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The random graph embeds in the curve
graph of any infinite genus surface

Edgar A. Bering IV and Jonah Gaster

Abstract. The random graph is an infinite graph with the universal
property that any embedding of G−v extends to an embedding of G, for
any finite graph. In this paper we show that this graph embeds in the
curve graph of a surface Σ if and only if Σ has infinite genus, showing
that the curve system on an infinite genus surface is “as complicated as
possible”.
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1. Introduction

In this paper we will prove:

Theorem 1.1. The random graph embeds into the curve graph C(Σ) of a
surface Σ if and only if Σ has infinite genus.

We adopt the terminology that an embedding of a graph f : G → H is
a one-to-one map on the vertices so that (u, v) is an edge in G if and only
if (f(u), f(v)) is an edge in H. (This is also called an induced subgraph
elsewhere in the literature.)

The one-ended, infinite genus, orientable surface with one boundary com-
ponent is a subsurface of any orientable infinite genus surface [Ric63]. The
choice of a disk on Σ, the one-ended orientable surface of infinite genus with-
out boundary, thus induces an embedding of the curve graph C(Σ) into the
curve graph of an arbitrary orientable infinite genus surface. Therefore, for
one direction of the theorem, it suffices to produce an embedding of the ran-
dom graph into C(Σ) when Σ is the one-ended orientable surface of infinite
genus.
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The other direction is perhaps more surprising, since it is tempting to
view an infinite-type surface of finite genus as already quite complicated.
However, Ehrlich, Even, and Tarjan [EET76] showed that there are graphs
that cannot be realized as the incidence graph of a collection of planar
intervals (in their language, there are graphs not of planar type), and we
employ their construction to demonstrate the necessity of infinite genus.

Rado [Rad64] showed that every countable graph embeds in the random
graph, however we focus on the random graph for its combinatorial proper-
ties. The first order theory of the random graph, in the graph language, is
not edge stable in the model-theoretic sense [TZ12]. It follows that

Corollary 1.2. The first order theory of the curve graph of an infinite genus
surface is not edge stable.

The lack of edge stability implies that the theory of the curve graph is
also unstable in the model-theoretic sense. With Gabriel Conant, we prove
a complementary result for finite-type surfaces [BCG16]; the theory of C(Σ)
for a finite-type surface Σ is edge stable. The combination of these two
results show that the model-theoretic dividing line of edge stability and
the topological dividing line of finite-type coincide for curve graphs. It is
unknown whether or not the curve graph of a finite-type surface is stable.

Erdős and Rényi introduced the random graph from a probabilistic point
of view, constructing a graph on countably many vertices by adding edges
with probability 1

2 . The result of this construction is almost surely isomor-
phic to a unique object, which we call the random graph [ER63]. Rado gave
an explicit construction of the random graph: take as vertices the natural
numbers N. Given x < y, add an edge (x, y) if the xth bit of the binary
expansion of y is 1 [Rad64]. The random graph enjoys a universal property,
known as the extension property; for any finite graph G, if G − v embeds
into the random graph then this embedding can be extended to G.

The other graph of interest in this article is the curve graph of an infinite
genus surface, with or without boundary. A simple closed curve on a surface
is essential if no component of the complement is a disk, and non-peripheral
if no component of the complement is an annulus. For brevity, we will
use curve to mean the isotopy class of an essential non-peripheral simple
closed curve. The intersection number of two curves (denoted i(α, β)) is the
minimum cardinality of the intersection taken over all transverse realizations
of α and β.

Fix a surface Σ. The curve graph C(Σ) has as vertices the curves on Σ,
and an edge between the vertices corresponding to curves α and β when

i(α, β) = 0.

(As an aside, this construction can be extended to a definition of a higher-
dimensional simplicial complex of interest in its own right, but we will focus
on the 1-skeleton [Har81, MM99, MM00].) When Σ is of finite-type, C(Σ)
is well-known to be δ-hyperbolic and infinite-diameter, with automorphism
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group isomorphic to the mapping class group of Σ [Iva97, MM99]. Recent
work has focused on different analogues of C(Σ) when Σ is of infinite-type,
more satisfying from a geometric viewpoint [Bav16, AFP15, AV16, FP15,
DFV16].

In fact, it is not hard to see that every finite graph G embeds in the curve
graph of a surface for some closed surface of genus g. We outline a simple
proof. Suppose G has n vertices. Let Σ0 indicate a closed surface of genus
large enough so that Σ0 contains a collection of n curves in minimal position
that pairwise intersect once1, and identify these curves with the vertices of
G arbitrarily. For each edge between a pair of vertices of G, add a handle
near the intersection of the corresponding curves on Σ0, and thread one of
the curves through the handle so that the new curves on the new surface
do not intersect. The identification of the vertices of G with the resulting
curve system extends to an embedding of G into the curve graph C(Σ) of
the resulting surface Σ, by construction.

Remark 1.3. This leaves open the problem of determining the minimal
genus such that every finite graph on n vertices embeds in the curve graph
of that genus (cf. [KK14, Question 1.1]). The above construction provides
the bound O(n2).

This implies that every finite graph embeds into the curve graph of an
infinite genus surface, and it suggests that this curve graph of an infinite
genus surface should be quite complicated. Note, however, that this alone
does not guarantee the presence of the random graph. Also note that it
is apparent that the random graph does not embed in the curve graph of
any finite-type surface surface: A complete subgraph of the curve graph of
a surface of genus g with n punctures has size at most 3g − 3 + n, whereas
every finite complete graph embeds in the random graph.

Moreover, the curve graph of an infinite genus surface cannot itself be
isomorphic to the random graph. Fix an infinite genus surface Σ. Pick a
separating curve2 γ and two curves α, β, one in each component of Σ \ γ.
Let G be the graph in Figure 1. We can embed G−v into C(Σ) according to
the labeling in the figure, but an extension to v would imply the existence
of a curve disjoint from γ that intersects both α and β, a contradiction since
γ is separating.

2. Proof of Theorem 1.1

Proof. We deal with the forward implication first, showing that the pres-
ence of the random graph in the curve graph implies that Σ has infinite

1Genus dn−1
2
e suffices. Such a system of curves has been referred to as a complete

1-system in the literature.
2Such a curve always exists: If γ is non-separating, choose a curve that intersects it

once, and take a regular neighborhood of the union. The boundary of this neighborhood
is a separating curve.
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Figure 1. A collection of curves and a partial graph embed-
ding that cannot extend.

genus. It is evidently enough to show that there is a finite graph which does
not embed in C(Σ) when Σ has finite genus, since any finite graph embeds
in the random graph. This construction is due to Ehrlich, Even, and Tarjan
when g = 0 [EET76]; it is simple enough to include completely.

Suppose that Σ has genus g <∞, and choose a finite graph G that admits
no topological embeddingG→ Σg,0 into the closed surface of genus g (a large
complete graph will do). Consider the graph G′ obtained by adding a vertex
that subdivides each edge of G, so that there are now |V (G)| old vertices

and |E(G)| new vertices of G′. Let Ĝ indicate the complementary graph

of G′, and note that: (1) each new vertex v of Ĝ is incident to all other

vertices of Ĝ, except for the two old vertices that are incident to the edge
of G corresponding to v, and (2) each old vertex is incident to every other
old vertex.

Suppose that Ĝ is realized by a curve system Γ on Σ in minimal position.
The subdivision of the vertices of Ĝ into new and old vertices gives a sub-
division of Γ into new and old curves. For each old curve γ, select a point
pγ ∈ γ in the complement of its intersections with the other curves of Γ,

and contract γ \ pγ to a point. Because the old vertices of Ĝ are all incident
to each other, when we do this contraction to each old curve one-by-one,
we obtain |V (G)| vertices on Σg,0. Moreover, because the new vertices of Ĝ
are all incident to each other, the new curves become a system of disjoint
arcs connecting these vertices. By construction the resulting arcs provide a
topological embedding of G into Σg,0, a contradiction.

For the other direction, we will provide an explicit construction of a family
of curves on the one-ended orientable infinite genus surface whose intersec-
tion relation is exactly described by the random graph. Our approach is in
two parts; first we will give a countable collection of multicurves with this
property, then describe how to add handles to convert these multicurves to
curves without changing the intersection relation of the curve system or the
homeomorphism type of the surface.
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Figure 2. A possible choice for ai and bi at handle i.

Rado’s construction fits more naturally into the setting of multicurves, so
we first define a multicurve complex mC(Σ) analogous to the curve complex.
Let the vertices of mC(Σ) be finite sets of disjoint curves. For multicurves
U, V ∈ mC(Σ), let i(U, V ) be the sum of intersection numbers i(α, β) over all
α ∈ U, β ∈ V . In analogy with the curve graph, there is an edge in mC(Σ)
between U, V if i(U, V ) = 0. (The multicurve graph has also been called
the clique graph in the literature [KK14]). Below, we write multicurves
additively, e.g. α+ β is the multicurve {α, β}.

To fix notation, let Σ1 be the one-ended orientable surface of infinite
genus. Note that the random graph is self-complementary (that is, the
complement graph is isomorphic to the random graph), so we will work
with the complement of Rado’s model: let x, y ∈ N with x < y be adjacent
when the xth bit in the binary expansion of y is 0. We describe below a
map [·] : N→ mC(Σ1) so that, for x < y, the intersection number i([x], [y])
is equal to the xth bit in the binary expansion of y. Such a map induces an
embedding of the random graph into mC(Σ1).

Realize Σ1 in R3 as the regular neighborhood of the lattice on points
N × {0, 1} × {0}. With this embedding the ‘centers’ of ‘holes’ of Σ1 occur
at (n + 1

2 ,
1
2 , 0) with n ∈ N. The intersection of Σ1 with the coordinate

plane R × R × {0} is the disjoint union of countably many circles and a
real line. Let ai be the circle component in the strip (i − 1, i) × R × {0},
and let bi be the Dehn twist of ai around the intersection of the half-plane
{i− 1

2}× (−∞, 12)×R with Σ. In other words, ai winds around the ith hole
of Σ, and i(ai, bj) = δi,j , as pictured in Figure 2.

Given a natural number x, let xi be the ith binary digit in the expansion
of x. We define

[x] = bx +

dlog2 xe∑
i=0

xi · ai.

Figure 3 shows [0] and [4]. By construction this is our desired map and the
intersection relation among the multicurves {[n]}n∈N is given by the random
graph.
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Figure 3. An illustration of geometric realizations of [0] and [4].

c(2) c(5)

Figure 4. An illustration of c(2) and c(5) realizing
i(c(2), c(5)) = 1.
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At this point one would like to blindly add handles to realize these mul-
ticurves as curves. However, for each bit there are infinitely many curves
that need to be connected to the handle encoding that bit, so care must
be exercised. Consider a new realization of Σ1 in R3, as the regular neigh-
borhood of the lattice on N × N × {0}. The centers of ‘holes’ are now at
(x+ 1

2 , y+ 1
2 , 0) for x, y ∈ N2

≥0. This naturally indexes the rows and columns

of the embedding (row n is the regular neighborhood of points of the form
(x, n, 0), and the columns are similarly indexed). We take ai, bj as before
(along the x-axis). For a multicurve [x] = bx+

∑
i xi ·ai, construct the curve

c(x) by connecting each ai or bi in [x] to row x+ 1 by a pair of vertical lines
along column i, and then connect these arcs to one another along the ‘back’
of Σ1; Figure 4 shows c(2) and c(5). For x < y, we can realize c(x) and
c(y) so that when x and y use a common column c(x) passes outside of c(y);
hence i(c(x), c(y)) = i([x], [y]). (Note that, when curves intersect once, this
intersection is necessarily essential [FM12].) We conclude that {c(n)}n∈N is
the vertex set of an embedding of the random graph in C(Σ1). �

Remark 2.1. The embedding of the random graph given by {c(n)}n∈N is far
from unique. Each curve bi is constructed by a single Dehn twist. Varying
the powers of each twist defining a bi individually yields systems of curves in
distinct mapping class group orbits. The extended mapping class group of Σ
is isomorphic to the graph automorphisms of C(Σ) in the case of the infinite
genus surface with one end, so these embeddings are also combinatorially
inequivalent [HV14].
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