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Simplicial complexity: piecewise linear
motion planning in robotics

Jesús González

Abstract. Using the notion of contiguity of simplicial maps, and its
relation (via iterated subdivisions) to the notion of homotopy between
continuous maps, we adapt Farber’s topological complexity to the realm
of simplicial complexes. We show that, for a finite simplicial complex
K, our discretized concept recovers the topological complexity of the
realization ‖K‖. Our approach lays the theoretical grounds for designing
and implementing algorithms that search for optimal motion planners
for autonomous systems in real-life applications.
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1. Introduction
For a topological space X, let P (X) stand for the free path space on

X endowed with the compact-open topology. Farber’s topological com-
plexity TC(X) is defined as the sectional category of the evaluation map
e : P (X) → X × X, e(γ) = (γ(0), γ(1)). Here we use the reduced form of
the resulting homotopy invariant, namely a contractible space has zero topo-
logical complexity. In other words, TC(X) + 1 is the smallest cardinality
of open covers {Ui}i of X ×X so that e admits a continuous section σi on
each Ui. The open sets Ui in such an open cover are called local domains,
the corresponding sections σi are called local rules, and the family of pairs
{(Ui, σi)} is called a motion planner for X. A motion planner is said to
be optimal if it has TC(X) + 1 local domains. In view of the continuity
requirement on local rules, an optimal motion planner for the configuration
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space of a given robot gives us a way to minimize the possibility of accidents
in the programming of the robot’s performance in noisy environments. In
short, topological complexity provides us with a topological framework for
studying the motion planning problem in robotics.

Due to its homotopy nature, Farber’s idea quickly attracted the attention
of topologists, who began to develop the theoretical aspects of topological
complexity. In particular, a number of methods have emerged to estimate
TC(X) for families of spaces X. For instance, (co)homological methods
have proven to be useful (and accesible) for bounding from below TC(X),
while sophisticated (but hard-to-deal-with) obstruction-theoretic methods
have been used to get upper bounds. In some cases, the power of the alge-
braic topology toolbox leads to the actual computation of TC(X) —usually,
however, without giving a clue about how to construct explicit optimal mo-
tion planners. Such successful cases hold most notably when X is a symplec-
tic simply-connected closed manifold. In those cases the cohomology lower
bound agrees with the simplest possible homotopy-obstruction upper bound
(that is, the scenario in which all possible obstructions lie in groups which
vanish just by simple dimensional reasons). But in other less fortunate cases
the cohomology lower bound falls far from the simplest obstruction-theory
upper bound. In such cases, as is well known by experts, trying to improve
the upper bound by direct analysis of homotopy obstructions can be a major
(and potentially inaccessible) task, especially when several “layers” of ob-
structions are involved. Such characteristics of the current TC development
have been a main obstacle for the actual applicability of the TC ideas to
problems arising from real-life needs.

The present paper aims at mending the above situation. Our goal is
to lay the theoretical grounds for an eventual construction of (potentially
optimal) motion planners through computer-implementable algorithms. The
idea is to combine computational topology methods with heuristic processes
in order to replace the hard (non-algorithmic, and often prohibitive) analysis
of homotopy obstructions for estimating TC(X) from above. Indeed, the
ultimate goal would be that powerful computer resources become a real
option to inaccessible theoretic calculations.

A previous attempt to discretize (rather to approach combinatorially)
Farber’s TC appeared in [6, Example 4.5], where topological complexity is
developed in the context of finite spaces. However, the resulting concept
appears to be too rigid, and in fact it fails to detect the well known equality
TC(S1) = 1. Indeed, the best estimate coming from Tanaka’s model is
TC(S1) ≤ 3.

Another viewpoint for discretizing Farber’s topological complexity has re-
cently been proposed in [3]. Although Fernández-Ternero, Maćıas-Virgós,
Minuz and Vilches employ techniques based on the notion of contiguity (as
we do), there is a substantial difference between our approach and theirs.
Namely, the authors of [3] use Barmak-Minian’s concept of strong homotopy
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type to import homotopy-like notions of continuous maps into the combi-
natorics realm. On the other hand, in our case, the homotopy notion is
translated into combinatorial terms by using a well known fact in combina-
torial topology: Homotopy classes of (continuous) maps between the geo-
metric realizations of abstract simplicial complexes can be recovered (via
simplicial approximation) as contiguity classes of simplicial maps between
the (suitably subdivided) original complexes. In our model, the use of the
barycentric subdivision functor yields a much more flexible invariant. For
instance, while the model in [3] improves Tanaka’s estimate to TC(S1) ≤ 2,
we are able to recast the equality TC(S1) = 1 in purely combinatorial terms.
In fact, we prove that, for any abstract complex K, our discretized topo-
logical complexity of K agrees with Farber’s topological complexity of the
geometric realization ‖K‖.

Our approach is fully algorithmizable and can be implemented in a com-
puter in order to explore the topological complexity of compact polyhedra.
In this regard, the reader should be aware that the resulting search space
grows exponentially with the number of iterated barycentric subdivisions
used (cf. Remark 4.3). Such a computational characteristic leads to the
need of designing and implementing heuristic algorithms for the search and
optimization of discretized motion planners. The final section in this paper
provides a benchmark for testing and comparing eventual implementations.

Our idea rests on the observation that the sectional category of a fibration
p : E → B over a CW complex B can be defined in terms of the existence
of “local” sections of p on the elements of a covering of B by Euclidean
neighborhood retracts (e.g. subcomplexes) —instead of by open sets. In
particular, in the case of the fibration defining TC(X), the following result,
whose proof is elementary (compare to [2, Lemma 4.21]), allows us to reduce
the resulting sectioning problem to a standard homotopy problem, which will
be translated in the next section into purely simplicial terms.

Lemma 1.1. The evaluation map e : P (X) → X ×X admits a section on
a subset A of X ×X if and only if the two compositions A ↪→ X ×X π1−→ X

and A ↪→ X ×X π2−→ X are homotopic.

2. Preliminaries
This section is devoted to fixing notation and reviewing homotopy-type

properties of the categories of simplicial complexes and their realizations.
For details, the reader should consult standard references, such as [5, Chap-
ter 3].

We work with abstract simplicial complexes K, referred here as “com-
plexes”, with simplicial maps ϕ between complexes, and with their corre-
sponding topological realizations ‖K‖ and ‖ϕ‖. With an eye on applications,
we will only care about finite complexes. The finiteness hypothesis will allow
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us to prove that our discrete model for topological complexity recasts the
original concept.

For a point x ∈ ‖K‖, the barycentric coordinate of x with respect to a
vertex1 v of K is denoted by x(v) ∈ [0, 1]. The simplex σx ∈ K carrying x
consists of those vertices v ∈ K having x(v) > 0. For instance, σv = v when
v is a vertex of K. For a simplex σ ∈ K, we think of ‖σ‖ as the obvious
subspace of ‖K‖; the corresponding open simplex 〈σ〉 ⊆ ‖σ‖ consists of the
points x ∈ ‖K‖ having σx = σ. In other words,

〈σ〉 = {x ∈ K : x(v) > 0 if and only if v ∈ σ} .
Note that ‖σ‖ is the closure of 〈σ〉, that 〈∅〉 = ∅, and that the set underlying
‖K‖ is the disjoint union

∐
σ∈K〈σ〉.

Definition 2.1. Let K and L be complexes. A (simplicial) approximation
of a continuous map f : ‖K‖ → ‖L‖ is a simplicial map ϕ : K → L such that
‖ϕ‖(x) ∈ ‖σ‖ whenever x ∈ ‖K‖ and f(x) ∈ 〈σ〉.

Example 2.2. A simplicial map ϕ : K → L is the only approximation of
the geometric realization ‖ϕ‖.

Example 2.3. For any subdivision K ′ of a complex K, the standard piece-
wise linear homeomorphism ‖K ′‖ =−→ ‖K‖ admits an approximation K ′ →
K. Indeed any map ι from the vertices of K ′ to the vertices of K with
the property that v′(ι(v′)) > 0, for any vertex v′ of K ′, is in fact an ap-
proximation of ‖K ′‖ =−→ ‖K‖. Actually, such vertex-maps ι are the only
approximations of ‖K ′‖ =−→ ‖K‖.

Example 2.3 will be most important for K ′ = Sd(K), the barycentric
subdivision of K and, more generally, for K ′ = Sdb(K), the b-fold iterated
barycentric subdivision of K (Sdb+1(K) = Sd(Sdb(K))).

Remark 2.4. Approximations behave well with respect to compositions: If

K
ϕ−→ L

ψ−→M

are respective approximations of

‖K‖ f−→ ‖L‖ g−→ ‖M‖,
then ψϕ is an approximation of gf .

Next we recast the notion of contiguity of simplicial maps in a form suit-
able for the computational applications we have in mind.

Definition 2.5. Let c be a positive integer. Two simplicial maps ϕ,ϕ′ :
K → L are called:

(1) contiguous (or 1-contiguous) provided ϕ(σ)∪ϕ′(σ) is a simplex of L
for any simplex σ of K.

1We do not make a distinction between a vertex v of K, the corresponding 0-dimensional
simplex {v}, and the corresponding point v ∈ ‖K‖.
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(2) c-contiguous if there is a sequence of maps ϕ0, ϕ1, · · · , ϕc : K → L,
with ϕ0 = ϕ and ϕc = ϕ′, such that ϕi−1 and ϕi are contiguous for
each i ∈ {1, 2, . . . , c}.

Note that it is enough to verify the condition in part (1) of Definition 2.5
on maximal simplexes σ of K. We will say that the sequence of maps ϕj in
part (2) of Definition 2.5 is a contiguity chain of length c between ϕ and ϕ′,
and we will then write ϕ ∼c ϕ′. We will also write ϕ ∼ ϕ′ to mean ϕ ∼c ϕ′
for some c. This defines an equivalence relation in the set of simplicial maps
K → L. The corresponding equivalence class of ϕ is denoted by [ϕ], and is
called the contiguity class of ϕ.

Remark 2.6. Composition of contiguity classes is well defined at the level
of representatives. Indeed, for simplicial maps

J
ψ−→ K

ϕ,ϕ′
−→ L

ω−→M,

ωϕψ and ωϕ′ψ are c-contiguous provided ϕ and ϕ′ are so.

The importance of the notion of contiguity of simplicial maps stems from
its close relationship to the notion of homotopy of continuous maps. The re-
lationship becomes a full translation when iterated barycentric subdivisions
are allowed. Informally, the topological realization construction yields a
one-to-one correspondence between the contiguity classes of simplicial maps
K → L (with a “highly enough” subdivided K) and the homotopy classes
of continuous maps ‖K‖ → ‖L‖. The explicit property is stated in the
following omnibus result. Recall we only consider finite complexes.

Theorem 2.7. Existence and uniqueness of approximations:
(1) Two approximations of the same continuous map are 1-contiguous.

Consequently, if it exists, the contiguity class of approximations of a
given continuous map is unique.

(2) For any continuous map f : ‖K‖ → ‖L‖ there is some non-negative
integer b0 such that, for each b ≥ b0, f admits an approximation
ϕb : Sdb(K) → L. (Recall that ‖Sdb(K)‖ = ‖K‖.) Consequently, if
ι : Sdb+1(K)→ Sdb(K) is any approximation of the identity on ‖K‖,
then ϕb ι and ϕb+1 are 1-contiguous.

Relationship between contiguity and homotopy:
(3) Simplicial maps in the same contiguity class have homotopic topo-

logical realizations.
(4) Given homotopic maps f0, f1 : ‖K‖ → ‖L‖, there is a non-negative

integer b0 such that, for each b ≥ b0, any pair of approximations
ϕ0, ϕ1 : Sdb(K)→ L of f0, f1, respectively, satisfy ϕ0 ∼c ϕ1 for some
c ≥ 0 (c depends on ϕ0 and ϕ1).

The facts reviewed in this section will be freely used throughout the paper.
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3. Simplicial complexity
As suggested by Lemma 1.1, we will need to consider a simplicial structure

on a product of complexes in such a way that the topological realization of
the product recovers the product of the topological realizations of the factors.
Consequently, all complexes we deal with will be assumed to be ordered,
and their product will be taken in the category of ordered complexes (see
for instance [1] for the classical details on the construction). However, we
stress that maps of complexes will not be required to preserve the given
orderings.

A collection C of subcomplexes of K is a cover if K =
⋃
L∈C L (of course,

in such a case,
⋃
L∈C ‖L‖ = ‖K‖). For a non-negative integer b, fix an

approximation
(3.1) ι : Sdb+1(K ×K)→ Sdb(K ×K)
of the identity on ‖K‖ × ‖K‖. By abuse of notation, iterated compositions
of these maps will also be denoted by ι : Sdb(K×K)→ Sdb′(K×K). Lastly,
for i ∈ {1, 2}, let
(3.2) πi : Sdb(K ×K)→ K

denote the composition of ι : Sdb(K×K)→ K×K with the i-th projection
K × K → K. As reviewed in the previous section, the contiguity class of
each of these maps is well-defined.

Definition 3.1. For non-negative integers b and c, the (b, c)-simplicial com-
plexity SCb

c(K) of an (ordered) complex K is one less than the smallest car-
dinality of finite covers of Sdb(K ×K) by subcomplexes J for each of which
the compositions
(3.3) J ↪→ Sdb(K ×K) π1−→ K and J ↪→ Sdb(K ×K) π2−→ K

are c-contiguous. When no such finite coverings exist, we set SCb
c(K) =∞.

In analogy with the topological situation, the subcomplexes J appearing
in the covers of Definition 3.1 are called piecewise linear local domains,
the contiguity chains connecting the two maps in (3.3) are called piecewise
linear local rules, and a system of covering piecewise linear local domains
with corresponding piecewise linear local rules is called a piecewise linear
motion planner. The term “piecewise linear” comes from the obvious fact
that 1-contiguous simplicial maps are homotopic through a piecewise linear
homotopy.

Remark 3.2. The ordering in K is used only for the construction of the
simplicial structure on K ×K; the value of SCb

c(K) is clearly independent
of the chosen ordering.

Lemma 1.1 and [2, Proposition 4.12 and Remark 4.13] yield
(3.4) SCb

c(K) ≥ TC(‖K‖).
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The obvious monotonic sequence SCb
0(K) ≥ SCb

1(K) ≥ SCb
2(K) ≥ · · · ≥ 0

is eventually constant, and we let SCb(K) stand for the corresponding stable
value. Note that the sequence of numbers SCb

c(K) depends, in principle, on
the chosen approximations (3.1). However, we prove:

Lemma 3.3. The stabilized value SCb(K) is independent of the chosen ap-
proximations ( 3.1).

Proof. This is an easy consequence of the main result in the previous section
(Theorem 2.7). For the benefit of the non-specialist reader, we spell out
details.

Let SCb
c stand for the invariant defined in terms of a second set of ap-

proximations ι : Sdb(K ×K) → Sdb−1(K ×K) of the identity. Remark 2.6
and part (1) of Theorem 2.7 imply that the corresponding compositions

πi, πi : Sdb(K ×K)→ K,

as well as their restrictions πi ◦ j and πi ◦ j, are 1-contiguous, where i ∈
{1, 2} and j : J ↪→ Sdb(K × K) is the inclusion of some subcomplex J . If
ϕ0, ϕ1, . . . , ϕc : J → K is a contiguity chain of length c between π1 ◦ j and
π2 ◦ j, then π1 ◦ j, ϕ0, ϕ1, . . . , ϕc, π2 ◦ j is a contiguity chain of length c+ 2
between π1 ◦ j and π2 ◦ j. Consequently SCb

c(K) ≥ SCb
c+2(K). Likewise

SCb
c(K) ≥ SCb

c+2(K), and the result follows. �

Following the idea in the previous proof, note that in the setting of Def-
inition 3.1, if λJ : Sd(J) → J is an approximation of the identity, then the
two compositions in the diagram

J �
� // Sdb(K ×K)

Sd(J) �
� //

λ

OO

Sdb+1(K ×K)

ι

OO

are 1-contiguous, as they are approximations of the inclusion ‖J‖ ⊆ ‖K‖ ×
‖K‖. Consequently SCb

c(K) ≥ SCb+1
c+2(K) and

(3.5) SC0(K) ≥ SC1(K) ≥ SC2(K) ≥ · · · .

Definition 3.4. The simplicial complexity SC(K) of a complex K is the
stabilized value of the monotonic sequence (3.5).

We stress the fact that the equality SC(K) = SCb
c(K) holds for large

enough indices b and c (depending on K), so that (3.4) becomes

(3.6) SC(K) ≥ TC(‖K‖).

The parameters b and c in the definition of SC(K) can be thought of
as playing a measurement role in the simplicial motion planning problem.
The parameter b gives a notion of “complexity”: the more twisted some
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(topological) local rule R is, the larger b would have to be in order to ap-
proach R by a piecewise linear local rule. On the other hand, c gives a
notion of “distance”, as it counts the number of piecewise linear segments
needed to combinatorially realize motion planners. These considerations are
illustrated by the computational results in Section 4.

Next we prove that the equality in (3.6) is sharp.

Theorem 3.5. Equality holds in ( 3.6) for any finite K.

Proof. Let TC(‖K‖) = k and choose a motion planner
{(U0, σ0), (U1, σ1), . . . , (Uk, σk)}

for ‖K‖ with k+1 local domains. Choose a large positive integer b so that the
realization of each simplex of Sdb(K×K) is contained in some Uj (0 ≤ j ≤ k)
—this uses the finiteness assumption on K. For each j ∈ {0, 1, . . . , k}, let
Lj be the subcomplex of Sdb(K × K) consisting of those simplices whose
realization is contained in Uj . Then L0, L1, . . . , Lk cover K ×K.

By Lemma 1.1 the two projections π1, π2 : ‖K‖ × ‖K‖ → ‖K‖ are ho-
motopic over each Ui and, in particular, over the (realization of the) corre-
sponding subcomplex Li. Therefore there are positive integers b′ and c such
that, for each j ∈ {0, 1, . . . , k}, the two simplicial composites

Sdb+b′(Li) �
� // Sdb+b′(K ×K)

π1 //
π2
// K

are c-contiguous. It follows that SCb+b′
c (K) ≤ k, which implies equality

in (3.6). �

Theorem 3.5 asserts that, when the configuration space of a robot has a
simplicial structure, it is always possible to produce optimal motion planners
whose local rules are piecewise linear. The key point, then, is that the search
of such motion planners can be done with the aid of a computer. Exhaustive
search, however, is most likely doomed to fail, as the size of the search space
increases exponentially with every subdivision (cf. Remark 4.3). We believe
that heuristic-based algorithms should play an important role in approaching
this problem.

Remark 3.6. Concerning the complexity issue discussed in the previous
paragraph, it is convenient to keep in mind that the performance of a
computer-assisted estimation of the simplicial complexity of a simplicial
complex K can be substantially improved by considering non-necessarily
barycentric subdivisions. For instance, assume that S is a subdivision of
K ×K such that Sdb(K ×K) is in turn a subdivision of S. Fix approxima-
tions

Sdb(K ×K) ι′′→ S and S
ι′→ K ×K

of the identity on ‖K ×K‖, and take ι : Sdb(K ×K) → K ×K to be the
composite approximation ι′ι′′. If S admits a covering by k+1 subcomplexes
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J for each of which the two compositions on the top row of the diagram

(3.7) J �
� // S

ι′ // K ×K
πj // K ( j = 1, 2)

(ι′′)−1(J) �
� //

ι′′

OO

Sdb(K ×K)

ι′′

OO

ι

88

are c-contiguous, then we get a similar situation at the level of Sdb(K×K) —
following the bottom composition in (3.7). In particular SCb

c(K) ≤ k. This
observation is used in the next section in order to simplify an estimation of
SCb

c(∂∆2) for small values of b and c.

Theorem 3.5 allows us to extrapolate all the nice properties of Farber’s
topological complexity to the simplicial realm. For instance:

(1) Two complexes whose topological realizations are homotopy equiva-
lent necessarily have the same simplicial complexity.

(2) A complex K has SC(K) = 0 (SC(K) = 1) if and only if the realiza-
tion ‖K‖ is contractible (has the homotopy type of an odd sphere).

(3) The simplicial complexity of an (ordered) product of (ordered) com-
plexes Ki is bounded from above by

∑
i SC(Ki).

Remark 3.7. In Section 1 we have commented on the similarities (and
differences) of our approach with the one developed in [3]. A similar situation
holds regarding [4], where the invariant scat(K) —a discretized model for
the Lusternik-Schnirelmann category of topological spaces— is proposed in
terms of the notion of contiguity of simplicial maps. In fact, the methods in
the present paper make it clear that the Lusternik-Schnirelmann category of
the topological realization of a given complex K agrees with scat(Sdb(K)),
as long as b is sufficiently large. However, it does not seem to be the case
that the topological complexity of ‖K‖ would have to be recovered as the
discrete TC model in [3] of a highly subdivided K. The main problem comes
from the fact that the product of barycentrically subdivided complexes is
not as fine as the barycentric subdivision of the product of the complexes.

4. An example: the circle
Throughout this section we let K stand for the 1-dimensional skeleton of

the 2-dimensional simplex ∆2, so that ‖K‖ is homeomorphic to the circle
S1. Our aim is to show that
(4.1) SCb

c(K) ≤ 1
for some set of approximations (3.1) as long as b ≥ 1 and c ≥ 5. In particular,
since the equality TC(S1) = 1 is well known, it follows that, in the present
case, the sequence (3.5) stabilizes from its second term.

The inequality in (4.1) was first noted through semi-automatized com-
puter experimentation guided by the author’s geometric insight. This led to
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the streamlined combinatorial proof presented in this section which, should
be emphasized, can be checked independently of any pre-existing geomet-
ric aid. Our intention reporting the inequality in (4.1) —and other re-
lated result(s)— is two fold. On the one hand, we hope to motivate the
development of fully automatized implementations that would search for
optimal piecewise linear motion planners for general polyhedra. Addition-
ally, the analysis presented here shows that the case of the circle provides a
benchmark for testing and comparing such eventual implementations (cf. Re-
mark 4.3).

Let the vertices of K be 0, 1, and 2, ordered in the obvious way. The
(realization of the ordered) product structure on K ×K can be depicted as

(4.2) 0′ 1′ 2′ 0′
0′′

1′′

2′′

0′′
0′ 1′ 2′ 0′

0′′

1′′

2′′

0′′

9
10

11
12

6
5

7
8

4
3

14
13

2
1

17
18

16
15

where opposite sides of the external square are identified as indicated. The
enumeration shown of the 18 2-simplexes is used to define subcomplexes Ji of
K×K (i = 1, 2, 3). Namely, Ji is generated by the 2-simplexes corresponding
to the triangles in (4.2) with numbering from 6i − 5 to 6i. Note that ‖Ji‖
is contractible for i = 2, 3, whereas ‖J1‖ strongly deformation retracts to
the diagonal in ‖K ×K‖ = ‖K‖ × ‖K‖. Since the fibration e : P (‖K‖) →
‖K‖×‖K‖ has an obvious section on any singleton as well as on the diagonal,
and since {J1, J2, J3} cover K × K, Lemma 1.1 and the considerations in
Section 3 immediately yield SCb

c(K) ≤ 2 for b and c large enough. This
inequality actually holds for small values of b and c, a fact that we prove (in
Proposition 4.1) before addressing (4.1) (in Proposition 4.2).

Proposition 4.1. SC0
3(K) ≤ 2.

Proof. Recall the projections πj : K × K → K (j = 1, 2) in (3.2). Direct
inspection shows that the restriction of π1 and π2 to J1 are 1-contiguous.
Likewise, a contiguity chain π1|J2 = ϕ0, ϕ1, ϕ2, ϕ3 = π2|J2 of maps J2 → K
is obtained with ϕi (i = 1, 2) the map that sends every vertex of J2 into
the vertex i of K. The situation for the restriction of π1 and π2 to J3 is
completely similar (actually symmetric) to the one just described for J2. �

Proposition 4.2. There is an approximation ( 3.1) for which SC1
5(K) ≤ 1.
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As with Proposition 4.1, before proving Proposition 4.2, we give a theo-
retical explanation of (a weaker form of) this phenomenon; in addition, this
will allow us to introduce some auxiliary notation.

The first barycentric subdivision Sd(K ×K) starts as

(with the identifications indicated in (4.2)) where we have only shown the
barycentric subdivision of the four “squares” in (4.2) whose diagonal has a
negative slope —but all other squares are to be subdivided in a similar way.

Consider the subcomplex J+ (respectively J−) of Sd(K×K) whose topo-
logical realization is given by the shaded (respectively unshaded) region
in (4.3).

(4.3)

↑ bb ↑

↑ aa ↑

c

c

→

→

d

d

→

→

β

β

→

→

α ↑ ↑ α

Note that ‖J+‖ (respectively ‖J−‖) is homeomorphic to a cylinder which
strongly deformation retracts to the diagonal ∆+ = {(x, x)} (respectively
anti-diagonal ∆− = {(x,−x)}) in S1×S1 = ‖Sd(K ×K)‖. The assertion is
easiest for J−: topologically, ‖J−‖ is obtained from the two unshaded strips
in (4.3) by identifying the two edges α and the two edges β. Identification
of the edges α yields the longer strip

β
−→

β−→
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and the identification of the edges β then yields a cylinder. In turn, this
cylinder strongly deformation retracts to its middle dotted line, which cor-
responds to the anti-diagonal ∆− (i.e., the two dotted lines in (4.3)). The
case of ‖J+‖ is similar: gluing the lower right shaded triangle to the main
body of the shaded region in (4.3) along the common edge b, and gluing the
upper left shaded triangle to the main body of (4.3) along the common edge
a, yields the cylinder:

d
−→

c
−→

d−→ c−→

This cylinder strongly deformation retracts to its middle thin slanted line,
which corresponds to the diagonal ∆+. Now, we have already noted that S1

has an obvious motion planner on ∆+, whereas a motion planner on ∆− is
given by rotating (in any direction) half a twist the circle. So, Lemma 1.1
and the considerations in Section 3 yield the inequality SCb

c(K) ≤ 1 for b and
c large enough. Our actual proof (below) of the more specific Proposition 4.2
is independent of knowing about motion planning rules on the diagonal and
antidiagonal; the argument boils down to exhibiting the explicit contiguity
chains (4.5) and (4.6).

Proof of Proposition 4.2. As noted in Remark 3.6, it suffices to prove
the corresponding assertion replacing Sd(K×K) by a “coarser” subdivision
of K ×K. Actually, we can simplify calculations by working with the two
(nested) subdivisions S′ and S′′ of K × K whose topological realizations
have the combinatorial structure shown in (4.4), and whose vertices have
been numbered for notational convenience in what follows.

(4.4)

1

1

1

1

2

2

3

3

4 4

5 5

6 7

8 9

10 11

12

13

14

15

•

•

• • • •

• • • •

• • • •

• • • •

• •

•

•

subdivision S′′

1

1

1

1

2

2

3

3

4 4

5 5

6 7

8 9

10 11

12

13

• • • •

• • • •

• • • •

• • • •

• •

•

•

subdivision S′

Explicitly, S′ is obtained from K ×K by (non-barycentrically) subdividing
the four “squares” in K×K whose diagonal has a negative slope. In turn, S′′
is obtained from S′ by doing the corresponding subdivision with the other
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two “squares” which are not crossed by the diagonal. Of course, Sd(K×K)
is then obtained as a subdivision of S′′.

Next we use Example 2.3 to choose approximations ι′′ : S′′ → S′ and
ι′ : S′ → K ×K of the identity on ‖K ×K‖. Namely, ι′′ and ι′ (are forced
to) behave as the identity map on vertices that are common to their domains
and ranges, while

ι′(10) = ι′(13) = 1 and ι′(11) = ι′(12) = 9,
and

ι′′(14) = 8 and ι′′(15) = 7.
As a last preparatory ingredient, consider the obvious subcomplexes J ′+

and J ′− of S′ whose topological realizations correspond to those indicated
in (4.3). For instance, J ′+ has 16 2-simplexes and uses all of the 13 vertices
of S′, while J ′− has only 10 2-simplexes and does not use the “diagonal”
vertices 1, 6 and 9. Further, the additional subdivisions in S′′ (not present
in S′) yield corresponding subcomplexes J ′′+ and J ′′− of S′′. In the situation
of Remark 3.6, J ′′± = (ι′′)−1(J ′±).

The two compositions in (3.7) for S = S′, J = J ′+ and b = 1 are described
in the second and fourth rows of (4.5) where, as the reader can easily check,
a contiguity chain of length 2 between these two compositions is indicated2.
In particular, we get a corresponding contiguity chain of length 2 defined on
J ′′+ (at the level of S′′).

(4.5)

vertex number 1 2 3 4 5 6 7 8 9 10 11 12 13
(π1 ι

′)|J ′+ = ϕ0 0 1 2 0 0 1 2 1 2 0 2 2 0
ϕ1 0 1 2 1 0 1 1 1 2 0 2 2 0

(π2 ι
′)|J ′+ = ϕ2 0 0 0 1 2 1 1 2 2 0 2 2 0

Lastly, in order to describe a piecewise linear motion planner on ‖J−‖, we
work directly at the level of the finer subdivision S′′: The two compositions
in (3.7) for S = S′′, J = J ′′− and b = 1 are described in the second and
last rows of (4.6), where a contiguity chain of length 5 between these two
compositions is indicated.
(4.6)

vertex number − 2 3 4 5 − 7 8 − 10 11 12 13 14 15
(π1 ι

′ι′′)|J ′′− = ϕ0 − 1 2 0 0 − 2 1 − 0 2 2 0 1 2
ϕ1 − 1 2 0 0 − 2 1 − 1 1 0 2 0 2
ϕ2 − 1 1 2 0 − 2 0 − 0 1 2 2 0 1
ϕ3 − 0 1 2 2 − 1 0 − 0 0 2 1 2 1
ϕ4 − 0 0 1 2 − 1 2 − 2 0 1 1 2 0

(π2 ι
′ι′′)|J ′′− = ϕ5 − 0 0 1 2 − 1 2 − 0 2 2 0 2 1

�

2The two boldface 1’s in the third row of (4.5) are the only difference between ϕ0 and
ϕ1; this represents a small initial piecewise linear homotopy in preparation for the main
one between the indicated maps ϕ1 and ϕ2.
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Remark 4.3. The piecewise linear homotopies in this section have been
found through the combined efforts of a computer and human intuition, in
part because a brute force search by computer (without the human compo-
nent) is just out of the question. For instance, the exhaustive search of the
homotopy described in (4.6) would have to consider a search space of 372

instances —too large for the current computer technology. For any practical
usage, an eventual fully automatized search would have to replace human
geometric insight by an algorithm with some type of heuristic component
(stochastic methods, machine learning, etc.) that would allow to perform a
“smart” non-exhaustive search.
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José A. Lusternik–Schnirelmann category of simplicial complexes and fi-
nite spaces. Topology App. 194 (2015), 37–50. MR3404603, Zbl 1327.55004,
doi: 10.1016/j.topol.2015.08.001.

[5] Spanier, Edwin H. Algebraic topology. Springer-Verlag, New York, 1995. xvi+528
pp. ISBN: 0-387-94426-5. MR1325242 (96a:55001), Zbl 0810.55001, doi: 10.1007/978-
1-4684-9322-1.

[6] Tanaka, Kohei. A combinatorial description of topological complexity for fi-
nite spaces. To appear in Algebraic & Geometric Topology. Preprint, 2016.
arXiv:1605.06755.
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