The rational homology of the outer automorphism group of \boldsymbol{F}_{7}

Laurent Bartholdi

Abstract

We compute the homology groups $H_{*}\left(\operatorname{Out}\left(F_{7}\right) ; \mathbb{Q}\right)$ of the outer automorphism group of the free group of rank 7 .

We produce in this manner the first rational homology classes of $\operatorname{Out}\left(F_{n}\right)$ that are neither constant $(*=0)$ nor Morita classes $(*=$ $2 n-4)$.

Contents

1. Introduction 191
2. Methods 192
3. Implementation 193
Conclusion 194
Acknowledgments 195
Links to ancillary material 196
References 196

1. Introduction

The homology groups $H_{k}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)$ are intriguing objects. On the one hand, they are known to "stably vanish", i.e., for all $n \in \mathbb{N}$ we have $H_{k}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=0$ as soon as k is large enough [3]. Hatcher and Vogtmann prove that the natural maps

$$
H_{k} \operatorname{Out}\left(F_{n}\right) \rightarrow H_{k} \operatorname{Aut}\left(F_{n}\right) \quad \text { and } \quad H_{k} \operatorname{Aut}\left(F_{n}\right) \rightarrow H_{k} \operatorname{Aut}\left(F_{n+1}\right)
$$

are isomorphisms for $n \geq 2 k+2$ respectively $n \geq 2 k+4$, see [4,5]. On the other hand, $H_{k}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=0$ for $k>2 n-3$, since $\operatorname{Out}\left(F_{n}\right)$ acts geometrically on a contractible space (the "spine of outer space", see [2]) of dimension $2 n-3$. Combining these results, the only $k \geq 1$ for which $H_{k}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)$ could possibly be nonzero are in the range $\frac{n}{2}-2<k \leq 2 n-3$. Morita conjectures in [9, page 390] that $H_{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)$ always vanishes; this

Received December 8, 2015.
2010 Mathematics Subject Classification. 20F28, 20J06, 20F65, 20 E05.
Key words and phrases. Outer automorphism group; graph homology; free group. Partially supported by ANR grant ANR-14-ACHN-0018-01.
would improve the upper bound to $k=2 n-4$, and $H_{2 n-4}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)$ is also conjectured to be nontrivial.

We shall see that the first conjecture does not hold. Indeed, the first few values of $H_{k}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)$ may be computed by a combination of human and computer work, and yield

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11
2	1	0										
3	1	0	0	0								
4	1	0	0	0	1	0						
5	1	0	0	0	0	0	0	0				
6	1	0	0	0	0	0	0	0	1	0		
7	1	0	0	0	0	0	0	0	1	0	0	1

The values for $n \leq 6$ were computed by Ohashi in [12]. They reveal that, for $n \leq 6$, only the constant class $(k=0)$ and the Morita classes $k=2 n-4$ yield nontrivial homology. The values for $n=7$ are the object of this Note, and reveal that the picture changes radically:

Theorem. The nontrivial homology groups $H_{k}\left(\operatorname{Out}\left(F_{7}\right) ; \mathbb{Q}\right)$ occur for $k \in$ $\{0,8,11\}$ and are all 1-dimensional.

Previously, only the rational Euler characteristic

$$
\chi_{\mathbb{Q}}\left(\operatorname{Out}\left(F_{7}\right)\right)=\sum(-1)^{k} \operatorname{dim} H_{k}\left(\operatorname{Out}\left(F_{7}\right) ; \mathbb{Q}\right)
$$

was known, and shown to be 1 by Morita, Sakasai and Suzuki [10]. These authors computed in fact the rational Euler characteristics up to $n=11$ in that paper and the sequel [11].

2. Methods

We make fundamental use of a construction of Kontsevich [6], explained in [1]. We follow the simplified description from [12].

Let F_{n} denote the free group of rank n. This parameter n is fixed once and for all, and will in fact be omitted from the notation as often as possible. An admissible graph of rank n is a graph G that is 2 -connected (G remains connected even after an arbitrary edge is removed), without loops, with fundamental group isomorphic to F_{n}, and without vertices of valency ≤ 2. Its degree is

$$
\operatorname{deg}(G):=\sum_{v \in V(G)}(\operatorname{deg}(v)-3) .
$$

In particular, G has $2 n-2-\operatorname{deg}(G)$ vertices and $3 n-3-\operatorname{deg}(G)$ edges, and is trivalent if and only if $\operatorname{deg}(G)=0$. If Φ is a collection of edges in a graph G, we denote by G / Φ the graph quotient, obtained by contracting all edges in Φ to points.

A forested graph is a pair (G, Φ) with Φ an oriented forest in G, namely an ordered collection of edges that do not form any cycle. We note that
the symmetric group $\operatorname{Sym}(k)$ acts on the set of forested graphs whose forest contains k edges, by permuting the forest's edges.

For $k \in \mathbb{N}$, let C_{k} denote the \mathbb{Q}-vector space spanned by isomorphism classes of forested graphs of rank n with a forest of size k, subject to the relation

$$
(G, \pi \Phi)=(-1)^{\pi}(G, \Phi) \text { for all } \pi \in \operatorname{Sym}(k)
$$

Note, in particular, that if $(G, \Phi) \sim(G, \pi \Phi)$ for an odd permutation π then $(G, \Phi)=0$ in C_{k}. These spaces $\left(C_{*}\right)$ form a chain complex for the differential $\partial=\partial_{C}-\partial_{R}$, defined respectively on $(G, \Phi)=\left(G,\left\{e_{1}, \ldots, e_{p}\right\}\right)$ by

$$
\begin{aligned}
& \partial_{C}(G, \Phi)=\sum_{i=1}^{p}(-1)^{i}\left(G / e_{i}, \Phi \backslash\left\{e_{i}\right\}\right), \\
& \partial_{R}(G, \Phi)=\sum_{i=1}^{p}(-1)^{i}\left(G, \Phi \backslash\left\{e_{i}\right\}\right),
\end{aligned}
$$

and the homology of $\left(C_{*}, \partial\right)$ is $H_{*}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)$.
The spaces C_{k} may be filtered by degree: let $F_{p} C_{k}$ denote the subspace spanned by forested graphs (G, Φ) with $\operatorname{deg}(G / \Phi) \leq p$. The differentials satisfy respectively

$$
\partial_{C}\left(F_{p} C_{k}\right) \subseteq F_{p} C_{k-1}, \quad \partial_{R}\left(F_{p} C_{k}\right) \subseteq F_{p-1} C_{k-1}
$$

A spectral sequence argument gives

$$
\begin{equation*}
H_{p}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=E_{p, 0}^{2}=\frac{\operatorname{ker}\left(\partial_{C} \mid F_{p} C_{p}\right) \cap \operatorname{ker}\left(\partial_{R} \mid F_{p} C_{p}\right)}{\partial_{R}\left(\operatorname{ker}\left(\partial_{C} \mid F_{p+1} C_{p+1}\right)\right)} . \tag{1}
\end{equation*}
$$

Note that if $(G, \Phi) \in F_{p} C_{p}$ then G is trivalent. We compute explicitly bases for the vector spaces $F_{p} C_{p}$, and matrices for the differentials $\partial_{C}, \partial_{R}$, to prove the theorem.

3. Implementation

We follow for $n=7$ the procedure sketched in [12]. Using the software program nauty [8], we enumerate all trivalent graphs of rank n and vertex valencies ≥ 3. The libraries in nauty produce a canonical ordering of a graph, and compute generators for its automorphism group. We then weed out the non-2-connected ones.

For given $p \in \mathbb{N}$, we then enumerate all p-element oriented forests in these graphs, and weed out those that admit an odd symmetry. The remaining ones are stored as a basis for $F_{p} C_{p}$. Let a_{p} denote the dimension of $F_{p} C_{p}$.

For (G, Φ) a basis vector in $F_{p} C_{p}$, the forested graphs that appear as summands in $\partial_{C}(G, \Phi)$ and $\partial_{R}(G, \Phi)$ are numbered and stored in a hash table as they occur, and the matrices ∂_{C} and ∂_{R} are computed as sparse matrices with a_{p} columns.

The nullspace $\operatorname{ker}\left(\partial_{C} \mid F_{p} C_{p}\right)$ is then computed: let b_{p} denote its dimension; then the nullspace is stored as a sparse $\left(a_{p} \times b_{p}\right)$-matrix N_{p}. The computation
is greatly aided by the fact that ∂_{C} is a block matrix, whose row and column blocks are spanned by $\left\{(G, \Phi): G / \Phi=G_{0}\right\}$ for all choices of the fully contracted graph G_{0}. The matrices N_{p} are computed using the linear algebra library linbox [7], which provides exact linear algebra over \mathbb{Q} and finite fields.

Finally, the rank c_{p} of $\partial_{R} \circ N_{p}$ is computed, again using linbox. By (1), we have

$$
\operatorname{dim} H_{p}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=b_{p}-c_{p}-c_{p+1} .
$$

For memory reasons (the computational requirements reached 200GB of RAM at its peak), some of these ranks were computed modulo a large prime (65521 and 65519 were used in two independent runs).

Computing modulo a prime can only reduce the rank; so that the values c_{p} we obtained are underestimates of the actual ranks of $\partial_{R} \circ N_{p}$. However, we also know a priori that $b_{p}-c_{p}-c_{p+1} \geq 0$ since it is the dimension of a vector space; and none of the c_{p} we computed can be increased without at the same time causing a homology dimension to become negative, so our reduction modulo a prime is legal.

For information, the parameters a_{p}, b_{p}, c_{p} for $n=7$ are as follows:

p	0	1	2	3	4	5	6	7	8	9	10	11
a_{p}	365	3712	23227	$\approx 105 k$	$\approx 348 k$	$\approx 854 k$	$\approx 1.6 m$	$\approx 2.3 m$	$\approx 2.6 m$	$\approx 2.1 m$	$\approx 1.2 m$	$\approx 376 k$
b_{p}	365	1784	5642	14766	28739	39033	38113	28588	16741	6931	1682	179
c_{p}	0	364	1420	4222	10544	18195	20838	17275	11313	5427	1504	178

The largest single matrix operations that had to be performed were computing the nullspace of a 2038511×536647 matrix (16 CPU hours) and the rank modulo 65519 of a (less sparse) 1355531×16741 matrix (10 CPU hours).

The source files used for the computations are available as supplemental material. Compilation requires g++ version 4.7 or later, a functional linbox library, available from the site http://www.linalg.org, as well as the nauty program suite, available from the site
http://pallini.di.uniroma1.it.
It may also be directly downloaded and installed by typing

```
'make nauty25r9'
```

in the directory in which the supplemental material was downloaded. Beware that the calculations required for $n=7$ are prohibitive for most desktop computers.

Conclusion

Computing the dimensions of the homology groups is only the first step in understanding them; much more interesting would be to know visually, or graph-theoretically, where these nontrivial classes come from.

It seems almost hopeless to describe, via computer experiments, the nontrivial class in degree 8 , unless it is somehow related to the nontrivial class
in $H_{8}\left(\operatorname{Out}\left(F_{6}\right) ; \mathbb{Q}\right)$. It may be possible, however, to arrive at a reasonable understanding of the nontrivial class in degree 11.

This class may be interpreted as a linear combination w of trivalent graphs on 12 vertices, each marked with an oriented spanning forest. There are 376365 such forested graphs that do not admit an odd symmetry. The class $w \in \mathbb{Q}^{376365}$ is a \mathbb{Z}-linear combination of 70398 different forested graphs, with coefficients in $\{ \pm 1, \ldots, \pm 16\}$. For illustration, eleven graphs occur with coefficient ± 13; four of them have indices $25273,53069,53239,53610$ respectively, and are, with the spanning tree in bold,

The coefficients of w, and corresponding graphs, are distributed as ancillary material in the file w_cycle, in format

```
'coefficient [edge1 edge2 ...]',
```

where each edge is ' $x-y$ ' or ' $x+y$ ' to indicate whether the edge is absent or present in the forest. Edges always satisfy $x<y$, and the forest is oriented so that its edges are lexicographically ordered. Edges are numbered from 0. There are no loops nor multiple edges.

Acknowledgments

I am grateful to Alexander Berglund and Nathalie Wahl for having organized a wonderful and stimulating workshop on automorphisms of free groups in Copenhagen in October 2015, when this work began; to Masaaki Suzuki, Andy Putman and Karen Vogtmann for very helpful conversations
that took place during this workshop; and to Jim Conant for having checked the cycle w (after finding a mistake in its original signs) with an independent program.

Links to ancillary material

The source and data files are stored at http://arxiv.org/src/1512. $03075 \mathrm{v} 2 / \mathrm{anc}$; here are some direct links to them, embedded in the PDF document.

The cycle in degree 11: w_cycle.
The source files of the program that computed the b_{p} and c_{p} :

- Makefile
- homology.h
- homology_boundary.C
- homology_graphs.C
- homology_print.C
- murmur3/README.md
- murmur3/example.c
- murmur3/makefile
- murmur3/murmur3.c
- murmur3/murmur3.h
- murmur3/test.c.

References

[1] Conant, James; Vogtmann, Karen. On a theorem of Kontsevich. Algebr. Geom. Topol. 3 (2003), 1167-1224. MR2026331 (2004m:18006), Zbl 1063.18007, arXiv:math/0208169, doi: 10.2140/agt.2003.3.1167.
[2] Culler, Marc; Vogtmann, Karen. Moduli of graphs and automorphisms of free groups. Invent. Math. 84 (1986), no. 1, 91-119. MR830040 (87f:20048), Zbl 0589.20022, doi: 10.1007/BF01388734.
[3] Galatius, SøRen. Stable homology of automorphism groups of free groups. Ann. of Math. (2) 173 (2011), no. 2, 705-768. MR2784914 (2012c:20149), Zbl 1268.20057, arXiv:math/0610216, doi: 10.4007/annals.2011.173.2.3.
[4] Hatcher, Allen; Vogtmann, Karen. Homology stability for outer automorphism groups of free groups. Algebr. Geom. Topol. 4 (2004), 1253-1272. MR2113904 (2005j:20038), Zbl 1093.20020, arXiv:math/0406377, doi: 10.2140/agt.2004.4.1253.
[5] Hatcher, Allen; Vogtmann, Karen; Wahl, Nathalie. Erratum to: "Homology stability for outer automorphism groups of free groups [Algebr. Geom. Topol. 4 (2004), 1253-1272 (electronic)] by Hatcher and Vogtmann. Algebr. Geom. Topol. 6 (2006), 573-579 (electronic). MR2220689 (2006k:20069), Zbl 1093.20501, arXiv:math/0603577, doi: 10.2140/agt.2006.6.573.
[6] Kontsevich, Maxim. Formal (non)commutative symplectic geometry. The Gel'fand Mathematical Seminars, 1990-1992. Birkhäuser Boston, Boston, MA, 1993, pp. 173187. MR1247289 (94i:58212), Zbl 0821.58018.
[7] LinBox - Exact Linear Algebra over the Integers and Finite Rings, Version 1.1.6, The LinBox Group, 2008. http://linalg.org.
[8] McKay, Brendan D.; Piperno, Adolfo. Practical graph isomorphism. II. J. Symbolic Comput. 60 (2014), 94-112. MR3131381, Zbl 06264238, arXiv:1301.1493, doi: 10.1016/j.jsc.2013.09.003.
[9] Morita, Shigeyuki. Structure of the mapping class groups of surfaces: a survey and a prospect. Proceedings of the Kirbyfest (Berkeley, CA, 1998). Geom. Topol. Monogr., vol. 2. Geom. Topol. Publ., Coventry, 1999, pp. 349-406 (electronic). MR1734418 (2000j:57039), Zbl 0959.57018, arXiv:math/9911258, doi: 10.2140/gtm.1999.2.349.
[10] Morita, Shigeyuki; Sakasai, Takuya; Suzuki, Masaaki. Computations in formal symplectic geometry and characteristic classes of moduli spaces. Quantum Topol. 6 (2015), no. 1, 139-182. MR3335007, Zbl 06436533, arXiv:1207.4350, doi: $10.4171 /$ QT/61.
[11] Morita, Shigeyuki; Sakasai, Takuya; Suzuki, Masaaki. Integral Euler characteristic of Out F_{11}. Exp. Math. 24 (2015), no. 1, 93-97. MR3305042, Zbl 1315.20037, arXiv:1405.4063, doi: 10.1080/10586458.2014.956373.
[12] Ohashi, Ryo. The rational homology group of $\operatorname{Out}\left(F_{n}\right)$ for $n \leq 6$. Experiment. Math. 17 (2008), no. 2, 167-179. MR2433883 (2009k:20118), Zbl 1191.20057, doi: 10.1080/10586458.2008.10129033.
(Laurent Bartholdi) École Normale Supérieure, Paris and Georg-August-UniverSität zu Göttingen
laurent.bartholdi@gmail.com
This paper is available via http://nyjm.albany.edu/j/2016/22-7.html.

