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Iterating the Cuntz–Nica–Pimsner
construction for compactly
aligned product systems

James Fletcher

Abstract. We study how decompositions of a quasi-lattice ordered
group (G,P ) relate to decompositions of the Nica–Toeplitz algebra and
Cuntz–Nica–Pimsner algebra of a compactly aligned product system X
over P . In particular, we are interested in the situation where (G,P )
may be realised as the semidirect product of quasi-lattice ordered groups.
Our results generalise Deaconu’s work on iterated Toeplitz and Cuntz–
Pimsner algebras — we show that the Nica–Toeplitz algebra and Cuntz–
Nica–Pimsner algebra of a compactly aligned product system over Nk
may be realised as k-times iterated Toeplitz and Cuntz–Pimsner algebras
respectively.
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1. Introduction

In [15], Fowler introduced product systems of Hilbert bimodules as a
generalisation of the continuous product systems of Hilbert spaces studied
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by Arveson [2] and the discrete product systems studied by Dinh [9]. Loosely
speaking, a product system of Hilbert A-bimodules over a unital semigroup
P is a semigroup X =

⊔
p∈P Xp, such that each Xp is a Hilbert A-bimodule,

and the map x ⊗A y 7→ xy extends to an isomorphism from Xp ⊗A Xq to
Xpq for each p, q ∈ P \ {e}.

Motivated by the work of Nica [28] and Laca and Raeburn on Toeplitz
algebras associated to non-abelian groups [23], Fowler focused on product
systems over quasi-lattice ordered groups that satisfied a condition he called
compact alignment. Fowler then studied representations of such product
systems satisfying a constraint called Nica covariance. Results of [15] show
how to associate to each compactly aligned product system X a C∗-algebra
NT X, generated by a universal Nica covariant representation, which we
call the Nica–Toeplitz algebra of X. In the same article, the faithful rep-
resentations of Nica–Toeplitz algebras are characterised [15, Theorem 7.2],
generalising both Laca and Raeburn’s uniqueness theorem for Toeplitz al-
gebras of quasi-lattice ordered groups [23, Theorem 3.7], and Fowler and
Raeburn’s uniqueness theorem for Toeplitz algebras of Hilbert bimodules
[17, Theorem 2.1]. Subsequently, it was shown in [13, Theorem 3.2], that
the hypothesis present in [15, Theorem 7.2] of each fibre being (left) nonde-
generate is not necessary.

Fowler also proposed a notion of Cuntz–Pimsner covariance for represen-
tations of a compactly aligned product system over a quasi-lattice ordered
group (G,P ), and an associated universal C∗-algebra, denoted by OX, which
generalises the Cuntz–Pimsner algebra associated to a single Hilbert bimod-
ules [30, 20]. In general, Fowler’s Cuntz–Pimsner algebra need not contain
a faithful copy of A, and even when it does, examples in the appendix of
[34] show that a representation of OX that is faithful on the copy of A
need not be faithful on the generalised fixed point algebra OνX (where ν is
the canonical gauge coaction of G on OX). Furthermore, in contrast with
the Cuntz–Pimsner algebras associated to Hilbert bimodules by both Pim-
sner [30] and Katsura [20], Fowler’s Cuntz–Pimsner algebra need not be a
quotient of NT X.

To overcome these issues, Sims and Yeend defined a C∗-algebra NOX

generated by a universal Cuntz–Nica–Pimsner covariant representation of
X [38]. They showed that NOX coincides with Katsura’s Cuntz–Pimsner
algebra when P = N, and coincides with Fowler’s OX whenever A acts
faithfully and compactly on each Xp and each pair of elements in P has
a common upper bound. Furthermore, Sims and Yeend showed that their
Cuntz–Nica–Pimsner algebras generalise the Cuntz–Krieger algebras associ-
ated to finitely aligned higher-rank graphs [34], and the boundary quotients
of Toeplitz algebras associated to quasi-lattice ordered groups studied by
Crisp and Laca [6]. By viewing NOX as a co-universal algebra, Carlsen,
Larsen, Sims, and Vittadello later proved a gauge-invariant uniqueness the-
orem for Cuntz–Nica–Pimsner algebras [4].
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The object of this article is to study how the C∗-algebras NT X and NOX

associated to a compactly aligned product system X over a quasi-lattice or-
dered group (G,P ) decompose given a decomposition of (G,P ). In partic-
ular, we show how a decomposition of the underlying quasi-lattice group as
a semidirect product of quasi-lattice ordered groups gives a decomposition
of the associated C∗-algebras.

In [8], Deaconu investigated what he called iterated Toeplitz and Cuntz–
Pimsner algebras. Unfortunately, some of Deaconu’s proofs lack detail, and
it is not clear which of his various hypotheses are necessary to make the pro-
cedure work. Indeed, our original motivation for this article was to verify
and better understand the arguments in [8]. The results in this article show
that Deaconu’s iterative procedure can be extended to quasi-lattice ordered
groups that are more general than (Z2,N2). Applying this iterative proce-
dure to compactly aligned product systems over Nk immediately enables us
to extend many of Katsura’s results from [20] to Nica–Toeplitz and Cuntz–
Nica–Pimsner algebras. In the future, it would be interesting to see if this
iterative procedure can be combined with the Pimsner–Voiculescu exact se-
quence [20, Theorem 8.6] to describe the K-theory of Cuntz–Nica–Pimsner
algebras associated to product systems over Nk (we are particularly inter-
ested in the situation where the product system comes from a higher-rank
graph).

In Section 2 we review the necessary background material for product
systems and their associated C∗-algebras. We begin by recapping the def-
initions of product systems, representations, compact alignment, and Nica
covariance. Next we present the definition of Cuntz–Pimsner covariance de-
veloped by Sims and Yeend [38] and show how it relates to Fowler’s notion
of Cuntz–Pimsner covariance in [15]. We also summarise the key results
from the literature that we will make use of throughout the article.

In Section 4 we examine the Nica–Toeplitz algebra associated to a com-
pactly aligned product system Z over a quasi-lattice ordered group of the
form (GoαH,PoαQ), where (G,P ) and (H,Q) are themselves quasi-lattice
ordered groups. If we let X be the product system corresponding to the fibres
of Z associated to the semigroup P , then our main result (Theorem 4.17)
shows that there exists a product system YNT over (H,Q), whose coeffi-
cient algebra is the Nica–Toeplitz algebra of X, such that the Nica–Toeplitz
algebras of YNT and Z coincide. This result generalises [8, Lemma 4.1].

In Section 5, we extend the results from Section 4 to Cuntz–Nica–Pimsner
algebras associated to product systems. Our main result (Theorem 5.20)
shows that there exists a product system YNO over (H,Q), whose coefficient
algebra is NOX, such that the Cuntz–Nica–Pimsner algebras of YNO and
Z coincide. This result generalises the second part of [8, Lemma 4.2]. The
main difficulty in establishing Theorem 5.20 is finding sufficient conditions
to ensure that NOX acts faithfully on each fibre of YNO, which makes
the Cuntz–Pimsner covariance relation in NOYNO tractable. We deal with
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this difficulty in Proposition 5.12. At the end of Section 5 we present three
examples that illustrate our procedure and demonstrate the utility of the
decompositions given by Theorem 4.17 and Theorem 5.20.

In Section 6 we finish by examining what we call relative Cuntz–Nica–
Pimsner algebras. In particular, we consider the Cuntz–Nica–Pimsner alge-
bra of the product system defined in Section 4, as well as the Nica–Toeplitz
algebra of the product system defined in Section 5. The main result of
Section 6 (Theorem 6.10) generalises the first part of [8, Lemma 4.2].

2. Preliminaries

The majority of background that we will require can be found in [25, 15,
38].

2.1. Hilbert bimodules. Let A be a C∗-algebra. An inner-product A-
module is a complex vector space X equipped with a right action of A,
and a map 〈·, ·〉A : X × X → A, (complex) linear in its second argument,
satisfying the following conditions:

(i) 〈x, y〉A = 〈y, x〉∗A;
(ii) 〈x, y · a〉A = 〈x, y〉Aa;
(iii) 〈x, x〉A ≥ 0 in A; and
(iv) 〈x, x〉A = 0 if and only if x = 0;

for any x, y ∈ X and a ∈ A. The formula ‖x‖X := ‖〈x, x〉A‖1/2A defines a
norm on X by [25, Proposition 1.1], and we say that X is a Hilbert A-module
if X is complete with respect to this norm.

Let X be a Hilbert A-module. We say that a map T : X → X is ad-
jointable if there exists a map T ∗ : X → X such that 〈Tx, y〉A = 〈x, T ∗y〉A
for each x, y ∈ X. Adjointable operators are automatically linear and con-
tinuous, and have a unique adjoint. Equipping the collection of adjointable
operators on X, which we denote by LA(X), with the operator norm gives it
the structure of a C∗-algebra. For each x, y ∈ X there is an adjointable oper-
ator Θx,y defined by Θx,y(z) := x·〈y, z〉A. We call such operators generalised
rank one operators. The closed subspace KA(X) := span{Θx,y : x, y ∈ X},
elements of which we call generalised compact operators, forms an essential
ideal of LA(X).

A Hilbert B–A-bimodule (also called a B–A C∗-correspondence in the
literature) is a Hilbert A-module X equipped with a left action of B by
adjointable operators, i.e. there exists a homomorphism φ : B → LA(X).
To simplify notation, we will often write b · x for φ(b)(x). When A = B,
we say that X is a Hilbert A-bimodule. Since each φ(b) is by definition
adjointable, and so A-linear, we have that b · (x · a) = (b · x) · a for each
a ∈ A, b ∈ B, and x ∈ X.

A particularly simple (and important) example occurs when X = A.
Letting A act on X by left and right multiplication, and equipping X with
the A-valued inner product 〈a, b〉A := a∗b, gives a Hilbert A-bimodule, which
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we denote by AAA. The map Θa,b 7→ ab∗ extends to an isomorphism from
KA(AAA) to A, whilst LA(AAA) is isomorphic to the multiplier algebra of
A, which we denote by M(A).

Every Hilbert A-module X is nondegenerate in the sense that the span
of the set {x · a : x ∈ X, a ∈ A} is dense in X. In particular, the Hewitt–
Cohen–Blanchard factorisation theorem [35, Proposition 2.31] says that for
each x ∈ X, there exists a unique x′ ∈ X such that x = x′ · 〈x′, x′〉A. In
general, a Hilbert A-bimodule need not be left nondegenerate in the sense
that X = span{a · x : x ∈ X, a ∈ A}.

We form the balanced tensor product of two Hilbert A-bimodules X and
Y as follows. We let X � Y denote the algebraic tensor product of X
and Y as complex vector spaces, and write X �A Y for the quotient by
span{x · a � y − x � a · y : x ∈ X, y ∈ Y, a ∈ A} (we write x �A y for the
coset containing x� y). The formula 〈x�A y, w�A z〉A := 〈y, 〈x,w〉A · z〉A,
determines a bounded A-valued sesquilinear form on X �A Y . If we let
N be the subspace span{n ∈ X �A Y : 〈n, n〉A = 0}, then the formula

‖z +N‖ := infn∈N ‖〈z + n, z + n〉A‖1/2A gives a norm on (X �A Y )/N . We
define the balanced tensor of X and Y , which we denote by X ⊗A Y , to be
the completion of (X �A Y )/N with respect to this norm.

Given two Hilbert A-bimodules X and Y and an adjointable operator
S ∈ LA(X), the formula x ⊗A y 7→ (Sx) ⊗A y extends to a map on all of
X ⊗A Y , which we denote by S ⊗A idY . It is straightforward to check that
S ⊗A idY is adjointable, with adjoint S∗ ⊗A idY .

Given a Hilbert B–A-bimodule X, the theory of induced representations
enables us to convert representations of A into representations of B. If π :
A→ B(H) is a nondegenerate representation of A on a Hilbert spaceH, then
[35, Proposition 2.66] gives a representation X-IndBAπ : B → B (X ⊗A H)
such that

(
X-IndBAπ

)
(b)(x⊗A h) = (b · x)⊗A h for each b ∈ B, x ∈ X, and

h ∈ H.

2.2. Product systems of Hilbert bimodules and quasi-lattice or-
dered groups. Let P be a semigroup with identity e, and A a C∗-algebra.
A product system over P with coefficient algebra A is a semigroup X =⊔
p∈P Xp such that:

(i) for each p ∈ P , Xp ⊆ X is a Hilbert A-bimodule;
(ii) Xe is equal to the Hilbert A-bimodule AAA;
(iii) for each p, q ∈ P\{e}, there exists a Hilbert A-bimodule isomorphism

MX
p,q : Xp⊗AXq → Xpq satisfying MX

p,q(x⊗Ay) = xy for each x ∈ Xp

and y ∈ Xq; and
(iv) multiplication in X by elements of Xe = A implements the left and

right actions of A on each Xp; that is xa = x · a and ax = a · x for
each p ∈ P , a ∈ A, and x ∈ Xp.

We write φp : A → LA(Xp) for the homomorphism that implements the
left action of A on Xp, i.e. φp(a)(x) = a · x = ax for each p ∈ P , a ∈ A, and
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x ∈ Xp. Multiplication in X is associative since X is a semigroup. Hence,
φpq(a)(xy) = (φp(a)x)y for all p, q ∈ P , a ∈ A, x ∈ Xp, and y ∈ Xq. We
also write 〈·, ·〉pA for the A-valued inner-product on Xp.

By properties (ii) and (iv), for each p ∈ P there exists A-linear inner-
product preserving maps MX

p,e : Xp⊗AXe → Xp and MX
e,p : Xe⊗AXp → Xp

such that MX
p,e(x⊗A a) = xa = x · a and MX

e,p(a⊗A x) = ax = a · x for each

a ∈ Xe = A and x ∈ Xp. Each MX
p,e is surjective by the Hewitt–Cohen–

Blanchard factorisation theorem, and so an A-bimodule isomorphism. On
the other hand, the maps MX

e,p need not be surjective, since we do not require
that each Xp is (left) nondegenerate.

For each p ∈ P \ {e} and q ∈ P , we define a homomorphism ιpqp :
LA (Xp)→ LA (Xpq) by

ιpqp (S) := MX
p,q ◦ (S ⊗A idXq) ◦ (MX

p,q)
−1

for each S ∈ LA (Xp). Equivalently, ιpqp is characterised by the formula
ιpqp (S)(xy) = (Sx)y for each S ∈ LA (Xp), x ∈ Xp, y ∈ Xq. Since Xe ⊗AXq

need not be isomorphic to Xq, we cannot necessarily define a map from
LA (Xe) to LA (Xq) using the above procedure. However, as KA (Xe) =
KA (AAA) ∼= A, we can define ιqe : KA (Xe) → LA (Xq) by ιqe(a) := φq(a).
For notational purposes, we define ιrp : LA (Xp) → LA (Xr) to be the zero
map whenever p, r ∈ P and r 6= pq for all q ∈ P . It is also useful to know
what happens when we compose these homomorphisms: routine calculations
show that for any p, q, r ∈ P , we have ιpqrpq ◦ ιpqp = ιpqrp .

A quasi-lattice ordered group (G,P ) consists of a group G and a sub-
semigroup P of G such that P ∩P−1 = {e}, and with respect to the partial
order on G induced by p ≤ q ⇔ p−1q ∈ P , any two elements p, q ∈ G which
have a common upper bound in P have a least common upper bound in P .
It is straightforward to show that if two elements in G have a least common
upper bound in P , then this least common upper bound is unique. If it
exists, we write p ∨ q for the least common upper bound of p, q ∈ G. For
p, q ∈ G, we write p∨ q =∞ if p and q have no common upper bound in P ,
and p ∨ q <∞ otherwise. We say that P is directed if p ∨ q <∞ for every
p, q ∈ P .

Let (G,P ) be a quasi-lattice ordered group and X a product system
over P with coefficient algebra A. We say that X is compactly aligned
if ιp∨qp (S)ιp∨qq (T ) ∈ KA(Xp∨q) whenever S ∈ KA(Xp) and T ∈ KA(Xq) for
some p, q ∈ P with p ∨ q < ∞. It is important to note that this condition
does not imply that either ιp∨qp (S) or ιp∨qq (T ) is compact.

2.3. Representations of compactly aligned product systems, Nica
covariance, and the Nica–Toeplitz algebra. Let (G,P ) be a quasi-
lattice ordered group and X a compactly aligned product system over P
with coefficient algebra A. A representation of X in a C∗-algebra B is a
map ψ : X→ B satisfying the following relations:
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(T1) each ψp := ψ|Xp is a linear map, and ψe is a homomorphism;
(T2) ψp(x)ψq(y) = ψpq(xy) for all p, q ∈ P and x ∈ Xp, y ∈ Xq; and
(T3) ψp(x)∗ψp(y) = ψe(〈x, y〉pA) for all p ∈ P and x, y ∈ Xp.

Relations (T1) and (T3) show that a representation ψ is always norm-
decreasing, and isometric if and only ψe is injective. Furthermore, by [31,

Proposition 8.11] there exists a homomorphism ψ(p) : KA (Xp)→ B for each

p ∈ P , such that ψ(p) (Θx,y) = ψp(x)ψp(y)∗ for all x, y ∈ Xp.
A representation ψ : X → B is said to be Nica covariant if, for any

p, q ∈ P and S ∈ KA(Xp), T ∈ KA(Xq), we have

ψ(p)(S)ψ(q)(T ) =

{
ψ(p∨q) (ιp∨qp (S)ιp∨qq (T )

)
if p ∨ q <∞

0 otherwise.

Making use of the Hewitt–Cohen–Blanchard factorisation theorem, it follows
that ψp(Xp)

∗ψq(Xq) ⊆ span{ψp−1(p∨q)(Xp−1(p∨q))ψq−1(p∨q)(Xq−1(p∨q))
∗} if

p ∨ q <∞, and is {0} otherwise.
Theorem 2.10 of [26] gives the existence of a C∗-algebra NT X and a Nica

covariant representation iX : X→ NT X, that are universal in the following
sense:

(i) the image of iX generates NT X; and
(ii) given any other Nica covariant representation ψ : X → B, there

exists a homomorphism ψ∗ : NT X → B such that ψ∗ ◦ iX = ψ.

We call NT X the Nica–Toeplitz algebra of X. Since iX generates NT X, it
follows that NT X = span {iX(x)iX(y)∗ : x, y ∈ X}.

Theorem 3.2 of [13] characterises the faithful representations of Nica–
Toeplitz algebras. Suppose that (G,P ) is a quasi-lattice ordered group with
G amenable, X is a compactly aligned product system over P with coefficient
algebra A, and ψ : X→ B(H) is a Nica covariant representation of X on a
Hilbert space H. Then the induced homomorphism ψ∗ : NT X → B(H) is
faithful provided for any finite set K ⊆ P \ {e}, the representation

A 3 a 7→ ψe(a)
∏
t∈K

(
idH − proj

ψt(Xt)H
)
∈ B(H)

is faithful.
Given a compactly aligned product system X, we let FX :=

⊕
p∈P Xp

denote the space of sequences (xp)p∈P such that xp ∈ Xp for all p ∈ P
and

∑
p∈P 〈xp, xp〉A converges in A. Proposition 1.1 of [25] shows that there

exists an A-valued inner product on FX such that 〈(xp)p∈P , (yp)p∈P 〉A =∑
p∈P 〈xp, yp〉A, and that FX is complete with respect to the induced norm.

Letting A act pointwise from the left and right gives FX the structure of
a Hilbert A-bimodule, which we call the Fock space of X. Lemma 5.3 of
[15] then shows that there exists an isometric Nica covariant representation
l : X→ LA(FX) such that lp(x)(yq)q∈P = (xyq)q∈P for each p ∈ P , x ∈ Xp,

and (yq)q∈P ∈ FX. We call l the Fock representation of X.
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2.4. Cuntz–Pimsner covariance and the Cuntz–Nica–Pimsner al-
gebra. The notion of Cuntz–Pimsner covariance for representations of com-
pactly aligned product systems introduced by Sims and Yeend in [38] is
somewhat complicated and requires some preliminary definitions to formu-
late. We set Ie := A and Ip :=

⋂
e<q≤p ker(φq) for each p ∈ P \ {e}. For

each p ∈ P we define the Hilbert A-bimodule

X̃p :=
⊕
q≤p

Xq · Iq−1p,

where Xq · Iq−1p = {x · a : x ∈ Xq, a ∈ Ip−1q}. For each p ∈ P , we write

φ̃p : A→ LA
(
X̃p

)
for the homomorphism defined by(

φ̃p(a)(x)
)
q

:= φq(a)(xq)

for each a ∈ A, x ∈ X̃p, and q ≤ p.
Whilst the collection of bimodules

{
X̃p : p ∈ P

}
resembles a product

system, we warn that in general X̃p ⊗A X̃q need not be isomorphic to X̃pq.
However, for each p, q ∈ P with p 6= e, we still have a homomorphism

ι̃ qp : LA
(
X̃p

)
→ LA

(
X̃q

)
characterised by the formula(
ι̃ qp (S)(x)

)
r

= ιrp(S)(xr)

for each x ∈ X̃p and r ≤ q. Additionally, after identifying KA
(
X̃e

)
with A,

we define ι̃ qe : KA
(
X̃e

)
→ LA

(
X̃q

)
to be φ̃q for each q ∈ P .

To formulate the Cuntz–Pimsner covariance condition, we require another
definition. Given a quasi-lattice ordered group (G,P ), we say that predicate
statement P(s) (where s ∈ P ) is true for large s if, given any p ∈ P , there
exists q ≥ p, such that P(s) is true whenever s ≥ q.

Finally, we are ready to present the definition of Cuntz–Pimsner covari-
ance originally formulated by Sims and Yeend [38, Definition 3.9]. We give

a definition only in the situation that all of the homomorphisms φ̃p : A →
LA
(
X̃p

)
are injective. We say that a representation ψ : X → B is Cuntz–

Pimsner covariant if, for any finite set F ⊆ P and any choice of compact
operators {Tp ∈ KA (Xp) : p ∈ F}, we have that∑

p∈F
ι̃ sp (Tp) = 0 ∈ LA

(
X̃s

)
for large s ⇒

∑
p∈F

ψ(p)(Tp) = 0.

We say that a representation is Cuntz–Nica–Pimsner covariant if it is both
Nica covariant and Cuntz–Pimsner covariant.

In Proposition 3.12 of [38] it is shown that for each compactly aligned

product system X (with each φ̃p : A → LA
(
X̃p

)
injective), there exists a

C∗-algebra NOX, which we call the Cuntz–Nica–Pimsner algebra of X, and
a Cuntz–Nica–Pimsner covariant representation jX : X → NOX, that are
universal in the following sense

(i) NOX is generated by the image of jX;
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(ii) if ψ : X → B is any other Cuntz–Nica–Pimsner covariant represen-
tation of X, then there exists a homomorphism Πψ : NOX → B
such that Πψ ◦ jX = ψ.

It follows that NOX is a quotient of NT X. We write qX : NT X → NOX

for the quotient homomorphism, which is characterised by qX ◦ iX = jX.
In [38, Theorem 4.1], it is shown that the universal Cuntz–Nica–Pimsner
covariant representation jX is always isometric.

Lemma 3.15 of [38] shows that the requirement that each of the homo-

morphisms φ̃p is injective is automatic, provided either

(i) each φp is injective; or
(ii) every nonempty bounded subset of P has a maximal element in the

following sense:

(2.1)
If S ⊆ P is nonempty and there exists q ∈ P such that p ≤ q
for all p ∈ S, then there exists p ∈ S such that p 6≤ p′ for all
p′ ∈ S \ {p}.

In the situation where each φp is injective, the Hilbert A-bimodules X̃p

and Xp are isomorphic. Moreover, this isomorphism intertwines φp and

φ̃p, as well as ιrp and ι̃ rp . In this situation a representation ψ : X →
B is Cuntz–Pimsner covariant provided, whenever F ⊆ P is finite and
{Tp ∈ KA (Xp) : p ∈ F} is such that

∑
p∈F ι

s
p(Tp) = 0 ∈ LA (Xs) for large s,

we have
∑

p∈F ψ
(p)(Tp) = 0.

In [15], Fowler defined a representation ψ of a product system X over a
semigroup P (with each φp injective) to be Cuntz–Pimsner covariant if, for
every p ∈ P , the Toeplitz representation (ψp, ψe) of the Hilbert A-bimodule
Xp is Cuntz–Pimsner covariant (in the sense that for each a ∈ φ−1

p (KA(Xp)),

we have ψ(p)(φp(a)) = ψe(a)). Proposition 5.1 of [38] shows the relationship
between Fowler’s notion of Cuntz–Pimsner covariance and that defined by
Sims and Yeend. If X is a compactly aligned product system with each φp
injective, P is directed, and ψ : X→ B is a representation, then

(i) If ψ is Cuntz–Pimsner covariant in the sense of [38, Definition 3.9],

then (ψp, ψe)
(1)(φp(a)) = ψe(a) for a ∈ φ−1

p (KA(Xp)) and p ∈ P ;

(ii) If φp(A) ⊆ KA(Xp) and ψ(p)(φp(a)) = ψe(a) for each a ∈ A, p ∈ P ,
then ψ is Cuntz–Pimsner covariant in the sense of [38, Definition 3.9].

For any discrete group G, the universal property of the group C∗-algebra
C∗(G) induces a homomorphism δG : C∗(G) → C∗(G) ⊗ C∗(G) such that
δG(iG(g)) = iG(g)⊗ iG(g) for each g ∈ G (we use an unadorned ⊗ to denote
the minimal tensor product of C∗-algebras). Recall that a (full) coaction of
G on a C∗-algebra A, is an injective homomorphism δ : A → A ⊗ C∗(G),
that satisfies the coaction identity (δ ⊗ idC∗(G)) ◦ δ = (idA ⊗ δG) ◦ δ, and is
nondegenerate in the sense that A⊗ C∗(G) = span{δ(A)(1M(A) ⊗ C∗(G))}
(where 1M(A) is the identity of the multiplier algebra of A). For those readers
interested in learning more about coactions, we suggest [10, Appendix A].
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As noted in [4, Remark 4.5] there exists a canonical gauge coaction νX :
NOX → NOX ⊗ C∗(G) such that νX(jXp(x)) = jXp(x) ⊗ iG(p) for each
p ∈ P and x ∈ Xp.

Carlsen, Larsen, Sims, and Vittadello proved the following gauge-invariant
uniqueness theorem for Cuntz–Nica–Pimsner algebras [4, Corollary 4.12]. If
(G,P ) is a quasi-lattice ordered group with G amenable, and X is a com-
pactly aligned product system over P with either each φp injective, or each

φ̃p injective and P directed, then a surjective homomorphism φ : NOX → B
is injective if and only if

(i) φ|jX(A) is injective; and
(ii) there exists a coaction β : B → B ⊗ C∗(G) such that β ◦ φ =(

φ⊗ idC∗(G)

)
◦ νX.

3. Combining quasi-lattice ordered groups

The next result shows that the direct product of quasi-lattice ordered
groups is quasi-lattice ordered. Furthermore, it provides sufficient conditions
for a semidirect product of quasi-lattice ordered groups to be quasi-lattice
ordered.

Lemma 3.1. Let (G,P ) and (H,Q) be quasi-lattice ordered groups. If
α : H → Aut(G) is a group homomorphism with αH(P ) ⊆ P , then the
semidirect product (Goα H,P oα Q) is a quasi-lattice ordered group.

Proof. Since P and Q are subsemigroups of G and H respectively, and
αQ(P ) ⊆ P , we see that P oα Q is a subsemigroup of Goα H.

Next, we show that (P oα Q) ∩ (P oα Q)−1 = {eGoαH}. If (g, h) ∈
(P oα Q) ∩ (P oα Q)−1, then (g, h)−1 = (αh−1(g−1), h−1) ∈ P oα Q. Thus,
h, h−1 ∈ Q, which forces h = eH since (H,Q) is quasi-lattice ordered. Hence,
g, αh−1(g−1) = g−1 ∈ P , which forces g = eG since (G,P ) is also quasi-lattice
ordered. Therefore, (g, h) = (eG, eH) = eGoαH .

Finally, we show that the order on the semidirect product (GoαH,PoαQ)
is the product order, i.e. (g, h) ≤ (g′, h′) in (G oα H,P oα Q) if and only
if g ≤ g′ in (G,P ) and h ≤ h′ in (H,Q). Let g, g′ ∈ G and h, h′ ∈ H.
Suppose that (g, h) ≤ (g′, h′) in (G oα H,P oα Q). Then (g, h)−1(g′, h′) =
(αh−1(g−1g′), h−1h′) ∈ P oα Q. Therefore, h−1h′ ∈ Q (so that h ≤ h′)
and g−1g′ = αh(αh−1(g−1g′)) ∈ αQ(P ) ⊆ P (so that g ≤ g′). Conversely,
if g ≤ g′ and h ≤ h′, then h−1h′ ∈ Q and αh−1(g−1g′) ∈ αH(P ) ⊆ P ,
and so (g, h)−1(g′, h′) ∈ P oα Q. Thus, (g, h) ≤ (g′, h′). We conclude that
(GoαH,PoαQ) is a quasi-lattice ordered group and for any (g, h), (g′, h′) ∈
P oα Q, we have

(g, h) ∨ (g′, h′) =

{
(g ∨ g′, h ∨ h′) if g ∨ g′ <∞ and h ∨ h′ <∞
∞ otherwise.

�
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Whilst the conditions in Lemma 3.1 are sufficient for a semidirect product
of quasi-lattice ordered groups to be quasi-lattice ordered, Proposition 2.2
of [24] shows that they are not necessary.

4. Iterating the Nica–Toeplitz construction

In this section we investigate product systems over semidirect products
of quasi-lattice ordered groups of the sort appearing in Lemma 3.1. More
precisely, given a product system Z (with coefficient algebra A) over a quasi-
lattice ordered group of the form (GoαH,P oαQ), with (G,P ) and (H,Q)
quasi-lattice ordered groups and αH(P ) ⊆ P , we will show that there exists
a product system X (also with coefficient algebra A) over (G,P ) sitting
inside Z, and a product system YNT over (H,Q) with coefficient algebra
NT X, such that the Nica–Toeplitz algebras of Z and YNT are isomorphic.
In passing from the product system Z to the product system YNT , we
have in a sense decreased the size of the product system at the expense of
increasing the size of the coefficient algebra, without losing any C∗-algebraic
information in the process.

To help readers keep track of everything that is going on, we first provide a
brief overview of the key results that we will prove and a pair of commutative
diagrams in Figures 1 and 2 that summarise the various spaces, and the maps
between them, that we are going to be working with. We hope that if readers
happen to lose their way in Sections 4.1 and 4.2 they will be able to return
to this overview and the two diagrams for assistance.

(1) In Proposition 4.1 we define a product system X ⊆ Z over (G,P ),
and show that the inclusion of X in Z induces a homomorphism φNTX

from NT X to NT Z such that φNTX ◦ iX = iZ.

(2) In Proposition 4.2 we argue that the homomorphism φNTX is injective.

(3) In Proposition 4.3, we use φNTX to construct a collection
{
YNTq : q ∈

Q
}

of Hilbert NT X-modules inside NT Z.

(4) In Proposition 4.6, we use φNTX to show that each YNTq carries a left
action of NT X by adjointable operators.

(5) In Propositions 4.7 and 4.12, we show that YNT :=
⊔
q∈QYNTq

is a compactly aligned product system over (H,Q) with coefficient
algebra NT X.

Once we have the product system YNT , we prove that NT YNT
∼= NT Z.

(6) In Proposition 4.13 we use the universal Nica covariant represen-
tations of Z and YNT to construct a representation ϕNT of Z in
NT YNT .

(7) In Proposition 4.15, we prove that ϕNT is Nica covariant, and hence
induces a homomorphism ΩNT : NT Z → NT YNT such that ΩNT ◦
iZ(p,q)

= iYNTq .

(8) In Proposition 4.16 we show that the inclusion of YNT in NT Z is a
Nica covariant representation, and hence induces a homomorphism
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Ω′NT : NT YNT → NT Z such that Ω′NT ◦ iYNTq is the inclusion of

YNTq in NT Z.

(9) In Theorem 4.17 we prove that ΩNT and Ω′NT are mutually inverse
isomorphisms.

In summary, we will show that for every p ∈ P and q ∈ Q, the maps in the
interior parts of Figures 1 and 2 exist and make the diagrams commutative
(the exterior parts of the diagrams will be used in the setup for Section 5).

YNTq

Z(p,q)

NT YNT NT Z

NOZ

YNOq

NOYNO

ϕNO
(p,q)

iYNT
q ϕ′q

NT ≡ incl.

iZ(p,q)

ϕNT
(p,q)

Ω′NT

ΩNT qZ

qZ

qZ

ϕ′q
NO ≡ incl.jYNO

q

Ω′NO

ΩNO

iZ(p,q)

Figure 1. The homomorphisms ΩNT , Ω′NT and ΩNO, Ω′NO

4.1. Constructing the product systems.

Standing Hypotheses. We will assume that (G,P ) and (H,Q) are quasi-
lattice ordered groups and α : H → Aut(G) is a homomorphism such that
αH(P ) ⊆ P . By Lemma 3.1, (G oα H,P oα Q) is quasi-lattice ordered.
Also, Z will be a compactly aligned product system over (GoαH,P oα Q)
with coefficient algebra A.
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NT X = YNTeH

Xp NT Z

NOX = YNOeH

NOZ

iXp

iZ(p,eH )

φNTX

qX

qZ

φNOX
jXp

jZ(p,eH )

Figure 2. The homomorphisms φNTX and φNOX

Since G ∼= G oα {eH} is a subgroup of G oα H and P ∼= P oα {eH}
is a subsemigroup of P oα Q, we obtain a product system over the quasi-
lattice ordered group (G,P ) by considering just those fibres of Z coming
from P oα {eH}.

Proposition 4.1. For each p ∈ P , let Xp := Z(p,eH). Then X :=
⊔
p∈P Xp

is a compactly aligned product system over (G,P ) with coefficient algebra A.
The inclusion of X in Z induces a homomorphism φNTX : NT X → NT Z

such that φNTX ◦ iX = iZ.

Proof. For p ∈ P , define ψNTp : Xp → NT Z by ψNTp := iZ(p,eH )
. We

claim that ψNT is a Nica covariant representation of X in NT Z. Since
iZ is a representation, we know that each ψNTp is linear and ψNTeG is a
homomorphism. If x ∈ Xp and z ∈ Xr, then

ψNTp (x)ψNTr (z) = iZ(p,eH)
(x)iZ(r,eH)

(z) = iZ(pr,eH)
(xz) = ψNTpr (xz).

For x, z ∈ Xp, we have

ψNTp (x)∗ψNTp (z) = iZ(p,eH)
(x)∗iZ(p,eH)

(z)

= iZ(eG,eH)

(
〈x, z〉(p,eH)

A

)
= ψNTeG

(
〈x, z〉pA

)
.

Thus, ψNT is a representation. It remains to check that ψNT is Nica co-

variant. Fix S ∈ KA(Xp) and T ∈ KA(Xr). Since ψNT
(t)

= i
((t,eH))
Z for any
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t ∈ P , we see that

ψNT
(p)

(S)ψNT
(r)

(T ) = i
((p,eH))
Z (S)i

((r,eH))
Z (T ).

If (p, eH)∨(r, eH) =∞ (which is precisely when p∨r =∞), Nica covariance

of iZ tells us that ψNT
(p)

(S)ψNT
(r)

(T ) = 0. On the other hand, when
p ∨ r <∞, we have (p, eH) ∨ (r, eH) = (p ∨ r, eH) <∞, and so

ψNT
(p)

(S)ψNT
(r)

(T ) = i
((p∨r,eH))
Z

(
ι
(p∨r,eH)
(p,eH) (S)ι

(p∨r,eH)
(r,eH) (T )

)
= ψNT

(p∨r)(
ιp∨rp (S)ιp∨rr (T )

)
.

Thus, ψNT is Nica covariant, and there exists a homomorphism φNTX :

NT X → NT Z such that φNTX (iX(x)) = ψNT (x) = iZ(x) for x ∈ X. �

When G is amenable the homomorphism φNTX is injective.

Proposition 4.2. Suppose that G is an amenable group. Then the homo-
morphism φNTX : NT X → NT Z is injective.

Proof. Fix a faithful nondegenerate representation ρ : A→ B(H) of A. Let
l∗ : NT Z → LA(FZ) denote the Fock representation of NT Z. To show that
φNTX is faithful, it suffices to show that the representation

FZ-IndNT X
A ρ =

(
l∗ ◦ φNTX

)
⊗A idH : NT X → B(FZ ⊗A H)

is faithful. Denote by % :=
(
l∗ ◦ φNTX ◦ iX

)
⊗A idH the Nica covariant rep-

resentation of X that induces the homomorphism
(
l∗ ◦ φNTX

)
⊗A idH. Our

aim is to prove that

(i) for each p ∈ P \{eG}, A⊗AH = XeG⊗AH ⊆ (%p(Xp)(FZ ⊗A H))⊥ ;
(ii) A acts faithfully (via %eG) on A⊗A H.

To see why this suffices, suppose that (i) and (ii) hold. For each t ∈ P \{eG}
let P %t := proj

%t(Xt)(FZ⊗AH)
. Then the representation

A 3 a 7→ %eG(a)
∏
t∈K

(1− P %t ) ∈ B (FZ ⊗A H)

is faithful for each finite subset K ⊆ P \ {eG}. Since G is amenable, [13,
Theorem 3.2] implies that

(
l∗ ◦ φNTX

)
⊗A idH is faithful as required. We now

prove (i) and (ii).
If p ∈ P , then

%p(Xp)(FZ ⊗A H) =
⊕

(s,t)∈PoαQ

Z(p,eH)(s,t) ⊗A H

=
⊕

(s,t)∈PoαQ:p≤s

Z(s,t) ⊗A H.

Now suppose that p ∈ P \ {eG}. We suppose that p ≤ eG and derive a
contradiction. Then p−1 = p−1eG ∈ P , which forces p = eG, since P∩P−1 =
{eG}. Thus, p 6≤ eG. Hence for any a ∈ XeG = A, z ∈ Z(s,t) with p ≤ s,
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and h, g ∈ H, since A = XeG and Z(s,t) are orthogonal in FX, we see that
〈a⊗A h, z ⊗A g〉C = 〈h, 〈a, z〉A · g〉C = 0. Since inner-products are linear and

continuous, we conclude that A⊗AH ⊆ (%p(Xp)(FZ ⊗A H))⊥ , which proves
(i).

It remains to show that A acts faithfully on A ⊗A H. This follows from
[35, Corollary 2.74] since A acts faithfully on itself and the representation ρ
is faithful. �

Using the injective homomorphism φNTX : NT X → NT Z, we can con-

struct a Hilbert NT X-module YNTq for each q ∈ Q.

Proposition 4.3. Suppose that G is an amenable group so that the ho-
momorphism φNTX is injective by Proposition 4.2. For each q ∈ Q \ {eH},
define

YNTq : = span
{
iZ(eG,q)

(x)φNTX (b) : x ∈ Z(eG,q), b ∈ NT X
}
⊆ NT Z

and let YNTeH := NT X
(NT X)NT X

Then for q ∈ Q \ {eH}, YNTq carries a

right action of NT X given by y · b := yφNTX (b) for each y ∈ YNTq and

b ∈ NT X. There is an NT X-valued inner-product on YNTq such that

φNTX

(
〈y, w〉qNT X

)
= y∗w . With this structure, each YNTq is a Hilbert NT X-

module.

Proof. Since multiplication in NT Z is continuous, it is clear that the right
action of NT X on YNTq is well-defined. Next, we check that for y, w ∈ YNTq
we have y∗w ∈ φNTX (NT X). Since φNTX is a homomorphism, it suffices to

check the case where y = iZ(eG,q)
(x)φNTX (b) and w = iZ(eG,q)

(z)φNTX (c) for

some x, z ∈ Z(eG,q), and b, c ∈ NT X. Since iZ is a representation, we see
that

y∗w = φNTX (b)∗iZ(eG,q)
(x)∗iZ(eG,q)

(z)φNTX (c)

= φNTX (b∗)iZ(eG,eH)

(
〈x, z〉(eG,q)A

)
φNTX (c)

= φNTX

(
b∗iXeG

(
〈x, z〉(eG,q)A

)
c
)
∈ φNTX (NT X) .

Thus, since φNTX is injective, we may define 〈·, ·〉qNT X
: YNTq ×YNTq → NT X

by 〈y, w〉qNT X
:=
(
φNTX

)−1
(y∗w) for each y, w ∈ YNTq . Clearly 〈·, ·〉qNT X

is

complex linear in its second argument. If y, w ∈ YNTq and b ∈ NT X, then

〈y, w · b〉qNT X
=
(
φNTX

)−1 (
y∗wφNTX (b)

)
=
(
φNTX

)−1
(y∗w) b = 〈y, w〉qNT X

b,

and

〈y, w〉qNT X
=
(
φNTX

)−1
(y∗w) =

(
φNTX

)−1
(w∗y)∗ =

(
〈w, y〉qNT X

)∗
.

Also, if y ∈ YNTq , then

〈y, y〉qNT X
=
(
φNTX

)−1
(y∗y) ≥ 0
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since y∗y ≥ 0 in NT Z. Moreover, if 〈y, y〉qNT X
= 0, then y∗y = 0 because

φNTX is injective, which forces y = 0. Lastly, we show that the norm induced

by 〈·, ·〉qNT X
is just the norm on NT Z restricted to YNTq . Since φNTX is

isometric, we see that for any y ∈ YNTq ,

‖y‖2YNTq :=
∥∥〈y, y〉qNT X

∥∥
NT X

=
∥∥(φNTX

)−1
(y∗y)

∥∥
NT X

= ‖y∗y‖NT Z
= ‖y‖2NT Z

.

As YNTq is closed in NT Z, we see that YNTq is complete with respect to

the norm induced by 〈·, ·〉qNT X
. We conclude that YNTq is a Hilbert NT X-

module. �

Remark 4.4. Since αH(P ) ⊆ P , we have that αq(P ) = P for each q ∈ Q.
Hence, for any q ∈ Q \ {eH}, it can be shown that

YNTq = span
{
iZ(p,q)

(
Z(p,q)

)
iZ(r,eH)

(
Z(r,eH)

)∗
: p, r ∈ P

}
.

Furthermore,

YNTeH
∼= φNTX (NT X) = span

{
iZ(p,eH)

(
Z(p,eH)

)
iZ(r,eH)

(
Z(r,eH)

)∗
: p, r ∈ P

}
.

Remark 4.5. The module YNTq contains iZ(eG,q)
(Z(eG,q)): if z ∈ Z(eG,q),

and z′ ∈ Z(eG,q) is chosen so that z = z′ · 〈z′, z′〉(eG,q)A , then

iZ(eG,q)
(z) = iZ(eG,q)

(z′)iZ(eG,eH)

(
〈z′, z′〉(eG,q)A

)
= iZ(eG,q)

(z′)φNTX

(
iXeG

(
〈z′, z′〉(eG,q)A

))
∈ YNTq .

We now show that YNTq also carries a left action of NT X by adjointable
operators for each q ∈ Q \ {eH}, and hence is a Hilbert NT X-bimodule.

Proposition 4.6. Suppose that G is an amenable group so that the Hilbert
NT X-module YNTq of Proposition 4.3 is defined. For each q ∈ Q \ {eH},
there exists a homomorphism ΦNTq : NT X → LNT X

(
YNTq

)
such that

ΦNTq (b)(y) = φNTX (b)y for each b ∈ NT X and y ∈ YNTq .

Proof. Firstly, we check that φNTX (NT X)YNTq ⊆ YNTq . Since the semidi-
rect product (G oα H,P oα Q) has the product order, for any s, t ∈ P we
have

(s, eH) (t, eH)−1 ((t, eH) ∨ (eG, q)) = (eG, q)
(
αq−1(s), eH

)
and

(eG, q)
−1 ((t, eH) ∨ (eG, q)) =

(
αq−1(t), eH

)
.
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Thus, for any x ∈ Xs, y ∈ Xt, z ∈ Z(eG,q), and b ∈ NT X, using the Nica
covariance of iZ, we have

φNTX (iXs(x)iXt(y)∗) iZ(eG,q)
(z)φNTX (b)

= iZ(s,eH)
(x)iZ(t,eH)

(y)∗iZ(eG,q)
(z)φNTX (b)

∈ span
{
iZ(eG,q)

(Z(eG,q))φ
NT
X

(
iXα

q−1 (s)

(
Xαq−1 (s)

)
iXα

q−1 (t)

(
Xαq−1 (t)

)∗
b
)}
.

Since{
iXs(Xs)iXt(Xt)

∗ : s, t ∈ P
}

and
{
iZ(eG,q)

(Z(eG,q))φ
NT
X (NT X)

}
span dense subspaces of NT X and YNTq respectively, whilst φNTX is a ho-
momorphism and multiplication in NT Z is bilinear and continuous, we con-
clude that φNTX (NT X)YNTq is contained in YNTq . Thus, for each b ∈ NT X,

we may define ΦNTq (b) : YNTq → YNTq by ΦNTq (b)(y) := φNTX (b)y for each

y ∈ YNTq . Next, we claim that ΦNTq (b) is adjointable with ΦNTq (b)∗ =

ΦNTq (b∗). To see this, observe that for any y, w ∈ YNTq ,〈
φNTX (b)y, w

〉q
NT X

=
(
φNTX

)−1 (
y∗φNTX (b∗)w

)
=
〈
y, φNTX (b∗)w

〉q
NT X

.

Finally, since φNTX is linear and multiplicative, the map b 7→ ΦNTq (b) is

also linear and multiplicative. Thus, b 7→ ΦNTq (b) is a homomorphism from

NT X to LNT X

(
YNTq

)
. �

Next we show that YNT :=
⊔
q∈QYNTq can be viewed as a product system

over the quasi-lattice ordered group (H,Q) with coefficient algebra NT X.

Proposition 4.7. Suppose that G is an amenable group so that the Hilbert
NT X-bimodule YNTq from Propositions 4.3 and 4.6 is defined. Let YNT :=⊔
q∈QYNTq . Then YNT is a product system over (H,Q) with coefficient

algebra NT X, and multiplication given by multiplication in NT Z.

Proof. We already know from Propositions 4.3 and 4.6 that each YNTq is

a Hilbert NT X-bimodule, and YNTeH = NT X
(NT X)NT X

by definition. If

we equip YNT with the associative multiplication from NT Z and identify
NT X with φNTX (NT X) ⊆ NT Z, then YNT becomes a semigroup. It is

straightforward to check that multiplication in YNT by elements of YNTeH =

NT X implements the left and right actions of NT X on each YNTq .

For YNT to be a product system, it remains to show that there exists a

HilbertNT X-bimodule isomorphism MYNT
q,t : YNTq ⊗NT X

YNTt → YNTqt for

each q, t ∈ Q \ {eH} such that MYNT
q,t (y ⊗NT X

w) = yw for each y ∈ YNTq
and w ∈ YNTt . We begin by checking that YNTq YNTt ⊆ YNTqt for each



756 JAMES FLETCHER

q, t ∈ Q. Making use of Proposition 4.6, we see that

YNTq YNTt

= span
{
iZ(eG,q)

(
Z(eG,q)

)
φNTX (NT X) iZ(eG,t)

(Z(eG,t))φ
NT
X (NT X)

}
⊆ span

{
iZ(eG,qt)

(
Z(eG,qt)

)
φNTX (NT X)

}
= YNTqt .

Next, observe that if y, u ∈ YNTq and w, v ∈ YNTt , then

〈y ⊗NT X
w, u⊗NT X

v〉NT X
=
〈
w, 〈y, u〉qNT X

· v
〉t
NT X

=
〈
w, φ

((
φNTX

)−1
(y∗u)

)
v
〉t
NT X

=
(
φNTX

)−1
(w∗y∗uv)

= 〈yw, uv〉qtNT X
.

Thus, the map y ⊗NT X
w 7→ yw extends by linearity and continuity to a

well-defined inner-product preserving map from YNTq ⊗NT X
YNTt to YNTqt ,

which we denote by MYNT
q,t . Clearly, MYNT

q,t is both left and right NT X-

linear. Surjectivity of the map MYNT
q,t follows from the fact that Z(eG,qt) =

Z(eG,q)(eG,t)
∼= Z(eG,q)⊗AZ(eG,t) (since q 6= eH) and iZ(eG,q)

(
Z(eG,q)

)
⊆ YNTq :

YNTqt = span
{
iZ(eG,qt)

(
Z(eG,qt)

)
φNTX (NT X)

}
= span

{
iZ(eG,q)

(
Z(eG,q)

)
iZ(eG,t)

(Z(eG,t))φ
NT
X (NT X)

}
⊆ YNTq YNTt

= MYNT
q,t

(
YNTq ⊗NT X

YNTt
)
.

Putting all of this together, we see that MYNT
q,t is an NT X-bimodule iso-

morphism. �

We now prove that if A acts faithfully on Z(eG,q), thenNT X acts faithfully

on YNTq . We will make use of this result later in Subsection 6 when we

consider the Cuntz–Nica–Pimsner algebra of the product system YNT .

Proposition 4.8. Suppose that G is an amenable group so that the product
system YNT from Proposition 4.7 is defined. If q ∈ Q and A acts faith-
fully on Z(eG,q), then the homomorphism ΦNTq : NT X → LNT X

(
YNTq

)
is

injective.

Proof. When q = eH , the map ΦNTq is just left multiplication on YNTeH =
NT X by elements of NT X, which is obviously faithful. So suppose that
q ∈ Q \ {eH}. Let ρ : A→ B(H) be a faithful nondegenerate representation
of A on a Hilbert space H. To prove that ΦNTq is faithful, it suffices to show
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that the induced representation(
YNTq ⊗NT X

FX

)
-IndNT X

A ρ

= ΦNTq ⊗NT X
idFX

⊗A idH : NT X → B (Yq ⊗NT X
FX ⊗A H)

is faithful. Let % :=
(
ΦNTq ⊗NT X

idFX
⊗A idH

)
◦ iX denote the Nica covari-

ant representation of X that induces ΦNTq ⊗NT X
idFX

⊗A idH. Our aim is
to prove that

(i) for each p ∈ P \ {eG},

iZ(eG,q)

(
Z(eG,q)

)
⊗NT X

A⊗A H ⊆
(
%p(Xp)

(
YNTq ⊗NT X

FX ⊗A H
))⊥

;

(ii) A acts faithfully (via %eG) on iZ(eG,q)
(Z(eG,q))⊗NT X

A⊗A H.

To see that this suffices, suppose for a moment that (i) and (ii) hold. For
each t ∈ P \ {eG}, let

P %t := proj
%t(Xt)(YNTq ⊗NTX

FX⊗AH)
.

Then the representation

A 3 a 7→ %eG(a)
∏
t∈K

(1− P %t ) ∈ B
(
YNTq ⊗NT X

FX ⊗A H
)

is faithful for each finite subset K ⊆ P \ {eG} . Since G is amenable,
[13, Theorem 3.2] then implies that ΦNTq ⊗NT X

idFX
⊗A idH is faithful as

required.
We now prove (i) and (ii). Let p ∈ P . For any s ∈ P , we have

(p, eH)(s, q) = (e, q)(αq−1(ps), eH), and so using the description of YNTq
given in Remark 4.4, we see that

ΦNTq
(
iXp(Xp)

) (
YNTq

)
= iZ(eG,q)

(Z(eG,q)) · span
{
iXα

q−1 (ps)

(
Xαq−1 (ps)

)
iXt(Xt)

∗ : s, t ∈ P
}
.

For any s, r ∈ P , since αq−1(p)−1αq−1(ps)r = αq−1(s)r ∈ αH(P )P ⊆ P , we
have that αq−1(p) ≤ αq−1(ps)r. Thus,

span
{
iXα

q−1 (ps)

(
Xαq−1 (ps)

)
iXt(Xt)

∗ : s, t ∈ P
}
· FX ⊆

⊕
m∈P :αq−1 (p)≤m

Xm,

and so

%p(Xp)
(
YNTq ⊗NT X

FX ⊗A H
)

⊆ iZ(eG,q)
(Z(eG,q))⊗NT X

⊕
m∈P :αq−1 (p)≤m

Xm ⊗A H.

Now suppose that p 6= eG. Since αH(P ) ⊆ P and P ∩P−1 = {eG} it follows
that αq−1(p) 6≤ eG. Hence for any z, w ∈ Z(eG,q), a ∈ XeG = A, x ∈ Xm
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with αq−1(p) ≤ m, and h, g ∈ H, we see that〈
iZ(eG,q)

(z)⊗NT X
a⊗A h,iZ(eG,q)

(w)⊗NT X
x⊗A g

〉
C

=
〈
h,
〈
a, iXeG

(
〈z, w〉(eG,q)A

)
· x
〉
A
· g
〉
C

must be zero (since iXeG

(
〈z, w〉(eG,q)A

)
· x ∈ Xm which is orthogonal to A =

XeG in the Fock space FX). Since the inner-product on YNTq ⊗NT X
FX⊗AH

is linear and continuous, we conclude that

iZ(eG,q)

(
Z(eG,q)

)
⊗NT X

A⊗A H ⊆
(
%p (Xp)

(
YNTq ⊗NT X

FX ⊗A H
))⊥

.

Next we check that A acts faithfully on iZ(eG,q)

(
Z(eG,q)

)
⊗NT X

A ⊗A H
via the homomorphism %eG =

(
ΦNTq ◦ iXeG

)
⊗NT X

idFX
⊗A idH. Fix a ∈

A \ {0}. Since A acts faithfully on Z(eG,q), we can choose z ∈ Z(eG,q) such
that a · z 6= 0. Since ρ is faithful, we can then choose h ∈ H such that〈
h, 〈a ·z, a ·z〉(eG,q)A ·h

〉
C 6= 0. By the Hewitt–Cohen–Blanchard factorisation

theorem, we can write z = z′ · 〈z′, z′〉(eG,q)A for some z′ ∈ Z(eG,q). Routine
calculations show that〈

iZ(eG,q)
(a · z′)⊗NT X

〈z′, z′〉(eG,q)A ,iZ(eG,q)
(a · z′)⊗NT X

〈z′, z′〉(eG,q)A

〉
A

= 〈a · z, a · z〉(eG,q)A .

Hence, ∥∥∥%e(a)
(
iZ(eG,q)

(z′)⊗NT X
〈z′, z′〉(eG,q)A ⊗A h

)∥∥∥2

=
〈
h, 〈a · z, a · z〉(eG,q)A · h

〉
C 6= 0,

and so A acts faithfully on iZ(eG,q)

(
Z(eG,q)

)
⊗NT X

A⊗A H. �

We now work towards showing that the product system YNT is compactly
aligned. The next result characterises the compact operators on each fibre of
YNT . We need some more notation: given a C∗-algebra B, for each b ∈ B,
we write Mb ∈ LB(BB) for the map defined by Mb(c) := bc for each c ∈ B.

Lemma 4.9. Suppose that G is an amenable group so that the Hilbert NT X-
bimodule YNTq from Propositions 4.3 and 4.6 is defined. For each q ∈ Q, if

b ∈ NT Z is such that Mb ∈ LNT X

(
YNTq

)
, then

‖Mb‖LNTX(YNTq ) ≤ ‖b‖NT Z
.
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Proof. Since the norm on YNTq ⊆ NT Z is just the restriction of the norm
on NT Z, and the norm on any C∗-algebra is submultiplicative, we have

‖Mb‖LNTX(YNTq ) = sup
y∈YNTq :

‖y‖
YNTq

≤1

‖Mb(y)‖YNTq

= sup
y∈YNTq :

‖y‖NT Z
≤1

‖by‖NT Z
≤ ‖b‖NT Z

. �

Lemma 4.10. Suppose that G is an amenable group so that the product
system YNT from Proposition 4.7 is defined. For each q ∈ Q, let NT qZ
denote the closed subspace span{iZ(p,q)

(Z(p,q))iZ(r,q)
(Z(r,q))

∗ : p, r ∈ P}.

(i) Let q, t ∈ Q and T ∈ KNT X

(
YNTq

)
. Then ιqtq (T ) ∈ LNT X

(
YNTqt

)
is left multiplication by an element of NT qZ on YNTqt ⊆ NT Z. In

particular, if y, w ∈ YNTq , then yw∗ ∈ NT qZ, and the rank one

operator Θy,w ∈ KNT X

(
YNTq

)
satisfies

ιqtq (Θy,w) =

{
Myw∗ if q 6= eH

MφNTX (yw∗) if q = eH .

(ii) Let b ∈ NT qZ and q 6= eH . Then Mb ∈ KNT X

(
YNTq

)
.

Proof. We begin by proving part (i) of the result. Fix q, t ∈ Q and a rank
one operator Θy,w ∈ KNT X

(
YNTq

)
. If q = eH , then for any z ∈ YNTt , we

have

ιteH (Θy,w)(z) = ΦNTt (yw∗)(z) = φNTX (yw∗)z = MφNTX (yw∗)(z).

Thus, ιteH (Θy,w) = MφNTX (yw∗). Moreover, φNTX (yw∗) ∈ φNTX (NT X) =

NT eHZ .
Now suppose that q 6= eH . For any u ∈ Z(eG,q), v ∈ Z(eG,t), and b ∈ NT X,

ιqtq (Θy,w)
(
iZ(eG,qt)

(uv)φNTX (b)
)

= Θy,w

(
iZ(eG,q)

(u)
)
iZ(eG,t)

(v)φNTX (b)

= yw∗iZ(eG,q)
(u)iZ(eG,t)

(v)φNTX (b)

= Myw∗
(
iZ(eG,qt)

(uv)φNTX (b)
)
.

Since the closed span of
{
iZ(eG,q)

(
Z(eG,q)

)
iZ(eG,t)

(
Z(eG,t)

)
φNTX (NT X)

}
is

equal to YNTqt , whilst ιqtq (Θy,w) and Myw∗ are linear and continuous, we

conclude that ιqtq (Θy,w) = Myw∗ ∈ LNT X

(
YNTqt

)
.

It remains to check that if y, w ∈ YNTq , then yw∗ ∈ NT qZ. Since NT qZ is
a closed subspace, it suffices to consider when y = iZ(p,q)

(x)iZ(r,eH)
(z)∗ and

w = iZ(m,q)
(u)iZ(n,eH)

(v)∗ for some x ∈ Z(p,q), z ∈ Z(r,eH), u ∈ Z(m,q), and
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v ∈ Z(n,eH). If r ∨ n =∞, then the Nica covariance of iZ gives

yw∗ = iZ(p,q)
(x)iZ(r,eH)

(z)∗iZ(n,eH)
(v)iZ(m,q)

(u)∗ = 0,

which is certainly in NT qZ. On the other hand, if r ∨ n < ∞, then yw∗

belongs to the closed span of

iZ(pαq(r−1(r∨n)),q)

(
Z(pαq(r−1(r∨n)),q)

)
iZ(mαq(n−1(r∨n)),q)

(
Z(mαq(n−1(r∨n)),q)

)∗
,

and so is contained in NT qZ.
We now prove part (ii) of the result. Let b := iZ(p,q)

(z)iZ(r,q)
(w)∗ ∈ NT qZ

where z ∈ Z(p,q) and w ∈ Z(r,q). Then iZ(p,q)
(z), iZ(r,q)

(w) ∈ YNTq and, so

by (i) we see that

MiZ(p,q)
(z)iZ(r,q)

(w)∗ = ιqq
(
ΘiZ(p,q)

(z),iZ(r,q)
(w)

)
= ΘiZ(p,q)

(z),iZ(r,q)
(w) ∈ KNT X

(
YNTq

)
.

Since the map b 7→ Mb is linear, and ‖Mb‖LNTX(YNTq ) ≤ ‖b‖NT Z
whenever

b ∈ NT Z is such that Mb ∈ LNT X

(
YNTq

)
(by Lemma 4.9), we conclude

that Mb ∈ KNT X

(
YNTq

)
whenever b ∈ span

{
iZ(p,q)

(
Z(p,q)

)
iZ(r,q)

(
Z(r,q)

)∗
:

p, r ∈ P
}

= NT qZ. �

Lemma 4.11. For any q, t ∈ Q,

NT qZNT
t
Z ⊆

{
NT q∨tZ if q ∨ t <∞
{0} otherwise.

In particular, each NT qZ is a subalgebra of NT Z.

Proof. Since multiplication in NT Z is bilinear and continuous, it suffices
to show that

iZ(p,q)
(x)iZ(r,q)

(z)∗iZ(m,t)
(u)iZ(n,t)

(v)∗ ∈

{
NT q∨tZ , if q ∨ t <∞
{0}, otherwise

for x ∈ Z(p,q), y ∈ Z(r,q), u ∈ Z(m,t), and v ∈ Z(n,t). If r∨m =∞ or q∨t =∞,
then (r, q) ∨ (m, t) = ∞, and so iZ(p,q)

(x)iZ(r,q)
(z)∗iZ(m,t)

(u)iZ(n,t)
(v)∗ = 0.

On the other hand, if r ∨m < ∞ and q ∨ t < ∞, then (r, q) ∨ (m, t) < ∞,
and so iZ(p,q)

(x)iZ(r,q)
(z)∗iZ(m,t)

(u)iZ(n,t)
(v)∗ can be approximated by linear

combinations of elements from the set

iZ(pr−1(r∨m),q∨t)

(
Z(pr−1(r∨m),q∨t)

)
iZ(nm−1(r∨m),q∨t)

(
Z(nm−1(r∨m),q∨t)

)∗
,

and so belongs to NT q∨tZ . �

We are finally ready to prove that the product system YNT is compactly
aligned.

Proposition 4.12. Suppose that G is an amenable group so that the prod-
uct system YNT from Proposition 4.7 is defined. Then YNT is compactly
aligned.
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Proof. Let S ∈ KNT X

(
YNTq

)
and T ∈ KNT X

(
YNTt

)
with q ∨ t < ∞. If

q = t = eH , then

ιq∨tq (S)ιq∨tt (T ) = ιeHeH (S)ιeHeH (T ) = ST ∈ KNT X

(
YNTeH

)
= KNT X

(
YNTq∨t

)
.

Now suppose that q 6= eH or t 6= eH . Thus, q ∨ t 6= eH . By Lemma 4.10,
ιq∨tq (S) = Mb and ιq∨tt (T ) = Mc for some b ∈ NT qZ and c ∈ NT tZ. Since

bc ∈ NT q∨tZ by Lemma 4.11, we can use Lemma 4.10 again to see that

ιq∨tq (S)ιq∨tt (T ) = MbMc = Mbc ∈ KNT X

(
YNTq∨t

)
. �

4.2. Isomorphisms of Nica–Toeplitz algebras. For the product system
YNT defined in Subsection 4.1, we will show that NT YNT

∼= NT Z. To
do this we will use the universal property of each C∗-algebra to induce a
homomorphism to the other, and then check that these homomorphisms are
mutually inverse. In summary, we will show that the maps in Figure 1 exist
and make the diagram commutative.

To make our arguments easier to write down, we will identify the coeffi-
cient algebra NT X of YNT with φNTX (NT X) ⊆ NT Z. Thus, every fibre of

YNT can be viewed as sitting inside NT Z, and the left and right actions of
NT X

∼= φNTX (NT X) on each YNTq are just multiplication in NT Z.
To begin we get a homomorphism from NT Z to NT YNT by exhibiting a

Nica covariant representation of Z in NT YNT .

Proposition 4.13. Suppose that G is an amenable group so that the com-
pactly aligned product system YNT from Proposition 4.7 is defined. Define
ϕNT : Z→ NT YNT by

ϕNT(p,q) := iYNTq ◦ iZ(p,q)
,

for each (p, q) ∈ P oα Q. Then ϕNT is a representation of Z.

Proof. Firstly, ϕNT(eG,eH) = iYNTeH
◦ iZ(eG,eH )

is the composition of homomor-

phisms and so is a homomorphism. Similarly, ϕNT(p,q) = iYNTq ◦ iZ(p,q)
is the

composition of linear maps, and so is linear for any p ∈ P , q ∈ Q. For any
z ∈ Z(p,q) and w ∈ Z(s,t), since iY is a representation, we see that

ϕNT(p,q)(z)ϕ
NT
(s,t)(w) = iYNTq

(
iZ(p,q)

(z)
)
iYt

(
iZ(s,t)

(w)
)

= iYNTqt

(
iZ(p,q)

(z)iZ(s,t)
(w)
)
.

Since iZ is also a representation, this must be equal to

iYNTqt

(
iZ(p,q)(s,t)

(zw)
)

= iYNTqt

(
iZ(pαq(s),qt)

(zw)
)

= ϕNT(pαq(s),qt)
(zw) = ϕNT(p,q)(s,t)(zw),
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and we see that ϕNT satisfies (T2). For (p, q) ∈ P oα Q and z, w ∈ Z(p,q),
since iY is a representation, we have

ϕNT(p,q)(z)
∗ϕNT(p,q)(w) = iYNTq

(
iZ(p,q)

(z)
)∗
iYq

(
iZ(p,q)

(w)
)

= iYNTeH

(〈
iZ(p,q)

(z), iZ(p,q)
(w)
〉q
NT X

)
.

Since iZ is also a representation, this must be equal to

iYNTeH

(
iZ(p,q)

(z)∗iZ(p,q)
(w)
)

= iYNTeH

(
iZ(eG,eH)

(
〈z, w〉(p,q)A

))
= ϕNT(eG,eH)

(
〈z, w〉(p,q)A

)
.

Hence, ϕNT satisfies (T3), and so is a representation of Z in NT Y. �

To show that ϕNT is Nica covariant, we first need a lemma.

Lemma 4.14. Suppose that G is an amenable group so that the compactly
aligned product system YNT from Proposition 4.7 is defined. Let (p, q) ∈
P oα Q and T ∈ KA

(
Z(p,q)

)
. Then

ϕNT
((p,q))

(T ) = i
(q)

YNT

(
M
i
((p,q))
Z (T )

)
.

Proof. It suffices to prove the result when T is a rank one operator. To
this end, fix z, w ∈ Z(p,q). Lemma 4.10, says that ΘiZ(p,q)

(z),iZ(p,q)
(w) =

MiZ(p,q)
(z)iZ(p,q)

(w)∗ = M
i
((p,q))
Z (Θz,w)

, and so

ϕ((p,q))(Θz,w) = iYNTq
(
iZ(p,q)

(z)
)
iYq

(
iZ(p,q)

(w)
)∗

= i
(q)

YNT

(
ΘiZ(p,q)

(z),iZ(p,q)
(w)

)
= i

(q)

YNT

(
M
i
((p,q))
Z (Θz,w)

)
. �

Proposition 4.15. Suppose that G is an amenable group so that the com-
pactly aligned product system YNT from Proposition 4.7 is defined. Then
the representation ϕNT is Nica covariant, and so there exists a homomor-
phism ΩNT : NT Z → NT Y such that

ΩNT ◦ iZ(p,q)
= ϕNT(p,q) = iYNTq ◦ iZ(p,q)

for each (p, q) ∈ P oα Q.

Proof. Fix S ∈ KA
(
Z(p,q)

)
and T ∈ KA

(
Z(s,t)

)
. Using Lemma 4.14 we see

that

ϕNT
((p,q))

(S)ϕNT
((s,t))

(T ) = i
(q)

YNT

(
M
i
((p,q))
Z (S)

)
i
(t)

YNT

(
M
i
((s,t))
Z (T )

)
.(4.1)



ITERATING THE CUNTZ–NICA–PIMSNER CONSTRUCTION 763

Since iYNT is Nica covariant, this is zero if q ∨ t = ∞. If q ∨ t < ∞, then
(4.1) gives

(4.2)

ϕNT
((p,q))

(S)ϕNT
((s,t))

(T )

= i
(q∨t)
YNT

(
ιq∨tq

(
M
i
((p,q))
Z (S)

)
ιq∨tt

(
M
i
((s,t))
Z (T )

))
= i

(q∨t)
YNT

(
M
i
((p,q))
Z (S)

M
i
((s,t))
Z (T )

)
= i

(q∨t)
YNT

(
M
i
((p,q))
Z (S)i

((s,t))
Z (T )

)
.

Since iZ is also Nica covariant and (GoαH,P oαQ) has the product order,
if p∨s =∞, then the last line is zero. If p∨s <∞, then another application
of Lemma 4.14 shows that (4.2) yields

ϕNT
((p,q))

(S)ϕNT
((s,t))

(T ) = i
(q∨t)
YNT

(
M
i
((p∨s,q∨t))
Z

(
ι
(p∨s,q∨t)
(p,q)

(S)ι
(p∨s,q∨t)
(s,t)

(T )
))

= ϕNT
((p∨s,q∨t))(

ι
(p∨s,q∨t)
(p,q) (S)ι

(p∨s,q∨t)
(s,t) (T )

)
.

Thus,

ϕNT
((p,q))

(S)ϕ((s,t))(T )

=

{
ϕNT

((p∨s,q∨t))
(
ι
(p∨s,q∨t)
(p,q) (S)ι

(p∨s,q∨t)
(s,t) (T )

)
if (p, q) ∨ (s, t) <∞

0 otherwise,

and so ϕ is Nica covariant. �

Next, we construct a homomorphism from NT YNT to NT Z by exhibiting
a Nica covariant representation of YNT in NT Z.

Proposition 4.16. Suppose that G is an amenable group so that the com-
pactly aligned product system YNT from Proposition 4.7 is defined. For
each q ∈ Q, let ϕ′NTq be the inclusion of YNTq in NT Z. Then ϕ′NT is a

Nica covariant representation of YNT . Hence, there exists a homomorphism
Ω′NT : NT YNT → NT Z such that

Ω′NT ◦ iYNTq = ϕ′q
NT

for each q ∈ Q.

Proof. It is trivial to check that ϕ′NT is a representation. We now show
that ϕ′NT is Nica covariant. If q ∈ Q and b ∈ NT qZ, then Lemma 4.10 tells

us that Mb ∈ KNT X

(
YNTq

)
. We claim that ϕ′NT

(q)
(Mb) = b. To see this,

observe that if z ∈ Z(p,q) and w ∈ Z(r,q), then

ϕ′NT
(q)
(
MiZ(p,q)

(z)iZ(r,q)
(w)∗

)
= ϕ′NT

(q)
(

ΘiZ(p,q)
(z),iZ(r,q)

(w)

)
= ϕ′q

NT (
iZ(p,q)

(z)
)
ϕ′q
NT (

iZ(r,q)
(w)
)∗

= iZ(p,q)
(z)iZ(r,q)

(w)∗.
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Now fix Θy,w ∈ KNT X

(
YNTq

)
and Θu,v ∈ KNT X

(
YNTt

)
. Making use of

Lemma 4.11 and Proposition 4.12, we see that

ϕ′NT
(q)

(Θy,w)ϕ′NT
(t)

(Θu,v) = ϕ′(q) (Myw∗)ϕ
′(t) (Muv∗) = yw∗uv∗,

which is zero if q ∨ t =∞, and equal to

ϕ′NT
(q∨t)

(Myw∗uv∗) = ϕ′NT
(q∨t)

(Myw∗Muv∗)

= ϕ′NT
(q∨t) (

ιq∨tq (Θy,w)ιq∨tt (Θu,v)
)

if q ∨ t <∞. Hence, ϕ′ is Nica covariant. �

Putting all of this together, we get the following.

Theorem 4.17. Suppose that G is an amenable group so that the compactly
aligned product system YNT from Proposition 4.7 is defined. Then the ho-
momorphisms ΩNT : NT Z → NT YNT and Ω′NT : NT YNT → NT Z are
mutually inverse isomorphisms. Thus, NT Z

∼= NT YNT .

Proof. We begin by showing that Ω′NT ◦ΩNT = idNT Z
. For (p, q) ∈ PoαQ,

we have (
Ω′NT ◦ ΩNT

)
◦ iZ(p,q)

= Ω′NT ◦ iYNTq ◦ iZ(p,q)
= iZ(p,q)

.

Since NT Z is generated by the image of iZ and Ω′NT ◦ΩNT is a homomor-
phism, we conclude that Ω′NT ◦ ΩNT = idNT Z

.
Next we check that ΩNT ◦ Ω′NT = idNT

YNT
. For any p ∈ P ,(

ΩNT ◦ Ω′NT
)
◦
(
iYNTeH

◦ iZ(p,eH)

)
= ΩNT ◦ iZ(p,eH)

= iYNTeH
◦ iZ(p,eH)

.

Since YNTeH = NT X
∼= φNTX (NT X) is generated by the images of each

iZ(p,eH)
we conclude that

(
ΩNT ◦ Ω′NT

)
◦ iYNTeH = iYNTeH

. Now let q ∈ Q \
{eH} and z ∈ Z(m,q), w ∈ Z(n,eH). Since Ω′NT ◦ iYNTq is the inclusion map

and ΩNT is multiplicative, we see that((
ΩNT ◦ Ω′NT

)
◦ iYNTq

)(
iZ(m,q)

(z)iZ(n,eH)
(w)∗

)
= ΩNT

(
iZ(m,q)

(z)
)
ΩNT

(
iZ(n,eH)

(w)
)∗

= iYNTq
(
iZ(m,q)

(z)
)
iYNTeH

(
iZ(n,eH)

(w)∗
)

= iYNTq
(
iZ(m,q)

(z)iZ(n,eH)
(w)∗

)
.

Since YNTq = span
{
iZ(m,q)

(
Z(m,q)

)
iZ(n,eH)

(
Z(n,eH)

)∗
: m,n ∈ P

}
, and iYNT

is linear and isometric, we see that
(
ΩNT ◦ Ω′NT

)
◦ iYNTq = iYNTq for q ∈

Q\{eH}. Since NT YNT is generated by the image of iYNT and ΩNT ◦Ω′NT
is a homomorphism, we conclude that ΩNT ◦ Ω′NT = idNT

YNT
. �
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There are a number of results in the literature relating the coefficient al-
gebra of a Hilbert bimodule to its Toeplitz algebra. By decomposing Nk as
N × Nk−1, Theorem 4.17 enables us to view the Nica–Toeplitz algebra of a
compactly aligned product system over Nk as a k-times iterated Toeplitz al-
gebra, and so immediately extend these results to compactly aligned product
systems over Nk.

Corollary 4.18. Let Z be a compactly aligned product system over Nk with
coefficient algebra A. Then

(i) The homomorphism iZ0 induces an isomorphism between K∗(A) and
K∗(NT Z);

(ii) If A is separable and the fibres {Zei : 1 ≤ i ≤ k} are countably
generated as Hilbert A-modules, then iZ0 induces a KK-equivalence
between A and NT Z;

(iii) A is exact if and only if NT Z is exact ; and
(iv) A is nuclear if and only if NT Z is nuclear.

Proof. Part (i) follows from [20, Proposition 8.2]. Part (ii) follows from [30,
Theorem 4.4] (the hypothesis that A is separable and each Zei is countably
generated ensures that the Nica–Toeplitz algebra we get at each step of the
iterative procedure is separable). Part (iii) follows from [20, Theorem 7.1]
and part (iv) from [20, Theorem 7.2]. �

5. Iterating the Cuntz–Nica–Pimsner construction

We would like to be able to replicate our work from Section 4 using
Cuntz–Nica–Pimsner algebras in place of Nica–Toeplitz algebras. Specifi-
cally, can we construct a product system YNO over (H,Q) with coefficient
algebra NOX such that the Cuntz–Nica–Pimsner algebras of Z and YNO

are isomorphic?
The basic idea is to extend the interior portions of the commutative dia-

grams in Figures 1 and 2 by applying the canonical quotient homomorphisms
qX : NT X → NOX and qZ : NT Z → NOZ at the relevant places. Since
every Cuntz–Nica–Pimsner covariant representation is by definition a Nica
covariant representation, many of the results from Section 4 that we require
work exactly as before. Sometimes we will impose additional hypotheses
to get things to work, and unsurprisingly, our proofs often become more
complicated. We will add in hypotheses as and when needed, since we are
not sure if they are necessary, in the hope that future work may be able to
relax/remove them.

We now list the results that we will prove in Section 5, and summarise
the various spaces and maps that we will be working. As before, we hope
that if readers lose track of what is going on, they will be able to return to
this point for assistance.
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(1) In Proposition 5.3 we show that the inclusion of X in Z induces a
homomorphism φNOX from NOX to NOZ such that φNOX ◦ qX =

qZ ◦ φNTX .

(2) In Proposition 5.6 we show that the homomorphism φNOX is injective.

(3) In Proposition 5.7, we use φNTX to construct a collection of Hilbert

NOX-bimodules
{
YNOq : q ∈ Q

}
inside NOZ.

(4) In Proposition 5.8, we show that YNO :=
⊔
q∈QYNOq is a compactly

aligned product system over (H,Q) with coefficient algebra NOX.
(5) In Proposition 5.12, we find sufficient conditions for NOX to act

faithfully on each fibre of YNO.

Once we have the product system YNO, we prove that NOYNO
∼= NOZ.

(6) In Proposition 5.15 we use the universal Cuntz–Nica–Pimsner co-
variant representations of Z and YNO to construct a Cuntz–Nica–
Pimsner representation ϕNO of Z in NOYNO . Using the universal
property of NOZ we get a homomorphism ΩNO : NOZ → NOYNO

such that ΩNO ◦ jZ(p,q)
= jYNOq ◦ jZ(p,q)

.

(7) In Proposition 5.18 we find sufficient conditions for the inclusion
of YNO in NOZ to be a Cuntz–Nica–Pimsner covariant representa-
tion. The universal property ofNOYNO then gives a homomorphism
Ω′NO : NOYNO → NOZ such that Ω′NO ◦ jYNOq is the inclusion of

YNOq in NOZ.

(8) In Theorem 5.20 we prove that ΩNO and Ω′NO are mutually inverse
isomorphisms.

In summary, we will show that for every p ∈ P and q ∈ Q, the maps in the
outer portions of Figures 1 and 2 exist and make the diagrams commutative.

5.1. Constructing the product systems. The first step is to check that
the inclusion of X in Z induces a homomorphism from NOX to NOZ,
analogous to Proposition 4.1. To do this we need a couple of lemmas.

Lemma 5.1. Let T ∈ KA(Xp) and (s, t) ∈ P oα Q. If s 6= eG, then

(5.1) ι
(s,t)
(p,e)(T ) = MZ

(s,eH),(eG,t)
◦
(
ιsp(T )⊗A idZ(eG,t)

)
◦
(
MZ

(s,eH),(eG,t)

)−1
.

Proof. If y ∈ Z(s,eH) and z ∈ Z(eG,t), then(
MZ

(s,eH),(eG,t)
◦
(
ιseG(T )⊗A idZ(eG,t)

)
◦
(
MZ

(s,eH),(eG,t)

)−1
)

(yz)

= ιseG(T )(y)z = φs(T )(y)z = φ(s,t)(T )(yz) = ι
(s,t)
(eG,eH)(T )(yz).

Since MZ
(s,eH),(eG,t)

◦
(
ιseG(T )⊗A idZ(eG,t)

)
◦
(
MZ

(s,eH),(eG,t)

)−1
and ι

(s,t)
(eG,eH)(T )

are linear and continuous, and everything in Z(s,t) can be approximated by
linear combinations of elements from {yz : y ∈ Z(s,eH), z ∈ Z(eG,t)} (as
s 6= eG), we see that Equation 5.1 holds when p = eG.
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Now suppose that p 6= eG. If p 6≤ s, then (p, eH) 6≤ (s, t) and so both
sides of Equation 5.1 are zero. So suppose that p ≤ s. For any x ∈ Z(p,eH),
y ∈ Z(p−1s,eH), and z ∈ Z(eG,t), we see that(

MZ
(s,eH),(eG,t)

◦
(
ιsp(T )⊗A idZ(eG,t)

)
◦
(
MZ

(s,eH),(eG,t)

)−1
)

(xyz)

= ιsp(T )(xy)z = ((Tx)y) z = (Tx)(yz) = ι
(s,t)
(p,eH)(T )(xyz).

Since Z(s,t) = span{xyz : x ∈ Z(p,eH), y ∈ Z(p−1s,eH), z ∈ Z(eG,t)}, we con-
clude that (5.1) holds when p 6= eG as well. �

Lemma 5.2. Suppose that A acts faithfully on each fibre of X and each φ̃(p,q)

is injective. Fix a finite set F ⊆ P and a collection of compact operators
{Tp ∈ KA(Xp) : p ∈ F} such that∑

p∈F
ιsp(Tp) = 0 ∈ LA(Xs) for large s ∈ P .

Then ∑
p∈F

ι̃
(s,t)

(p,eH)(Tp) = 0 ∈ LA
(
Z̃(s,t)

)
for large (s, t) ∈ P oα Q.

Proof. Let (u, v) ∈ PoαQ. Hence, we can choose r ≥ u such that whenever
s ≥ r, we have ∑

p∈F
ιsp(Tp) = 0 ∈ LA(Xs).

Since (GoαH,P oαQ) has the product order, we know that (r, v) ≥ (u, v).
We claim that for any (s, t) ≥ (r, v), we have∑

p∈F
ι̃

(s,t)
(p,eH)(Tp) = 0 ∈ LA

(
Z̃(s,t)

)
.

Fix (s, t) ≥ (r, v) and let z ∈ Z̃(s,t). We need to show that(∑
p∈F

ι̃
(s,t)

(p,eH)(Tp)
)

(z)

is zero in Z̃(s,t), which is equivalent to showing that((∑
p∈F

ι̃
(s,t)

(p,eH)(Tp)
)

(z)
)

(m,n)

is zero in Z(m,n) for every (m,n) ≤ (s, t). With this in mind, let (m,n) ≤
(s, t). If m 6= s, then αn−1(m−1s) 6= eG, and so

(eG, eH) < (αn−1(m−1s), eH) ≤
(
αn−1(m−1s), n−1t

)
.
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As A acts faithfully on each fibre of X, it acts faithfully on Xαn−1 (m−1s) =

Z(αn−1 (m−1s),eH) in particular, and so

I(m,n)−1(s,t) = I(αn−1 (m−1s),n−1t) =
⋂

(eG,eH)<(x,y)

≤(αn−1 (m−1s),n−1t)

ker
(
φ(x,y)

)
= {0}.

Thus, if m 6= s, then z(m,n) ∈ Z(m,n) · I(m,n)−1(s,t) = {0}. Hence, for any
(m,n) ≤ (s, t), we have((∑

p∈F
ι̃

(s,t)
(p,eH)(Tp)

)
(z)
)

(m,n)
=
(∑
p∈F

ι
(m,n)
(p,eH)(Tp)

) (
z(m,n)

)
=

{(∑
p∈F ι

(s,n)
(p,eH)(Tp)

) (
z(s,n)

)
if m = s

0 otherwise.

Thus it remains to show that
(∑

p∈F ι
(s,n)
(p,eH)(Tp)

)
(z(s,n)) = 0.

If s 6= eG, then Lemma 5.1 combined with the fact that
∑

p∈F ι
s
p(Tp) = 0,

shows that
∑

p∈F ι
(s,n)
(p,eH)(Tp) = 0. On the other hand, if s = eG, then

0 =
∑
p∈F

ιsp(Tp) =

{
ιeGeG (TeG) if eG ∈ F
0 otherwise

=

{
TeG if eG ∈ F
0 otherwise,

and so either e 6∈ F or TeG = 0. Thus,(∑
p∈F

ι
(s,n)
(p,eH)(Tp)

) (
z(s,n)

)
=
(∑
p∈F

ι
(eG,n)
(p,eH)(Tp)

) (
z(eG,n)

)
=

{(
φ(eG,n) (TeG)

) (
z(eG,n)

)
if eG ∈ F

0 otherwise

is zero as required. We conclude that
∑

p∈F ι̃
(s,t)

(p,eH)(Tp) = 0 as claimed. �

Proposition 5.3. Suppose that A acts faithfully on each fibre of X and each

φ̃(p,q) is injective. Then the inclusion of X in Z induces a homomorphism

φNOX : NOX → NOZ such that φNOX (jX(x)) = jZ(x) for each x ∈ X. Thus,

φNOX ◦ qX = qZ ◦ φNTX .

Proof. We need to exhibit a Cuntz–Nica–Pimsner covariant representation
of X inNOZ. For each p ∈ P , define ψNOp : Xp → NOZ by ψNOp := jZ(p,eH )

.

Since ψNOp = qZ ◦ ψNTp , where ψNT is the Nica covariant representation of

X from Proposition 4.1, we see that ψNO is a Nica covariant representation
of X.

We now check that ψNO is Cuntz–Pimsner covariant. Suppose that F ⊆
P is finite and {Tp ∈ KA(Xp) : p ∈ F} is a collection of compact operators
such that

∑
p∈F ι

s
p(Tp) = 0 ∈ LA(Xs) for large s ∈ P . We need to show

that
∑

p∈F ψ
NO(p)

(Tp) = 0. Since ψNO
(p)

= j
((p,eH))
Z for each p ∈ P and
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jZ is Cuntz–Pimsner covariant, it suffices to prove that
∑

p∈F ι̃
(s,t)

(p,eH)(Tp) =

0 ∈ LA
(
Z̃(s,t)

)
for large (s, t) ∈ P oα Q, which follows from Lemma 5.2.

Thus, ψNO is Cuntz–Pimsner covariant, and so there is a homomorphism
φNOX : NOX → NOZ such that φNOX (jX(x)) = ψNO(x) = jZ(x) for each
x ∈ X. Finally, since the image of iX generates NT X, and

φNOX ◦ qX ◦ iX = φNOX ◦ jX = jZ|X = qZ ◦ iZ|X = qZ ◦ φNTX ◦ iX,

we conclude that φNOX ◦ qX = qZ ◦ φNTX . �

It is not clear whether the hypotheses for Proposition 5.3 can be re-

laxed. The hypothesis that each φ̃(p,q) is injective is used only to ensure
that the Cuntz–Nica–Pimsner algebra NOZ exists. The assumption that
A acts faithfully on each fibre of X allows us to make use of Lemma 5.2.
If we tried to prove Lemma 5.2 without assuming that A acts faithfully on
each fibre of X, we would need to prove that whenever F ⊆ P is finite
and {Tp ∈ KA(Xp) : p ∈ F} is a collection of compact operators such that∑

p∈F ι̃
s
p (Tp) is zero in LA

(
X̃s

)
for large s ∈ P , then

∑
p∈F ι̃

(s,t)
(p,eH)(Tp) is

zero in LA
(
Z̃(s,t)

)
for large (s, t) ∈ P oα Q. The following example us-

ing higher-rank graphs, shows that this need not be true. For the relevant
background on higher-rank graphs and their associated Cuntz–Krieger alge-
bras, see [34]. For the relationship between product systems and higher-rank
graphs see [32] and [38, Section 5.3].

Example 5.4. Let Γ be the 2-graph consisting of three vertices u, v, w, one
edge λ of degree (1, 0), one edge µ of degree (0, 1), with ranges and sources
s(λ) = u, s(µ) = w, and r(λ) = r(µ) = v. The associated compactly aligned
product system Z ⊆ C∗(Γ) over (Z2,N2) has fibres given by

A := Z(0,0) := span{tu, tv, tw} = C∗({tu, tv, tw}), Z(1,0) := span{tλ},
Z(0,1) := span{tµ}, Z(m,n) := {0} for all other (m,n) ∈ N2.

From this, we define another compactly aligned product system X over
(Z,N), whose fibres are given by Xn := Z(n,0) for each n ∈ N. Example 3.3
of [38] shows that for any n ≥ 1 we have

X̃n = span
{
tν : ν ∈ Γ≤(n,0)

}
= span{tu, tw, tλ},

whilst for any (n,m) ≥ (1, 1) we have

Z̃(n,m) = span
{
tν : ν ∈ Γ≤(n,m)

}
= span{tu, tv, tλ, tµ}.

Consider tv ∈ A ∼= KA (X0) and Θtλ,tλ ∈ KA (X1). Then

ι̃n0 (tv)− ι̃n1 (Θtλ,tλ) = 0 ∈ LA
(
X̃n

)
for any n ≥ 1.

For any (n,m) ≥ (1, 1), since r(µ) = v, we have

ι̃
(n,m)
(0,0) (tv)(tµ) = tµ.
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Since λ and µ have no minimal common extensions, it follows that

ι̃
(n,m)
(1,0) (Θtλ,tλ)(tµ) = tλt

∗
λtµ = 0.

Thus, (
ι̃

(n,m)
(0,0) (tv)− ι̃ (n,m)

(1,0) (Θtλ,tλ)
)
(tµ) = tµ,

and so

ι̃
(n,m)
(0,0) (tv)− ι̃ (n,m)

(1,0) (Θtλ,tλ) 6= 0 ∈ LA
(
Z̃(n,m)

)
.

We should not be particularly surprised by Example 5.4 — the product
system Z associated to Γ contains no two dimensional information (since
the higher-rank graph Γ contains no paths of degree (1, 1)). In [14, Propo-
sition 4.6] we show that if the higher-rank graph is locally convex (see [33,
Definition 3.9]), then problems of this variety do not occur. As such, it
would be interesting to see if there is a notion of local convexity for arbi-
trary product systems over Nk (or even more general quasi-lattice ordered
groups) that ensures the inclusion of X in Z induces a homomorphism from
NOX to NOZ.

Similar to Subsection 4.1, in order to construct a product system sitting
inside NOZ with coefficient algebra NOX, we need to check that the ho-
momorphism φNOX : NOX → NOZ is injective. The idea is to show that
by restricting the canonical coaction of G oα H on NOZ to the image of
φNOX , we get a coaction of G on φNOX (NOX). As such, we need to know
when the group C∗-algebra of GoαH contains a faithful copy of the group
C∗-algebra of G.

Lemma 5.5. Let G and H be groups, and suppose that α : H → Aut(G)
is a group homomorphism. Then there exists a homomorphism ι : C∗(G)→
C∗(G oα H) such that ι(iG(g)) = iGoαH(g, eH) for each g ∈ G (where
iG and iGoαH are the universal unitary representations of G and G oα

H respectively). If G is amenable, then ι is injective. Thus, C∗(G) ∼=
span{iGoαH(Goα {eH})} ⊆ C∗(Goα H).

Proof. It is straightforward to check that g 7→ iGoαH((g, eH)) is a unitary
representation of G in C∗(Goα H). The universal property of C∗(G) then
provides us with the homomorphism ι.

We now assume that G is amenable. Hence,

C∗(G) ∼= C∗({Tg : g ∈ G}) ⊆ B
(
`2(G)

)
,

where the operator Tg ∈ B(`2(G)) is defined by Tg(f)(h) := f
(
g−1h

)
for g ∈

G, f ∈ `2(G), and h ∈ G. Similarly, the map (g, h) 7→ S(g,h) ∈ B(`2(GoαH))
where

S(g,h)(f)(k, l) := f
(
(g, h)−1(k, l)

)
= f

(
αh−1(g−1k), h−1l

)
for each f ∈ `2 (Goα H) and (k, l) ∈ G oα H, is a unitary representation

of G oα H. Clearly, if f ∈ `2(G), then the map f̃ : G oα H → C defined
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by f̃(g, h) := δh,eHf(g) belongs to `2(GoαH) and ‖f‖`2(G) =
∥∥f̃∥∥

`2(GoαH)
.

Now let F ⊆ G be a finite set. For any f ∈ `2(G) we have∥∥∥∥∑
g∈F

S(g,eH)

(
f̃
)∥∥∥∥2

`2(GoαH)

=
∑

(k,h)∈GoαH

∣∣∣∣∑
g∈F

S(g,eH)

(
f̃
)
(k, h)

∣∣∣∣2

=
∑

(k,h)∈GoαH

∣∣∣∣∑
g∈F

f̃
(
g−1k, h

) ∣∣∣∣2

=
∑
k∈G

∣∣∣∣∑
g∈F

f
(
g−1k

) ∣∣∣∣2
=
∑
k∈G

∣∣∣∣∑
g∈F

Tg(f)(k)

∣∣∣∣2
=

∥∥∥∥∑
g∈F

Tg(f)

∥∥∥∥2

`2(G)

.

Thus, ∥∥∥∥∑
g∈F

Tg

∥∥∥∥
B(`2(G))

≤
∥∥∥∥∑
g∈F

S(g,eH)

∥∥∥∥
B(`2(GoαH))

.

Since ι is norm-decreasing, we have∥∥∥∥∑
g∈F

iG(g)

∥∥∥∥
C∗(G)

≥
∥∥∥∥ι(∑

g∈F
iG(g)

)∥∥∥∥
C∗(GoαH)

=

∥∥∥∥∑
g∈F

iGoαH(g, eH)

∥∥∥∥
C∗(GoαH)

.

Since iGoαH is the universal unitary representation of G oα H, we deduce
that ∥∥∥∥∑

g∈F
iG(g)

∥∥∥∥
C∗(G)

≥
∥∥∥∥∑
g∈F

S(g,eH)

∥∥∥∥
B(`2(GoαH))

≥
∥∥∥∥∑
g∈F

Tg

∥∥∥∥
B(`2(G))

=

∥∥∥∥∑
g∈F

iG(g)

∥∥∥∥
C∗(G)

,

where the last equality follows from the amenability of G. Hence ι is iso-
metric on the dense subspace span {iG(g) : g ∈ G} of C∗(G). We conclude
that ι is an isometry. �

Proposition 5.6. Suppose that A acts faithfully on each fibre of X, and each

φ̃(p,q) is injective, so that the homomorphism φNOX : NOX → NOZ from

Proposition 5.3 exists. If G is an amenable group, then φNOX is injective.
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Proof. Since G is amenable, we can use [4, Corollary 4.12] to show that φNOX

is injective. Firstly, we need to check that φNOX |jXeG (A)
is injective. Suppose

that a ∈ A is such that φNOX

(
jXeG

(a)
)

= 0. Then jZ(eG,eH )
(a) = 0, which

forces a = 0 since jZ is isometric by [38, Theorem 4.1]. Thus, φNOX |jXeG (A)

is injective.
Next, let νZ : NOZ → NOZ ⊗ C∗(G oα H) denote the canonical gauge

coaction of Goα H on NOZ. Since

νZ
(
φNOX (jXp(x))

)
= νZ

(
jZ(p,eH)

(x)
)

= jZ(p,eH)
(x)⊗ iGoαH (p, eH)

= φNOX

(
jXp(x)

)
⊗ ι (iG(p)) ,

for any x ∈ Xp, we can define β : φNOX (NOX)→ φNOX (NOX)⊗ C∗(G) by

β :=
(
idφNOX (NOX) ⊗ ι

−1
)
◦ νZ|φ(NOX).

We claim that β is a coaction of G on φNOX (NOX).
Since νZ and idφNOX (NOX) ⊗ ι−1 are injective homomorphisms, so is β. If

x ∈ Xp, then((
β ⊗ idC∗(G)

)
◦ β
)(
φNOX (jXp(x))

)
=
(
β ⊗ idC∗(G)

)(
jZ(p,eH)

(x)⊗ iG(p)
)

= jZ(p,eH)
(x)⊗ iG(p)⊗ iG(p)

=
(
idφNOX (NOX) ⊗ δG

)(
jZ(p,eH)

(x)⊗ iG(p)
)

=
((

idφNOX (NOX) ⊗ δG
)
◦ β
)(
φNOX (jXp(x))

)
.

Since φNOX (NOX) is generated by the image of the homomorphism φNOX ◦jX,
and both

(
β⊗ idC∗(G)

)
◦ β and

(
idφNOX (NOX)⊗ δG

)
◦ β are homomorphisms,

we conclude that β satisfies the coaction identity. For any x ∈ Xp, w ∈ Xr,
and g ∈ G, we have

φNOX

(
jXp(x)jXr(w)∗

)
⊗ iG(g)

=
(
φNOX

(
jXp(x)jXr(w)∗

)
⊗ iG

(
pr−1

))(
1M(φNOX (NOX)) ⊗ iG

(
rp−1g

))
= β

(
φNOX

(
jXp(x)jXr(w)∗

))(
1M(φNOX (NOX)) ⊗ iG

(
rp−1g

))
.

Thus,

φNOX (NOX)⊗ C∗(G) = span
{
β
(
φNOX (NOX)

)(
1M(φNOX (NOX)) ⊗ C

∗(G)
)}
,

and so β is coaction nondegenerate. Finally, for any x ∈ Xp, we have(
β ◦ φNOX

)(
jXp(x)

)
=
(
idφNOX (NOX) ⊗ ι

−1
)(
νZ
(
jZ(p,eH)

(x)
))

=
(
idφNOX (NOX) ⊗ ι

−1
)(
jZ(p,eH)

(x)⊗ iGoαH(p, eH)
)

=
((
φNOX ⊗ idC∗(G)

)
◦ νX

)(
jXp(x)

)
.
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Since β ◦ φNOX and
(
φNOX ⊗ idC∗(G)

)
◦ νX are homomorphisms, and jX gen-

erates NOX, we see that β ◦ φNOX =
(
φNOX ⊗ idC∗(G)

)
◦ νX. By [4, Corol-

lary 4.12], φNOX is injective. �

Almost identically to Subsection 4.1, we can use the injective homomor-
phism φNOX to construct a product system. Firstly, we construct a collection

of Hilbert NOX-bimodules
{
YNOq : q ∈ Q \ {eH}

}
. The idea is to make use

of the collection of Hilbert NT X-bimodules
{
YNTq : q ∈ Q \ {eH}

}
defined

in Propositions 4.3 and 4.6 and apply the quotient maps qX and qZ at the
appropriate places.

For each q ∈ Q\{eH}, we let YNOq = qZ
(
YNTq

)
. We then show that there

exists a right action of NOX on YNOq , and a NOX-valued inner product

〈·, ·〉qNOX
on YNOq , making the diagrams in Figure 3 commutative.

YNOq ×NOX

YNTq ×NOX

YNOq

YNTq

YNOq ×YNOq

YNTq ×YNTq

NOX

NT X

qZ × qX qZ

(y, a) 7→ y · a

(y, a) 7→ y · a

qZ × qZ qX

〈·, ·〉qNTX

〈·, ·〉qNOX

Figure 3. The Hilbert NOX-module YNOq

We also show that there exists a left action of NOX, implemented by a
homomorphism ΦNOq : NOX → LNOX

(
YNOq

)
, such that the diagram in

Figure 4 is commutative.

NOX ×YNOq

NT X ×YNTq

YNOq

YNTq

qX × qZ qZ

(a, y) 7→ ΦNTq (a)(y)

(a, y) 7→ ΦNOq (a)(y)

Figure 4. The homomorphism ΦNOq
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Proposition 5.7. Suppose that G is an amenable group, A acts faithfully

on each fibre of X, and each φ̃(p,q) is injective, so that the homomorphism

φNOX of Proposition 5.3 exists and is injective. For each q ∈ Q\{eH}, define

YNOq : = span
{
jZ(eG,q)

(x)φNOX (b) : x ∈ Z(eG,q), b ∈ NOX

}
⊆ NOZ.

Then YNOq carries a right action of NOX such that

y · b = yφNOX (b) for each y ∈ YNOq and b ∈ NOX.

For each y, w ∈ YNOq , we have y∗w ∈ φNOX (NOX), and there is an NOX

valued inner-product 〈·, ·〉qNOX
: YNOq ×YNOq → NOX such that

〈y, w〉qNOX
=
(
φNOX

)−1
(y∗w) for each y, w ∈ YNOq .

With this structure, YNOq becomes a Hilbert NOX-module. Furthermore,

there exists a homomorphism ΦNOq : NOX → LNOX

(
YNOq

)
such that

ΦNOq (b)(y) = φNOX (b)y for each b ∈ NOX and y ∈ YNOq .

With this additional structure, YNOq becomes a Hilbert NOX-bimodule.

Proof. We have effectively already completed all of the necessary calcula-
tions in Subsection 4.1 to prove the result. Rather than just rerunning the
arguments of Propositions 4.3 and 4.6 with YNOq in place of YNTq , we will
show how these two spaces are related via the quotient maps on NT X and
NT Z and use this to prove the result. The key observation is that the quo-
tient homomorphisms qX and qZ intertwine the homomorphisms φNTX and

φNOX .

Since qZ ◦ iZ = jZ and qZ ◦ φNTX = φNOX ◦ qX, we have

YNOq = span
{
jZ(eG,q)

(x)φNOX (b) : x ∈ Z(eG,q), b ∈ NOX

}
= qZ

(
span

{
iZ(eG,q)

(x)φNTX (b) : x ∈ Z(eG,q), b ∈ NT X

})
= qZ

(
YNTq

)
.

We now show how the right actions of NOX on YNOq can be obtained

from the right action of NT X on YNTq . For any a ∈ NT X and y ∈ YNTq ,
we have

(5.2) qZ (y · a) = qZ
(
yφNTX (a)

)
= qZ(y)qZ

(
φNTX (a)

)
= qZ(y)φNOX (qX(a)) .

If a′ ∈ NT X and y′ ∈ YNTq with qX(a) = qX(a′) and qZ(y) = qZ(y′), then
(5.2) is equal to

qZ(y′)φNOX

(
qX(a′)

)
= qZ(y′)qZ

(
φNTX (a′)

)
= qZ

(
y′φNTX (a′)

)
= qZ

(
y′ · a′

)
Thus, YNOq carries a right action of NOX defined by the formula

qZ(y) · qX(a) := qZ(y · a) for each a ∈ NT X and y ∈ YNTq .
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Moreover, (5.2) shows that

y · a = yφNOX (a) for any a ∈ NOX and y ∈ YNOq .

Next we show how the NOX valued inner-product on YNOq can be ob-

tained from the NT X valued inner-product on YNTq . For any y, w ∈ YNTq ,
we have

(5.3) qX
(
〈y, w〉qNT X

)
= qX

( (
φNTX

)−1
(y∗w)

)
=
(
φNOX

)−1
(qZ(y)∗qZ(w)) .

If y′, w′ ∈ YNTq with qZ(y) = qZ(y′) and qZ(w) = qZ(w′), then this is equal
to (

φNOX

)−1 (
qZ(y′)∗qZ(w′)

)
=
(
φNOX

)−1 (
qZ(y′∗w′)

)
= qX

( (
φNTX

)−1
(y′∗w′)

)
= qX

(
〈y′, w′〉qNT X

)
.

Thus, we can define 〈·, ·〉qNOX
: YNOq ×YNOq → NOX by

〈qZ(y), qZ(w)〉qNOX
:= qX

(
〈y, w〉qNT X

)
for any y, w ∈ YNTq .

Moreover, (5.3) shows that

〈y, w〉qNOX
=
(
φNOX

)−1
(y∗w) for any y, w ∈ YNOq .(5.4)

Using (5.4), it is elementary to show that
(
YNOq , 〈·, ·〉qNOX

)
is a Hilbert

NOX-module.
It remains to check that YNOq carries a left action of NOX by adjointable

operators. We show how the homomorphism ΦNOq : NOX → LNOX

(
YNOq

)
can be obtained from the homomorphism ΦNTq : NT X → LNT X

(
YNTq

)
.

For any a ∈ NT X and y ∈ YNTq , we have

(5.5)
qZ
(
ΦNTq (a)(y)

)
= qZ

(
φNTX (a)y

)
= qZ

(
φNTX (a)

)
qZ(y)

= φNOX (qX(a)) qZ(y).

If a′ ∈ NT X and y′ ∈ YNTq with qX(a) = qX(a′) and qZ(y) = qZ(y′), then
(5.5) is equal to

φNOX

(
qX(a′)

)
qZ(y′) = qZ

(
φNTX (a′)

)
qZ(y′) = qZ

(
φNTX (a′)y′

)
= qZ

(
ΦNTq (a′)(y′)

)
.

Thus, for a ∈ NT X, there exists a map ΦNOq (qX(a)) : YNOq → YNOq given
by

ΦNOq (qX(a)) (qZ(y)) := qZ
(
ΦNTq (a)(y)

)
for each y ∈ YNTq .

Moreover, (5.5) shows that

ΦNOq (a) (y) = φNOX (a) y for any a ∈ NOX and y ∈ YNOq(5.6)

Using (5.4) and (5.6), it is routine to check that ΦNOq (qX(a)) is an ad-

jointable map on YNOq and the map qX(a) 7→ ΦNOq (qX(a)) is a homomor-

phism from NOX to LNOX

(
YNOq

)
, which we denote by ΦNOq . �



776 JAMES FLETCHER

The next result shows that if YNOeH := NOX
(NOX)NOX

, then YNO :=⊔
q∈QYNOq has the structure of a compactly aligned product system.

The idea is to use the Hilbert NT X-bimodule isomorphism MYNT
q,t :

YNTq ⊗NT X
YNTt → YNTqt from Proposition 4.7 to define a Hilbert NOX-

bimodule isomorphism MYNO
q,t : YNOq ⊗NOX

YNOt → YNOqt , such that the
diagram in Figure 5 is commutative.

YNOq ⊗NOX
YNOt

YNTq ⊗NT X
YNTt

YNOqt

YNTqt

qZ ⊗NTX
qZ qZ

MYNT
q,t

MYNO
q,t

Figure 5. The Hilbert NOX-bimodule isomorphism MYNO
q,t

Proposition 5.8. Suppose that G is an amenable group, A acts faithfully on

each fibre of X, and each φ̃(p,q) is injective, so that the collection of Hilbert

NOX-bimodules
{
YNOq : q ∈ Q \ {eH}

}
from Proposition 5.7 exists.

Let YNOeH := NOX
(NOX)NOX

, and for each q ∈ Q\{eH}, define YNOq as

in Proposition 5.7. Then YNO :=
⊔
q∈QYNOq is a compactly aligned product

system over (H,Q) with coefficient algebra NOX, with multiplication in
YNO given by multiplication in NOZ.

Proof. We have already shown that each YNOq is a Hilbert NOX-bimodule.

To show that YNO :=
⊔
q∈QYNOq is a product system over (H,Q) with

coefficient algebra NOX and multiplication inherited from NOZ, we need

only check that there exists a Hilbert NOX-bimodule isomorphism MYNO
q,t :

YNOq ⊗NOX
YNOt → YNOqt for each q, t ∈ Q \ {eH} such that

MYNO
q,t (y ⊗NOX

w) = yw for each y ∈ YNOq , w ∈ YNOt .(5.7)

Rather than just rerun our argument from Proposition 4.7 with YNOq in

place of YNTq , we will show how these isomorphisms can be obtained from

the Hilbert NT X-bimodule isomorphisms MYNT
q,t : YNTq ⊗NT X

YNTt →
YNTqt using the quotient map qZ. Observe that if y, y′ ∈ YNTq with qZ(y) =
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qZ(y′) and w,w′ ∈ YNTt with qZ(w) = qZ(w′), then

qZ
(
MYNT
q,t (y ⊗NT X

w)
)

= qZ (yw)

= qZ
(
y′w′

)
= qZ

(
MYNT
q,t (y′ ⊗NT X

w′)
)
.

Hence, there is a well-defined map MYNO
q,t : YNOq ⊗NOX

YNOt → YNOqt given
by

MYNO
q,t

(
(qZ ⊗NOX

qZ)(z)
)

: = qZ
(
MYNT
q,t (z)

)
for each z ∈ YNTq ⊗NT X

YNTt ,

which satisfies (5.7). Since MYNT
q,t is surjective and qZ

(
YNTqt

)
= YNOqt , the

map MYNO
q,t is also surjective. Routine calculations using (5.7) show that

MYNO
q,t is inner-product preserving and left NOX-linear. Hence, MYNO

q,t is

a Hilbert NOX-bimodule isomorphism. We conclude that YNO has the
structure of a product system.

It remains to show that YNO is compactly aligned. Fix q, t ∈ Q with
q ∨ t < ∞, and let S ∈ KNOX

(
YNOq

)
and T ∈ KNOX

(
YNOt

)
. We need to

show that ιq∨tq (S)ιq∨tt (T ) ∈ KNOX

(
YNOq∨t

)
. If q = eH or t = eH , the result

is trivial, so we may as well suppose that q, t 6= eH . Since ιq∨tq and ιq∨tt

are linear and continuous, as is multiplication in LNOX

(
YNOq∨t

)
, we may as

well assume that S and T are rank one operators. Hence, S = ΘqZ(x),qZ(y)

and T = ΘqZ(u),qZ(v) for some x, y ∈ YNTq and u, v ∈ YNTt . Then for any

z ∈ YNTq∨t , we have(
ιq∨tq

(
ΘqZ(x),qZ(y)

)
ιq∨tt

(
ΘqZ(u),qZ(v)

) )
(qZ(z))

=
(
MqZ(x)qZ(y)∗MqZ(u)qZ(v)∗

)
(qZ(z))

= qZ (Mxy∗uv∗(z)) .

Lemma 4.11 and Proposition 4.12 show that Mxy∗uv∗ ∈ KNT X

(
YNTq∨t

)
.

Thus, the previous line can be approximated by sums of the form

qZ (Θα,β(z)) = ΘqZ(α),qZ(β) (qZ(z)) ,

where α, β ∈ YNTq∨t . Since z ∈ YNTq∨t was arbitrary and YNOr = qZ
(
YNTr

)
for each r ∈ Q \ {eH}, we conclude that ιq∨tq

(
ΘqZ(x),qZ(y)

)
ιq∨tt

(
ΘqZ(u),qZ(v)

)
can be approximated by sums of operators in KNOX

(
YNOq∨t

)
. Thus,

ιq∨tq

(
ΘqZ(x),qZ(y)

)
ιq∨tt

(
ΘqZ(u),qZ(v)

)
∈ KNOX

(
YNOq∨t

)
as required. �

Shortly, we will examine the Cuntz–Nica–Pimsner algebra of the product
system YNO. To make the calculations tractable, we seek sufficient con-
ditions for the homomorphisms ΦNOq : NOX → LNOX

(
YNOq

)
that imple-

ment the left action of NOX on the fibres of YNO to be injective. Again,
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we will make use of [4, Corollary 4.12]. The main step is showing that
ΦNOq (NOX) ⊆ LNOX

(
YNOq

)
carries a coaction of G that intertwines ΦNOq

with the canonical coaction of G on NOX. We first need some preliminary
results.

Lemma 5.9. Suppose that G is an amenable group, A acts faithfully on

each fibre of X, and each φ̃(p,q) is injective, so that the product system YNO

from Proposition 5.8 exists. Then

νZ ◦ φNOX =
(
φNOX ⊗ ι

)
◦ νX.

Furthermore, if a ∈ NOX and y ∈ YNOq , then

νZ
(
ΦNOq (a)(y)

)
=
((

ΦNOq ⊗ ι
)
(νX(a))

)
(νZ(y)) .

Proof. Since both νZ ◦ φNOX and
(
φNOX ⊗ ι

)
◦ νX are homomorphisms, it

suffices to check that they agree on the generators of NOX. If x ∈ Xp, then

νZ
(
φNOX

(
jXp(x)

))
= νZ

(
jZ(p,eH)

(x)
)

= jZ(p,eH)
(x)⊗ iGoH (p, eH)

=
(
φNOX ⊗ ι

) (
jXp(x)⊗ iG(p)

)
=
(
φNOX ⊗ ι

) (
νX
(
jXp(x)

))
,

as required. Since νZ is a homomorphism, we see that for any a ∈ NOX

and y ∈ YNOq ,

νZ
(
ΦNOq (a)(y)

)
= νZ

(
φNOX (a)y

)
= νZ

(
φNOX (a)

)
νZ(y)

=
(
φNOX ⊗ ι

)
(νX(a))νZ(y)

=
((

ΦNOq ⊗ ι
)
(νX(a))

)
(νZ(y)) . �

Lemma 5.10. Suppose that G is an amenable group, A acts faithfully on

each fibre of X, and each φ̃(p,q) is injective, so that the product system YNO

from Proposition 5.8 exists. Then for each q ∈ Q,(
idYNOq

⊗ ι
)(
YNOq ⊗ C∗(G)

)
= span

{
νZ
(
YNOq

)(
1M(NOZ) ⊗ iGoαH(G× {q−1})

)}
.

Proof. We begin by showing ⊆. Fix g ∈ G and z ∈ Z(p,q), w ∈ Z(r,eH).
Since

(p, q) (r, eH)−1 (rαq−1

(
p−1g

)
, q−1

)
= (g, eH) ,

we see that(
idYNOq

⊗ ι
)(
jZ(p,q)

(z)jZ(r,eH)
(w)∗ ⊗ iG(g)

)
= νZ

(
jZ(p,q)

(z)jZ(r,eH)
(w)∗

)(
1M(NOZ) ⊗ iGoαH(rαq−1(p−1g), q−1)

)
∈ span

{
νZ
(
YNOq

)(
1M(NOZ) ⊗ iGoαH(G× {q−1})

)}
.

Since YNOq = span
{
jZ(p,q)

(z)jZ(r,eH)
(w)∗ : p, r ∈ P, z ∈ Z(p,q), w ∈ Z(r,eH)

}
and C∗(G) = span {iG(g) : g ∈ G}, we conclude that ⊆ holds.
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We now prove ⊇. Fix p, r ∈ P , g ∈ G, z ∈ Z(p,q), and w ∈ Z(r,eH). Since

(p, q)(r, eH)−1(g, q−1) = (pαq(r
−1g), eH), we have

νZ
(
jZ(p,q)

(z)jZ(r,eH)
(w)∗

)(
1M(NOZ) ⊗ iGoαH(g, q−1)

)
=
(
idYNOq

⊗ ι
)(
jZ(p,q)

(z)jZ(r,eH)
(w)∗ ⊗ iG(pαq(r

−1g))
)

∈
(
idYNOq

⊗ ι
)(
YNOq ⊗ C∗(G)

)
.

Since YNOq = span
{
jZ(p,q)

(z)jZ(r,eH)
(w)∗ : p, r ∈ P, z ∈ Z(p,q), w ∈ Z(r,eH)

}
and g ∈ G was arbitrary, we conclude that ⊇ holds. �

Lemma 5.11. Suppose that G is an amenable group, A acts faithfully on

each fibre of X, and each φ̃(p,q) is injective, so that the product system YNO

from Proposition 5.8 exists. If ΦNOq (a) = 0 ∈ LNOX

(
YNOq

)
for some

a ∈ NOX, then(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) = 0 ∈ LNOX

(
YNOq

)
⊗ C∗(G).

Proof. Suppose that a ∈ NOX is such that ΦNOq (a) = 0 ∈ LNOX

(
YNOq

)
.

We want to show that
(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) = 0 ∈ LNOX

(
YNOq

)
⊗

C∗(G). Since the external tensor product LNOX

(
YNOq

)
⊗ C∗(G) is iso-

morphic to LNOX

(
YNOq

)
⊗ LC∗(G)(C

∗(G)), which embeds isometrically in

LNOX⊗C∗(G)

(
YNOq ⊗ C∗(G)

)
(see [25, Chapter 4] for the details regard-

ing exterior tensor products of Hilbert modules), it suffices to show that(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) acts as the zero operator on YNOq ⊗ C∗(G). By

Lemma 5.10, it suffices to show that
(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) is the zero

operator on

span
{(

idYNOq
⊗ ι−1

)(
νZ
(
YNOq

)(
1M(NOZ) ⊗ iGoαH(G× {q−1})

))}
.

To do this we will use the fact that(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) ◦

(
idYNOq

⊗ ι−1
)

=
(
idYNOq

⊗ ι−1
)
◦
(
ΦNOq ⊗ ι

)
(νX(a)),

and
(
ΦNOq ⊗ ι

)
(νX(a)) is left multiplication by

(
φNOX ⊗ ι

)
(νX(a)) on

YNOq ⊗ C∗(Goα H) ⊆ NOZ ⊗ C∗(Goα H)

⊆M (NOZ)⊗ C∗(Goα H).

Since multiplication in M (NOZ)⊗ C∗(Goα H) is associative, we see that
for any y ∈ YNOq and g ∈ G,
(5.8)(
ΦNOq ⊗idC∗(G)

)
(νX(a))

((
idYNOq

⊗ι−1
)(
νZ(y)

(
1M(NOZ)⊗iGoαH(g, q−1)

)))
=
(
idYNOq

⊗ι−1
)(((

ΦNOq ⊗ι
)
(νX(a))(νZ(y))

)(
1M(NOZ)⊗iGoαH(g, q−1)

))
.
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By Lemma 5.9, we have(
ΦNOq ⊗ ι

)
(νX(a)) (νZ(y)) = νZ

(
ΦNOq (a)(y)

)
= 0.

Thus, (5.8) is zero, and we conclude that
(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) is the

zero operator on YNOq ⊗ C∗(G) as required. �

We are now ready to show that the homomorphism ΦNOq : NOX →
LNOX

(
YNOq

)
is injective.

Proposition 5.12. Suppose that G is an amenable group, A acts faithfully

on each fibre of X, and each φ̃(p,q) is injective, so that the product system

YNO from Proposition 5.8 exists. If A acts faithfully on Z(eG,q), then ΦNOq :

NOX → LNOX

(
YNOq

)
is injective.

Proof. Since G is amenable we can use [4, Corollary 4.12] to prove the
result. We begin by checking that ΦNOq |jXeG is injective. Suppose that

a ∈ A is such that ΦNOq
(
jXeG

(a)
)

= 0. For any z ∈ Z(eG,q), we then have
that

0 = ΦNOq
(
jXeG

(a)
)(
jZ(eG,q)

(z)
)

= jZ(eG,eH)
(a)jZ(eG,q)

(z) = jZ(eG,q)
(a · z).

Since jZ(eG,q)
is isometric and A acts faithfully on Z(eG,q), we deduce that

a = 0, and so jXeG
(a) = 0.

We now need to show that there is a coaction β of G on ΦNOq (NOX)

that intertwines ΦNOq with the canonical gauge coaction of G on NOX.

Lemma 5.11 shows that there is a well-defined map β : ΦNOq (NOX) →
ΦNOq (NOX)⊗ C∗(G) such that

β ◦ ΦNOq =
(
ΦNOq ⊗ idC∗(G)

)
◦ νX

Since ΦNOq , ΦNOq ⊗ idC∗(G), and νX are all homomorphisms, we see that β
is a homomorphism.

We now check that β satisfies the coaction identity. We see that(
β ⊗ idC∗(G)

)
◦ β ◦ ΦNOq

=
(
β ⊗ idC∗(G)

)
◦
(
ΦNOq ⊗ idC∗(G)

)
◦ νX

=
((
β ◦ ΦNOq

)
⊗ idC∗(G)

)
◦ νX

=
(
ΦNOq ⊗ idC∗(G) ⊗ idC∗(G)

)
◦
(
νX ⊗ idC∗(G)

)
◦ νX.

Since νX satisfies the coaction identity
(
νX ⊗ idC∗(G)

)
◦νX = (idNOX

⊗ δG)◦
νX, the last line is equal to(

ΦNOq ⊗ idC∗(G) ⊗ idC∗(G)

)
◦ (idNOX

⊗ δG) ◦ νX
=
(
idΦNOq (NOX) ⊗ δG

)
◦
(
ΦNOq ⊗ idC∗(G)

)
◦ νX

=
(
idΦNOq (NOX) ⊗ δG

)
◦ β ◦ ΦNOq .
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Thus, (β⊗ idC∗(G))◦β = (idΦq(NOX)⊗δG)◦β, and so β satisfies the coaction
identity.

We also need to show that β is coaction nondegenerate. We have

span
{
β
(
ΦNOq (NOX)

)(
1M(ΦNOq (NOX)) ⊗ C

∗(G)
)}

= span
{((

ΦNOq ⊗ idC∗(G)

)
(νX (NOX))

)(
1M(ΦNOq (NOX)) ⊗ C

∗(G)
)}

=
(
ΦNOq ⊗ idC∗(G)

)
span

{
νX (NOX)

(
1M(NOX) ⊗ C∗(G)

)}
.

Since νX is coaction nondegenerate, this is equal to(
ΦNOq ⊗ idC∗(G)

)
(NOX ⊗ C∗(G)) = ΦNOq (NOX)⊗ C∗(G),

and we see that β is coaction nondegenerate.
Finally, we check that β is injective. Suppose that β

(
ΦNOq (a)

)
= 0 for

some a ∈ NOX. We must show that ΦNOq (a) = 0. We will make use of the

fact that
(
ΦNOq ⊗ ι

)
(νX(a)) is left multiplication by

(
φNOX ⊗ ι

)
(νX(a)) on

YNOq ⊗ C∗(Goα H) ⊆ NOZ ⊗ C∗(Goα H) ⊆M (NOZ)⊗ C∗(Goα H),

and multiplication inM (NOZ)⊗C∗(GoαH) is associative. For y ∈ YNOq ,
Lemma 5.9 shows that

(5.9)

νZ
(
ΦNOq (a)(y)

)
=
(
ΦNOq ⊗ ι

)
(νX(a)) (νZ(y))

=
(
ΦNOq ⊗ ι

)
(νX(a))

(
νZ(y)

(
1M(NOZ) ⊗ iGoαH

(
eG, q

−1
)) )

×
(
1M(NOZ) ⊗ iGoαH (eG, q)

)
.

Since

νZ(y)
(
1M(NOZ) ⊗ iGoαH

(
eG, q

−1
))
∈ YNOq ⊗ ι (C∗(G))

by Lemma 5.10, and(
ΦNOq ⊗ ι

)
(νX(a))

=
(
idYNOq

⊗ ι
)
◦
(
ΦNOq ⊗ idC∗(G)

)
(νX(a)) ◦

(
idYNOq

⊗ ι−1
)

=
(
idYNOq

⊗ ι
)
◦ β
(
ΦNOq (a)

)
◦
(
idYNOq

⊗ ι−1
)

= 0,

we conclude that (5.9) is zero. As νZ is injective, we have ΦNOq (a)(y) = 0.

As y ∈ YNOq was arbitrary, it follows that ΦNOq (a) = 0. Hence, β is injective.
Putting all of this together and applying [4, Corollary 4.12], we conclude

that ΦNOq is injective. �

In the next subsection we will investigate the Cuntz–Nica–Pimsner alge-
bra of YNO. To make our calculations tractable we will assume that A acts
faithfully on each fibre of Z — by Proposition 5.12 this then implies that
NOX acts faithfully on each fibre of YNO. Moreover, if A acts faithfully

on each fibre of Z, then A acts faithfully on each fibre of X and each φ̃(p,q)

is injective, ensuring that all of the results from Subsection 5.1 hold.
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5.2. Isomorphisms of Cuntz–Nica–Pimsner algebras. We now work
towards showing that NOYNO

∼= NOZ. To do this we will use the universal
property of each C∗-algebra to induce a homomorphism from one to the
other, and then check that these homomorphisms are the inverses of each
other. To make our arguments easier to write down, we will identify the
coefficient algebra NOX of YNO with φNOX (NOX) ⊆ NOZ. Thus, every

fibre of YNO can be viewed as sitting inside NOZ, and the left and right
actions of NOX

∼= φNOX (NOX) on each YNOq are multiplication in NOZ.
We begin by getting a homomorphism from NOZ to NOYNO by exhibit-

ing a Cuntz–Nica–Pimsner covariant representation of Z in NOYNO . First,
we need a couple of lemmas.

Lemma 5.13. Suppose that (K,R) is a quasi-lattice ordered group. Let
F ⊆ R be finite. Then

F = {r ∈ F : r ≤ m} t {r ∈ F : r ∨m =∞}

for large m ∈ R.

Proof. Clearly, {r ∈ F : r ≤ m}t{r ∈ F : r ∨m =∞} ⊆ F for any m ∈ R.
Thus, it remains to show that F ⊆ {r ∈ F : r ≤ m} t {r ∈ F : r ∨m =∞}
for large m. Fix p ∈ R, and let F ′ be a maximal element of the collection
{F ′ ⊆ F ∪ {p} : F ′ contains p and is bounded above} (partially ordered by
set inclusion), which exists since F is finite whilst {p} ⊆ F ∪{p} is bounded
above (by p) and contains p. Let n be an upper bound for F ′. Since p ∈ F ′,
we have that p ≤ n. Suppose that m ∈ R with n ≤ m. Let r ∈ F . If r ∈ F ′
then r ≤ n ≤ m. Alternatively, if r ∈ F \F ′, then r∨m =∞ (if r∨m <∞,
then r∨m is an upper bound for F ′∪{r}, which contradicts the maximality
of F ′). Thus, F ⊆ {r ∈ F : r ≤ m}t{r ∈ F : r ∨m =∞}. Since p ∈ R was
arbitrary, we conclude that F ⊆ {r ∈ F : r ≤ m}t {r ∈ F : r ∨m =∞} for
large m. �

Lemma 5.14. Suppose that G is an amenable group, and A acts faithfully
on each fibre of Z, so that the product system YNO from Proposition 5.8
exists. Let (p, q) ∈ P oα Q and T ∈ KA(Z(p,q)). If m ∈ Q and q ∨m = ∞,
then

M
j
((p,q))
Z (T )

= 0 ∈ KNOX

(
YNOm

)
.

Proof. Fix T ∈ KA(Z(p,q)) and m ∈ Q with m∨ q =∞. Let z ∈ Z(r,m) and
w ∈ Z(n,eH). Since (p, q)∨ (r,m) =∞ as q ∨m =∞, the Nica covariance of
jZ gives

M
j
((p,q))
Z (T )

(
jZ(r,m)

(z)jZ(n,eH)
(w)∗

)
= j

((p,q))
Z (T )jZ(r,m)

(z)jZ(n,eH)
(w)∗ = 0.

As YNOm = span
{
jZ(r,m)

(z)jZ(n,eH)
(w)∗ : r, n ∈ P, z ∈ Z(r,m), w ∈ Z(n,eH)

}
,

we conclude that M
j
((p,q))
Z (T )

= 0 ∈ KNOX

(
YNOm

)
. �
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Proposition 5.15. Suppose that G is an amenable group, and A acts faith-
fully on each fibre of Z, so that the product system YNO from Proposition 5.8
exists, and NOX acts faithfully on each fibre of YNO by Proposition 5.12.

Define ϕNO : Z→ NOYNO by

ϕNO(p,q) := jYNOq ◦ jZ(p,q)
.

Then ϕNO : Z → NOYNO is a Cuntz–Nica–Pimsner covariant representa-
tion, and so induces a homomorphism ΩNO : NOZ → NOYNO such that

ΩNO ◦ jZ(p,q)
= ϕNO(p,q) = jYNOq ◦ jZ(p,q)

for each (p, q) ∈ P oα Q.

Proof. Since jYNO and jZ are Nica covariant representations, the same
reasoning as in the proofs of Proposition 4.13, Lemma 4.14, and Proposi-
tion 4.15 shows that ϕNO is a Nica covariant representation of Z. We now
show that it is Cuntz–Pimsner covariant.

Let F be a finite subset of P oα Q and suppose that we have a set of
compact operators

{
T(p,q) ∈ KA

(
Z(p,q)

)
: (p, q) ∈ F

}
such that∑

(p,q)∈F

ι
(s,t)
(p,q)

(
T(p,q)

)
= 0 ∈ LA

(
Z(s,t)

)
for large (s, t) ∈ P oα Q. Since jZ is Cuntz–Pimsner covariant, we know
that ∑

(p,q)∈F

j
((p,q))
Z (T(p,q)) = 0.

To show that ϕNO is Cuntz–Pimsner covariant, we need to show that∑
(p,q)∈F

ϕNO
((p,q))

(T(p,q)) = 0 ∈ NOYNO ,

which by Lemma 4.14 is equivalent to showing that∑
(p,q)∈F

j
(q)

YNO

(
M
j
((p,q))
Z (T(p,q))

)
= 0 ∈ NOYNO .

Since jYNO is a Cuntz–Pimsner covariant representation of YNO, it suffices
to show that∑

(p,q)∈F

ιmq

(
M
j
((p,q))
Z (T(p,q))

)
= 0 ∈ LNOX

(
YNOm

)
for large m ∈ Q,

which is equivalent to showing that∑
(p,q)∈F : q≤m

M
j
((p,q))
Z (T(p,q))

= 0 ∈ LNOX

(
YNOm

)
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for large m ∈ Q. Making use of Lemma 5.13, we see that for large m ∈ Q,∑
(p,q)∈F :
q≤m

M
j
((p,q))
Z (T(p,q))

=
∑

(p,q)∈F

M
j
((p,q))
Z (T(p,q))

−
∑

(p,q)∈F :
q∨m=∞

M
j
((p,q))
Z (T(p,q))

= M∑
(p,q)∈F j

((p,q))
Z (T(p,q))

−
∑

(p,q)∈F :
q∨m=∞

M
j
((p,q))
Z (T(p,q))

= −
∑

(p,q)∈F :
q∨m=∞

M
j
((p,q))
Z (T(p,q))

.

It then follows from Lemma 5.14, that the last line is zero, as required.
Hence, ϕNO is Cuntz–Pimsner covariant. The final statement follows from
the universal property of NOZ. �

We now work towards getting a homomorphism from NOYNO to NOZ

inverse to the one from NOZ to NOYNO just constructed. Our plan is to
exhibit a Nica covariant representation of YNO in NOZ and then use the
universal property of NOYNO to induce the required homomorphism.

In Proposition 5.12 we found conditions on the group G and the product
system Z to ensure that the left actions of NOX on each YNOq are faithful.
In the next result, we exhibit sufficient conditions for these actions to be by
compact operators.

Lemma 5.16. Suppose that G is an amenable group, and A acts faithfully
on each fibre of Z, so that the product system YNO from Proposition 5.8
exists. For any q ∈ Q and a ∈ φ−1

(eG,q)

(
KA
(
Z(eG,q)

))
, we have

(5.10) ΦNOq
(
jXeG

(a)
)

= M
j
((eG,q))
Z (φ(eG,q)

(a))
∈ KNOX

(
YNOq

)
.

In particular, if A acts compactly on Z(eG,q), then NOX acts compactly on

YNOq .

Proof. Fix q ∈ Q and a ∈ φ−1
(eG,q)

(
KA
(
Z(eG,q)

))
. Hence, for some choice of

µki , νki ∈ Z(eG,q), we can write

φ(eG,q)(a) = lim
i→∞

ni∑
ki=1

Θµki ,νki
∈ KA

(
Z(eG,q)

)
.

For any z ∈ Z(eG,q) and b ∈ NOX, we have that

ΦNOq
(
jXeG

(a)
)(
jZ(eG,q)

(z)φNOX (b)
)

= jZ(eG,q)

(
φ(eG,q)(a)(z)

)
φNOX (b)

= jZ(eG,q)

(
lim
i→∞

ni∑
ki=1

µki · 〈νki , z〉
(eG,q)
A

)
φNOX (b).
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Since jZ(eG,q)
is linear and norm-decreasing, this is equal to

lim
i→∞

ni∑
ki=1

jZ(eG,q)

(
µki · 〈νki , z〉

(eG,q)
A

)
φNOX (b)

= lim
i→∞

ni∑
ki=1

M
j
((eG,q))
Z (Θµki

,νki
)

(
jZ(eG,q)

(z)φNOX (b)
)
.

Since the map b 7→ Mb is linear and ‖Mb‖LNOX(YNOq ) ≤ ‖b‖NOZ
whenever

b ∈ NOZ is such that Mb ∈ LNOX

(
YNOq

)
(see Lemma 4.9), and j

((eG,q))
Z is

also linear and continuous, the previous line is equal to

M
j
((eG,q))
Z

(
limi→∞

∑ni
ki=1 Θµki

,νki

)(jZ(eG,q)
(z)φNOX (b)

)
= M

j
((eG,q))
Z

(
φ(eG,q)

(a)
)(jZ(eG,q)

(z)φNOX (b)
)
.

As ΦNOq
(
jXeG

(a)
)

and M
j
((eG,q))
Z (φ(eG,q)

(a))
are linear and continuous, whilst

YNOq = span
{
jZ(eG,q)

(z)φNOX (b) : z ∈ Z(eG,q), b ∈ NOX

}
, we conclude that

ΦNOq
(
jXeG

(a)
)

is left multiplication by j
((eG,q))
Z

(
φ(eG,q)(a)

)
. To establish

(5.10), it remains to show that multiplication by j
((eG,q))
Z

(
φ(eG,q)(a)

)
is a

compact operator onYNOq . Since j
((eG,q))
Z

(
φ(eG,q)(a)

)
∈ NOqZ, this follows

from Lemma 4.10.
Now suppose that A acts compactly on Z(eG,q). Fix x ∈ Xp and choose

x′ ∈ Xp so that x = x′ · 〈x′, x′〉pA. Since 〈x′, x′〉pA ∈ φ
−1
(eG,q)

(
KA
(
Z(eG,q)

))
, we

can apply the first part of the lemma to see that

ΦNOq
(
jXp(x)

)
= ΦNOq

(
jXp(x

′)
)

ΦNOq
(
jXeG

(〈x′, x′〉pA)
)
∈ KNOX

(
YNOq

)
.

Since ΦNOq is a homomorphism and NOX is generated by the image of jX,

we have that ΦNOq (NOX) ⊆ KNOX

(
YNOq

)
, and so NOX acts compactly

on YNOq . �

We are almost ready to show that the inclusion of YNO in NOZ is a
Cuntz–Nica–Pimsner covariant representation. Before we do so, we need
one last lemma.

Lemma 5.17. Let q ∈ Q and a ∈ φ−1
(eG,q)

(
KA
(
Z(eG,q)

))
. If Q is directed,

then

jZ(eG,eH)
(a) = j

((eG,q))
Z

(
φ(eG,q) (a)

)
.

Proof. Since jZ is Cuntz–Pimsner covariant, it suffices to show that

(5.11)
ι
(s,t)
(eG,eH) (a)− ι(s,t)(eG,q)

(
φ(eG,q) (a)

)
= 0 ∈ LA

(
Z(s,t)

)
for large (s, t) ∈ P oα Q.
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Fix (m,n) ∈ P oα Q. Since Q is directed, (m,n) ≤ (m,n ∨ q). Suppose
that (s, t) ∈ P oα Q with (m,n ∨ q) ≤ (s, t). For any z ∈ Z(eG,q) and
w ∈ Z(αq−1 (s),q−1t), we have(

ι
(s,t)
(eG,eH) (a)− ι(s,t)(eG,q)

(
φ(eG,q) (a)

) )
(zw)

= φ(s,t) (a) (zw)−
(
φ(eG,q) (a) (z)

)
w

=
((
φ(eG,q) (a)−

(
φ(eG,q) (a)

))
(z)
)
w = 0.

Since ι
(s,t)
(eG,eH) (a)− ι(s,t)(eG,q)

(
φ(eG,q) (a)

)
∈ LA

(
Z(s,t)

)
is linear and continuous,

and since Z(s,t) = span{zw : z ∈ Z(eG,q), w ∈ Z(αq−1 (s),q−1t)}, we conclude

that (5.11) holds. �

Proposition 5.18. Suppose that G is an amenable group, A acts faithfully
on each fibre of Z, so that the product system YNO from Proposition 5.8
exists, and NOX acts faithfully on each fibre of YNO by Proposition 5.12.
Moreover, suppose that A acts compactly on each Z(eG,q), so that NOX acts

compactly on each fibre of YNO by Lemma 5.16.

For each q ∈ Q, let ϕ′q
NO be the inclusion of YNOq in NOZ. If Q is

directed, then ϕ′NO is a Cuntz–Nica–Pimsner covariant representation of
YNO. Hence, there exists a homomorphism Ω′NO : NOYNO → NOZ such
that

Ω′NO ◦ jYNOq = ϕ′q

for each q ∈ Q.

Proof. The same reasoning as in Proposition 4.16 shows that ϕ′NO is a Nica
covariant representation of YNO in NOZ. It remains to show that ϕ′NO is
Cuntz–Pimsner covariant. By Proposition 5.12 and Lemma 5.16, NOX acts
faithfully and compactly on each YNOq . Hence, by [38, Proposition 5.1],

it suffices to check that
(
ϕ′NO

)(q) ◦ ΦNOq = ϕ′NOeH
for each q ∈ Q. This

is clear when q = eH , so we just need to worry about when q 6= eH . As
YNOeH = NOX

∼= φNOX (NOX) is generated by the image of jZ|X it suffices
to show that

(5.12)
((
ϕ′NO

)(q) ◦ ΦNOq
)

(jZ(x)) = ϕ′NOeH
(jZ(x)) for all x ∈ X.

If x ∈ Xp and x′ ∈ Xp is chosen so that x = x′ · 〈x′, x′〉pA, then

ϕ′NOeH

(
jZ(p,eH)

(x)
)

= jZ(p,eH)
(x) = jZ(p,eH)

(x′)jZ(eG,eH)
(〈x′, x′〉pA).

By the first part of Lemma 5.16, we see that

ΦNOq
(
jZ(p,eH)

(x)
)

= M
jZ(p,eH)

(x′)j
((eG,q))
Z

(
φ(eG,q)

(〈x′,x′〉pA)
) ∈ KNOX

(
YNOq

)
.
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Since jZ(p,eH)
(x′)j

((eG,q))
Z

(
φ(eG,q)

(
〈x′, x′〉pA

))
∈ NOqZ, it follows from the ar-

gument in Proposition 4.16 that((
ϕ′NO

)(q) ◦ ΦNOq
)(
jZ(p,eH)

(x)
)

=
(
ϕ′NO

)(q)(
M
jZ(p,eH)

(x′)j
((eG,q))
Z

(
φ(eG,q)

(〈x′,x′〉pA)
))

= jZ(p,eH)
(x′)j

((eG,q))
Z

(
φ(eG,q)(〈x

′, x′〉pA)
)
.

Since

jZ(eG,eH)
(〈x′, x′〉pA) = j

((eG,q))
Z

(
φ(eG,q)(〈x

′, x′〉pA)
)
,

by Lemma 5.17, we conclude that (5.12) holds. �

Remark 5.19. It is not clear if all of the hypotheses in Proposition 5.18 are
necessary. Proposition 4.14 of [14] suggests that the assumption of A acting
compactly on each Z(eG,q) is not necessary, at least in the situation where

Z is a product system over Nk and we can make use of Katsura’s work on
gauge-invariant ideals of Cuntz–Pimsner algebras [22, Theorem 8.6].

Putting all of this together, we can show that NOZ and NOYNO are
isomorphic.

Theorem 5.20. Suppose that G is an amenable group, A acts faithfully
on each fibre of Z, so that the product system YNO from Proposition 5.8
exists, and NOX acts faithfully on each fibre of YNO by Proposition 5.12.
Moreover, suppose that A acts compactly on each Z(eG,q), so that NOX acts

compactly on each fibre of YNO by Lemma 5.16.
Suppose that Q is directed, so that the homomorphism Ω′NO from Propo-

sition 5.18 exists. Then the homomorphisms ΩNO : NOZ → NOYNO and
Ω′NO : NOYNO → NOZ are mutually inverse. Thus, NOZ

∼= NOYNO .

Proof. The same reasoning as in the proof of Theorem 4.17 shows that
ΩNO and Ω′NO are mutually inverse. �

Theorem 5.20 enables us to view the Cuntz–Nica–Pimsner algebra of a
compactly aligned product system over Nk (with faithful and compact left
actions) as a k-times iterated Cuntz–Pimsner algebra. As in Corollary 4.18,
this immediately allows us to generalise results from the literature that relate
the coefficient algebra of a Hilbert bimodule and its Cuntz–Pimsner algebra.

Corollary 5.21. Let Z be a product system over Nk with coefficient algebra
A. Suppose A acts faithfully and compactly on the fibres {Zei : 1 ≤ i ≤ k}.
Then

(i) A is exact if and only if NOZ is exact ;
(ii) If A is nuclear, then NOZ is nuclear ;
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(iii) If each Zei is countably generated as a Hilbert A-module and A is
separable, nuclear, and satisfies the universal coefficient theorem of
[36], then NOZ satisfies the universal coefficient theorem.

Proof. Firstly, we observe that since A acts faithfully and compactly on
each Zei , it follows from [25, Proposition 4.7] that A acts faithfully and
compactly on every fibre of Z. Since A acts compactly on each fibre of Z, [15,
Proposition 5.8] says that Z is compactly aligned. Part (i) of the corollary
then follows from [20, Theorem 7.1], and part (ii) from [20, Corollary 7.4].

If A is separable and each Zei is countably generated then the Cuntz–
Nica–Pimsner algebra we get at each stage of the iterative procedure is
separable. Furthermore, if A is nuclear, then part (ii) ensures that the
Cuntz–Nica–Pimsner algebra we get at each stage is also nuclear. Hence,
part (iii) of the corollary follows from [20, Proposition 8.8]. �

Remark 5.22. The Pimsner–Voiculescu exact sequence [20, Theorem 8.6]
relates the K-theory of a Cuntz–Pimsner algebra associated to a Hilbert
bimodule, to the K-theory of the bimodule’s coefficient algebra. As such it
may be possible to gain K-theoretic information about Cuntz–Nica–Pimsner
algebras associated to compactly aligned product systems over Nk by viewing
them as iterated Cuntz–Pimsner algebras. In particular we are interested to
see if such an approach could be used to compute the K-theory of finitely
aligned k-graph algebras when k ≥ 3 (the k = 1 case is covered by [3,
Theorem 6.1] and the k = 2 case by [11, Proposition 3.16]).

5.3. Examples. We now present three examples that show what kind of
product systems our two decomposition theorems (Theorem 4.17 and Theo-
rem 5.20) can be applied to, and what these results reveal about the struc-
ture of the associated Nica–Toeplitz and Cuntz–Nica–Pimsner algebras.

Our first example/application looks at twisted crossed products by groups
[29]. We begin by recapping what we mean by twisted crossed products, and
explain their relationship with product systems. Let G be a (discrete) group,
A a C∗-algebra, β : G → Aut(A) a homomorphism, and ω : G × G → T a
normalised 2-cocycle, i.e. ω(eG, eG) = 1 and

ω(gh, k)ω(g, h) = ω(g, hk)ω(h, k) for all g, h, k ∈ G.

The twisted crossed product A ×β,ω G is by definition the universal C∗-
algebra generated by a covariant representation of the twisted dynamical

system (A,G, β, ω): that is, a homomorphism iβ,ωA : A → A ×β,ω G and

multiplier unitaries {iβ,ωG (g) : g ∈ G} such that for g, h ∈ G and a ∈ A,

iβ,ωG (g)iβ,ωG (h) = ω(g, h)iβ,ωG (gh)

iβ,ωG (g)iβ,ωA (a)iβ,ωG (g)∗ = iβ,ωA (βg(a)).

When G contains a subsemigroup P such that (G,P ) is quasi-lattice or-
dered, P is directed, and P generates G as a group, [4, § 5] tells us how to
realise A×β,ω G as a Cuntz–Nica–Pimsner algebra.
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We write Gop for the opposite group of G: as a set Gop is equal to G,
with multiplication in Gop given by g ∗op h := hg. Since the isomorphism
h 7→ h−1 from G to Gop maps P to P−1, we see that if g, h ∈ G, then g ≤ h
in (G,P ) if and only if g−1 ≤ h−1 in (Gop, P−1). It follows that (Gop, P−1)
is quasi-lattice ordered: the least upper bound of g, h ∈ Gop in (Gop, P−1)
is equal to (g−1 ∨ h−1)−1 if the least upper bound g−1 ∨ h−1 of g−1, h−1 in
(G,P ) exists, and is ∞ otherwise. Observe that P is directed (as a subset
of G) if and only if P−1 is directed (as a subset of Gop).

We define a product system Z :=
⊔
p∈P−1 Zp over (Gop, P−1) as follows.

For each p ∈ P−1, Zp is the Hilbert A-bimodule βpAA, which is equal to A
as a vector space, with operations

〈x, y〉pA := x∗y a · x := βp(a)x x · a := xa

for all x, y ∈ Zp and a ∈ A. For each p, q ∈ P−1 there exists a Hilbert
A-bimodule isomorphism MZ

p,q : Zp ⊗A Zq → Zqp such that

MZ
p,q(x⊗A y) = ω(q, p)βq(x)y for all x ∈ Zp, y ∈ Zq.

It is not difficult to see that the homomorphism φp : A → LA(Zp) imple-
menting the left action of A on Zp is injective and takes values in KA(Zp):
if {uλ}λ∈Λ is an approximate identity for A, then φp(a) = limλ∈Λ Θβp(a),uλ .
Thus, it follows from [12, Proposition 3.1.24] that Z is compactly aligned.
Finally, [4, Corollary 5.2] tells us that there is an isomorphism from NOZ to

A×β,ω G that takes jZp(x) to iβ,ωG (p)∗iβ,ωA (x) for each p ∈ P−1 and x ∈ Zp.
We now use our decomposition theorem for Cuntz–Nica–Pimsner algebras

(Theorem 5.20) to show that the twisted crossed product of a C∗-algebra by
a semidirect product Goα H can be realised as an iterated twisted crossed
product, first by G, and then by H.

Example 5.23. Let G and H be groups, and α : H → Aut(G) a homo-
morphism. Also, let A be a C∗-algebra, β : G oα H → Aut(A) a homo-
morphism, and ω : (G oα H) × (G oα H) → T a normalised 2-cocycle.
Define normalised 2-cocycles ω|G : G × G → T and ω|H : H × H → T by
ω|G(g1, g2) := ω((g1, eH), (g2, eH)) and ω|H(h1, h2) := ω((eG, h1), (eG, h2))
respectively, and define β|G : G→ Aut(A) by (β|G)g := β(g,eH). Then there

exists a homomorphism β̃|H : H → Aut(A×β|G,ω|G G) such that

(5.13)

(β̃|H)h
(
i
β|G,ω|G
A (a)

)
= i

β|G,ω|G
A (β(eG,h)(a))

(β̃|H)h
(
i
β|G,ω|G
G (g)

)
=

ω((eG, h), (g, eH))

ω((αh(g), eH), (eG, h))
i
β|G,ω|G
G (αh(g))

for each a ∈ A and g ∈ G (where in the second expression we are thinking

of the extension of (β̃|H)h to the multiplier algebra of A×β|G,ω|G G).
Furthermore, suppose that G contains a subsemigroup P , and H contains

a subsemigroup Q, such that (G,P ) and (H,Q) are quasi-lattice ordered, P
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and Q are directed, and P and Q generate G and H respectively. If G is
amenable and αH(P ) ⊆ P , then

(A×β|G,ω|G G)×
β̃|H ,ω|H H

∼= A×β,ω (Goα H).

Explicitly, this isomorphism is given by

(5.14)
i
β̃|H ,ω|H
H (h)∗i

β̃|H ,ω|H
A×β|G,ω|GG

(
i
β|G,ωG
G (g)∗i

β|G,ωG
A (a)

)
7→ ω((g, eH), (eG, h))iβ,ωGoαH(g, h)∗iβ,ωA (a)

for (g, h) ∈ Goα H and a ∈ A.

Proof. Firstly, we note that this is certainly not a novel result: [29, Theo-
rem 4.1] deals with the more general situation where the topology on GoαH
need not be discrete. We also point out that the additional hypotheses on
the groups G and H and the action α are to enable us to apply our decom-
position theorem, as well as to allow us to view the three twisted crossed
products A×β,ω (Goα H), A×β|G,ω|G G, and (A×β|G,ω|G G)×

β̃|H ,ω|H H as

Cuntz–Nica–Pimsner algebras, and are not required in [29, Theorem 4.1].
For each h ∈ H, it is straightforward to check that the homomorphism

i
β|G,ω|G
A ◦ β(eG,h) and the multiplier unitaries{

ω((eG, h), (g, eH))

ω((αh(g), eH), (eG, h))
i
β|G,ω|G
G (αh(g)) : g ∈ G

}
give a covariant representation in A ×β|G,ω|G G of the twisted dynamical
system (A,G, β|G, ω|G). Hence, the universal property of A ×β|G,ω|G G

induces a homomorphism (β̃|H)h : A ×β|G,ω|G G → A ×β|G,ω|G G satisfy-

ing (5.13). One can check on generators that (β̃|H)eH = idA×β|G,ω|GG and

(β̃|H)h ◦ (β̃|H)k = (β̃|H)hk for each h, k ∈ H. Thus, the map h 7→ (β̃|H)h
gives a homomorphism from H to Aut(A ×β|G,ω|G G), which we denote by

β̃|H .
Now let Z :=

⊔
(p,q)∈(PoαQ)−1 Z(p,q) :=

⊔
(p,q)∈(PoαQ)−1 β(p,q)AA be the

compactly aligned product system over ((GoαH)op, (P oαQ)−1) associated
to the twisted dynamical system (A,GoαH,β, ω). Thus, A×β,ω (GoαH) ∼=
NOZ.

In order to apply our decomposition theorem to the product system Z we
need to know that the quasi-lattice ordered group ((GoαH)op, (P oαQ)−1)
decomposes as the semidirect product of quasi-lattice ordered groups. It
is routine to check that the map η : (G oα H)op → Gop oα◦invH Hop

(where invH : Hop → H is the isomorphism that sends h to h−1) defined by
η(g, h) := (αh−1(g), h) is an isomorphism. Moreover, since η((P oαQ)−1) =
P−1 oα◦invH Q

−1, it follows that (g, h) ≤ (s, t) in ((GoαH)op, (P oαQ)−1)
if and only if η(g, h) ≤ η(s, t) in (Gop oα◦invH Hop, P−1 oα◦invH Q−1).
Hence, as in Proposition 4.1, we may define a compactly aligned product
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system X :=
⊔
p∈P−1 Xp over (Gop, P−1) with coefficient algebra A by set-

ting Xp := Zη−1(p,eH) = Z(p,eH) = (β|G)pAA for each p ∈ P−1. Clearly,
X is also the product system associated to the twisted dynamical system
(A,G, β|G, ω|G). Thus, by [4, Corollary 5.2], there exists an isomorphism
τ : NOX → A×β|G,ω|G G such that

(5.15) τ(jXp(x)) = i
β|G,ω|G
G (p)∗i

β|G,ω|G
A (x) for p ∈ P−1 and x ∈ Xp.

We now consider the compactly aligned product system YNO, as defined
in Propositions 5.7 and 5.8, over (Hop, Q−1) with coefficient algebra NOX.
For q ∈ Q−1, we have η−1(eG, q) = (eG, q), and so the fibres of YNO are
given by

YNOq = span{jZ(eG,q)
(Z(eG,q))φ

NO
X (NOX)}.

We claim that YNO is isomorphic to the product system associated to the

twisted dynamical system (A×β|G,ω|GG,H, β̃|H , ω|H), where we identify the
respective coefficient algebras NOX and A×β|G,ω|G G via the isomorphism
νeH := τ . For simplicity, we also identify NOX with its image in NOZ

under the injective homomorphism φNOX .
Straightforward calculations show that for q ∈ Q−1 there exists a linear

inner-product preserving map νq : YNOq →
(β̃|H)q

(A×β|G,ω|G G)(A×β|G,ω|GG)

such that

(5.16) νq
(
jZ(eG,q)

(a)φNOX (s)
)

= i
β|G,ω|G
A (a)τ(s) for a ∈ Z(eG,q), s ∈ NOX.

It is not difficult to see that each νq is surjective. Since every element of
A can be written as a product of two elements, it suffices to show that

i
β|G,ω|G
G (g)i

β|G,ω|G
A (bc) belongs to the range of νq for any g ∈ G and b, c ∈ A.

If we choose s ∈ NOX such that τ(s) = i
β|G,ω|G
G (g)i

β|G,ω|G
A (c), then

νq
(
jZ(eG,q)

((β|G)g(b))φ
NO
X (s)

)
= i

β|G,ω|G
G (g)i

β|G,ω|G
A (bc)

as required.
To see that the Hilbert bimodule isomorphisms {νq : q ∈ Q−1} implement

an isomorphism of product systems between YNO and the product system

associated to (A×β|G,ω|G G,H, β̃|H , ω|H), it remains to show that

(5.17)
ω|H(t, q)(β̃|H)t(νq(y))νt(w) = νtq(yw)

for all q, t ∈ Q−1 and y ∈ YNOq , w ∈ YNOt .

By linearity and continuity, it suffices to verify (5.17) in the situation where
y := jZ(eG,q)

(a)φNOX

(
jXp(b)jXr(c)

∗) and w := jZ(eG,q)
(d)φNOX (s) for arbitrary

q, t ∈ Q−1, p, r ∈ P−1, a, b, c, d ∈ A, and s ∈ NOX. The first thing to do
is rewrite yw in the form that allows us to apply the formula for νtq given
by (5.16). Observe that the least upper bound of (r, eH) and (eG, t) in the
quasi-lattice ordered group ((Goα H)op, (P oα Q)−1) is

(αt(r), t) = (r, eH) ∗op (eG, t) = (eG, t) ∗op (αt(r), eH).
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Using the collection of Hilbert A-bimodule isomorphisms {MZ
(m,n),(u,v) :

(m,n), (u, v) ∈ (P oα Q)−1} we can show that

yw =
ω((eG, t), (r, eH))ω((αt(p), eH), (eG, t))

ω|H(t, q)ω((αt(r), eH), (eG, t))ω((eG, t), (p, eH))

× jZ(eG,tq)

(
β(eG,t)(a)β(αt(p−1),t)(b)

)
× φNOX

(
jXαt(p)

(β(eG,t)(c
∗))jXαt(r)

(β(αt(r),eH)(d
∗))∗s

)
.

Applying the formulas for νtq, νt, and νq given by (5.16), the formula for τ

given by (5.15), and the definition of (β̃|H)t, we see that

νtq(yw) =
ω((eG, t), (r, eH))ω((αt(p), eH), (eG, t))

ω|H(t, q)ω((αt(r), eH), (eG, t))ω((eG, t), (p, eH))

× iβ|G,ω|GA

(
β(eG,t)(a)β(αt(p−1),t)(b)

)
i
β|G,ω|G
G (αt(p))

∗

× iβ|G,ω|GA

(
β(eG,t)(c

∗)β(αt(r),eH)(d)
)
i
β|G,ω|G
G (αt(r))τ(s)

=
ω((eG, t), (r, eH))ω((αt(p), eH), (eG, t))

ω|H(t, q)ω((αt(r), eH), (eG, t))ω((eG, t), (p, eH))

× iβ|G,ω|GA

(
β(eG,t)(a)

)
i
β|G,ω|G
G (αt(p))

∗

× iβ|G,ω|GA

(
β(eG,t)(bc

∗)
)
i
β|G,ω|G
G (αt(r))i

β|G,ω|G
A (d)τ(s)

= ω|H(t, q)(β̃|H)t
(
i
β|G,ω|G
A (a)i

β|G,ω|G
G (p)∗i

β|G,ω|G
A (bc∗)i

β|G,ω|G
G (r)

)
× iβ|G,ω|GA (d)τ(s)

= ω|H(t, q)(β̃|H)t(νq(y))νt(w)

as required. Thus, YNO is isomorphic to the product system associated to

the twisted dynamical system (A×β|G,ω|G G,H, β̃|H , ω|H).
Hence, combining Theorem 5.20 and [4, Corollary 5.2], we see that

A×β,ω (Goα H) ∼= NOZ
∼= NOYNO

∼= (A×β|G,ω|G G)×
β̃|H ,ω|H H.

Chasing through the formulas for the isomorphisms given by Theorem 5.20
and [4, Corollary 5.2], as well as the formula given by (5.16) that identifies
YNOq with

(β̃|H)q
(A×β|G,ω|GG)(A×β|G,ω|GG) shows that the isomorphism from

(A×β|G,ω|G G)×
β̃|H ,ω|H H to A×β,ω (Goα H) satisfies (5.14). �

In our next example, we look at a result of Hao and Ng ([18, Theo-
rem 2.10]) on crossed products of C∗-correspondences. Let (α, γ) be an ac-
tion of a discrete group G on a Hilbert A-bimodule X, i.e. α : G→ Aut(A)
and γ : G → Aut(X) are homomorphisms such that for g ∈ G, a ∈ A, and
x, y ∈ X, we have

(i) 〈γg(x), γg(y)〉A = αg(〈x, y〉A);
(ii) γg(x · a) = γg(x) · αg(a);
(iii) γg(a · x) = αg(a) · γg(x).
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As in [19, Section 3.7], this data can be used to construct a Hilbert AoαG-
bimodule (one can think of this process as extending the coefficient algebra
of X from A to the (trivially twisted) crossed product Aoα G). For ξ, η ∈
Cc(G,X) and u ∈ Cc(G,A) (which we view as a dense ∗-subalgebra of
A oα G via the map u 7→

∑
g∈G i

α
A(u(g))iαG(g)), we define ξ · u ∈ Cc(G,X)

and 〈ξ, η〉AoαG ∈ Cc(G,A) by

(ξ · u)(r) :=
∑
s∈G

ξ(s) · αs(u(s−1r))

〈ξ, η〉AoαG(r) :=
∑
s∈G

αs−1(〈ξ(s), η(sr)〉A).

These operations turn Cc(G,X) into a pre-inner product Cc(G,A)-module,
and we denote its completion by X oγ G (see [35, Lemma 2.16] for details
on this process). The left action of AoαG on X oγ G is given on functions
by

(u · ξ)(r) =
∑
s∈G

u(s) · γs(ξ(s−1r)).

Our second example/application uses our decomposition theorem to show
how the Cuntz–Pimsner algebras of X and X oγ G are related.

Example 5.24. Let (α, γ) be an action of a discrete group G on a Hilbert
A-bimodule X. Then there exists a homomorphism β : G→ Aut(OX) such
that

(5.18) βg(jA(a)) = jA(αg(a)) and βg(jX(x)) = jX(γg(x))

for each g ∈ G, a ∈ A, and x ∈ X. Suppose that G is amenable and contains
a subsemigroup P that generates G, and such that (G,P ) is quasi-lattice
ordered and P is directed. Furthermore, suppose that the left action of A
on X is faithful, nondegenerate, and by compacts. Then

OXoγG
∼= OX oβ G.

Explicitly, this isomorphism is given by

(5.19) j⊗mXoγG(xδg)j
⊗n
XoγG(yδh)∗ 7→ iβOX

(
j⊗mX (x)j⊗nX (γ⊗n

gh−1(y))∗
)
iβG(gh−1)

for m,n ≥ 0, x ∈ X⊗m, y ∈ X⊗n, g, h ∈ G.

Proof. Before, we begin the proof, we point out that this result is not new.
Indeed, Hao and Ng prove in [18, Theorem 2.10] that the Cuntz–Pimsner
algebra of X oγ G and the crossed product associated to the dynamical
system (OX , β,G) coincide provided G is amenable (their result also covers
the situation where the topology on G is not discrete). The additional
constraints we have imposed on G and X are to enable us to realise the
crossed product OX oβ G as a Cuntz–Nica–Pimsner algebra and to apply
our decomposition theorem.

Routine calculations show for each g ∈ G, the maps a 7→ jA(αg(a)) and
x 7→ jX(γg(x)) are a Cuntz–Pimsner covariant Toeplitz representation of X,
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and so induce a homomorphism βg : OX → OX satisfying (5.18). Since α
and γ are automorphisms, it follows that the map g 7→ βg is an action of G
on OX by automorphisms.

In order to prove thatOXoβG ∼= OXoγG, we will first use the action (α, γ)

to construct a compactly aligned product system Z over (Z×Gop,N×P−1).
We will then use two applications of our decomposition theorem to show
that both OX oβ G and OXoγG are isomorphic to NOZ.

For each (n, p) ∈ N×P−1, we let Z(n,p) equal X⊗n as a Hilbert A-module.
The left action φ(n,p) : A → LA(Z(n,p)) is then given on simple tensors by
φ(n,p)(a)(x1 ⊗A · · · ⊗A xn) = (αp(a) · x1)⊗A · · · ⊗A xn. Observe that Z(n,eG)

is equal to X⊗n as a Hilbert A-bimodule, whilst Z(0,p) is equal to αpAA. For

each (n, p), (m, q) ∈ N×P−1, there exists a Hilbert A-bimodule isomorphism
MZ

(n,p),(m,q) : Z(n,p) ⊗A Z(m,q) → Z(n+m,qp) such that

MZ
(n,p),(m,q)(x⊗A y) = γ⊗nq (x)⊗A y

for each x ∈ Z(n,p) and y ∈ Z(m,q) (where by convention γ⊗0
q := αq). These

isomorphisms give Z :=
⊔

(n,p)∈N×P−1 Z(n,p) the structure of a product sys-

tem over (Z × Gop,N × P−1). Since A acts compactly on each αpAA and
on X, it follows from [25, Proposition 4.7] that A acts compactly on each
Z(n,p). Hence, by [12, Proposition 3.1.24], Z is compactly aligned.

We now define X :=
⊔
n∈N Z(n,eG). Then NOX

∼= OX . As in Proposi-

tion 5.3, we let φNOX : NOX → NOZ denote the injective homomorphism

induced by the inclusion of X in Z. For each p ∈ P−1, we define YNOp :=

span{jZ(Z(0,p))φ
NO
X (NOX)} ⊆ NOZ, which has the structure of a Hilbert

NOX-bimodule, as in Proposition 5.7. Equipping YNO :=
⊔
p∈P−1 YNOp

with the multiplication from NOZ gives YNO the structure of a compactly
aligned product system. We claim that YNO is isomorphic to the product
system associated to the dynamical system (NOX, G, β). Routine calcula-
tions show that the formula

jZ(0,p)
(a)φNOX (t) 7→ jX0(a)t

extends by linearity and continuity to an inner product preserving map
from YNOp to NOXNOX

, which we denote by τp. The map τp is clearly
right NOX-linear, and is surjective because X is nondegenerate. To see
that the collection of maps {τp : p ∈ P−1} give an isomorphism of product
systems, it remains to show that βq(τp(y))τq(w) = τqp(yw) for p, q ∈ P−1

and y ∈ YNOp , w ∈ YNOq . If a ∈ Z(0,p) = αpAA, b ∈ Z(0,q) = αqAA, s ∈
NOX, x ∈ Xm, y ∈ Xn, then

jZ(0,p)
(a)φNOX

(
jXm(x)jXn(y)∗

)
jZ(0,q)

(b)φNOX (s)

= jZ(0,qp)
(αq(a))φNOX

(
jXm(γ⊗mq (x))jXn(b∗ · γ⊗nq (y))∗s

)
.
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Hence,

τqp
(
jZ(0,p)

(a)φNOX (jXm(x)jXn(y)∗)jZ(0,p)
(b)φNOX (s)

)
= jX0(αq(a))jXm(γ⊗mq (x))jXn(b∗ · γ⊗nq (y))∗s

= βq
(
jX0(a)jXm(x)jXn(y)∗

)
jX0(b)s

= βq
(
τp
(
jZ(0,p)

(a)φNOX (jXm(x)jXn(x)∗)
))
τq
(
jZ(0,p)

(b)φNOX (s)
)
.

By linearity and continuity it follows that βq(τp(y))τq(w) = τqp(yw) for all
y ∈ YNOp and w ∈ YNOq as claimed. Applying Theorem 5.20, we see that

NOZ
∼= NOYNO

∼= NOX oβ G ∼= OX oβ G.

Next we define X′ :=
⊔
p∈P−1 Z(0,p). Then NOX′

∼= Aoα G via the map

jX′p(a) 7→ αp−1(a)δp−1 ∈ Cc(G,A) (which we denote by ω). We let φNOX′ :
NOX′ → NOZ denote the injective homomorphism induced by the inclusion

of X′ in Z. We claim that Y′1
NO := span{jZ(Z(1,eG))φ

NO
X′ (NOX′)} ⊆ NOZ

and X oγ G are isomorphic as Hilbert NOX′
∼= Aoα G-bimodules.

Calculations show that the formula

jZ(1,eG)
(x)φNOX′

(
jX′p(a)jX′q(b)

∗) 7→ (
x · αp−1(ab∗)

)
δp−1q ∈ Cc(G,X)

extends by linearity and continuity to an inner product preserving map from

Y′1
NO to X oγ G, which we denote by τ ′1.
For any a ∈ X′p = αpAA, b ∈ X′q = αqAA, c ∈ X′s = αsAA, d ∈ X′t = αtAA,

we have

jX′p(a)jX′q(b)
∗jX′s(c)jX′t(d)∗

= jX′
(q∨s)q−1p

(α(q∨s)q−1(ab∗))jX′
(q∨s)s−1t

(α(q∨s)s−1(dc∗))∗.

Hence if x ∈ Z(1,eG) = X, then

τ ′1
(
jZ(1,eG)

(x)φNOX′ (jX′p(a)jX′q(b)
∗) · (jX′s(c)jX′t(d)∗)

)
=
(
x · αp−1(ab∗αqs−1(cd∗)

)
δp−1qs−1t

=
(
x · αp−1(ab∗)δp−1q

)
·
(
αs−1(cd∗)δs−1t

)
= τ ′1

(
jZ(1,eG)

(a)φNOX′ (jX′p(a)jX′q(b)
∗)
)
· ω
(
jX′s(c)jX′t(d)∗

)
,

which shows that τ ′1 is right NOX′
∼= A oα G-linear. Since P generates

G as a group and X is right nondegenerate as an A-module, the previous
calculation also shows that τ ′1 is surjective.

Furthermore, we can show that if x = x′ · 〈x′, x′〉A, then

jX′p(a)jX′q(b)
∗ · jZ(1,eG)

(x)φNOX′ (jX′s(c)jX′t(d)∗)

= jZ(1,eG)

(
γp−1(ab∗ · γq(x′))

)
× φNOX′

(
jX′

(q∨s)q−1p
(αq∨s(〈x′, x′〉A))jX′

(q∨s)s−1t
(α(q∨s)s−1(dc∗))∗

)
.
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Hence,

τ ′1
(
jX′p(a)jX′q(b)

∗ · jZ(1,eG)
(x)φNOX′ (jX′s(c)jX′t(d)∗)

)
=
(
γp−1(ab∗ · γq(x′)) · αp−1q(〈x′, x′〉Aαs−1(cd∗))

)
δp−1qs−1t

=
(
αp−1(ab∗) · γp−1q(x · αs−1(cd∗))

)
δp−1qs−1t

=
(
αp−1(ab∗)δp−1q

)
·
(
x · αs−1(cd∗)δs−1t

)
= ω

(
jX′p(a)jX′q(b)

∗) · τ ′1(jZ(1,eG)
(x)φNOX′ (jX′s(c)jX′t(d)∗)

)
,

which shows that τ ′1 is left NOX′
∼= AoαG-linear. Thus, Y′1

NO and XoγG
are isomorphic as Hilbert NOX′

∼= A oα G-bimodules, and so applying
Theorem 5.20, we have

NOZ
∼= NOY′NO

∼= OY′1
NO ∼= OXoγG.

Hence,
OXoγG

∼= NOZ
∼= OX oβ G.

Chasing through the isomorphisms given by Theorem 5.20 as well as the

identifications of Y′1
NO and Y1

NO with X oγ G and the product system
associated to (NOX, G, β) respectively, shows that the isomorphism from
OXoγG to OX oβ G satisfies (5.19). �

In our final example we look at twisted C∗-algebras of topological higher-
rank graphs [1]. Recall that for k ∈ N \ {0}, a topological k-graph is a small
category Λ = (Obj(Λ),Mor(Λ), r, s, ◦) and a functor d : Λ→ Nk such that

(i) the sets of objects Obj(Λ) and morphisms Mor(Λ) in Λ are second-
countable, locally compact Hausdorff topological spaces;

(ii) the range and source maps r and s are continuous, and s is a local
homeomorphism;

(iii) if Λ ×c Λ := {(λ, µ) ∈ Λ × Λ : s(λ) = r(λ)} is equipped with the
subspace topology inherited from the product topology on Λ × Λ,
then composition ◦ : Λ×c Λ→ Λ is a continuous open map;

(iv) the degree functor d is continuous (where Nk has the discrete topol-
ogy);

(v) Λ satisfies the unique factorisation property: if λ ∈ Λ and d(λ) =
m + n for some m,n ∈ Nk, then there exist unique µ, ν ∈ Λ with
d(µ) = m and d(ν) = n such that λ = µν.

For each n ∈ Nk, (Λ0 := d−1(0),Λn := d−1(n), r|Λn , s|Λn) is a topological
graph, and we let Zn denote the associated topological graph correspondence
(see [21] for the details of this construction). Lemma 3.18 of [1] shows that if
Λ is source-free (in the sense that {λ ∈ Λei : r(λ) = v} is nonempty for each
v ∈ Λ0 and each i ∈ {1, . . . , k}) and proper (in the sense that the restriction
r|Λn is a proper map for each n ∈ Nk), then the left action of C0(Λ0) on
each Zn is faithful and by compacts.

Now fix a continuous T-valued 2-cocycle on Λ, i.e. a continuous map
c : Λ×c Λ→ T satisfying
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(i) c(λ, µ)c(λµ, ν) = c(λ, µν)c(µ, ν) for all λ, µ, ν ∈ Λ with s(λ) = r(µ)
and s(µ) = r(ν);

(ii) c(λ, s(λ)) = c(r(λ), λ) = 1 for all λ ∈ Λ.

We use this cocycle to define multiplication on Z :=
⊔
n∈Nk Zn. For f ∈

Zm, g ∈ Zn we use [1, Proposition 4.1] to define fg ∈ Zm+n by

(fg)(λµ) := c(λ, µ)f(λ)g(µ)

for λ ∈ Λm, µ ∈ Λn with s(λ) = r(µ). With this multiplication, Z has
the structure of a compactly aligned product system over (Zk,Nk) with
coefficient algebra C0(Λ0). Following [1, Definition 4.4], the twisted Toeplitz
algebra T C∗(Λ, c) and the twisted Cuntz–Krieger algebra C∗(Λ, c) of Λ are
defined to be NT Z and NOZ respectively.

Example 5.25. Let Λ be a source-free proper topological k-graph, and c
a continuous T-valued 2-cocycle on Λ. For each i ∈ {1, . . . , k}, let Λi :=
{λ ∈ Λ : d(λ)i = 0} (which we view as a topological (k − 1)-graph) and
define ci := c|Λi×cΛi . Then T C∗(Λ, c) and C∗(Λ, c) can be realised as the
Toeplitz and Cuntz–Pimsner algebras of Hilbert bimodules with coefficient
algebras T C∗(Λi, ci) and C∗(Λi, ci) respectively. Consequently, T C∗(Λ, c)
and C∗(Λ, c) can be viewed as iterated Toeplitz and iterated Cuntz–Pimsner
algebras over T C∗(Λ0) ∼= C∗(Λ0) ∼= C0(Λ0).

Furthermore, T C∗(Λ, c) and C0(Λ0) are KK-equivalent and have the
same K-theory. Both T C∗(Λ, c) and C∗(Λ, c) are nuclear, exact, and satisfy
the UCT.

Proof. It is routine to check that the product system over N(k−1) associated
to Λi and ci, is just the restriction of the product system Z associated to
Λ and c to the fibres {n ∈ Nk : ni = 0} ∼= N(k−1), which we denote by
X. We let YNT and YNO be the product systems over N, with coefficient
algebras NT X = T C∗(Λi, ci) and NOX = C∗(Λi, ci) respectively, as defined
in Propositions 4.7 and 5.8. By Theorems 4.17 and 5.20,

T C∗(Λ, c) = NT Z
∼= NT YNT

∼= TYNT1

C∗(Λ, c) = NOZ
∼= NOYNO

∼= OYNO1
.

Repeatedly applying this procedure shows that T C∗(Λ, c) and C∗(Λ, c) can
be realised as iterated Toeplitz and iterated Cuntz–Pimsner algebras over
C0(Λ0) respectively.

Since each Λn is locally compact, Hausdorff, and second-countable, each
Zei is countably generated as a C0(Λ0)-module [21, Lemma 6.2] and C0(Λ0)
is separable [5, Theorem 2.4]. Corollary 4.18(ii) tells us that T C∗(Λ, c)
and C0(Λ0) are KK-equivalent (extending [21, Lemma 6.5] from untwisted
topological graphs to twisted higher-rank topological graphs). Consequently,
T C∗(Λ, c) and C0(Λ0) have the same K-theory and T C∗(Λ, c) satisfies the
UCT [7, Proposition 2.1(1)]. Since C0(Λ0) is commutative, it is nuclear (and
hence exact), and so Corollary 4.18(iv) and Corollary 5.21(ii) tell us that
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T C∗(Λ, c) and C∗(Λ, c) are nuclear (and hence exact). Also, since C0(Λ0)
satisfies the UCT (it is commutative and separable), Corollary 5.21(iii) tells
us that C∗(Λ, c) satisfies the UCT (generalising [21, Proposition 6.6]). �

Remark 5.26. When Λ is countable and discrete (i.e. Λ is a higher-rank
graph), [14, Theorem 4.16] shows that the hypothesis of Λ being proper (i.e.
Λ is row-finite) can be dropped and the hypothesis that Λ is source-free can
be relaxed to asking that Λ is locally-convex.

6. Relative Cuntz–Nica–Pimsner algebras

We now consider the Cuntz–Nica–Pimsner algebra of the product system
YNT defined in Section 4. When the action α is trivial, we will show that
there exists a product system V over (H,Q), and a product system WNO

over (G,P ) with coefficient algebra NOV, such that NOYNT and NTWNO

are isomorphic. In a sense, the Cuntz–Pimsner covariance in NOYNT can
be moved into the coefficient algebra of WNO.

Since we are, in effect, only asking for Cuntz–Pimsner covariance in some
of the fibres of Z, we like to think of NOYNT and NTWNO as relative
Cuntz–Nica–Pimsner algebras. This nomenclature is motivated by the rela-
tive Cuntz–Krieger algebras of higher-rank graphs introduced by Sims [37],
and the relative Cuntz–Pimsner algebras introduced by Muhly and Solel [27]
(which were studied further by Fowler, Muhly, and Raeburn [16]).

Standing Hypotheses. We assume that the action α : H → Aut(G) is
trivial. Hence, Z is a compactly aligned product system over (G ×H,P ×
Q) ∼= (H ×G,Q × P ). As such, we can swap the roles of G and H, and P
and Q in our results from Sections 4 and 5. To ensure that the C∗-algebras
and product systems we want to work with actually exist, we assume that
both G and H are amenable, A acts faithfully on each Z(eG,q), and each

φ̃(p,q) is injective.

We now summarise the setup, as well as fixing some notation.

(1) For each q ∈ Q, we let Vq := Z(eG,q). Then V :=
⊔
q∈QVq is a com-

pactly aligned product system over (H,Q) with coefficient algebra
A.

(2) By Proposition 5.3, since A acts faithfully on each fibre of V and

each homomorphism φ̃(p,q) : A→ LA
(
Z̃(p,q)

)
is injective, there exists

a homomorphism φNOV : NOV → NOZ such that φNOV ◦ jV = jZ.
Furthermore, since H is an amenable group, Proposition 5.6 says
that φNOV is injective.

(3) Since H is amenable, A acts faithfully on each fibre of V, and each

φ̃(p,q) is injective, Proposition 4.7 and Proposition 4.12 give the exis-

tence of a compactly aligned product system WNO over (G,P ) with
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coefficient algebra NOV, with fibres given by

WNO
p := span

{
jZ(p,eH)

(x)φNOV (b) : x ∈ Z(p,eH), b ∈ NOV

}
for each p ∈ P \ {eG}. For simplicity’s sake, we will frequently
identify the coefficient algebra of WNO with φNOV (NOV) ⊆ NOZ.

We will exhibit homomorphisms ω : NOYNT → NTWNO and ω′ :
NTWNO → NOYNT , and show that they are inverses of each other. We
now list the results that we will prove in Section 6, and summarise the vari-
ous spaces and maps that we will be working with in a pair of commutative
diagrams (see Figures 6 and 7).

(4) In Proposition 6.1 we use the universal Cuntz–Nica–Pimsner co-
variant representation of Z along with the universal Nica covariant
representation of WNO to define a Nica covariant representation
ϑ of Z in NTWNO . This gives the existence of a homomorphism
Ξ : NT Z → NTWNO such that

Ξ ◦ iZ(p,q)
= ϑ(p,q) = iWNO

p
◦ jZ(p,q)

for (p, q) ∈ P ×Q.

We then show that restricting the homomorphism Ξ to YNT ⊆ NT Z

gives a Nica covariant representation of YNT , which we denote by
Ψ. The idea is that Ξ plays the same role as the inclusion map in
Propositions 4.16 and 5.18.

(5) In Proposition 6.2 we find sufficient conditions for Ψ to be Cuntz–
Pimsner covariant, and use the universal property of NOYNT to
induce a homomorphism ω such that ω ◦ jYNT = Ψ.

(6) In Proposition 6.4 we use the universal Nica covariant representation
of Z and the universal Cuntz–Nica–Pimsner covariant representation
of YNT to define a Cuntz–Nica–Pimsner covariant representation ϑ′

of V in NOYNT . The universal property of NOV then gives us a
homomorphism Ψ′eG : NOV → NOYNT such that

Ψ′eG ◦ jVq = jYNTq ◦ iZ(eG,q)
for q ∈ Q.

(7) In Proposition 6.5 we use the homomorphism Ψ′eG to construct a

linear map Ψ′p : WNO
p → NOYNT such that

Ψ′p ◦ jZ(p,q)
= jYNTq ◦ iZ(p,q)

for (p, q) ∈ P ×Q.

(8) In Proposition 6.8 and 6.9 we show that the collection of maps
{Ψ′p : p ∈ P} gives a Nica covariant representation of the prod-

uct system WNO. The universal property of NTWNO then gives a
homomorphism ω′ : NTWNO → NOYNT such that ω′ ◦ iWNO = Ψ′.

(9) In Theorem 6.10 we prove that ω and ω′ are mutually inverse iso-
morphisms.

In summary, we will show that for every (p, q) ∈ P × Q, the maps in
Figures 6 and 7 exist and make the diagrams commutative.
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NOZ

Z(p,q)

NT Z

WNO
p

NTWNO

YNTq

NOYNT

jZ(p,q)
iZ(p,q)

incl.

iWNO
p

incl.

jYNT
q

jZ(p,q)

Ξ

iZ(p,q)

ϑ(p,q)

Ψq Ψ′p

ω

ω′

Figure 6. The homomorphisms ω, ω′

NOV = WNO
eG

NOYNT Vq = Z(eG,q) NOZ

YNTq

jVq

φNOV

jZ(eG,q)

iZ(eG,q)

jYNT
q

ϑ′q

Ψ′eG

Figure 7. The homomorphisms φNOV , Ψ′eG

We begin by exhibiting a Cuntz–Nica–Pimsner covariant representation
Ψ of YNT in NTWNO . The idea is to produce a homomorphism from NT Z

to NTWNO , and then restrict this map to YNT .
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Proposition 6.1. Define ϑ : Z→ NTWNO by

ϑ(p,q) := iWNO
p
◦ jZ(p,q)

.

Then ϑ is a Nica covariant representation of Z, and so there exists a homo-
morphism Ξ : NT Z → NTWNO such that

Ξ ◦ iZ(p,q)
= iWNO

p
◦ jZ(p,q)

for each (p, q) ∈ P ×Q. If Ψ : YNT → NTWNO is defined by

Ψq := Ξ|YNTq ,

then Ψ is a Nica covariant representation of YNT .

Proof. Both iWNO
p

and jZ(p,q)
are Nica covariant representations, and so

the same reasoning as in Propositions 4.13 and 4.15 shows that ϑ is a Nica
covariant representation. The universal property of NT Z then induces the
homomorphism Ξ.

Since Ξ is a homomorphism, it is elementary to check that Ψ := Ξ|YNT
is a representation. We claim that Ψ(q)(Mb) = Ξ(b) for each b ∈ NT qZ. If
z ∈ Z(m,q) and w ∈ Z(n,q), then iZ(m,q)

(z)iZ(n,q)
(w)∗ ∈ NT qZ and

MiZ(m,q)
(z)iZ(n,q)

(w)∗ = ΘiZ(m,q)
(z),iZ(n,q)

(w) ∈ KNT X

(
YNTq

)
.

Hence,

Ψ(q)
(
MiZ(m,q)

(z)iZ(n,q)
(w)∗

)
= Ψq(iZ(m,q)

(z))Ψq(iZ(n,q)
(w))∗

= Ξ
(
iZ(m,q)

(z)iZ(n,q)
(w)∗

)
.

By linearity, continuity, and an application of Lemma 4.9, we get our claim.
We now prove that Ψ is Nica covariant. Fix b ∈ NT qZ and c ∈ NT tZ.

By Lemma 4.11, bc ∈ NT (q∨t)
Z if q ∨ t < ∞, and is zero otherwise. Hence,

Ψ(q)(Mb)Ψ
(t)(Mc) = Ξ(b)Ξ(c) = Ξ(bc) is zero if q ∨ t = ∞, and equal to

Ψ(q∨t)(Mbc) = Ψ(q∨t)(ιq∨tq (Mb)ι
q∨t
t (Mc)) if q ∨ t < ∞. By Lemma 4.10, it

follows that Ψ is Nica covariant. �

Proposition 6.2. Suppose that A acts compactly on each Z(eG,q) and Q is

directed. Then Ψ is a Cuntz–Pimsner covariant representation of YNT , and
so there exists a homomorphism ω : NOYNT → NTWNO such that

ω ◦ jYNTq = Ψq = Ξ|YNTq
for each q ∈ Q.

Proof. Since G is amenable and A acts faithfully on each Z(eG,q), Propo-

sition 4.8 tells us that NT X acts faithfully on each fibre of YNT . Addi-
tionally, since A acts compactly on each Z(eG,q), the same reasoning as in
the proof of Lemma 5.16 shows that NT X acts compactly on each fibre
of YNT . Hence, to see that Ψ is Cuntz–Pimsner covariant, it suffices by
[38, Proposition 5.1] to check that Ψ(q) ◦ ΦNTq = ΨeH for each q ∈ Q. As



802 JAMES FLETCHER

YNTeH = NT X ∼= φNTX (NT X) is generated by the image of φNTX ◦ iX = iZ|X
it suffices to show that

(6.1)
(
Ψ(q) ◦ ΦNTq

)
(iZ(x)) = ΨeH (iZ(x)) for each x ∈ X.

To this end, fix x ∈ Xp. Choosing x′ ∈ Xp so that x = x′ · 〈x′, x′〉pA, we have

ΨeH

(
iZ(p,eH)

(x)
)

= Ξ
(
iZ(p,eH)

(x)
)

= iWNO
p

(
jZ(p,eH)

(x)
)

= iWNO
p

(
jZ(p,eH)

(x′)
)
iWNO

eG

(
jZ(eG,eH)

(〈x′, x′〉pA)
)
.

By the first part of Lemma 5.16, we see that

ΦNTq
(
iZ(p,eH)

(x)
)

= M
iZ(p,eH)

(x′)i
((eG,q))
Z

(
φ(eG,q)

(〈x′,x′〉pA)
) ∈ KNT X

(
YNTq

)
and iZ(p,eH)

(x′)i
((eG,q))
Z

(
φ(eG,q)(〈x

′, x′〉pA)
)
∈ NOqZ. Thus,

Ψ(q)
(

ΦNTq
(
iZ(p,eH)

(x)
))

= Ξ
(
iZ(p,eH)

(x′)i
((eG,q))
Z

(
φ(eG,q)(〈x

′, x′〉pA)
))

= iWNO
p

(
jZ(p,q)

(x′)
)
iWNO

eG

(
j

((eG,q))
Z

(
φ(eG,q)(〈x

′, x′〉pA)
))
.

Thus, for (6.1) to hold, we need

jZ(eG,eH)
(〈x′, x′〉pA) = j

((eG,q))
Z

(
φ(eG,q)(〈x

′, x′〉pA)
)
,

which follows from Lemma 5.17. �

Remark 6.3. As in Remark 5.19, it is not clear if all of the hypotheses
in Proposition 6.2 are necessary. We would like to be able to rerun the
argument used in the proof of Proposition 5.15 (where we did not need A
to act compactly on each Z(eG,q), nor for Q to be directed), but iWNO

p
need

not be Cuntz–Pimsner covariant in general.

It remains to exhibit a Nica covariant representation of WNO in NOYNT

that induces a homomorphism ω′ : NTWNO → NOYNT inverse to ω. Un-
fortunately, defining this representation is more difficult than when we de-
fined the representation Ψ of YNT in NTWNO . Whilst each fibre of WNO

sits inside the C∗-algebra NOZ, in general there need not exist a homo-
morphism from NOZ to NTWNO which we can just restrict to WNO. We
get around this difficulty as follows. Firstly, we produce a homomorphism
Ψ′eG from WNO

eG
= NOV to NOYNT by exhibiting a Cuntz–Nica–Pimsner

covariant representation of V in NOYNT . Secondly, we use the homo-
morphism Ψ′eG to construct a collection of linear maps Ψ′p from WNO

p to
NOYNT for each p ∈ P \ {eG}, and then argue that this collection forms a
Nica covariant representation.
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Proposition 6.4. Define ϑ′ : V→ NOYNT by

ϑ′q := jYNTq ◦ iZ(eG,q)

for each q ∈ Q. Then ϑ′ is a Cuntz–Nica–Pimsner covariant representation
of V, and so there exists a homomorphism Ψ′eG : φNOV (NOV) → NOYNT

such that

Ψ′eG ◦ jZ(eG,q)
= jYNTq ◦ iZ(eG,q)

.

Proof. The same reasoning as used in the proof of Proposition 4.13 and
Proposition 4.15 shows that ϑ′ is a Nica covariant representation of V. We
show that ϑ′ is Cuntz–Pimsner covariant. Suppose F ⊆ Q is finite and the
collection {Tq ∈ KA (Vq) : q ∈ F} is such that

∑
q∈F ι

t
q(Tq) = 0 ∈ LA (Vt)

for large t ∈ Q. We need to show that
∑

q∈F ϑ
′(q)(Tq) = 0 ∈ NOYNT . We

claim that

(6.2)

∑
q∈F

ιtq

(
M
i
(eG,q)
Z (Tq)

)
= 0 ∈ LNT X

(
YNTt

)
for large t.

Observe that for any compact operator T ∈ KA (Vq), and z ∈ Z(eG,q),
b ∈ NT X, we have

ιtq

(
M
i
(eG,q)
Z (T )

)(
iZ(eG,t)

(z)φNTX (b)
)

= iZ(eG,t)

(
ιtq(T )(z)

)
φNTX (b).

Given r ∈ Q, fix s ≥ r, such that
∑

q∈F ι
t
q(Tq) = 0 ∈ LA (Vt) = LA

(
Z(eG,t)

)
for all t ≥ s. Then for any t ≥ s, we see that(∑

q∈F
ιtq

(
M
i
(eG,q)
Z (Tq)

))(
YNTt

)
= span

{(∑
q∈F

ιtq

(
M
i
(eG,q)
Z (Tq)

))(
iZ(eG,t)

(Z(eG,t))φ
NT
X (NT X)

)}

= span

{
iZ(eG,t)

((∑
q∈F

ιtq (Tq)
)(

Z(eG,t)

))
φNTX (NT X)

}
= {0},

and so (6.2) holds. Thus,∑
q∈F

ϑ′(q)(Tq) =
∑
q∈F

j
(q)

YNT

(
M
i
(e,q)
Z (Tq)

)
= 0,

since jYNT is Cuntz–Pimsner covariant, and so we conclude that ϑ′ is Cuntz–
Pimsner covariant. �

Proposition 6.5. For each p ∈ P \ {eG}, there exists a norm-decreasing
linear map Ψ′p : WNO

p → NOYNT such that

Ψ′p
(
jZ(p,eH)

(x)φNOV (b)
)

= jYNTeH

(
iZ(p,eH)

(x)
)
Ψ′eG

(
φNOV (b)

)
(6.3)
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for x ∈ Z(p,eH) and b ∈ NOV. In particular, if z ∈ Z(p,q) and w ∈ Z(eG,t),
then

Ψ′p
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
= jYNTq

(
iZ(p,q)

(z)
)
jYNTt

(
iZ(eG,t)

(w)
)∗
.(6.4)

Proof. We claim that for any finite set F ⊆ Z(p,eH) ×NOV,

(6.5)

∥∥∥∥∥ ∑
(x,b)∈F

jYNTeH

(
iZ(p,eH)

(x)
)
Ψ′eG

(
φNOV (b)

)∥∥∥∥∥
NO

YNT

≤

∥∥∥∥∥ ∑
(x,b)∈F

jZ(p,eH)
(x)φNOV (b)

∥∥∥∥∥
WNO

p

.

Since jYNTeG
is a homomorphism and iZ is a representation, the C∗-identity

can be used to show that∥∥∥∥∥ ∑
(x,b)∈F

jYNTeG

(
iZ(p,eH)

(x)
)
Ψ′eG

(
φNOV (b)

)∥∥∥∥∥
2

NO
YNT

=

∥∥∥∥∥ ∑
(x,b),

(y,c)∈F

Ψ′eG
(
φNOV (b∗)

)
jYNTeH

(
iZ(eG,eH)

(
〈x, y〉(p,eH)

A

))
Ψ′eG

(
φNOV (c)

)∥∥∥∥∥
NO

YNT

=

∥∥∥∥∥ ∑
(x,b),

(y,c)∈F

Ψ′eG

(
φNOV (b∗)jZ(eG,eH)

(
〈x, y〉(p,eH)

A

)
φNOV (c)

)∥∥∥∥∥
NO

YNT

,

where the second equality comes from the fact that Ψ′eG ◦ jZ(eG,eH)
= ϑ′eH =

jYNTeG
◦ iZ(eG,eH)

. Since Ψ′eG is a homomorphism, this is no greater than∥∥∥∥∥ ∑
(x,b),

(y,c)∈F

φNOV (b∗)jZ(eG,eH)

(
〈x, y〉(p,eH)

A

)
φNOV (c)

∥∥∥∥∥
NOZ

=

∥∥∥∥∥ ∑
(x,b),

(y,c)∈F

φNOV (b∗)jZ(p,eH)
(x)∗jZ(p,eH)

(y)φNOV (c)

∥∥∥∥∥
NOZ

=

∥∥∥∥∥
〈 ∑

(x,b)∈F

jZ(p,eH)
(x)φNOV (b),

∑
(y,c)∈F

jZ(p,eH)
(y)φNOV (c)

〉p
NOZ

∥∥∥∥∥
NOZ

=

∥∥∥∥∥ ∑
(x,b)∈F

jZ(p,eH)
(x)φNOV (b)

∥∥∥∥∥
2

WNO
p

.

Thus, (6.5) holds. It follows that

jZ(p,eH)
(x)φNOV (b) 7→ jYNTeH

(
iZ(p,eH)

(x)
)
Ψ′eG

(
φNOV (b)

)
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determines a well-defined norm-decreasing linear map Ψ′p on WNO
p . �

For our proofs of Lemma 6.7 and Proposition 6.9 we will make use of the
next remark.

Remark 6.6. Suppose that (K,R) is a quasi-lattice ordered group and ς
is a Nica covariant representation of a compactly aligned product system U
over R with coefficient algebra B. Let x ∈ Up and y ∈ Uq for some p, q ∈ R
with p, q 6= eK and p ∨ q < ∞, and choose x′ ∈ Up and y′ ∈ Uq so that
x = x′ · 〈x′, x′〉pB and y = y′ · 〈y′, y′〉qB. Since U is compactly aligned and

Up∨q = span
{
στ : σ ∈ Up, τ ∈ Up−1(p∨q)

}
= span

{
ηρ : η ∈ Uq, ρ ∈ Uq−1(p∨q)

}
,

there exist σji ∈ Up, τji ∈ Up−1(p∨q), ηji ∈ Uq, ρji ∈ Uq−1(p∨q) such that

ιp∨qp

(
Θx′,x′

)
ιp∨qq

(
Θy′,y′

)
= lim

i→∞

ki∑
ji=1

Θσjiτji ,ηjiρji
∈ KB (Up∨q) .

Using relations (T1)–(T3) and the Nica covariance of ς, it can be shown that

ςp(x)∗ςq(y) = lim
i→∞

ki∑
ji=1

ςp−1(p∨q)
(〈
x′, σji

〉p
B
τji
)
ςq−1(p∨q)

(〈
y′, ηji

〉q
B
ρji
)∗
.

Moreover, if z ∈ Ur and w ∈ Us, then

ςr(z)ςp(x)∗ςq(y)ςs(w)∗

= lim
i→∞

ki∑
ji=1

ςrp−1(p∨q)
(
z
〈
x′, σji

〉p
B
τji
)
ςsq−1(p∨q)

(
w
〈
y′, ηji

〉q
B
ρji
)∗
.

We now prove that the collection of maps {Ψ′p : p ∈ P} defined in Propo-

sitions 6.4 and 6.5 gives a representation of the product system WNO. The
proof that Ψ′ satisfies relation (T2) is particularly onerous, so we present it
first as a lemma.

Lemma 6.7. The map Ψ′ : WNO → NOYNT satisfies relation (T2).

Proof. We need to show that

Ψ′p(x)Ψ′r(y) = Ψ′pr(xy) for any p, r ∈ P and x ∈WNO
p , y ∈WNO

r .(6.6)

We begin by showing that (6.6) holds when r = eG. If z ∈ Z(p,eH) and

b, c ∈ NOV, using (6.3) and the multiplicativity of Ψ′eG and φNOV , we see
that

Ψ′p
(
jZ(p,eH)

(z)φNOV (b)
)
Ψ′eG

(
φNOV (c)

)
= jYNTeH

(
iZ(p,eH)

(x)
)
Ψ′eG

(
φNOV (b)

)
Ψ′eG

(
φNOV (c)

)
= Ψ′p

(
jZ(p,eH)

(z)φNOV (b)φNOV (c)
)
.
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Since WNO
p = span{jZ(p,eH)

(z)φNOV (b) : z ∈ Z(p,eH), b ∈ NOV} and WNO
eG

is isomorphic to φNOV (NOV), we conclude that (6.6) holds when r = eG.
We now move on to the case where r 6= eG. Since Ψ′p and Ψ′r are linear and

norm-decreasing, and multiplication in NOYNT is linear and continuous, it
suffices to prove that (6.6) holds when x = jZ(p,q)

(z)jZ(eG,t)
(w)∗ and y =

jZ(r,m)
(u)jZ(eG,n)

(v)∗ for z ∈ Z(p,q), w ∈ Z(eG,t), u ∈ Z(r,m), and v ∈ Z(eG,n).

We deal with the cases where t = eH and t 6= eH separately.
If t = eH , then w ∈ Z(eG,eH) = A, and so an application of (6.4) gives

Ψ′pr
(
jZ(p,q)

(z)jZ(eG,eH)
(w)∗jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
= jYNTqm

(
iZ(pr,qm)

(zw∗u)
)
jYNTn

(
iZ(eG,n)

(v)
)∗
.

Another application of (6.4), shows that the previous line is equal to

jYNTqm
(
iZ(p,q)

(z)iZ(eG,eH)
(w)∗iZ(r,m)

(u)
)
jYNTn

(
iZ(eG,n)

(v)
)∗

= jYNTq
(
iZ(p,q)

(z)
)
jYNTeH

(
iZ(eG,eH)

(w)
)∗

× jYNTm
(
iZ(r,m)

(u)
)
jYNTn

(
iZ(eG,n)

(v)
)∗

= Ψ′p
(
jZ(p,q)

(z)jZ(eG,eH)
(w)∗

)
Ψ′r
(
jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
,

as required.
It remains to deal with the situation where t 6= eH . We make use of

Remark 6.6 to rewrite the product jZ(p,q)
(z)jZ(eG,t)

(w)∗jZ(r,m)
(u)jZ(eG,n)

(v)∗

in the form required to apply (6.4). If t∨m =∞, then (eG, t)∨ (r,m) =∞,
and so using the Nica covariance of jZ and jYNT we see that both

Ψ′pr
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
and

Ψ′p
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
Ψ′r
(
jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
= jYNTq

(
iZ(p,q)

(z)
)
jYNTt

(
iZ(eG,t)

(w)
)∗
jYNTm

(
iZ(r,m)

(u)
)
jYNTn

(
iZ(eG,n)

(v)
)∗

are zero. Thus, we may as well suppose that t∨m <∞. Choose w′ ∈ Z(eG,t)

and u′ ∈ Z(r,m) so that w = w′ · 〈w′, w′〉(eG,t)A and u = u′ · 〈u′, u′〉(r,m)
A . Since

Z is compactly aligned, and

Z(r,t∨m) = span
{
στ : σ ∈ Z(eG,t), τ ∈ Z(r,t−1(t∨m))

}
= span

{
ηρ : η ∈ Z(r,m), ρ ∈ Z(eG,m−1(t∨m))

}
,

we can write

ι
(r,t∨m)
(eG,t)

(
Θw′,w′

)
ι
(r,t∨m)
(r,m)

(
Θu′,u′

)
= lim

i→∞

ki∑
ji=1

Θσjiτji ,ηjiρji
∈ KA

(
Z(r,t∨m)

)
,

(6.7)
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for some σji ∈ Z(eG,t), τji ∈ Z(r,t−1(t∨m)), ηji ∈ Z(r,m), ρji ∈ Z(eG,m−1(t∨m)).
Combining (6.4) and Remark 6.6, we have

(6.8)

Ψ′pr
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
= lim

i→∞

ki∑
ji=1

jYNT
qt−1(t∨m)

(
iZ(pr,qt−1(t∨m))

(
z〈w′, σji〉

(eG,t)
A τji

))
× jYNT

nm−1(t∨m)

(
iZ(eG,nm−1(t∨m))

(
v〈u′, ηji〉

(r,m)
A ρji

))∗
.

We now calculate Ψ′p
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
Ψ′r
(
jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
, which

requires applying Remark 6.6 to the Nica covariant representation jYNT .

Using the fact that w = w′ · 〈w′, w′〉(eG,t)A and u = u′ · 〈u′, u′〉(r,m)
A , we see

that iZ(eG,t)
(w) = iZ(eG,t)

(w′) · 〈iZ(eG,t)
(w′), iZ(eG,t)

(w′)〉tNT X
in YNTt and

iZ(r,m)
(u) = iZ(r,m)

(u′) · 〈iZ(r,m)
(u′), iZ(r,m)

(u′)〉mNT X
in YNTm . Furthermore,

(6.7) implies that

ιt∨mt

(
ΘiZ(eG,t)

(w′),iZ(eG,t)
(w′)

)
ιt∨mm

(
ΘiZ(r,m)

(u′),iZ(r,m)
(u′)

)
= lim

i→∞

ki∑
ji=1

ΘiZ(eG,t)
(σji )iZ(r,t−1(t∨m))

(τji ),iZ(r,m)
(ηji )iZ(eG,m−1(t∨m))

(ρji )

∈ KNT X

(
YNTt∨m

)
,

whilst iZ(eG,t)
(σji) ∈ YNTt , iZ(r,t−1(t∨m))

(τji) ∈ YNTt−1(t∨m), iZ(r,m)
(ηji) ∈

YNTm , and iZ(eG,m−1(t∨m))
(ρji) ∈ YNTm−1(t∨m). Thus, (6.4) and Remark 6.6

imply that

Ψ′p
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
Ψ′r
(
jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
= jYNTq

(
iZ(p,q)

(z)
)
jYNTt

(
iZ(eG,t)

(w)
)∗
jYNTm

(
iZ(r,m)

(u)
)
jYNTn

(
iZ(eG,n)

(v)
)∗

= lim
i→∞

ki∑
ji=1

jYNT
qt−1(t∨m)

(
iZ(p,q)

(z)〈iZ(eG,t)
(w′),iZ(eG,t)

(σji)〉tNT X
iZ(r,t−1(t∨m))

(τji)
)

× jYNT
nm−1(t∨m)

(
iZ(eG,n)

(v)〈iZ(r,m)
(u′),iZ(r,m)

(ηji)〉mNT X
iZ(eG,m−1(t∨m))

(ρji)
)∗

= lim
i→∞

ki∑
ji=1

jYNT
qt−1(t∨m)

(
iZ(pr,qt−1(t∨m))

(
z〈w′, σji〉

(eG,t)
A τji

))
× jYNT

nm−1(t∨m)

(
iZ(eG,nm−1(t∨m))

(
v〈u′, ηji〉

(r,m)
A ρji

))∗
,

which is (6.8). Thus,

Ψ′pr
(
jZ(p,q)

(z)jZ(eG,t)
(w)∗jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
= Ψ′p

(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
Ψ′r
(
jZ(r,m)

(u)jZ(eG,n)
(v)∗

)
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when t 6= eH . We conclude that the map Ψ′ : WNO → NOYNT satisfies
relation (T2). �

Proposition 6.8. The map Ψ′ : WNO → NOYNT is a representation of
WNO.

Proof. By construction, each Ψ′p is linear and Ψ′eG is a homomorphism.
Hence, Ψ′ satisfies (T1). We already showed that Ψ′ satisfies (T2) in
Lemma 6.7. It remains to show that Ψ′ satisfies (T3).

Fix z, w ∈ Z(p,eH) and b, c ∈ NOV. Making use of (6.3), we see that

Ψ′p
(
jZ(p,eH)

(z)φNOV (b)
)∗

Ψ′p
(
jZ(p,eH)

(w)φNOV (c)
)

=
(
jYNTeH

(
iZ(p,eH)

(z)
)
Ψ′eG

(
φNOV (b)

))∗(
jYNTeH

(
iZ(p,eH)

(w)
)
Ψ′eG

(
φNOV (c)

))
= Ψ′eG

(
φNOV (b)∗

)
jYNTeH

(
iZ(eG,eH)

(
〈z, w〉(p,eH)

A

))
Ψ′eG

(
φNOV (c)

)
.

Since jZ is a representation of Z and Ψ′eG is a homomorphism satisfying
jYNTeH

◦ iZ(eG,eH)
= Ψ′eG ◦ jZ(eG,eH)

, the previous expression is equal to

Ψ′eG
(
φNOV (b)∗jZ(eG,eH)

(
〈z, w〉(p,eH)

A

)
φNOV (c)

)
= Ψ′eG

(
φNOV (b)∗jZ(p,eH)

(z)∗jZ(p,eH)
(w)φNOV (c)

)
= Ψ′eG

(〈
jZ(p,eH)

(z)φNOV (b), jZ(p,eH)
(w)φNOV (c)

〉p
NOV

)
.

Since WNO
p = span

{
jZ(p,eH)

(
Z(p,eH)

)
φNOV (NOV)

}
for each p ∈ P , Ψ′p

is linear and norm-decreasing, and multiplication in NOYNT is linear and
continuous, we conclude that Ψ′p(x)∗Ψ′p(y) = Ψ′eG

(
〈x, y〉pNOV

)
for each x, y ∈

WNO
p . Thus, Ψ′ satisfies (T3), and we conclude that Ψ′ is a representation

of WNO �

We can also show that the representation Ψ′ is Nica covariant.

Proposition 6.9. The representation Ψ′ : WNO → NOYNT is Nica co-
variant, and so there exists a homomorphism ω′ : NTWNO → NOYNT such
that

ω′ ◦ iWNO
p

= Ψ′p

for each p ∈ P .

Proof. We need to show that if S ∈ KNOV
(WNO

p ) and T ∈ KNOV
(WNO

r ),

then Ψ′(p)(S)Ψ′(r)(T ) is equal to Ψ′(p∨r)(ιp∨rp (S)ιp∨rr (T )) when p∨r <∞ and
is zero otherwise. If p = eG or r = eG, the result is trivial, so we suppose
that p, r 6= eG. Hence, by Lemma 4.10, it suffices to show that

(6.9)

Ψ′(p)
(
ΘjZ(p,q)

(z),jZ(p,t)
(w)

)
Ψ′(r)

(
ΘjZ(r,m)

(u),jZ(r,n)
(v)

)
=

{
Ψ′(p∨r)

(
MjZ(p,q)

(z)jZ(p,t)
(w)∗jZ(r,m)

(u)jZ(r,n)
(v)∗
)

if p ∨ r <∞
0 otherwise.
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whenever z ∈ Z(p,q), w ∈ Z(p,t), u ∈ Z(r,m), v ∈ Z(r,n).
We begin by showing that (6.9) holds when p ∨ r = ∞ or t ∨ m = ∞.

Since jZ(p,q)
(z)jZ(p,t)

(w)∗jZ(r,m)
(u)jZ(r,n)

(v)∗ = 0 if t ∨m = ∞, it suffices to
show that

(6.10)
Ψ′(p)

(
ΘjZ(p,q)

(z),jZ(p,t)
(w)

)
Ψ′(r)

(
ΘjZ(r,m)

(u),jZ(r,n)
(v)

)
= 0

if p ∨ r =∞ or t ∨m =∞.

Observe that

(6.11)

Ψ′(p)
(
ΘjZ(p,q)

(z),jZ(p,t)
(w)

)
Ψ′(r)

(
ΘjZ(r,m)

(u),jZ(r,n)
(v)

)
= jYNTq

(
iZ(p,q)

(z)
)
jYNTt

(
iZ(p,t)

(w)
)∗

× jYNTm
(
iZ(r,m)

(u)
)
jYNTn

(
iZ(r,n)

(v)
)∗
.

If t∨m =∞ then (6.11) is zero since jYNT is Nica covariant. Hence, we need
to consider the situation where t∨m <∞ and p∨r =∞. Choose w′ ∈ Z(p,t)

and u′ ∈ Z(r,m) so that w = w′ · 〈w′, w′〉(p,t)A and u = u′ · 〈u′, u′〉(r,m)
A . The

Nica covariance of jYNT gives

jYNTt

(
iZ(p,t)

(w)
)∗
jYNTm

(
iZ(r,m)

(u)
)

= jYNTt

(
iZ(p,t)

(w′)
)∗
j

(t∨m)

YNT

(
M
i
((p,t))
Z (Θw′,w′ )i

((r,m))
Z (Θu′,u′ )

)
× jYNTm

(
iZ(r,m)

(u′)
)∗
,

which is zero since iZ is Nica covariant and (p, t)∨(r,m) =∞ (as p∨r =∞).
Thus, (6.11) is zero, which completes the proof of (6.10).

It remains to prove that (6.9) holds whenever p ∨ r < ∞ and t ∨ m <
∞. As in Lemma 6.7, we will need to make use of Remark 6.6 to rewrite
things in a form that allows us to apply the description of Ψ′ given by (6.4).

Again, choose w′ ∈ Z(p,t) and u′ ∈ Z(r,m) so that w = w′ · 〈w′, w′〉(p,t)A and

u = u′ · 〈u′, u′〉(r,m)
A . Writing

ι
(p∨r,t∨m)
(p,t)

(
Θw′,w′

)
ι
(p∨r,t∨m)
(r,m)

(
Θu′,u′

)
= lim

i→∞

ki∑
ji=1

Θσjiτji ,ηjiρji
∈ KA

(
Z(p∨r,t∨m)

)
,

for some choice of σji ∈ Z(p,t), τji ∈ Z(p−1(p∨r),t−1(t∨m)), ηji ∈ Z(r,m), and
ρji ∈ Z(r−1(p∨r),m−1(t∨m)), Remark 6.6 tells us that

jZ(p,q)
(z)jZ(p,t)

(w)∗jZ(r,m)
(u)jZ(r,n)

(v)∗

= lim
i→∞

ki∑
ji=1

jZ(p∨r,qt−1(t∨m))

(
z〈w′, σji〉

(p,t)
A τji

)
× jZ(p∨r,nm−1(t∨m))

(
v〈u′, ηji〉

(r,m)
A ρji

)∗
.
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Thus,

(6.12)

Ψ′(p∨r)
(
MjZ(p,q)

(z)jZ(p,t)
(w)∗jZ(r,m)

(u)jZ(r,n)
(v)∗
)

= lim
i→∞

ki∑
ji=1

Ψ′(p∨r)
(

Θ
jZ(z〈w′,σji 〉

(p,t)
A τji ),jZ(v〈u′,ηji 〉

(r,m)
A ρji )

)

= lim
i→∞

ki∑
ji=1

jYNT
qt−1(t∨m)

(
iZ(p∨r,qt−1(t∨m))

(
z〈w′, σji〉

(p,t)
A τji

))
× jYNT

nm−1(t∨m)

(
iZ(p∨r,nm−1(t∨m))

(
v〈u′, ηji〉

(r,m)
A ρji

))∗
.

To complete the proof we will apply Remark 6.6 to the product system YNT

in order to show that (6.12) is equal to the left hand side of (6.9). Since

w = w′ · 〈w′, w′〉(p,t)A , the Hewitt–Cohen–Blanchard factorisation of iZ(p,t)
(w)

in YNTt is iZ(p,t)
(w′)·〈iZ(p,t)

(w′), iZ(p,t)
(w′)〉tNT X

. Similarly, iZ(r,m)
(u) is equal

to iZ(r,m)
(u′) · 〈iZ(r,m)

(u′), iZ(r,m)
(u′)〉mNT X

. Moreover,

ιt∨mt

(
ΘiZ(p,t)

(w′),iZ(p,t)
(w′)

)
ιt∨mm

(
ΘiZ(r,m)

(u′),iZ(r,m)
(u′)

)
= lim

i→∞

ki∑
ji=1

ΘiZ(σji)iZ(τji),iZ(ηji)iZ(ρji)
,

whilst iZ(p,t)
(σji) ∈ YNTt , iZ(p−1(p∨r),t−1(t∨m))

(τji) ∈ YNTt−1(t∨m), iZ(r,m)
(ηji) ∈

YNTm , and iZ(r−1(p∨r),m−1(t∨m))
(ρji) ∈ YNTm−1(t∨m). Hence,

Ψ′(p)
(

ΘjZ(p,q)
(z),jZ(p,t)

(w)

)
Ψ′(r)

(
ΘjZ(r,m)

(u),jZ(r,n)
(v)

)
= jYNTq

(
iZ(p,q)

(z)
)
jYNTt

(
iZ(p,t)

(w)
)∗
jYNTm

(
iZ(r,m)

(u)
)
jYNTn

(
iZ(r,n)

(v)
)∗

= lim
i→∞

ki∑
ji=1

jYNT
qt−1(t∨m)

(
iZ(p∨r,qt−1(t∨m))

(
z〈w′, σji〉

(p,t)
A τji

))
× jYNT

nm−1(t∨m)

(
iZ(p∨r,nm−1(t∨m))

(
v〈u′, ηji〉

(r,m)
A ρji

))∗
,

which is precisely (6.12). This completes the proof that Ψ′ is Nica covariant.
�

Finally, we are ready to prove that NOYNT and NTWNO are isomorphic.

Theorem 6.10. Suppose that A acts compactly on each Z(eG,q) and Q is
directed, so that the homomorphism ω of Proposition 6.2 exists. Then ω :
NOYNT → NTWNO and ω′ : NTWNO → NOYNT are mutually inverse
isomorphisms. Thus, NOYNT

∼= NTWNO .

Proof. Firstly, we show that ω ◦ ω′ = idNT
WNO

. As NTWNO is generated

by iWNO , it suffices to show that ω ◦ ω′ ◦ iWNO = iWNO . If z ∈ Z(p,q) and
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w ∈ Z(eG,t), then(
ω ◦ ω′

)(
iWNO

p

(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

))
=
(
ω ◦Ψ′p

)(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
= ω

(
jYNTq

(
iZ(p,q)

(z)
)
jYNTt

(
iZ(eG,t)

(w)∗
))

= Ξ
(
iZ(p,q)

(z)iZ(eG,t)
(w)∗

)
= iWNO

p

(
jZ(p,q)

(z)
)
iWNO

eG

(
jZ(eG,t)

(w)
)∗

= iWNO
p

(
jZ(p,q)

(z)jZ(eG,t)
(w)∗

)
.

Since WNO
p = span

{
jZ(p,q)

(
Z(p,q)

)
jZ(eG,t)

(
Z(eG,t)

)∗
: q, t ∈ Q

}
for each

p ∈ P , whilst both of the maps ω ◦ ω′ ◦ iWNO and iWNO are linear and
continuous, we conclude that ω ◦ ω′ ◦ iWNO

p
= iWNO

p
for each p ∈ P . Thus,

ω ◦ ω′ = idNT
WNO

.

Secondly, we check that ω′ ◦ ω = idNO
YNT

. As NOYNT is generated by

jYNT , it suffices to check that ω′ ◦ω ◦ jYNT = jYNT . For any z ∈ Z(p,q) and
w ∈ Z(r,eH), we have(

ω′ ◦ ω
)(
jYNTq

(
iZ(p,q)

(z)iZ(r,eH)
(w)∗

))
=
(
ω′ ◦ Ξ′

)(
iZ(p,q)

(z)iZ(r,eH)
(w)∗

)
= ω′

(
iWNO

p

(
jZ(p,q)

(z)
)
iWNO

r

(
jZ(r,eH)

(w)
)∗)

= Ψ′p
(
jZ(p,q)

(z)
)
Ψ′r
(
jZ(r,eH)

(w)
)∗

= jYNTq
(
iZ(p,q)

(z)
)
jYNTeH

(
iZ(r,eH)

(w)
)∗

= jYNTq
(
iZ(p,q)

(z)iZ(r,eH)
(w)
)∗
.

Since YNTq = span
{
iZ(p,q)

(
Z(p,q)

)
iZ(r,eH)

(
Z(r,eH)

)∗
: p, q ∈ P

}
for each

q ∈ Q, whilst both of the maps ω′ ◦ ω ◦ jYNT and jYNT are linear and
continuous, we conclude that ω′ ◦ ω ◦ jYNTq = jYNTq for each q ∈ Q. Thus,

ω′ ◦ ω = idNO
YNT

. �
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