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The rational homology of the outer
automorphism group of F7

Laurent Bartholdi

Abstract. We compute the homology groups H∗(Out(F7);Q) of the
outer automorphism group of the free group of rank 7.

We produce in this manner the first rational homology classes of
Out(Fn) that are neither constant (∗ = 0) nor Morita classes (∗ =
2n− 4).
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1. Introduction

The homology groups Hk(Out(Fn);Q) are intriguing objects. On the
one hand, they are known to “stably vanish”, i.e., for all n ∈ N we have
Hk(Out(Fn);Q) = 0 as soon as k is large enough [3]. Hatcher and Vogtmann
prove that the natural maps

Hk Out(Fn)→ Hk Aut(Fn) and Hk Aut(Fn)→ Hk Aut(Fn+1)

are isomorphisms for n ≥ 2k + 2 respectively n ≥ 2k + 4, see [4, 5]. On the
other hand, Hk(Out(Fn);Q) = 0 for k > 2n−3, since Out(Fn) acts geometri-
cally on a contractible space (the “spine of outer space”, see [2]) of dimension
2n− 3. Combining these results, the only k ≥ 1 for which Hk(Out(Fn);Q)
could possibly be nonzero are in the range n

2 − 2 < k ≤ 2n − 3. Morita
conjectures in [9, page 390] that H2n−3(Out(Fn);Q) always vanishes; this
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would improve the upper bound to k = 2n − 4, and H2n−4(Out(Fn);Q) is
also conjectured to be nontrivial.

We shall see that the first conjecture does not hold. Indeed, the first few
values of Hk(Out(Fn);Q) may be computed by a combination of human and
computer work, and yield

n\k 0 1 2 3 4 5 6 7 8 9 10 11
2 1 0
3 1 0 0 0
4 1 0 0 0 1 0
5 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 1 0
7 1 0 0 0 0 0 0 0 1 0 0 1

The values for n ≤ 6 were computed by Ohashi in [12]. They reveal that,
for n ≤ 6, only the constant class (k = 0) and the Morita classes k = 2n− 4
yield nontrivial homology. The values for n = 7 are the object of this Note,
and reveal that the picture changes radically:

Theorem. The nontrivial homology groups Hk(Out(F7);Q) occur for k ∈
{0, 8, 11} and are all 1-dimensional.

Previously, only the rational Euler characteristic

χQ(Out(F7)) =
∑

(−1)k dimHk(Out(F7);Q)

was known, and shown to be 1 by Morita, Sakasai and Suzuki [10]. These
authors computed in fact the rational Euler characteristics up to n = 11 in
that paper and the sequel [11].

2. Methods

We make fundamental use of a construction of Kontsevich [6], explained
in [1]. We follow the simplified description from [12].

Let Fn denote the free group of rank n. This parameter n is fixed once
and for all, and will in fact be omitted from the notation as often as possible.
An admissible graph of rank n is a graph G that is 2-connected (G remains
connected even after an arbitrary edge is removed), without loops, with
fundamental group isomorphic to Fn, and without vertices of valency ≤ 2.
Its degree is

deg(G) :=
∑

v∈V (G)

(deg(v)− 3).

In particular, G has 2n − 2 − deg(G) vertices and 3n − 3 − deg(G) edges,
and is trivalent if and only if deg(G) = 0. If Φ is a collection of edges in a
graph G, we denote by G/Φ the graph quotient, obtained by contracting all
edges in Φ to points.

A forested graph is a pair (G,Φ) with Φ an oriented forest in G, namely
an ordered collection of edges that do not form any cycle. We note that
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the symmetric group Sym(k) acts on the set of forested graphs whose forest
contains k edges, by permuting the forest’s edges.

For k ∈ N, let Ck denote the Q-vector space spanned by isomorphism
classes of forested graphs of rank n with a forest of size k, subject to the
relation

(G, πΦ) = (−1)π(G,Φ) for all π ∈ Sym(k).

Note, in particular, that if (G,Φ) ∼ (G, πΦ) for an odd permutation π then
(G,Φ) = 0 in Ck. These spaces (C∗) form a chain complex for the differential
∂ = ∂C − ∂R, defined respectively on (G,Φ) = (G, {e1, . . . , ep}) by

∂C(G,Φ) =

p∑
i=1

(−1)i(G/ei,Φ \ {ei}),

∂R(G,Φ) =

p∑
i=1

(−1)i(G,Φ \ {ei}),

and the homology of (C∗, ∂) is H∗(Out(Fn);Q).
The spaces Ck may be filtered by degree: let FpCk denote the subspace

spanned by forested graphs (G,Φ) with deg(G/Φ) ≤ p. The differentials
satisfy respectively

∂C(FpCk) ⊆ FpCk−1, ∂R(FpCk) ⊆ Fp−1Ck−1.
A spectral sequence argument gives

(1) Hp(Out(Fn);Q) = E2
p,0 =

ker(∂C |FpCp) ∩ ker(∂R|FpCp)
∂R(ker(∂C |Fp+1Cp+1))

.

Note that if (G,Φ) ∈ FpCp then G is trivalent. We compute explicitly bases
for the vector spaces FpCp, and matrices for the differentials ∂C , ∂R, to prove
the theorem.

3. Implementation

We follow for n = 7 the procedure sketched in [12]. Using the software
program nauty [8], we enumerate all trivalent graphs of rank n and vertex
valencies ≥ 3. The libraries in nauty produce a canonical ordering of a
graph, and compute generators for its automorphism group. We then weed
out the non-2-connected ones.

For given p ∈ N, we then enumerate all p-element oriented forests in these
graphs, and weed out those that admit an odd symmetry. The remaining
ones are stored as a basis for FpCp. Let ap denote the dimension of FpCp.

For (G,Φ) a basis vector in FpCp, the forested graphs that appear as
summands in ∂C(G,Φ) and ∂R(G,Φ) are numbered and stored in a hash
table as they occur, and the matrices ∂C and ∂R are computed as sparse
matrices with ap columns.

The nullspace ker(∂C |FpCp) is then computed: let bp denote its dimension;
then the nullspace is stored as a sparse (ap×bp)-matrixNp. The computation
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is greatly aided by the fact that ∂C is a block matrix, whose row and column
blocks are spanned by {(G,Φ) : G/Φ = G0} for all choices of the fully
contracted graph G0. The matrices Np are computed using the linear algebra
library linbox [7], which provides exact linear algebra over Q and finite
fields.

Finally, the rank cp of ∂R ◦Np is computed, again using linbox. By (1),
we have

dimHp(Out(Fn);Q) = bp − cp − cp+1.

For memory reasons (the computational requirements reached 200GB of
RAM at its peak), some of these ranks were computed modulo a large prime
(65521 and 65519 were used in two independent runs).

Computing modulo a prime can only reduce the rank; so that the values
cp we obtained are underestimates of the actual ranks of ∂R ◦Np. However,
we also know a priori that bp − cp − cp+1 ≥ 0 since it is the dimension of
a vector space; and none of the cp we computed can be increased without
at the same time causing a homology dimension to become negative, so our
reduction modulo a prime is legal.

For information, the parameters ap, bp, cp for n = 7 are as follows:

p 0 1 2 3 4 5 6 7 8 9 10 11
ap 365 3712 23227 ≈105k ≈348k ≈854k ≈1.6m ≈2.3m ≈2.6m ≈2.1m ≈1.2m ≈376k
bp 365 1784 5642 14766 28739 39033 38113 28588 16741 6931 1682 179
cp 0 364 1420 4222 10544 18195 20838 17275 11313 5427 1504 178

The largest single matrix operations that had to be performed were com-
puting the nullspace of a 2038511 × 536647 matrix (16 CPU hours) and
the rank modulo 65519 of a (less sparse) 1355531× 16741 matrix (10 CPU
hours).

The source files used for the computations are available as supplemen-
tal material. Compilation requires g++ version 4.7 or later, a functional
linbox library, available from the site http://www.linalg.org, as well as
the nauty program suite, available from the site

http://pallini.di.uniroma1.it.

It may also be directly downloaded and installed by typing

‘make nauty25r9’

in the directory in which the supplemental material was downloaded. Beware
that the calculations required for n = 7 are prohibitive for most desktop
computers.

Conclusion

Computing the dimensions of the homology groups is only the first step
in understanding them; much more interesting would be to know visually,
or graph-theoretically, where these nontrivial classes come from.

It seems almost hopeless to describe, via computer experiments, the non-
trivial class in degree 8, unless it is somehow related to the nontrivial class

http://www.linalg.org
http://pallini.di.uniroma1.it
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in H8(Out(F6);Q). It may be possible, however, to arrive at a reasonable
understanding of the nontrivial class in degree 11.

This class may be interpreted as a linear combination w of trivalent graphs
on 12 vertices, each marked with an oriented spanning forest. There are
376365 such forested graphs that do not admit an odd symmetry. The class
w ∈ Q376365 is a Z-linear combination of 70398 different forested graphs,
with coefficients in {±1, . . . ,±16}. For illustration, eleven graphs occur
with coefficient ±13; four of them have indices 25273, 53069, 53239, 53610
respectively, and are, with the spanning tree in bold,
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The coefficients of w, and corresponding graphs, are distributed as ancil-
lary material in the file w_cycle, in format

‘coefficient [edge1 edge2 ...]’,

where each edge is ‘x-y’ or ‘x+y’ to indicate whether the edge is absent or
present in the forest. Edges always satisfy x < y, and the forest is oriented
so that its edges are lexicographically ordered. Edges are numbered from 0.
There are no loops nor multiple edges.
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Links to ancillary material

The source and data files are stored at http://arxiv.org/src/1512.

03075v2/anc; here are some direct links to them, embedded in the PDF
document.

The cycle in degree 11: w_cycle.

The source files of the program that computed the bp and cp:

• Makefile

• homology.h

• homology_boundary.C

• homology_graphs.C

• homology_print.C

• murmur3/README.md

• murmur3/example.c

• murmur3/makefile

• murmur3/murmur3.c

• murmur3/murmur3.h

• murmur3/test.c.
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