely inspired by Kro-
necker’s proof that if an algebraic integer and all its Galois conjugates are
contained in the closed unit disk, then this algebraic integer is either 0 or a
root of unity.
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Lemma 7. Assume a ∈ C and {zn} is a bounded orbit for fa. Then

• either |a| ≤ 2 and |azD−1n | ≤ 2 for all n ≥ 0,
• or |a| > 2 and |zn| < 1 for all n ≥ 0.

Proof. Set wn := azD−1n . First, observe that if |zn| ≥ 1 and |wn| > 2, then

|zn+1| =
∣∣fa(zn)

∣∣ ≥ |azDn | − 1 ≥ |azDn | − |zn| = |zn|
(
|wn| − 1

)
.

Now assume |a| > 2 and set κ := |a| − 1 > 1. If |zn0 | ≥ 1 for some n0, it
follows by induction that for n ≥ n0, |zn| ≥ κn−n0 ≥ 1 and |wn| ≥ κ+1 ≥ 2.
Indeed, for n = n0, we have that |zn0 | ≥ 1 and |wn0 | ≥ |a| = κ+ 1 ≥ 2. And
if the property holds for some n ≥ n0, then

|zn+1| ≥ |zn|
(
|wn| − 1

)
≥ κ|zn| ≥ κn ≥ 1

and

|wn+1| = |azD−1n+1 | ≥ |a| = κ+ 1 ≥ 2.

So, the orbit {zn} is not bounded, which contradicts our assumptions.
Finally, assume |a| ≤ 2 and |wn0 | > 2 with n0 ≥ 1. Set κ := |wn0 |−1 > 1.

It follows by induction that for n ≥ n0,

|zn| > κn−n0 ≥ 1 and |wn| ≥ κ+ 1 > 2.

Indeed, for n = n0, we have that |wn0 | = κ+1 > 2 and |zD−1n0
| = |wn0/a| > 1,

so that |zn0 | > 1. Now, if the property holds for some n ≥ n0, then

|zn+1| ≥ |zn|
(
|wn| − 1

)
≥ κ|zn| ≥ κn ≥ 1

and

|wn+1| = |azD−1n+1 | ≥ κ
D−1|wn| > |wn| ≥ κ+ 1 > 2.

So, the orbit {zn} is not bounded, which contradicts our assumptions. �

Corollary 8. If a ∈MD, then |a| ≤ 2.

Proof. By definition, if a ∈ MD, the orbit of 0 for fa is bounded. Since
fa(0) = 1, we necessarily have |a| ≤ 2. �

So, assume a1 ∈ MD is an algebraic integer whose Galois conjugates
a2, . . . , ad are in MD. For j ∈ [[ 1, d ]] and n ≥ 0, set zj,n := f◦naj (0) and

wj,n := ajz
D−1
j,n . In order to prove that fa1 is postcritically finite, we must

show that the sequence {z1,n}n≥0 is finite. Equivalently, we shall prove that
the sequence {w1,n}n≥0 is finite.

The points wj,n are algebraic integers. Let Qn ∈ Z[w] be their minimal
polynomials. The Galois conjugates of w1,n are w2,n, . . . wd,n. According to
the previous lemma, those Galois conjugates all have modulus at most 2. It
follows that the coefficients of the polynomials Qn are uniformly bounded,
independently on n ≥ 1. There is a finite number of such polynomials. So,
the set {wj,n}j∈ [[ 1,d ]] ,n≥0 is finite.
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2. Gleason polynomials

As in the introduction, for p ≥ 1, define Fp ∈ Z[a] recursively by

F1 := 1 and Fp+1 := aFDp + 1,

so that Fp(a) = f◦pa (0). Those polynomials are called Gleason polynomials.

Example. We have that

F2 = a+ 1 and F3 = a(a+ 1)D + 1.

We now prove Lemma 3, i.e., that the roots of the Gleason polynomials
are simple.

Proof of Lemma 3. For p ≥ 1, we have

Fp+1 = aFDp + 1 and F ′p+1 = FDp +DFD−1p F ′p ≡ FDp mod D.

Since Fp is monic,

discriminant(Fp+1) ≡ resultant(aFDp + 1, FDp ) mod D ≡ 1 mod D.

In particular, the discriminant does not vanish and Fp+1 has simple roots.
�

For p ≥ 1, let ApD be the set of parameters a ∈ AD such that 0 is periodic
for fa with period p. Moreover, let Gp be the monic polynomial which has
simple roots exactly at the points a ∈ ApD.

Lemma 9. For p ≥ 1, the constant coefficient of Gp is 1 and

Fp =
∏
q|p

Gq.

Proof. For p = 1, we have that G1 = F1 = 1. For p ≥ 2, the roots of Fp
are exactly the parameters a ∈ AqD with q dividing p. Since Fp has simple
roots and all polynomials are monic, we have the required factorization.

For p ≥ 1, the constant coefficient of Fp is 1. In addition, G1 = 1. It
follows by induction on p ≥ 1 that the constant coefficient of Gp is 1. �

Milnor [M2] asked whether the polynomials Gp are irreducible over Q.
Proposition 5 asserts that this is not true in general. We shall now prove
this proposition. Note that

G3 = a(a+ 1)D + 1.

We must prove that G3 is reducible over Q if and only if D ≡ 1 mod 6
and that in this case, G3 has exactly two irreducible factors, one of which is
1 + a+ a2. This is in fact a result of Selmer [S] that we reproduce here.

Proof of Proposition 5. On the one hand, ifD ≡ 1 mod 6, then a2+a+1
divides G3. Indeed, let ω 6= 1 be a cube-root of unity. Then ω + 1 is a 6-th
root of unity and

G3(ω) = ω(ω + 1)D + 1 = ω(ω + 1) + 1 = ω2 + ω + 1 = 0.
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On the other hand, observe that

G3(a) = P (a+ 1) with P (x) := xD(x− 1) + 1 = xD+1 − xD + 1.

If G3 is reducible over Q, then P is reducible over Q and we may write
P = P1P2 with P1 ∈ Z[x] and P2 ∈ Z[x] monic polynomials of respective
degree D1 ≥ 1 and D2 ≥ 1. The product of the constant coefficients of P1

and P2 is equal to 1, so that both are equal to ε ∈ {−1,+1}. Set

R(x) := εxD2P1(x)P2(1/x) and S(x) := εxD1P1(1/x)P2(x).

Note that R ∈ Z[x] and S ∈ Z[x] are monic polynomials with constant
coefficient equal to 1. In addition, R(x) = xD+1S(1/x). It follows that if

R(x) =

D+1∑
j=0

cjx
j , then S(x) =

D+1∑
j=0

cjx
D+1−j . Moreover,

RS = PQ with Q(x) = xD+1P (1/x) = xD+1 − x+ 1.

Identifying the coefficients of xD+1 on both sides yields
D+1∑
j=0

c2j = 3. Thus,

there are exactly three coefficients cj which are non zero, and they are equal
to ±1. We already know that cD+1 = c0 = 1. So, there exist j ∈ [[ 2, D ]] and
cj ∈ {−1,+1} such that

R(x) = xD+1 + cjx
j + 1 and S(x) = 1 + cjx

D+1−j + xD+1.

Comparing RS to PQ again, we see that we necessarily have j = 1 or j = D
and cj = −1. In other words, either R = P and P2(x) = εxD2P2(1/x),
or S = P and P1(x) = εxD1P1(1/x). In the first case, the roots of P2 are
common roots of P and Q. In the second case, the roots of P1 are common
roots of P and Q.

To complete the proof, observe that if

xD+1 − xD + 1 = xD+1 − x+ 1 = 0,

then xD − x = 0 and x 6= 0, so that xD−1 = 1. As a consequence, we have
that x2−x+1 = xD+1−x+1 = 0. This shows that x is a 6-th root of unity;
in particular D = 1 mod 6. In addition, P has two irreducible factors, one
of which is x2− x+ 1. Thus, G3 has two irreducible factors, one of which is

(a+ 1)2 − (a+ 1) + 1 = a2 + a+ 1.

�

It might be interesting to study whether there are other values of D and p
for which the polynomial Sp is not irreducible over Q. Adam Epstein would
probably call those algebraic conspiracies.
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3. Misiurewicz polynomials

We now prove Lemma 4, i.e., if K > k ≥ 1 and ωD = 1 with ω 6= 1, then
the polynomial FK − ωFk has simple roots.

Proof of Lemma 4. We first do a preliminary comment. Let Pα ∈ Z[x]
be the minimal polynomial of α := 1− ω. Observe that

xD − 1 = (x− 1)(1 + x+ · · ·+ xD−1) = (x− 1) ·
∏
ζ

(x− ζ),

where ζ ranges in the set of D-th roots of unity different from 1. The con-
stant coefficient cα ∈ Z of Pα is the product of α and its Galois conjugates.
It divides ∏

ζ

(1− ζ) = 1 + 11 + · · ·+ 1D−1 = D.

Now, assume a0 is a root of

FK − ωFk = a · (FDK−1 − ωFDk−1) + α,

with the convention F0 := 0. The monic polynomial FDK − FDk ∈ Z[a]
vanishes at a0, so that, a0 is an algebraic integer. Observe that

F ′K − ωF ′k = FDK−1 − ωFDk−1 +Da · (FD−1K−1F
′
K−1 − ωFD−1k−1 F

′
k−1).

So, if a0 were a root of F ′K − ωF ′k, then we would have α = Dβ, for some
algebraic integer

β := a20 ·
(
FD−1K−1F

′
K−1 − ωFD−1k−1 F

′
k−1
)
(a0).

Let Pβ ∈ Z[y] be the minimal polynomial of β and let cβ ∈ Z be its constant
coefficient. Then,

Pα(x) = DmPβ(x/D) with m := deg(Pα).

As a consequence, Dmcβ = cα divides D, so that m = 1. This can occur
only if α ∈ Q, i.e., only if ω = −1. In that case, we have 2 = Dβ and so,
D = 2 and β = 1. This proves that when D 6= 2 and ω 6= −1, the roots of
FN − ωFn are simple.

It remains to prove that when D = 2, the roots of FK + Fk are simple.
Since FK(0)+Fk(0) = 2, it is equivalent to prove that aFK +aFk has simple
roots. Set Q0 := 0 and for p ≥ 1, Qp := aFp. Then, for p ≥ 1,

Qp = aFp = a · (aF 2
p−1 + 1) = Q2

p−1 + a

and
Q′p = 2Qp−1Q

′
p−1 + 1 = 1 mod 2.

In particular,

Q′K +Q′k
2

= 1 +QK−1Q
′
K−1 +Qk−1Q

′
k−1 ∈ Z[a].

We have that

Q′K−1 ≡ 1 mod 2 and Q′k−1 ≡ 1 mod 2,
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so that

1 +QK−1Q
′
K−1 +Qk−1Q

′
k−1 ≡ 1 +QK−1 +Qk−1 mod 2.

We also have

QK +Qk ≡ Q2
K−1 +Q2

k−1 mod 2 ≡ (QK−1 +Qk−1)
2 mod 2.

Since (QK−1 +Qk−1)
2 is monic and since 1 +QK−1 +Qk−1 takes the value

1 at the roots of (QK−1 +Qk−1)
2, we have that

resultant

(
QK +Qk,

Q′K +Q′k
2

)
≡ 1 mod 2.

It follows that this resultant is non zero, and that the polynomials QK +Qk
and FK + Fk have simple roots. �

We may now prove Proposition 2, i.e., if a ∈ AD and 0 is preperiodic for
fa with preperiod k ≥ 2 and period p ≥ 2, then a is an algebraic unit.

For k ≥ 2 and p ≥ 1, let Ak,pD be the set of parameters a ∈ AD such that
0 is preperiodic for fa with preperiod k and period p. Moreover, let Gk,p be

the monic polynomial which has simple roots exactly at the points a ∈ Ak,pD .
Finally, following Milnor [M1], set

Fk,p :=
FDk+p−1 − FDk−1
Fk+p−1 − Fk−1

=
∑

i+j=D−1
F ik+p−1F

j
k−1.

The polynomials Fk,p are called Misiurewicz polynomials. Proposition 2 is a
corollary of the following lemma which asserts that for p ≥ 2, the constant
coefficient of Gk,p is equal to 1.

Lemma 10. For k ≥ 2 and p ≥ 1,

Fk,p = FD−1gcd(p,k−1) ·
∏
q|p

Gk,q.

The constant coefficient of Gk,p is equal to D if p = 1 and is equal to 1 if
p ≥ 2.

Proof. First, observe that the roots of Fk,p are the parameters a ∈ AD such
that Fk+p−1(a) = ωFk−1(a) for some D-th root of unity ω 6= 1. According
to Lemma 4, the polynomial Fk+p−1 − ωFk−1 has simple roots. It follows
that if Fk+p−1(a) = ωFk−1(a) = 0, then a is a root of multiplicity D − 1 of
Fk,p. Otherwise, a is a simple root of Fk,p.

Second, Fk+p−1(a) = ωFk−1(a) = 0 if and only if a ∈ AqD for some q

dividing k − 1 and p. And Fk+p−1(a) = ωFk−1(a) 6= 0 if and only if f◦ka (0)

is periodic with period dividing p, but f
◦(k−1)
a (0) is not periodic, i.e., if and

only if a ∈ Ak,qD for some q dividing p.
Third, the constant coefficient of Fk,p is equal to D : there are D terms

with constant coefficient 1 in the sum defining Fk,p. In addition, the constant
coefficient of Fq is 1 for all q ≥ 1. As a consequence, the constant coefficient
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of
∏
q|pGk,q is D for all p ≥ 1. It follows by induction on p ≥ 1 that the

constant coefficient of Gk,p is equal to D if p = 1 and to 1 if p ≥ 2. �

4. On a question of Baker and DeMarco

We conclude the article with the proof of Proposition 6 : if 0 and 1 are
simultaneously (pre)periodic for qa : w 7→ w2 + a, then a ∈ {0,−1,−2}. In
fact, this is an equivalence since

• for q0, 0 and 1 are fixed;
• for q−1, 0 is periodic of period 2 and 1 is preperiodic with preperiod

1 and period 2 (with orbit 1 7→ 0 7→ −1 7→ 0);
• for q−2, 0 is preperiodic with preperiod 2 and period 1 (with orbit

0 7→ −2 7→ 2 7→ 2) and 1 is preperiodic with preperiod 1 and period
1 (with orbit 1 7→ −1 7→ −1).

The proof relies on Lemma 11 below which asserts that if 0 and 1 have a
bounded orbit for qa, then a is contained in

∆(−1, 1) ∪∆(−1/4, 1/2) ∪ {−2},

where ∆(z, r) is the open Euclidean disk centered at z with radius r.

Proof of Proposition 6 assuming Lemma 11. Denote by A the set of
parameters a ∈ C such that 0 and 1 are simultaneously (pre)periodic for qa.
If a ∈ A, the orbits of 0 and 1 are finite for qa, thus bounded. According to
Lemma 11,

A ⊂ ∆(−1, 1) ∪∆(−1/4, 1/2) ∪ {−2}.
The disk ∆(−1/4, 1/2) is contained in the main cardioid of the Mandelbrot
set M2. It follows that the only parameter a ∈ ∆(−1/4, 1/2) for which 0 is
(pre)periodic is a = 0. So, A ⊂ ∆(−1, 1) ∪ {0,−2}.

Assume a ∈ A ∩∆(−1, 1). Then, q◦k0a (0) = q
◦(k0+p0)
a (0) for some integers

k0 ≥ 0 and p0 ≥ 1 and q◦k1a (1) = q
◦(k1+p1)
a (1) for some integers k1 ≥ 0 and

p1 ≥ 1. Note that

Q0(a) := q◦(k0+p0)a (0)− q◦k0a (0) and Q1(a) := q◦(k1+p1)a (1)− q◦k1a (1)

are polynomials in Z[a]. In particular, a is an algebraic integer. Moreover, if
a′ is a Galois conjugate of a, then Q0(a

′) = Q1(a
′) = 0, so that a′ ∈ A. Thus,

a and its Galois conjugates are contained in ∆(−1, 1). It follows that a+ 1
and all its Galois conjugates are contained in the unit disk. In particular,
their product is an integer contained in the unit disk, i.e., is equal to 0.
Thus, a+ 1 = 0 and a = −1. �

Denote by N the set of parameters a ∈ C such that 0 and 1 have a
bounded orbit for qa.

Lemma 11. The set N is contained in ∆(−1, 1) ∪∆(−1/4, 1/2) ∪ {−2}.
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Figure 2. The set N and the boundary of ∆(−1, 1) ∪∆(−1/4, 1/2).

Proof. For a ∈ C and for n ≥ 0, set

Pn(a) := q◦na (0) = af◦na (0) and Qn(a) := q◦na (1) = af◦na (1/a).

According to Lemma 7 with D = 2,

a ∈ N =⇒
∣∣Pn(a)

∣∣ ≤ 2 and
∣∣Qn(a)

∣∣ ≤ 2 for all n ≥ 0.

Let us subdivide

U := Cr ∆(−1, 1) ∪∆(−1/4, 1/2)

into two pieces:

U0 :=
{
a ∈ U ; Re(a) ≤ −1

}
, U1 :=

{
a ∈ U ; Re(a) ≥ −1

}
.

It is enough to prove that

•
∣∣P3(a)

∣∣ > 2 for a ∈ U0 r {−2} and

•
∣∣Q3(a)

∣∣ > 2 for a ∈ U1.

Let us begin with

P3(a) = a · (a3 + 2a2 + a+ 1).

The roots of P3 are 0, −1.7548 . . ., −0.1225 . . . i0.7448 . . . which do not be-
long to U0. Thus,

min
U0

|P3| = min
∂U0

|P3|.

An elementary computation yields∣∣P3(−1 + iy)
∣∣2 = y8 + 2y6 + 3y4 + 3y2 + 1.
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Note that y2 ≥ 1 when −1 + iy ∈ ∂U0. In this case∣∣P3(−1 + iy)
∣∣2 ≥ 10 > 4.

In addition, ∣∣P3(−1 + eiθ)
∣∣2 = h

(
cos(θ)

)
with

A(x) := −16x4 + 24x3 + 8x2 − 26x+ 10.

Note that cos(θ) ∈ (−1, 0) when

−1 + eiθ ∈ ∂U0 r {−2}.
Thus, it is enough to prove that A > 4 on (−1, 0). Observe that

A(x)− 4 = −2(x+ 1)B(x)

with
B(x) := 8x3 − 20x2 + 16x− 3.

We have to prove that B < 0 on (−1, 0). Note that

B′(x) = 24(x− 1)(x− 2/3),

so that B is increasing on (−1, 0) and B < −3 on (−1, 0).
Let us now consider

Q3(a) = (a+ 1)(a3 + 5a2 + 6a+ 1).

The roots of Q3 are −1, −0.198 . . ., −3.24 . . . and −1.55 . . . which do not
belong to U1. Thus,

min
U1

|Q3| = min
∂U1

|Q3|.

An elementary computation yields∣∣Q3(−1 + iy)
∣∣2 = y8 + 6y6 + 5y4 + y2.

Note that y2 ≥ 1 when −1 + iy ∈ ∂U1. In this case∣∣Q3(−1 + iy)
∣∣2 ≥ 13 > 4.

The circles C(−1, 1) and C(−1/4, 1/2) intersect at the points −1/8i
√

15/8.
We have that ∣∣Q3(−1 + eiθ)

∣∣2 = C
(
cos(θ)

)
with

C(x) := −8x3 − 12x2 + 8x+ 13.

Note that cos(θ) ∈ (0, 7/8) when −1 + eiθ ∈ ∂U1. The derivative C ′(x)
vanishes at

x0 = (−3−
√

21)/6 < 0

and
x1 = (−3 +

√
21)/6 ∈ (0, 7/8).

So, on (0, 7/8),
C(x) ≥ min

(
C(0), C(7/8)

)
> 4.
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Finally, ∣∣Q3(−1/4 + eiθ/2)
∣∣2 = δ

(
cos(θ)

)
with

δ(x) := − 39

256
x4 − 31

256
x3 +

5607

2048
x2 +

25933

4096
x+

242593

65536
.

Note that cos(θ) ∈ (1/4, 1) when −1/4 + eiθ/2 ∈ ∂U1. In this case,

δ
(
cos(θ)

)
≥ − 39

256
− 31

256
+

5607

2048
· 1

42
+

25933

4096
· 1

4
+

242593

65536
> 4. �
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