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K-theory for real C∗-algebras via unitary
elements with symmetries

Jeffrey L. Boersema and Terry A. Loring

Abstract. We prove that all eight KO groups for a real C∗-algebra can
be constructed from homotopy classes of unitary matrices that respect a
variety of symmetries. In this manifestation of the KO groups, all eight
boudary maps in the 24-term exact sequences associated to an ideal in
a real C∗-algebra can be computed as exponential or index maps with
formulas that are nearly identical to the complex case.
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1. Introduction

In the common picture of K-theory for C∗-algebras, the abelian groups
K0(A) and K1(A) arise from projections and unitaries in Mn(A), respec-
tively. Because of Bott periodicity, we do not worry about independent
descriptions of Ki(A) for other integer values of i. In the case of real C∗-
algebras, the same pictures carry over to give us concrete descriptions of
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Table 1. Unitary Picture of K-theory

K-group unitary symmetries

KO−1(A, τ) uτ = u

KO0(A, τ) u = u∗, uτ = u∗

KO1(A, τ) uτ = u∗

KO2(A, τ) u = u∗, uτ = −u
KO3(A, τ) uτ⊗] = u

KO4(A, τ) u = u∗, uτ⊗] = u∗

KO5(A, τ) uτ⊗] = u∗

KO6(A, τ) u = u∗, uτ⊗] = −u

The classes in KOj(A, τ), for a unital C∗-algebra with real
structure are, in our picture, given by unitary elements of
Mn(C) ⊗ A with the symmetries as indicated. See Theo-
rem 7.1 and Table 3 for details.

KO0(A) and KO1(A) in terms of projections and unitaries. The higher
K-theory groups (for i 6= 0, 1) can be defined using suspensions or using
Clifford algebras. While this reliance on suspensions allows the theoretical
development of K-theory to proceed nicely, it leaves much to be desired in
terms of being able to represent specific K-theory classes for purposes of
computation.

We rectify this situation by putting forward a unified description of all
ten K-theory groups (eight KO-groups and two KU -groups) of a real C∗-

algebra A using unitaries inMn(ÃC) satisfying appropriate symmetries, com-
pleting the project that we began in [7]. This unified description is summa-
rized in condensed form in Table 1. A complete description of our picture
of K-theory can be found in Theorem 7.1 and Table 3, which summarize
the results developed in detail through Sections 5 and 6. A salient fea-
ture of our picture is that all of the groups are obtained without using the
Grothendieck construction, so any KO-element can be represented exactly
by a single unitary.

The boundary maps associated to I → A → A/I can be critical when
calculatingK-theory groups. In the complex case, both boundary maps have
explicit formulas in terms of lifting problems associated to projections and
unitaries. Any picture of real K-theory should have computable boundary
maps in the 24-term exact sequence of abelian groups associated to a short
exact sequence of real C∗-algebras.
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For real C∗-algebras, we have had explicit pictures for KOj for all j except
j = 3 and j = 7 [19]. There were some details missing for j = 2 and j = 6
to adapt to the C∗-algebra setting, but essentially these cases were dealt
with already in [41]. The boundary map has been less developed. Given
I → A → A/I in the real case, it is a folk-theorem that the usual formulas
in the complex case work to determine both ∂1 : KO1(A/I)→ KO0(I) and
∂5 : KO5(A/I) → KO4(I). For this form of ∂5 it is essential to work with
the isomorphism KOj+4(D) ∼= KOj(D ⊗ H) where H is the algebra of the
quaternions.

We seek a consistent picture of the KO and KU groups that will allow
us to have essentially only two formulas for the boundary maps, one for the
even-to-odd cases and one for the odd-to-even cases. It will also tie real K-
theory more closely to classical mathematics. For example, the isomorphism
KO2(R) ∼= Z2 can be given simply as sign of the Pfaffian of a self-adjoint
unitary that is purely imaginary.

We work with the complexified form of a real C∗-algebra with the real
structure determined by a generalized involution. That is, our objects are
typically pairs (A, τ) where A is a complex C∗-algebra and τ : A → A an
involution that is antimultiplicative and written aτ . In the case where A has
a unit, the unitaries we consider live in Mn(R)⊗A and the symmetries are
in terms of the usual involution ∗ and one of two extensions of τ to matrix
algebras over A. These extensions are τ = Tr⊗ τ and ]⊗ τ where Tr is the
familiar transpose and ] is the dual operation, discussed in detail later, that
is based on the derived involution on the complexification of H.

Recently there has been much interest in physics regarding real K-theory.
This has been true in string theory, to classifyingD-branes, and in condensed
matter physics, to classify topological insulators. There are mathematical
reasons to study our constructions in real K-theory, but lets us briefly review
some of the physics.

In string theory, the utility of real K-theory in classifying D-branes was
discovered by Witten [40]. A more recent work more closely related to
this paper is [3]. More recent developments coming from this connection
have involved twisted KR-theory, as in [14]. In condensed matter physics,
real K-theory is used to classify topological insulators [21, 36]. Many of
the invariants, for example the computable invariant used to detected 3D
topological insulators [16], do not seem at first to be part of an KO group.
Recently detailed studies of KR-theory of low-dimensional spaces [12, 13]
explain the place in K-theory for such invariants, but only in the case of no
disorder. For methods that handle disorder, see [15, 28, 32].

The ten-fold way in physics [36] was a key motivation for this work. The
Altland–Zirnbauer [1] classification of the essential antiunitary symmetries
on a quantum system has ten symmetry classes, named according to asso-
ciated Cartan labels. These ten classes correspond to the two complex and
eight real K-theory groups, as in Table 3. It is hoped that the consistent
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and simple formulas presented here for all ten boundary maps will be of
utility in understanding the indices being developed in physics.

A typical problem involving topological insulators and K-theory involves
a collection of maps

ϕt : C(T2)→ K̃

that are asymptotically multiplicative, while exactly preserving addition,
adjoint and the given real structure. That is, we have an element of real
E-theory. To identify that element, we need only pair it with each of the
two generators of KO−2(C(T2), id). Other spaces and involutions arise in a
similar fashion, as in [28, 30]. A typical real structure on C(X) is f τ = f on
the domain and a typical real structure on the compact operators is the dual
operation. Thus the initial problem is how to calculate an explicit generator
of KO−2(C(T2), id). Let us revisit how the calculation would look in the
familiar complex case, where we need a generator of the reduced KU0 group.

Consider the short exact sequence

0→ C0((0, 1)2)→ C(T2)→ C(S1 ∨ S1)→ 0

coming from the closed copy of S1×S1 consisting of points (z, w) that have
either z = 1 or w = 1. We need to compute the boundary map

∂1 : KU1(C(S1 ∨ S1))→ KU0(C0((0, 1)2)).

This is easy. One generator of KU1(C(S1∨S1)) is u1 defined by (z, w) 7→ z.
This lifts as a unitary v1 to C(T2). The same is true of the other generator
so ∂1 = 0. Therefore

ι∗ : KU0(C0((0, 1)2))→ KU0(C(T2))

is an inclusion, and the element we need comes from the generator of
KU0(C0((0, 1)2)). To find that, one can look at the exact sequence

0→ C0(U)→ C(D)→ C(S1)→ 0

and compute ∂1 on the unitary u(z) = z. Here U is the open disk.
With a few modifications, the standard method to compute ∂1([u]) for a

unitary in B is as follows, assuming

0→ I → A→ B → 0

is exact with A unital. The first step is to lift u to an element a in A with
‖a‖ ≤ 1 and then form the projection

(1) p =

(
aa∗ a

√
1− a∗a

a∗
√

1− aa∗ 1− a∗a

)
.

To see how this arises from the more usual formulas [34, §9.1], notice

v =

(
a −

√
1− aa∗√

1− a∗a a∗

)
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is a unitary in A (cf. [34, Lemma 9.2.1]) that is a lift of diag(u, u∗). Then

p = vdiag(1, 0)v∗ and so, up to identifying M2(Ĩ) with a subalgebra of
M2(B), we have ∂1([u]) = [p]− [1].

Applying (1) in the case u(z) = z on the circle we lift (extend) to a
function a(z) = z on the disk. Then

p(z) =

(
|z|2 z

√
1− |z|2

z
√

1− |z|2 1− |z|2

)
.

Taken as a map on the sphere, this is a degree-one mapping of S2 onto the set
of projections in M2(C) of trace one. In terms of the real coordinates (x, y, z)
restricted to the unit sphere, we find the desired element of KU(C0(U)) is[(

1
2z

1
2x−

i
2y

1
2x+ i

2y
1
2 −

1
2z

)]
−
[(

1 0
0 0

)]
.

Pushing this forward to C(T2) is a little tricky. One solution is the element

(2)

[(
f(z) g(z) + h(z)w

g(z) + h(z)w 1− f(z)

)]
−
[(

1 0
0 0

)]
where f , g and h are certain real-valued functions on the circle satisfying
gh = 0 and f2 + g2 + h2 = 1, as discussed in [27].

Our immediate goal is to allow the calculation of generators of KO∗
groups to proceed in essentially the same manner as in the preceeding cal-
cuation. In particular, the generator of KO−1(C(S1), id) will be [u] where
u(z) = z. What will be new is having to check that this matrix is symmetric.

Given

0→ I → A→ B → 0

exact, and unital, but now with real structures, given u a unitary in B
with uτ = u, we have a representative of a KO−1 class. To calculate the
boundary, we lift to a with ‖a‖ ≤ 1 and aτ = a and form

w =

(
2aa∗ − 1 2a

√
1− a∗a

2a∗
√

1− aa∗ 1− 2a∗a

)
.

Then w is unitary, self-adjoint, and with the more subtle symmetry that is
component-wise given as

wτ11 = −w22, wτ12 = w12, wτ21 = w21.

We will see this is valid to specify an element of KO−2(I). Thus the bound-
ary map ∂−1 : KO−1(B)→ KO−2(I) looks very much like the odd boundary
map in the complex case. We will see that the generator of KO−2(C0(U), id)
is [(

z x− iy
x+ iy −z

)]
.

The generator of KO−2(C(T2), id) will be the same as in (2) with just a
small modification of the three functions.



1144 JEFFREY L. BOERSEMA AND TERRY A. LORING

The even boundary maps will also be given as a lifting problem. A unitary
u with u∗ = u and other symmetries gets lifted to x with −1 ≤ x ≤ 1 and
other symmetries. The unitary needed is then

− exp(πix)

which is again very close to the complex case. Indeed, by reformulating
the complex case in terms of self-adjoint unitaries for KU0 this will be the
formula for the even boundary map. It should be noted that we are losing
track of the order structure on KO0 and KU0. In principle we can recover
this, but have no present need.

As preliminary work to developing this picture of real K-theory, but of
independent interest, we also present a collection of classifying algebras Ai
for i ∈ {0, 1, . . . , 8}. These are real semiprojective homotopy symmetric
C∗-algebras that classify K-theory in the sense that

KOi(D) ∼= [Ai,K
R ⊗D] ∼= lim

n→∞
[Ai,Mn(R)⊗D]

for all i, as we show in Theorem 4.13. The algebras Ai are thus real analogs
of the complex C∗-algebras qC and C0(R,C) which are classifying algebras
for K-theory in the category of complex C∗-algebras in the same sense. Not
unexpectedly, the algebras Ai will all be real forms of matrix algebras over
qC and C0(R,C).

In Section 3, we introduce the real C∗-algebras Ai for 0 ≤ i < 8 and
we calculate their united K-theory, finding that KO∗(Ai) ∼= Σ−iK∗(R).
It follows from this (or rather from the stronger statement KCRT(Ai) ∼=
Σ−iKCRT(R)) and the universal coefficient theorem that there is a real KK-
equivalence between Ai and S−iR and that KOi(B) ∼= KKO0(Ai, B) for
any real separable C∗-algebra B in the UCT bootstrap category. Also in
Section 3, we will show that each Ai is semiprojective, following a short
detour to prove a key semiprojectivity closure theorem. Then in Section 4
we will prove that each Ai is homotopy symmetric. We validate the real
version of unsuspended E-theory, and it then follows that these algebras
represent K-theory in the strong sense that KOi(B) ∼= lim

n→∞
[Ai, B⊗Mn(R)]

for any separable real C∗-algebra B.
In Sections 5 and 6 we will develop the unitary picture of K-theory, first

in the even degrees and then in the odd degrees. We note that we are not
attempting to accomplish a complete development of K-theory from scratch
using the unitary picture — although that would be an interesting project.
Instead, we take it for granted that K-theory is an established entity with
known properties. We will define a sequence of groups KOui (A) in terms of
unitaries and will then develop its properties mainly to get to the point of
being able to prove that there is a natural isomorphism KOi(A) ∼= KOui (A)
in each case.

Section 7 explores some examples where the generators of the KO groups
can be found easily by comparing with the complex case. Section 8 finds
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and describes formulas for the eight boundary maps, and these are applied
in Section 9 in finding more explicit generators of real K-theory groups, for
several examples.

2. Preliminaries

The category of interest in this paper is the category R∗ of real C∗-
algebras (also known as R∗-algebras), with real *-algebra homomorphisms.
A real C∗-algebra (as in Section 1 of [37]) is a real Banach *-algebra satis-
fying the norm condition ‖a∗a‖ = ‖a‖2 and the condition that 1 + a∗a is

invertible (in Ã) for all a ∈ A.
The category R∗ is equivalent to the category R∗,τ of C∗,τ -algebras with

C∗,τ -algebra homomorphisms (see [31]). A C∗,τ -algebra is a pair (A, τ)
where A is a (complex) C∗-algebra and τ is an involutive antiautomorphism
on A. Given a C∗,τ -algebra (A, τ), the corresponding real C∗-algebra is

Aτ = {a ∈ A | aτ = a∗}.

Conversely, given a real C∗-algebra A there is a unique complexification
AC = A⊗R C, which as an algebra is isomorphic to A+ iA. The formula (a+
ib) 7→ (a∗+ ib∗) is an antimultiplicative involution on AC. This construction
gives a functor from R∗ to R∗,τ , which is inverse (up to isomorphism) to the
functor described in the previous paragraph.

We will slide back and forth easily between these two categories, as is
appropriate for the situation. In particular, whereas our unitary description
of KOu0 (−) and KOu1 (−) can be made in terms of a real C∗-algebra A, our
description of KOui (−) for other values of i requires the context of a C∗,τ -
algebra. Hence we present our unified picture of KOi(−) for all i in the
setting of a C∗,τ -algebra (see Section 7). This approach is analogous to the
development of K-theory for topological spaces with involution in [2].

If (A, τ) is a C∗,τ -algebra, then so is (Mn(C)⊗A, τn) where τn = Trn⊗ τ
and Trn is the transpose operation on Mn(C). We will frequently neglect
the subscripts on τ and Tr when we can do so without sacrificing clarity.
Similarly, we will let τ also denote the involution on K ⊗ A induced by τn
through a choice of isomorphism lim

n→∞
(Mn(C)) ∼= K. These constructions

correspond to the real C∗-algebra constructions of tensoring by Mn(R) or

by KR, the real C∗-algebra of compact operators on a separable real Hilbert
space.

There is a related antiautomorphism T̃r on M2(C) defined by(
a b
c d

)T̃r

=

(
d b
c a

)
.

This involution is equivalent to Tr in the sense that there is an isomorphism

of C∗,τ -algebras, (M2(C),Tr) ∼= (M2(C), T̃r). Indeed, the reader can check
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that (WxW ∗)Tr = WxT̃rW ∗ where

W =
1√
2

(
i 1
1 i

)
.

More generally, we have (M2(C) ⊗ A, τ) ∼= (M2(C) ⊗ A, τ̃) where the auto-
morphism τ̃ is defined by (

a b
c d

)τ̃
=

(
dτ bτ

cτ aτ

)
.

There is yet another real structure on M2n(A) and on K ⊗ A, which is
genuinely distinct from Tr. Define ] : M2(C)→M2(C) by(

a b
c d

)]
=

(
d −b
−c a

)
.

Then (M2(C), ]) corresponds to the real C∗-algebra H of quaternions, and
(M2n(C), ]⊗Trn) corresponds to the real C∗-algebra Mn(H). More generally,
if (A, τ) is a C∗,τ -algebra, then (M2n(C)⊗A, ]⊗Trn⊗τ) is a C∗,τ -algebra that
corresponds to the real C∗-algebra Mn(H)⊗Aτ .

We will be dealing with these matrix algebras frequently in the subsequent
work, and the technicalities require that we clarify the conventions for the
action of ]⊗ τ on a matrix in M2n(A), since this action requires a particular
choice of isomorphism M2(A)⊗Mn(A) ∼= M2n(A). The two obvious choices
of such an isomorphism lead to two conventions for ]⊗ τ that we will make
use of regularly. The first is shown by organizing the matrix a ∈ M2n(A)
as an n× n matrix whose entries are 2× 2 blocks, denoted by bij ∈M2(A).
Then

a]⊗τ =


b1 1 b1 2 . . . b1n
b2 1 b2 2 . . . b2n
...

...
. . .

...
bn 1 bn 2 . . . bnn


]⊗τ

=


b]⊗τ1 1 b]⊗τ2 1 . . . b]⊗τn 1

b]⊗τ1 2 b]⊗τ2 2 . . . b]⊗τn 2
...

...
. . .

...

b]⊗τ1n b]⊗τ2n . . . b]⊗τnn

 .

The second convention for an involution on M2n(A) will be denoted by ]̃⊗ τ
and is shown by organizing the matrix a ∈M2n(A) as a 2× 2 matrix whose
entries are n× n blocks, denoted by cij ∈Mn(A). Then

a]̃⊗τ =

(
c1 1 c1 2

c2 1 c2 2

)]̃⊗τ
=

(
cτn2 2 −cτn1 2
−cτn2 1 cτn1 1

)
.

The first convention for ]⊗ τ will be our preferred convention.
As mentioned, we will take for granted the full development and known

properties of both K-theory and KK-theory for real C∗-algebras. The de-
velopment of KK-theory for real C∗-algebras goes back to [20] while much
what is known about both K-theory and KK-theory can be found in [37].

For a real C∗-algebra A, we will also occasionally make reference to the
united K-theory KCRT(A), as developed in [5]. Briefly, KCRT(A) consists of
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the eight real K-theory groups KOi(A), the two complex K-theory groups
KUi(A) (coinciding with the K-theory of the complexification of A), and the
four self-conjugate K-theory groups KTi(A); as well as the several natural
transformations among them. The main result about united K-theory that
we will make use of is the Universal Coefficient Theorem proven in [6], which
implies that united K-theory classifies KK-equivalence for real C∗-algebras
that are nuclear, separable, and in the bootstrap class for the UCT.

For a final note regarding conventions, we will use 1 to denote the adjoined

unit in Ã for any C∗-algebra A (unital or not). Similarly 1n will denote the

diagonal identity matrix in Mn(Ã).

3. Semiprojective suspension C∗-algebras

Let qC = {f ∈ C0((0, 1],M2(C)) | f(1) ∈ C2} where we are identifying
C2 with the subalgebra of diagonal elements of M2(C). The algebras Ai for
i even are defined as follows. Three are real structures of qC and one is a
real structure of M2(qC).

A0 = {f ∈ C0((0, 1],M2(R)) | f(1) ∈ R2}
A2 = {f ∈ C0((0, 1],H) | f(1) ∈ C}
A4 = {f ∈ C0((0, 1],M2(H)) | f(1) ∈ H2}
A6 = {f ∈ C0((0, 1],M2(R)) | f(1) ∈ C}.

For i odd, the algebras Ai are defined as follows. Each is a real structure
of either C0(S1 \ {1},C) or C0(S1 \ {1},M2(C)).

A−1 = SR = {f ∈ C(S1,R) | f(1) = 0}

A1 = S−1R = {f ∈ C(S1,C) | f(1) = 0 and f(z) = f(z)}
A3 = SH = {f ∈ C(S1,H) | f(1) = 0}

A5 = S−1H = {f ∈ C(S1,M2(C)) | f(1) = 0 and f(z)] = f(z)}.

These real C∗-algebras have corresponding objects in the cateogry of C∗,τ -
algebras as shown in Table 2. In this table, the involution ζ denotes the
involution on C0(S1 \ {1},C) induced by the involution z 7→ z on S1.

Proposition 3.1. KCRT(Ai) ∼= Σ−iKCRT(R) for all i ∈ {0, 2, 4, 6}.

Proof. In each case, Ai ⊗ C ∼= qC or Ai ⊗ C ∼= M2(qC). So K∗(Ai ⊗ C) ∼=
K∗(qC) ∼= K∗(C). Thus by Theorem 3.2 of [9], KCRT(Ai) is a free CRT-
module. Furthermore, from Section 2.4 of [9], the only free CRT-module
that has the complex part isomorphic to K∗(C) is KCRT(R) up to an even
suspension. Therefore there are only four possibilities for KCRT(Ai) up to
isomorphism. A full description of the CRT-module KCRT(R) is in Table 1
of [5], but in particular recall that the real part of it is given by KO∗(R) as
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Table 2. The Classifying Algebras

R∗-algebra C∗,τ -algebra

even cases

A0 (qC,Tr)

A2 (qC, ])

A4 (M2(C)⊗ qC, ]⊗ Tr)

A6 (qC, T̃r)

odd cases

A−1 (C0(S1 \ {1},C), id)

A1 (C0(S1 \ {1},C)), ζ)

A3 (M2(C)⊗ C0(S1 \ {1},C), ]⊗ id)

A5 (M2(C)⊗ C0(S1 \ {1},C), ]⊗ ζ)

This table shows the real C∗-algebras Ai and the correspond-
ing objects in the category of C∗,τ -algebras. They classify
real K-theory in the sense of Theorem 4.13.

shown below. In each case, this will be enough to determine which of the
four possible suspensions is isomorphic to KCRT(Ai).

i 0 1 2 3 4 5 6 7
KOi(R) Z Z2 Z2 0 Z 0 0 0

We first consider A0. Use the extension of real C∗-algebras

(3) 0→ SM2(R)
ι−→ A0

ev1−−→ R2 → 0

where ev1 is the evaluation map at t = 1. Then we have the long exact
sequence

· · · → KCRT(R2)
∂−→ KCRT(R)

ι∗−→ KCRT(A0)
(ev1)∗−−−−→ KCRT(R2)

∂−→ · · · .

The map ∂ as written has degree 0 and can be determined by its action
on the generators of the two KCRT(R) summands, which are elements in
KO0(R) ∼= Z. The complex part of this long exact sequence arises from the
complexification of Sequence (3), which is

0→ SM2(C)
ι−→ qC

ev1−−→ C2 → 0

and for which the boundary map ∂ : K0(C2) → K0(M2(C)) is known to

be Z2 ( 1 1 )−−−→ Z up to isomorphism. In the commutative diagram below,
we know that the complexification maps c are both isomorphisms, so it
follows that the boundary map ∂ : K0(R2)→ K0(M2(R)) is also isomorphic
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to Z2 ( 1 1 )−−−→ Z.

KO0(R2)
∂ //

c
��

KO0(M2(R))

c

��

K0(C2)
∂ // K0(M2(C))

It follows that ∂ : KCRT(R2)→ KCRT(R) is surjective and has kernel isomor-
phic to KCRT(R). Thus KCRT(A0) ∼= KCRT(R).

For A2, we have the short exact sequence

(4) 0→ SH→ A2
ev1−−→ C→ 0

and the corresponding long exact sequence

· · · → KCRT(C)
∂−→ KCRT(H)→ KCRT(A2)→ KCRT(C)

∂−→ KCRT(H)→ · · · .

The complexification of Sequence (4) is the same as that of Sequence (3)
so again we can use the complexification map to calculate the boundary
map. The commutative diagram we obtain is as follows which shows that
∂ : KO0(C)→ KO0(H) is an isomorphism from Z to Z.

KO0(C)

c

��

∂ // KO0(H)

c

��

isomorphic to Z

( 1
1 )
��

// Z

2

��

K0(C⊕ C)
∂ // K0(M2(C)) Z⊕ Z

( 1 1 )
// Z.

Then the long exact sequence shows that KO0(A2) ∼= 0. Of the four pos-
sibilities for KCRT(A2), there is only one that is consistent with this fact.
Thus we conclude that KCRT(A2) ∼= Σ−2KCRT(R).

From the Künneth Formula we know that KCRT(B) ∼= Σ4KCRT(H ⊗ B)
for any real C∗-algebra. Hence, KCRT(A6) and KCRT(A4) are determined by
the isomorphisms M2(R)⊗A2

∼= H⊗A6 and A4
∼= H⊗A0. �

Proposition 3.2. KCRT(Ai) ∼= Σ−iKCRT(R) for all i ∈ {−1, 1, 3, 5}.

Proof. For i = ±1 this follows from Proposition 1.20 of [5]. For i = 3, 5, this
follows from the Künneth Formula and the isomorphisms Ai ∼= H⊗Ai−4. �

As in Section 1 of [25], consider the following relations for elements h, x, k
in a C∗-algebra A:

h∗h+ x∗x = h,(5)

k∗k + xx∗ = k,

kx = xh,

hk = 0.
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The same relations can be formally encoded by

(6)
hk = 0,

T (h, x, k)2 =T (h, x, k)∗ = T (h, x, k).

where

T (h, x, k) =

(
1− h x∗

x k

)
∈M2(Ã).

Of particular interest, we have the elements

h0 = t⊗ e11, k0 = t⊗ e22, x0 =
√
t− t2 ⊗ e21

that satisfy (6) in qC. Recall from Lemma 2 of [25] that qC is the universal
C∗-algebra generated by h, x, k subject to the relations (6). The following
theorem gives a version of this result for A0, A2, and A6; characterizing

C∗,τ -algebra-homomorphisms from (qC,Tr), (qC, ]), and (qC, T̃r).

Proposition 3.3. Let (A, τ) be a C∗,τ -algebra.

(1) Given elements h, k, x in A satisfying hτ = h, kτ = k, xτ = x∗ and
Equations (5), then there exists a unique homomorphism

α : (qC,Tr)→ (A, τ)

such that α(h0) = h, α(k0) = k, and α(x0) = x.
(2) Given elements h, k, x in A satisfying hτ = k, kτ = h, xτ = −x and

Equations (5), then there exists a unique homomorphism

α : (qC, ])→ (A, τ)

such that α(h0) = h, α(k0) = k, and α(x0) = x.
(3) Given elements h, k, x in A satisfying hτ = k, kτ = h, xτ = x and

Equations (5), then there exists a unique homomorphism

α : (qC, T̃r)→ (A, τ)

such that α(h0) = h, α(k0) = k, and α(x0) = x.

Proof. Under the hypotheses of Part (1), Lemma 1 of [25] gives a unique
C∗-algebra homomorphism α : qC → A satisfying α(h0) = k0, α(k0) = k,
and α(x0) = x. It is only required here to verify that α respects the real
structures; that is to verify that

(7) α(aTr) = α(a)τ

holds for all a ∈ qC. In qC we have

hTr
0 = h0, kTr

0 = k0, and xTr
0 = x∗0

from which it follows that (7) holds for a = h0, k0, x0. But since these
elements generate qC and since the set of elements that satisfy (7) is a
subalgebra of qC, it follows that (7) holds for on qC.

The proofs in the second and third cases are the same, noting that in qC
we have

h]0 = k0, k]0 = h0, and x]0 = −x0
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and

hT̃r
0 = k0, kT̃r

0 = h0, and xT̃r
0 = x0. �

The concepts of projectivity and semiprojectivity were first introduced
and developed in the context of real C∗-algebras (and C∗,τ -algebras) in Sec-
tion 3 of [31]. In what follows, we extend that work by proving a significant
closure theroem, namely that A⊗H and A⊗Mn(R) are semiprojective if A
is semiprojective (Theorem 3.10). This result will subsequently be applied
to show that each of the real C∗-algebras Ai is semiprojective.

The cone CM2(C) = C0((0, 1],M2(C)) has two real structures, corre-
sponding to the antiautomorphisms Tr and ] defined pointwise on CM2(C).
The corresponding real C∗-algebras are CM2(R) = C0((0, 1],M2(R)) and
CH = C0((0, 1],H). More generally CMn(C) has one real structure for n
odd (corresponding to Tr) and two real structures for n even (corresponding
to Tr and to ]⊗ Tr).

Lemma 3.4. Let (A, τ) and (B, τ) be C∗,τ -algebras and let

π : (A, τ)→ (B, τ)

be a surjective C∗,τ -algebra homomorphism. Let h and k be positive orthog-
onal elements in B.

(1) If hτ = h and kτ = k, then there are positive orthogonal elements h′

and k′ in A that satisfy (h′)τ = h′ and (k′)τ = k′.
(2) If hτ = k and kτ = h, then there are positive orthogonal elements h′

and k′ in A that satisfy (h′)τ = k′ and (k′)τ = h′.

Furthermore, h′ and k′ can be taken to satisfy ‖h′‖ ≤ ‖h‖ and ‖k′‖ ≤ ‖k‖.

Proof. Let a = h−k. Let a′ ∈ A be a self-adjoint lift of a. Furthermore, in
case (1) we have aτ = a and we can take a′ to satisfy the same by replacing
a′ with 1

2

(
a′ + (a′)τ

)
. Let f+, f− : R → R be defined by f+(t) = max{0, t}

and f−(t) = −min{t, 0} so that (f+ − f−)(t) = t. Let h′ = f+(a′) and
k′ = f−(a′). Then h′ and k′ are positive and orthogonal. Also,

π(h′) = π(f+(a′)) = f+(π(a′)) = f+(a) = h

and similarly, π(k′) = k. Finally,

(h′)τ = (f+(a′))τ = f+((a′)τ ) = f+(a′) = h′

and similarly, (k′)τ = k′.
In case (2) we have aτ = −a and we can take a′ to satisfy the same by

replacing a′ with 1
2

(
a′ − (a′)τ

)
. Using h′ and k′ as above, we obtain

(h′)τ = (f+(a′))τ = f+((a′)τ ) = f+(−a′) = k′

and similarly (k′)τ = h′.
In either case, the norm condition can be obtained by truncating the

elements h′ and k′ using the functions gK(t) = min{t,K} where K = ‖h‖
and K = ‖k‖ respectively. �
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Proposition 3.5. The C∗,τ -algebras (CMn(C),Tr) and (CM2(C), ]) are
projective.

Proof. A proof that (CMn(C),Tr) is projective can be obtained by examin-
ing a proof that CMn(C) is projective in the context of complex C∗-algebras.
For example, see Theorem 10.2.1 in [24] or Theorem 3.5 of [29].

To show that (CM2(C), ]) is projective let φ : (CM2(C), ]) → (B, τ) be
a C∗,τ -algebra homomorphism and let π : (A, τ) → (B, τ) be a surjective
C∗,τ -algebra homomorphism. Let x = φ(t⊗ e12). Then x satisfies ‖x‖ ≤ 1,
x2 = 0, and xτ = −x. In fact (CM2(C), ]) is universal for these relations
so it suffices to show that x can be lifted to an element in A satisfying the
same.

Using Lemma 3.4, lift φ(t1/3⊗ e11) and φ(t1/3⊗ e22) to elements h, k ∈ A
satisfying 0 ≤ h, k ≤ 1, hk = 0, and hτ = k. Lift φ(t1/3 ⊗ e12) = x1/3 to an
element y ∈ A satisfying yτ = −y. Let z = kyh so that π(z) = x, z2 = 0,
and zτ = −z.

To finish, let

f(t) =

{
1 0 ≤ t ≤ 1

t−1/2 1 ≤ t
and w = zf(z∗z).

Then ‖w‖ ≤ 1 since w∗w = f(z∗z)z∗zf(z∗z) = g(z∗z) where

g(t) =

{
t 0 ≤ t ≤ 1

1 1 ≤ t.

Since π(w) = xf(x∗x) = x, we have that w is still a lift of x. We also have
w2 = f(zz∗)zzf(z∗z) = 0. Finally, we show that wτ = −w. Check that
(z∗z)τ = zτz∗τ = −z(−z∗) = zz∗ so that

wτ = (zf(z∗z))τ = f(z∗z)τzτ = −f(zz∗)z = −w. �

We remark the Proposition 3.5 can be strengthened to state that the
cone (CM2n(C), ] ⊗ Trn) is projective using a similar proof to the above.
This however will be a direct consequence of Proposition 3.9 below and the
stronger result is not required for us before that point.

Lemma 3.6. Suppose ϕ : CMn(C) → B is a ∗-homomorphism of C∗-
algebras. Denote by B0 and Bn the hereditary subalgebras of B generated
by ϕ(C0(0, 1] ⊗ e11) and ϕ(CMn(C)), respectively. Then there is a natural
isomorphism

Φ : B0 ⊗Mn(C)→ Bn.

defined by

Φ (ϕ(f ⊗ e1r)bϕ(g ⊗ es1)⊗ ejk) = ϕ(f ⊗ ejr)bϕ(g ⊗ esk)

for f, g ∈ C0(0, 1] and b ∈ B.
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Furthermore, suppose ϕ : (CMn(C),Tr)→ (B, τ) is a C∗,τ -algebra homo-
morphism of C∗,τ -algebras. Then there is a natural isomorphism of C∗,τ -
algebras

Φ: (B0 ⊗Mn(C), τ ⊗ Tr)→ (Bn, τ)

given by the same formula as above.

Proof. We start with some nice descriptions of B0 and Bn. Since C(0, 1]⊗
e11 is generated by t⊗ e11, we have

B0 = ϕ(t⊗ e11)Bϕ(t⊗ e11) and Bn = ϕ(t⊗ 1n)Bϕ(t⊗ 1n).

On the other hand the nice factorization result, Corollary 4.6 of [33], implies
that

B0 = ϕ(C0(0, 1]⊗ e11)Bϕ(C0(0, 1]⊗ e11),

Bn = ϕ(C0(0, 1]⊗ 1n)Bϕ(C0(0, 1]⊗ 1n),

which shows that it is enough to define Φ on the elements of the form

x = ϕ(f ⊗ e11)bϕ(g ⊗ e11).

We first establish that Φ is well-defined as a map restricted to B0 ⊗ ejk.
Suppose

ϕ(f ⊗ e1r)bϕ(g ⊗ es1) = ϕ(h⊗ e1p)b
′ϕ(k ⊗ eq1).

Select any µn that is an approximate identity in C0(0, 1] and calculate:

ϕ(f ⊗ ejr)bϕ(g ⊗ esk)
= lim

m
lim
n
ϕ(µn ⊗ ej1)ϕ(f ⊗ e1r)bϕ(g ⊗ es1)ϕ(µm ⊗ e1k)

= lim
m

lim
n
ϕ(µn ⊗ ej1)ϕ(h⊗ e1p)b

′ϕ(k ⊗ eq1)ϕ(µm ⊗ e1k)

= ϕ(h⊗ ejp)b′ϕ(k ⊗ eqk).

To see this is additive, consider two elements in B0,

x = ϕ(f ⊗ e11)bϕ(g ⊗ e11), y = ϕ(h⊗ e11)b′ϕ(k ⊗ e11).

We claim that we can rewrite these elements so that f = h and g = k.
Indeed, we can factor the functions as f = µf1 and h = µh1 where

µ(x) =
√
|f(x)|+ |h(x)|

to get f ⊗ e11 = (µ⊗ e11)(f1 ⊗ e11) and h⊗ e11 = (µ⊗ e11)(f1 ⊗ e11),

x = ϕ(η ⊗ e11)b′′′ϕ(g ⊗ e11), y = ϕ(η ⊗ e11)b′′ϕ(k ⊗ e11).

Perform a similar procedure using the functions g and k. Therefore, we can
assume that we have

x = ϕ(f ⊗ e11)bϕ(g ⊗ e11), y = ϕ(f ⊗ e11)b′ϕ(g ⊗ e11).
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Then we prove additivity as follows,

Φ
(
ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk + ϕ(f ⊗ e11)b′ϕ(g ⊗ e11)⊗ ejk

)
= Φ

(
ϕ(f ⊗ e11)(b+ b′)ϕ(g ⊗ e11)⊗ ejk

)
= ϕ(f ⊗ ej1)(b+ b′)ϕ(g ⊗ e1k)

= ϕ(f ⊗ ej1)bϕ(g ⊗ e1k) + ϕ(f ⊗ ej1)b′ϕ(g ⊗ e1k)

= Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk) + Φ
(
ϕ(f ⊗ e11)b′ϕ(g ⊗ e11)⊗ ejk

)
.

Now we easily conclude that Φ is a well-defined linear map on all of B ⊗
Mn(C).

As to the product, we observe

Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk) Φ
(
ϕ(g ⊗ e11)b′ϕ(h⊗ e11)⊗ ekl

)
= ϕ(f ⊗ ej1)bϕ(g ⊗ e1k)ϕ(h⊗ ek1)bϕ(k ⊗ e1l)

= ϕ(f ⊗ ej1)bϕ(gh⊗ e11)bϕ(k ⊗ e1l)

= Φ (ϕ(f ⊗ e11)bϕ(gh⊗ e11)bϕ(k ⊗ e11)⊗ ejl) .

Proving that Φ is a ∗-homomorphism is easier:

Φ ((ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk)∗) = Φ
(
ϕ(ḡ ⊗ e11)b∗ϕ(f̄ ⊗ e11)⊗ ekj

)
= ϕ(ḡ ⊗ ek1)b∗ϕ(f̄ ⊗ e1j)

= (ϕ(f ⊗ ej1)bϕ(g ⊗ e1k))
∗

= (Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk))∗ .

To prove Φ is onto, we start with an element

ϕ(f ⊗ 1n)bϕ(g ⊗ 1n)

which we expand as∑
ϕ(f ⊗ ejj)bϕ(g ⊗ ekk) =

∑
Φ(ϕ(f ⊗ e1j)bϕ(g ⊗ ek1)⊗ ejk).

Injectivity is easy since Φ will be injective if and only if its restriction to
B0 ⊗ e11 is injective, and

Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ e11) = ϕ(f ⊗ e11)bϕ(g ⊗ e11).

For naturality, suppose that γ : B → C is a homomorphism of C∗-algebras
or C∗,τ -algebras. Then define ψ = γ ◦ ϕ and subsequently define

Ψ: C0 ⊗Mn(C)→ Cn

as above. Check that γ(B0) ⊆ C0 and γ(Bn) ⊆ Cn. Then we show

Ψ(γ(x)⊗ ejk) = γ(Ψ(x⊗ ejk))
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as follows:

Ψ(γ(ϕ(f ⊗ e11)bϕ(g ⊗ e11))⊗ ejk) = Ψ(ψ(f ⊗ e11)γ(b)ψ(g ⊗ e11))⊗ ejk)
= ψ(f ⊗ ej1)γ(b)ψ(g ⊗ e1k))

= γ(ϕ(f ⊗ ej1))γ(b)γ(ϕ(g ⊗ e1k))

= γ(ϕ(f ⊗ ej1)bϕ(g ⊗ e1k))

= γΦ(ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk).

In the case that there is an involution τ on B with ϕ(xTr) = ϕ(x)τ for

x ∈ CM2(C), we show that Φ((x ⊗ ejk)τ⊗Tr) = Φ(x ⊗ ejk)τ for x ⊗ ejk in
B0 ⊗Mn(C):

Φ
(
(ϕ(f ⊗ e11)bϕ(g ⊗ e11))τ ⊗ eTr

jk

)
= Φ (ϕ(g ⊗ e11)bτϕ(f ⊗ e11)⊗ ekj)
= ϕ(g ⊗ ek1)bτϕ(f ⊗ e1j)

= ϕ((g ⊗ e1k)
Tr)bτϕ((f ⊗ ej1)Tr)

= (ϕ(f ⊗ ej1)bϕ(g ⊗ e1k))
τ

= Φ(ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ ejk)τ . �

Corollary 3.7. Let h be a strictly positive element in a C∗-algebra B. There
is an embedding CC ↪→ B sending the canonical generator to h. Similarly,
there is an embedding CC → CMn(C) by f 7→ f ⊗ e11. Then there is an
isomorphism

B ∗CC CMn(C) ∼= B ⊗Mn(C)

given by

b 7→ b⊗ e11 and f ⊗ ejk 7→ f(h)⊗ ejk .

If there is a real structure τ on B and if h satisfies hτ = h, then the iso-
morphism is τ -preserving.

Lemma 3.8. Suppose ϕ : (CM2(C), ])→ (B, τ) is a C∗,τ -algebra homomor-
phism of C∗,τ -algebras. Then there is a natural isomorphism of C∗,τ -algebras

Φ: (B0 ⊗M2(C), σ ⊗ ])→ (B2, τ)

where B0, B2, and Φ are as in Lemma 3.6 and where σ is an antimultiplica-
tive involution on B0 defined by

(ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ = ϕ(g ⊗ e12)bτϕ(f ⊗ e21).

Furthermore, the construction ϕ 7→ (B0, σ) is natural.

Proof. We already know from Lemma 3.6 that Φ is a well defined isomor-
phism. Suppose now that ϕ : CM2(C)→ B satisfies ϕ(x]) = ϕ(x)τ . We first
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show that σ is well-defined and is a real structure on B0. Since

(ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ ⊗ e11 = ϕ(g ⊗ e12)bτϕ(f ⊗ e21)⊗ e11

= Φ−1 (ϕ(g ⊗ e12)bτϕ(f ⊗ e21))

= Φ−1
(
ϕ(g ⊗ e]12)bτϕ(f ⊗ e]21)

)
= Φ−1 ((ϕ(f ⊗ e21)bϕ(g ⊗ e12))τ )

= Φ−1 ((Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ e22))τ )

we see that

xσ ⊗ e11 = Φ−1 ((Φ(x⊗ e22))τ )

and so σ is an anti-∗-homomorphism, being a composition of four homo-
morphisms and one anti-homomorphism. That σ is an involution on B0 is
shown by:

(ϕ(fg ⊗ e11)bϕ(hk ⊗ e11))σ
2

= (ϕ(kh⊗ e12)bτϕ(gf ⊗ e21))σ

= (ϕ(k ⊗ e11)ϕ(h⊗ e12)bτϕ(g ⊗ e21)ϕ(f ⊗ e11))σ

= ϕ(f ⊗ e12) (ϕ(h⊗ e12)bτϕ(g ⊗ e21))τ ϕ(k ⊗ e21)

= ϕ(f ⊗ e12)ϕ(g ⊗ e]21)bϕ(h⊗ e]12)ϕ(k ⊗ e21)

= ϕ(f ⊗ e12)ϕ(g ⊗ e21)bϕ(h⊗ e12)ϕ(k ⊗ e21)

= ϕ(fg ⊗ e11)bϕ(hk ⊗ e11).

Now we show that Φ commutes with the appropriate real structures; that
is we prove that Φ((x⊗ ejk)σ⊗]) = Φ(x⊗ ejk)τ for all x⊗ ejk ∈ B0⊗M2(C).
Of the four cases to consider, we will show the calculations for the cases
x⊗ e11 and x⊗ e12 since the cases for x⊗ e22 and x⊗ e21 are similar.

Φ
(

(ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ ⊗ e]11

)
= Φ (ϕ(g ⊗ e12)bτϕ(f ⊗ e21)⊗ e22)

= ϕ(g ⊗ e22)bτϕ(f ⊗ e22)

= (ϕ(f ⊗ e11)bϕ(g ⊗ e11))τ

= Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ e11)τ

and

Φ
(

(ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ ⊗ e]12

)
= Φ (ϕ(g ⊗ e12)bτϕ(f ⊗ e21)⊗−e12)

= −ϕ(g ⊗ e12)bτϕ(f ⊗ e22)

= (ϕ(f ⊗ e11)bϕ(g ⊗ e12))τ

= Φ (ϕ(f ⊗ e11)bϕ(g ⊗ e11)⊗ e12)τ .

Finally, we consider the question of naturality. For a C∗,τ -algebra homo-
morphism γ : (B, τ)→ (C, τ) we define ψ = γ ◦ϕ. We obtain a real stucture
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σ on C0,

(ψ(f ⊗ e11)cψ(g ⊗ e11))σ = ψ(g ⊗ e12)cτψ(f ⊗ e21).

The claim of naturality is the claim that the restriction of γ to a map
B0 → C0 is a C∗,τ -algebra homomorphism γ∗ : (B0, σ)→ (C0, σ). Indeed,

γ(ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ = (ψ(f ⊗ e11)γ(b)ψ(g ⊗ e11))σ

= ψ(g ⊗ e12)γ(bτ )ψ(f ⊗ e21)

= γ(ϕ(g ⊗ e12)bτϕ(f ⊗ e21))

= γ((ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ). �

An important special case of Lemma 3.8 occurs when B = C ⊗M2(C)
with involution τ⊗] and when the map ϕ : (CM2(C), ])→ (C⊗M2(C), τ⊗])
sends f ⊗ ejk to f(h)⊗ ejk for some strictly positive self-τ element h in C.
In that case, B2 = C ⊗M2(C) and B0 = C ⊗ e11. Then the induced real
structure σ on B0, defined by

(ϕ(f ⊗ e11)bϕ(g ⊗ e11))σ = ϕ(g ⊗ e12)bτ⊗]ϕ(f ⊗ e21)

satisfies

(hbh⊗ e11)σ = ((h⊗ e11)(b⊗ e11)(h⊗ e11))σ

= (h⊗ e12)(bτ ⊗ e22)(h⊗ e21)

= hbτh⊗ e11.

Thus we find that σ is just τ ⊗ id, restricted to B0 = C ⊗ e11.

Proposition 3.9. Let A be a real C∗-algebra . If A is projective then A⊗H
is projective. If A is semiprojective then A⊗ H is semiprojective.

Proof. We work in the category of C∗,τ -algebras. Suppose that (A, τ)
is projective, that (B, τ), (C, τ) are C∗,τ -algebras, and that we have C∗,τ -
algebra homomorphisms ϕ and π as in the diagram

B

π

��

A⊗M2(C)
ϕ
// C

where π is surjective and the involution on A⊗M2(C) is τ ⊗ ]. We select a
strictly positive element h ∈ A satisfying hτ = h and define

γ : (CM2(C), ])→ (A⊗M2(C), τ ⊗ ])

by γ(f ⊗ ejk) = f(h)⊗ ejk. By Proposition 3.5 there is a homomorphism

ϕ1 : (CM2(C), ])→ (B, τ)
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with π ◦ϕ1 = ϕ ◦γ. We apply Lemma 3.8 to get two commutative diagrams
of real C∗-algebras. The first diagram is

B0 ⊗M2(C)

��

Φ3 // B2

��

� � // B

π

��

(A⊗ e11)⊗M2(C) //

Φ1

��

C0 ⊗M2(C)
Φ2

%%

A⊗M2(C) // C2 � o

��

A⊗M2(C)
ϕ

// C

where each Φj is an isomorphism, and the real structures on the algebras
closest to the upper left of the diagram are all σj ⊗ ] where the σj are in the
second diagram:

(B0, σ3)

��

(A⊗ e11, σ1) // (C0, σ2)

By the remark following Lemma 3.8 we know that (A⊗e11, σ1) is isomorphic
to (A, τ) and so we get a lift in the second diagram by the hypothesis on A.
Tensoring by the identity on M2(C) now gives a lift in the upper-left portion
of the first diagram, which then provides the desired lift of ϕ.

Adjusting the given proof to the semiprojectivity case proceeds exactly
as in Section 14.2 of [24]. �

Theorem 3.10. If a real C∗-algebra A is projective then A ⊗Mn(R) and
A⊗Mn(R)⊗H are projective for all n. If A is semiprojective then A⊗Mn(R)
and A⊗Mn(R)⊗ H are semiprojective for all n.

Proof. Suppose that A is projective. The statement that A ⊗ Mn(R) is
projective is proven exactly as in the complex case, Theorem 3.3 of [23].
Similarly, if A is semiprojective, the proof of Theorem 4.3 of [23] applies
to the case of real C∗-algebras to show that A ⊗Mn(R) is semiprojective.
Proposition 3.9 completes the proof. �

Proposition 3.11. Ai is semiprojective for i even.

Proof. First we consider A0. Suppose that J1 ⊆ J2 ⊆ . . . be an increasing
sequence of τ -invariant ideals in a C∗,τ -algebra (B, τ) and let J = ∪nJn. We
will use the same notation τ for the involution τ passing to each quotient
algebra B/Jn and B/J . Establish the following notation for the natural
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quotient maps, which all commute with τ :

πn : B → B/Jn

π∞ : B → B/J

πn,m : B/Jn → B/Jm

πn,∞ : B/Jn → B/J.

Let φ : (qC,Tr) → (B/J, τ) be a C∗,τ -algebra homomorphism. We will
produce a C∗,τ -algebra homomorphism ψ : (qC,Tr)→ (B/Jn, τ) for some n
such that πn,∞ ◦ ψ = φ.

Let h∞ = φ(h0), k∞ = φ(k0), x∞ = φ(x0) in B/J . The elements h∞
and k∞ are positive, contractions, orthogonal, and fixed by τ . Thus by
Lemma 3.4, there are elements h, k ∈ B with the same properties such that
π∞(h) = h∞ and π∞(k) = k∞.

We will take x ∈ B to be a lift of x∞. As in the proof of Theorem 6 of
[25], this can be arranged so that x ∈ k1/8Bh1/8. Furthermore, replacing x
by 1

2(x+ xτ∗) we can assume that xτ = x∗ holds. Then T = T (h, x, k) is an
element in the subalgebra

B̂ =

(
C · 1⊕ hBh hBk

kBh C · 1⊕ kBk

)
⊆M2(B̃).

Furthermore, T satisfies T τ⊗Tr = T ∗ = T and is a lift of

T∞ = T (h∞, x∞, k∞) ∈M2(B̃/J).

Since π∞(T ) is a projection, there is an n large enough so that the spectrum

of Tn := πn(T ) ∈ M2(B̃/Jn) does not contain 1/2. Then T ′n = f(Tn) is a

projection in M2(B̃/Jn) where

f1/2(t) =

{
0 if t < 1/2

1 if t > 1/2.

Furthermore, T ′n is a lift of T∞ and the relation T ′n = (T ′n)τ⊗Tr holds. Write

T ′n =

(
1− h′n (x′n)∗

x′n k′n

)
where h′n, k′n, x′n are elements of B̃/Jn and are necessary lifts of h∞, k∞,
and x∞ respectively. Since we have T ′n = (T ′n)τ , it follows that h′n = (h′n)τ ,
k′n = (k′n)τ , and (x′n)∗ = (x′n)τ . We claim that h′n and k′n are orthogonal.
Indeed, we know that hn = πn(h) and kn = πn(k) are orthogonal and that
Tn (and hence T ′n = f(Tn)) lies in the subalgebra

B̂n =

(
C · 1⊕ hnBhn hnBkn

knBhn knBkn

)
⊆M2(B̃/Jn),

proving our claim.
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Therefore, the elements h′n, x′n, and k′n are elements in B/Jn which satisfy
the universal relations for qC as in Proposition 3.3, so there exists a homo-
morphism ψ : (qC,Tr)→ (B/Jn, τ) that maps h0, k0, and x0 to h′n, k′n, and
x′n respectively. Since π∞(h′n) = h∞, π∞(k′n) = k∞, and π∞(x′n) = x∞; it
follows that ψ is a lift of φ.

For A2 the proof is quite similar to that for A0. The initial difference
is that we are using the involution ] on qC. So φ is assumed to satisfy
φ(a]) = φ(a)τ and we must find a lift ψ which satisfies the same.

If we let h∞, k∞, and x∞ be as in the proof above, then we have hτ∞ = k∞,
kτ∞ = h∞, and xτ∞ = −x∞. We use Lemma 3.4 to find elements h and k in

B that satisfy hτ = k and kτ = h. Lift x∞ to an element x ∈ k1/8Bh1/8 that
satisfies xτ = −x (using the adjustment 1

2 (x− xτ )). Then T = T (h, x, k) is

in B̂ as before and satisfies T = T ∗. Now we have

T =

(
1− h x∗

x k

)
and T τ⊗T̃r =

(
h −x∗
−x 1− k

)
so we have T τ⊗T̃r = 12 − T .

Then as in the proof for A0, find n large enough so that 1/2 is in the
spectral gap for Tn and let T ′n = f1/2(Tn). Then T ′n is a projection and

satisfies (T ′n)τ⊗T̃r = 12 − T ′n (since f ′(12) = 12). So we can write

T ′n =

(
1− h′n (x′n)∗

x′n k′n

)
where (h′n)τ = k′n, (k

′
n)τ = h′n, and (x′n)τ = −x′n. Then by Proposition 3.3,

there exists a homomorphism ψ which is the desired lift of φ.
Now we consider the case of A6. In this case the we have elements in B/J

that satisfy hτ∞ = k∞, kτ∞ = h∞, and xτ∞ = x∞ in B/J which are lifted
to elements in B that satisfy hτ = k, kτ = h, and xτ = x. So T satisfies
T τ⊗] = 12 − T . Then for n large enough we obtain

T ′n =

(
1− h′n (x′n)∗

x′n k′n

)
where (h′n)τ = k′n, (k

′
n)τ = h′n, and (x′n)τ = x′n and we apply Proposition 3.3

as before.
Finally, to show that A4 is semiprojective we make use of the isomorphism

A4
∼= A0⊗H. Since A0 is semiprojective, Proposition 3.9 implies that A4 is

semiprojective. �

Proposition 3.12. Ai is semiprojective for i odd.

Proof. For n = 1 and n = −1, this is Example 3.10 and Corollary 3.12 of
[31]. Then the cases n = 3 and n = 5 follow by Proposition 3.9. �
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4. Unsuspended E-theory for real C∗-algebras

In this section, we develop the theory of homotopy symmetric real C∗-
algebras, along the lines of [11] in the complex case. Our main theo-
retical result states (as in the complex case) that a real C∗-algebra A
is homotopy symmetric if and only if the usual natural homomorphism
[[A ⊗ KR, B ⊗ KR]]R → E(A,B) is an isomorphism for all real C∗-algebras
B. Furthermore, we prove that homotopy symmetry has permanence with
respect to complexification: a real C∗-algebra A is homotopy symmetric if
and only if AC is homotopy symmetric (in the category of C∗-algebras). It
will follow that all of the algebras Ai introduced in the previous section are
homotopy symmetric. We introduce a standing assumption in this section
that all real C∗-algebras are separable. This will apply to all of our dis-
cussion of E-theory and of homotopy symmetry. However our main result
Theorem 4.13 will be proven in full generality for all real C∗-algebras.

We refer the reader to Section 4 of [7] and Section 8 of [8] for the devel-
opment of asymptotic morphisms for real C∗-algebras. In what follows we
will use the notation [[A,B]]R to denote the homotopy classes of asymptotic
morphisms in the category of real C∗-algebras and [[A,B]]C to denote the
same in the category of complex C∗-algebras, unless the meaning is clear
from context. In both cases, this set has the structure of a semigroup if
B is stable. And in both cases, as we shall see, the property of homotopy
symmetry is connected to the question of whether or not this semigroup has
inverses.

Let e be a rank 1 projection in KR ⊂ K. Then idA(a) = a ⊗ e defines a

homomorphism, either A→ A⊗R KR in the category of real C∗-algebras or
A→ A⊗K in the category of complex C∗-algebras. If A and B are real C∗-
algebras, then complexification induces a natural semigroup homomorphism

θA,B : [[A,B ⊗R KR]]R → [[AC, BC ⊗C K]]C .

In particular, we have θA,A(idA) = idAC .

Definition 4.1 (See Section 5 of [11]). A C∗-algebra A is homotopy sym-
metric if the class [[idA]] is invertible in [[A,A⊗C K]]C . A real C∗-algebra A

is homotopy symmetric if the class [[idA]] is invertible in [[A,A⊗R KR]]R.

Lemma 4.2. Suppose that A and B are real stable C∗-algebra with A ho-
motopy symmetric. Then [[A,B]]R is a group. In particular the asymptotic
morphism ηA that is inverse to idA is unique up to homotopy.

Proof. Suppose that ηA is an asymptotic morphism such that [ηA] is inverse
to [idA]. Then idA ⊕ ηA is null-homotopic in [[A,A]]R, and it follows that
[ψ ◦ ηA] is an inverse to [ψ] in [[A,B]]R. �

Lemma 4.3. Let A,B, and D be real C∗-algebras and let α : A → B be a
homomorphism. Then

[[D,SA]]R
(Sα)∗−−−→ [[D,SB]]R

∂−→ [[D,Cα]]R
κ∗−→ [[D,A]]R

α∗−→ [[D,B]]R
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is an exact sequence where Cα is the mapping cone of α and κ : Cα → A is
defined by κ(a, f) = a.

Proof. As in Proposition 6 of [10]. �

Lemma 4.4. For any split exact sequence

0→ J → A
π−→ B → 0

of real C∗-algebras and any real C∗-algebra D, the exact sequence

0→ [[D,J ]]→ [[D,A]]
π−→ [[D,B]]→ 0

is split.

Proof. As in Proposition 3.2 of [11]. �

Recall that if A and B are stable C∗-algebras, then we have natural homo-
morphisms Σ: [[A,B]]→ [[SA, SB]] and Σ−1 : [[A,B]]→ [[S−1A,S−1B]].

Lemma 4.5. If A and B are real C∗-algebras and B is stable, then

Σ: [[SA, SB]]→ [[S2A,S2B]] and Σ−1 : [[SA, SB]]→ [[S−1SA, S−1SB]]

are isomorphisms.

Proof. The first statement is Lemma 4.5 of [7] and the second statement
can be proven in a similar way. Instead of using the elements in E(R, S8R)
and E(S8R,R) associated with the Bott isomorphism, we use elements in
E(R, S−1SR) and E(S−1SR,R) that are inverses to each other arising from
the KK-equivalence between R and S−1SR. �

The following definition is from Section 4 of [7].

Definition 4.6. Let A and B be real separable C∗-algebras. Then we define

E(A,B) = [[SA, SB ⊗ KR]].

Lemma 4.7. There exists an asymptotic morphism αt : SS
−1R→ KR such

that α∗ : KO0(SS−1R) → KO0(KR) is an isomorphism. Thus α∗ is an iso-
morphism on KCRT(−).

Proof. Note that KO0(SS−1R) ∼= KO0(KR) ∼= Z. In fact, KCRT(SS−1R) ∼=
KCRT(KR) is isomorphic to the free CRT-module with a generator in the real
part in degree 0. So the Universal Coefficient Theorem for real C∗-algebras
implies that

KKO(SS−1R,KR) ∼= KKO(R,R) ∼= HomCRT(KCRT(R),KCRT(R))

∼= HomZ(KO0(R),KO0(R)) ∼= Z.

As in the remarks preceding Theorem 5.2 of [7], the isomorphism

KKO(SS−1R,KR)→ HomZ(KO0(R),KO0(R))

factors through E(S−1R,KR) ∼= [[SS−1R,KR]], giving the existence of α as
desired. �
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We now pause to establish some notation and to define several more
homomorphisms that we will make use of for the rest of this section. We
will use ζ to denote an involution on either Rn or on a sphere Sn−1, given
by multiplication by −1 in exactly one coordinate (let us take it to be the
y-coordinate). Then for example,

C0(R2; ζ) = {f ∈ C0(R2,C) | f(x, y) = f(x,−y)} ∼= SS−1R.

More generally, C0(Rn; ζ) ∼= Sn−1S−1R. There is a split exact sequence

0→ C0(Rn; ζ)
i−→ C0(Sn; ζ)

ε−→ R→ 0

where i is the standard inclusion via stereographic projection and ε is eval-
uation at any point fixed by ζ.

Now consider the projection

p0(x, y, z) = 1
2

(
1+z x−iy
x+iy 1−z

)
,

in C(S2,C). We know that p0 satisfies [p0] = (1, 1) ∈ KO0(C(S2,C)) ∼= Z⊕Z
(see Example 6.2.3 of [35]). Since pζ⊗Tr

0 = p0, it follows that [p0] is an element

in KO0(C(S2; ζ)) ∼= Z⊕ Z. Since the complexification functor

c : KO0(A)→ K0(AC)

is known to be an isomorphism in this case where A = C(S2; ζ), we conclude
that

[p0] = (1, 1) ∈ KO0(C(S2; ζ))

in the usual identification of KO0(C(S2; ζ)) ∼= Z ⊕ Z. More precisely, this
means that ε∗([p0]) is a generator of KO0(R) ∼= Z; and that [p0] − [( 0 0

0 1 )]

is a generator of KO0(C(R2; ζ)) ∼= ker(ε∗) ∼= Z. For future reference, we
can take ε to be evaluation at the point (0, 0,−1) and we obtain the exact
formula

ε(p0) =

(
0 0
0 1

)
.

We define a *-homomorphism γ1 and an asymptotic morphism γ2 by

γ1 : A→ A⊗ C(S2; ζ)⊗M2(R) by γ1(a) = a⊗ p0

γ2 : A→ A⊗ C(S2; ζ) by γ2(a) = ηt(a)⊗ 1

For later reference we note that we have

((idA ⊗ ε⊗ idM2(R)) ◦ γ1)(a) = a⊗ ( 0 0
0 1 ) = ( 0 0

0 a ) ∈ A⊗M2(R).

Proposition 4.8. Suppose that A is stable and homotopy symmetric. There
exists an asymptotic morphism

βAt : A→ A⊗ C(S2; ζ)⊗M3(R)
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unique up to homotopy, so that the diagram

(8) A
βA

//

γ1⊕γ2
))

A⊗ C0(R2; ζ)⊗M3(R)

i
��

A⊗ C(S2; ζ)⊗M3(R)

commutes up to homotopy. Furthermore, ΣβA is homotopic to idA⊗βSR as
asymptotic morphisms from SA to SA⊗ C0(R2; ζ)⊗M3(R), and βSR is an
isomorphism on K-theory.

Proof. Composing ε and γ1 ⊕ γ2 we have

(idA ⊗ ε⊗ idM2(R))(γ1 ⊕ γ2)(a) =

0 0 0
0 a 0
0 0 ηt(a)


where ηt is the asymptotic inverse to idA. Thus this composition is null-
homotopic. So from the split exact sequence

0→ C0(R2; ζ)
i−→ C(S2; ζ)

ε−→ R→ 0

(or rather from the split exact sequence obtained by tensoring the above
with A ⊗ M3(R)), Lemma 4.4 implies that there is a unique asymptotic

morphism βA making Diagram (8) commute.
Taking the special case A = SR, we obtain the diagram

(9) SR
βSR

//

γ1⊕γ2
**

SR⊗ C0(R2; ζ)⊗M3(R)

i
��

SR⊗ C(S2; ζ)⊗M3(R).

Now, we construct two diagrams that both look like

SA
βSA

//

γ1⊕γ2
**

SA⊗ C0(R2; ζ)⊗M3(R)

i
��

SA⊗ C(S2; ζ)⊗M3(R)

by either suspending Diagram (8) or by tensoring Diagram (9) by A. In
these two diagrams, the homomorphisms i and γ1 are exactly the same and
the homomorphism γ2 is the same up to homotopy in since

[[ηSA]] = [[ηSR ⊗ idA]] = [[idSR ⊗ ηA]]

(using Lemma 4.2). Therefore, by uniqueness of βSA we have

[[βSA]] = [[idA ⊗ βSR]] = [[idSR ⊗ βA]].
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To prove the statement about K-theory, we can calculate the action of γ1

and γ2 on KO−1(SR) as in Diagram (9). We can write

γSR
1 = idSR ⊗ γR

1 : SR⊗ R→ SR⊗ C(S2; ζ)⊗M2(R)

and see that (γSR
1 )∗ maps the generator of KO−1(SR) ∼= Z to the class

corresponding to [p0] in KO−1(SR ⊗ C(S2; ζ)) ∼= KO0(C(S2; ζ)) ∼= Z ⊕ Z.

At the same time, (γSR
2 )∗ maps the generator of KO−1(SR) to the additive

inverse of the class representing the unit in the same group. Thus, we see
that (γ1 ⊕ γ2)∗ maps the generator of KO−1(SR) to the kernel of ε∗ (which
we already knew) and to the generator of

image (i∗) ∼= KO−1(SR⊗ C0(R2; ζ)) ∼= KO0(C0(R2; ζ)) ∼= Z.

This proves βSR is an isomorphism on KO−1(−) and hence on KCRT(−). �

Theorem 4.9. Let A be a stable homotopy symmetric real C∗-algebra. Then

Σ: [[A,B]]→ E(A,B)

is an isomorphism for all real stable C∗-algebras B.

Proof. From Lemma 4.5 use the isomorphism E(A,B) ∼= [[SS−1A,SS−1B]]
to show that

Σ Σ−1 : [[A,B]]→ [[SS−1A,SS−1B]]

is an isomorphism with inverse

Θ: [[SS−1A,SS−1B]]→ [[A,B]]

defined by

Θ([[ϕ]]) = [[idB ⊗ α⊗ idM2(R)]] ◦ [[ϕ⊗M3(R)]] ◦ [[βA]].

By the Yoneda Lemma, it suffices to consider the case A = B and to then
show that idA maps to idA under the homomorphism

Θ ◦ Σ Σ−1 : [[A,A]]→ [[A,A]].

We have Σ Σ−1(idA) = idSS−1R and we have

Θ(idSS−1R) = (idA ⊗ α⊗ idM3(R)) ◦ βA.

So we need to show that

(idA ⊗ α⊗ idM3(R)) ◦ βA : A→ A⊗ KR ⊗M3(R)

is homotopic to idA as an asymptotic morphism. For this we use the com-
mutative diagram

A
βA

//

γ1⊕γ2
))

A⊗ C0(R2; ζ)⊗M3(R)
id⊗α⊗id

//

i
��

A⊗ KR ⊗M3(R)

i
��

A⊗ C(S2; ζ)⊗M3(R)
id⊗α̃⊗id

// A⊗ K̃R ⊗M3(R).
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By Lemma 4.4, the homomorphism

[[A,A⊗ KR ⊗M3(R)]]
i∗−→ [[A,A⊗ K̃R ⊗M3(R)]]

is injective, so (in yet another reduction) it suffices to show that

(idA ⊗ α̃⊗ idM3(R)) ◦ (γ1 ⊕ γ2) : A→ A⊗ K̃R ⊗M3(R)

is homotopic to i ◦ idA.
For any projection p in a real C∗-algebra B, let jp : R → B be the

homomorphism given by jp(t) = tp. Let qt = α̃t(p0) ∈ K̃R ⊗ M2(R).
Since qt is asymptotically a projection, there exists an actual projection

q0 ∈ K̃R ⊗M2(R) such that (αt) ◦ jp0 is homotopic to jq0 . Furthermore, by

calculating the class α∗([p0]) = [q0] ∈ KO0(KR), we know that q0 is homo-

topic to the projection q′0 = ( e 0
0 1 ) where e is a rank one projection in KR. So

we can and do assume that q0 = q′0. Then up to a homotopy of asymptotic
morphisms we have

(idA ⊗ α̃⊗ idM3(R)) ◦ (γ1 ⊕ γ2)(a) =

a⊗ e 0 0
0 a 0
0 0 ηA(a)


and thus (idA ⊗ α̃⊗ idM3(R)) ◦ (γ1 ⊕ γ2) is homotopic to idA.

For the other direction, again by the Yoneda Lemma it suffices to compute
Σ Σ−1◦Θ applied to idA⊗idSS−1R. But we have just seen that Θ(idSS−1R) =
idA and that Σ Σ−1(idA) = idSS−1R, which completes the proof. �

Proposition 4.10. A real C∗-algebra A is homotopy symmetric if and only
if the complexification AC is homotopy symmetric.

Proof. We assume that AC is homotopy symmetric (in the category of C∗-
algebras), so there is an asymptotic morphism ηA ∈ [[AC, AC ⊗C K]]C such
that idAC⊕ηA is null-homotopic through asymptotic morphisms of complex
C∗-algebras. Let c : A → AC be the standard inclusion and let r be the
homomorphism

r : AC ⊗C K→ A⊗R M2(R)⊗R KR.

Notice that r ◦ idAC ◦ c = idA ⊕ idA, since for any a ∈ A we have

(r ◦ idAC ◦ c)(a) =

(
a⊗ e 0

0 a⊗ e

)
.

By hypothesis, then, the composition r ◦ (idAC⊕ηA)◦c is null-homotopic.
On the other hand, we have

r ◦ (idAC ⊕ ηA) ◦ c = (r ◦ idAC ◦ c)⊕ (r ◦ ηA ◦ c)
= idA ⊕ idA ⊕ (r ◦ ηA ◦ c)

which shows that [[idA⊕(r◦ηA◦c)]] is an inverse for [[idA]] in [[A,A⊗KR]]R.
For the other direction, we have a semigroup homomorphism

θA,A : [[A,A⊗R KR]]R → [[AC, AC ⊗C K]]C .
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So if [[idA]] is invertible in the former, then it immediately follows that
θA,A([[idA]]) = [[idAC ]] is invertible in the latter. �

Corollary 4.11. The real C∗-algebras Ai are homotopy symmetric for all
0 ≤ i < 8.

Proof. For all i, we have that (Ai)C is isomorphic to one of the following
C∗-algebras: qC, qC⊗M2(C), SC, and SC⊗M2(C). From the comments at
the beginning of Section 5 of [11] we know that qC and SC are homotopy
symmetric; and from Lemma 5.1 of [11] we know that qC ⊗ Mn(C) and
SC ⊗Mn(C) are homotopy symmetric. Therefore Proposition 4.10 implies
that Ai is homotopy symmetric for all i. �

Lemma 4.12. Let D and B be real C∗-algebras, with D semiprojective.
Then:

(1) [D,B] ∼= [[D,B]].
(2) If B = lim

n→∞
Bn, then [D,B] ∼= lim

n→∞
[D,Bn].

Proof. Both of these results have proofs that carry over directly to the real
case from the complex case. The proofs in the complex case are found at
the beginning of Section 6 of [11] and as the proof to Corollary 15.1.3 of
[24], respectively. �

Theorem 4.13. For each integer i in the range 0 ≤ i < 8 and for any real
C∗-algebra B (not necessarily separable), there is a natural isomorphism

KOi(B) ∼= [Ai,K
R ⊗B] ∼= lim

n→∞
[Ai,Mn(B)].

If B is stable, then
KOi(B) ∼= [Ai, B].

Proof. First consider the case that B is separable. From Propositions 3.1
and 3.2 we have KCRT(Ai) ∼= Σ−iKCRT(R) for all i, so the Universal Coef-
ficient Theorem (Corollary 4.11 of [6]) implies that Ai is KK-equivalent to
S−iR. We note that the condition for the Universal Coefficient Theorem to
apply is that the complexification of Ai is in the bootstrap category of sepa-
rable nuclear C∗-algebras. This is easy to check since the complexifications
of these algebras are all stably isomorphic to a commutative C∗-algebra or
to qC. Furthermore, each Ai is semiprojective by Propositions 3.11 and 3.12.
Therefore,

KOi(B) ∼= KKO(S−iR, B)

∼= KKO(Ai, B)

∼= E(Ai, B) by Theorem 4.6 of [7]

∼= [[Ai,K
R ⊗B]] by Theorem 4.9

∼= [Ai,K
R ⊗B] by Lemma 4.12(1)

∼= lim
n→∞

[Ai,Mn(B)] by Lemma 4.12(2).



1168 JEFFREY L. BOERSEMA AND TERRY A. LORING

To address the general case, let Fi(B) = lim
n→∞

[Ai,Mn(B)] and consider

the natural homomorphism

αB : Fi(B)→ KOi(B)

defined by αB([φ]) = φ∗(ξi) where ξi is a generator of KOi(Ai) ∼= Z. This
homomorphism exists for all real C∗-algebras and is an isomorphism when
B is separable. In general, write B as the inductive limit B = lim

λ
Bλ where

{Bλ} is the net of all separable subalgebras of B. We leave it to the reader
to verify that Fi is continuous with respect to inductive limits, using the
fact that Ai is semiprojective. Then since both functors Fi and KOi are
continuous with respect to inductive limits and since αBλ is an isomorphism
for all λ, it follows that αB is an isomorphism. �

5. K-theory via unitaries — the even cases

In the next two sections, we develop pictures of all eight fundamental KO-
groups in terms of unitaries. We use the notation KOui for these functors
defined on the category of real C∗-algebras or (equivalently) the category of
C∗,τ -algebras. For i = 0, 1, we will write down the definition both in terms
of a real C∗-algebra A and in terms of a C∗,τ -algebra (A, τ). However for i 6=
0, 1, we will only consider KOui (A, τ) in the context of a C∗,τ -algebra(A, τ),
since that picture gives the most direct and consistent definitions for varying
values of i. For a real C∗-algebra A, one should consider the associated C∗,τ -
algebra (AC, τ). Thus KOui (A) = KOui (AC, τ).

In each case, we have a picture in terms of unitaries in matrix algebras over
A satisfying certain relations. In each case, we will prove that our picture
is a well-defined group and then prove that it is naturally isomorphic to
the standard version of K-theory. A reader who wishes to skip our detailed
development can see the final pictures summarized in Section 7, where we
also include a description of complex K-theory, KUi(A, τ).

5.1. KO0 via unitaries.

Definition 5.1. Let A be a unital real C∗-algebra. Let U (0)
∞ (A) be the set

of all unitaries u in ∪n∈NM2n(A) satisfying u2 = 1 (equivalently, unitaries

u that satisfy u = u∗). Let ∼0 be the equivalence relation on U (0)
∞ (A),

generated by

(1) u0 ∼0 u1 if ut ∈M2n(A) is a continuous path of self-adjoint unitaries
on [0, 1]; and

(2) u ∼0 ι(0)
n (u) for u ∈ M2n(A) where ι(0)

n : M2n(A) → M2n+2(A) is
given by

ι(0)
n (a) = diag

(
a, I(0)

)
where I(0) =

(
1 0
0 −1

)
.

Then we define KOu0 (A) = U (0)
∞ (A)/ ∼0, with a binary operation given by

[u] + [v] = [( u 0
0 v )] for u, v ∈ U (0)

∞ (A).
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In addition to the notation for I(0) given above, we will use

I(0)
n = diag(I(0), I(0), . . . , I(0)) ∈M2n(C).

Proposition 5.2. KOu0 (A) is a homotopy invariant functor from the cate-
gory of all unital C∗-algebras to the category of abelian groups. The inverse
of an element [u] ∈ KOu0 (A) is [−u].

Proof. The binary operation on KOu0 (A) is clearly associative and by def-

inition the element I(0) represents the identity.
Consider self-adjoint unitaries u ∈ M2n(A) and v ∈ M2m(A). Let w be

a unitary in M2n+2m(R) such that w ( u 0
0 v )w∗ = ( v 0

0 u ) and detw = 1. This
can be done by taking w to be a change of basis matrix corresponding to
a particular even permutation of the basis elements. There is then a path
of unitaries wt ∈ M2n+2m(R) such that w0 = 12n+2m and w1 = w. Then
wt ·( u 0

0 v )·w∗t is a self-adjoint unitary for all t showing that [u]+[v] = [v]+[u].
Let u ∈M2n(A) be a self-adjoint unitary. Let

rt =

(
cos((π/2)t) · 12n − sin((π/2)t) · 12n

sin((π/2)t) · 12n cos((π/2)t) · 12n

)
and let ut = rt · ( u 0

0 1 ) · r∗t be the path from
(
u 0
0 12n

)
to
(

12n 0
0 u

)
. Then using

the relation u2 = 12n, one can show that ut commutes with
(

12n 0
0 −u

)
. Hence

ut ·
(

12n 0
0 −u

)
gives a path in U (0)

∞ (A) from
(
u 0
0 −u

)
to
(

12n 0
0 −uu

)
=
(

12n 0
0 −12n

)
.

This last matrix in M4n(A) is equivalent to I
(0)
2n representing the identity

element in KOu0 (A), as shown in the proof of Proposition 5.3 below. �

Proposition 5.3. KOu0 (R) ∼= Z.

Proof. Consider the map φ : U (0)
∞ (k) → Z given by φ(u) = 1

2trace(u). If u
is a self-adjoint unitary, then u is unitarily equivalent to a diagonal matrix
with eigenvalues in {1,−1}. It follows that the range of φ is exactly Z.
Furthermore, since φ is continuous, is invariant under unitary equivalence,
and satisfies φ(u) = φ(ι(0)

n (u)); it follows that φ is well-defined on KOu0 (R).
Suppose now that u and v are self-adjoint unitaries with entries in R hav-

ing the same trace. We may assume that u and v have the same dimension by
perhaps replacing u with ι(0)

n (u) or replacing v with ι(0)
n (v). Let u = xvx∗

where x is a unitary in M2n(R). We can assume that x is in the same
component as the identity among unitaries in M2n(R). For if detx = −1,

we can replace u, v, x by ι(0)
n (u), ι(0)

n (v), ι(0)
n (x) in M2n+2(R) and note that

det ι(0)
n (x) = −detx.

Now let xt be a path of unitaries from 12n to x. Then ut = xtvx
∗
t is a

path of self-adjoint unitaries from v to u showing that [u] = [v]. The result
follows. �

Definition 5.4. Let A be any unital C∗-algebra. Then we define KOu0 (A) =

ker(λ∗) where λ : Ã→ R is the natural projection from the unitization of A
with kernel isomorphic to A.



1170 JEFFREY L. BOERSEMA AND TERRY A. LORING

We note that the formula in this definition is valid also in case A is
unital. Therefore we have a picture in which any element of KOu0 (A) is

represented by a self-adjoint unitary u in M2n(Ã) such that trace(λ2n(u)) =
0. The following proposition makes clear the picture of KOu0 (A) that we are
presenting.

Proposition 5.5. Let A be a real C∗-algebra. Any element of KOu0 (A) can

be represented as [u] where u ∈ M2n(Ã) is a self-adjoint unitary satisfying

λ(u) = I(0)
n .

Proof. Suppose u is a self-adjoint unitary in M2n(Ã) and λ∗([u]) = 0 in
KOu0 (R). Then trace(λ(u)) = 0. So there is a unitary v ∈M2n(R) such that

vλ(u)v∗ = I(0)
n . Let u′ = vuv∗, so that λ(u′) = I(0)

n . Furthermore, as in
the proof of Proposition 5.3 we can choose v so that det v = 1 (possibly by
increasing n). Then there is a path of unitaries vt in M2n(R) from v to 12n;
so ut = vtuv

∗
t is a path of self-adjoint unitaries from u′ to u showing that

[u′] = [u]. �

Theorem 5.6. Let A be a real C∗-algebra. Then there is a natural isomor-
phism θ : KOu0 (A)→ KO0(A). The isomorphism θ is given by

θ([u]) =
[

1
2(u+ 12n)

]
− [1n]

for any self-adjoint unitary u ∈M2n(Ã).

Proof. It suffices to consider the case where A is unital and u ∈ M2n(A).
The reader can check that if u is a self-adjoint unitary, then 1

2(u + 12n) is
a projection in M2n(A), and that if ut is a path of self-adjoint unitaries in
M2n(A), then 1

2(ut + 12n) is a path of projections in M2n(A). For θ to be
well-defined, we also have

θ
([(

u 0 0
0 1 0
0 0 −1

)])
=
[

1
2

(
u+12n 0 0

0 2·1 0
0 0 0

)]
− [1n+1]

=

[(
1
2 (u+12n) 0 0

0 1 0
0 0 0

)]
− [1n+1]

=
[

1
2(u+ 12n)

]
− [1n]

= θ([u]).

To show that θ is a group homomorphism, we check that for u ∈M2m(A)
and v ∈M2n(A) we have

θ ([( u 0
0 v )]) =

[
1
2 (( u 0

0 v ) + 12m+2n)
]
− [1m+n]

=
[

1
2(u+ 12m)

]
− [1m] +

[
1
2(v + 12n)

]
− [1n]

= θ([u]) + θ([v]).

It remains to show that θ is a bijection. To show that θ is onto it suffices
to show that for any projection p ∈Mn(A), the element [p] ∈ KO0(A) is in
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the range of θ. In fact, taking u =
(

2p−1n 0
0 1n

)
∈M2n(A), we have

θ([u]) =
[(

p 0
0 1n

)]
− [1n] = [p].

To show that θ is one-to-one, suppose that u and v are unitaries such that
θ([u]) = θ([v]). We can assume that u, v ∈ M2n(A) for some n. Then we
have [1

2(u+12n)] = [1
2(v+12n)] in KO0(A). It follows that there is an integer

m such that the projections p = 1
2(u+12n)⊕1m and q = 1

2(v+12n)⊕1m are
homotopic in M2n+2m(A). Up to a homotopy of projections in M2n+2m(A),
we can now write p and q in the form

p = 1
2

(
diag(u, 1m,−1m) + 12(n+m)

)
∼ 1

2

(
diag

(
u,
(

1 0
0 −1

)
, . . . ,

(
1 0
0 −1

))
+ 12(n+m)

)
q = 1

2

(
diag(v, 1m,−1m) + 12(n+m)

)
∼ 1

2

(
diag

(
v,
(

1 0
0 −1

)
, . . . ,

(
1 0
0 −1

))
+ 12(n+m)

)
.

Then 2p − 12(n+m) and 2q − 12(n+m) are homotopic through unitaries that

satisfy u2 = u, so it follows that

diag
(
u,
(

1 0
0 −1

)
, . . . ,

(
1 0
0 −1

))
∼ diag

(
v,
(

1 0
0 −1

)
, . . . ,

(
1 0
0 −1

))
where there are m copies of the block

(
1 0
0 −1

)
along the diagonal. Therefore

[u] = [v] in KOu0 (A). �

For elements h, k, x in a C∗-algebra A, recall from Section 3 that

T (h, x, k) =

(
1− h x∗

x k

)
,

U(h, x, k) = 2T − 12 =

(
1− 2h 2x∗

2x 2k − 1

)
,

which are both elements in M2(Ã). In particular, let

u0 = U(h0, x0, k0) =


1− 2t 0 0 2

√
t− t2

0 1 0 0
0 0 −1 0

2
√
t− t2 0 0 2t− 1

 ∈M2(Ã0)

where A0 is defined as in Section 3.

Proposition 5.7. The class [u0] is a generator of KOu0 (Ai) ∼= Z.

Proof. Evidently, u0 is a self-adjoint unitary. We write

Ã0 = {f : [0, 1]→M2(R) | f(0) = ( t 0
0 t ) , f(1) = ( r 0

0 s ) , r, s, t ∈ R}

and the map λ : Ã0 → R coincides with evaluation at 0. Since we have

λ2(u0) = I(0) (where λ2 : M2(Ã0) → M2(R)), we know [u0] is a class in
KOu0 (A0).

Now, we have the map ev1 : Ã0 → R2 which is evaluation at t = 1 and we
have π1 : R2 → R which is projection onto the first coordinate. It follows from
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the calculation of KO∗(A0) in Section 3 that the map φ = π1 ◦ ev1 : Ã0 → R
is an isomorphism on standard K-theory and hence on KOu0 . We calculate
that φ(u0) = −12, which is a generator of KOu0 (R) = Z. �

Proposition 5.8. For any real C∗-algebra A, the map [φ] 7→ φ∗[u0] defines
a natural isomorphism

Θ: [A0, A⊗R KR]→ KOu0 (A).

To be precise, the formula for Θ is

Θ([φ]) = (φ2)∗([u0]) = [φ2(u0)]

where φ2(u0) ∈M2(Ã).
We note that it already follows from Theorems 4.13 and 5.6 that the

groups in question are isomorphic. However, we give a direct proof here
since it establishes the concrete formula for the isomorphism and since it
will serve as a model for the proof that KOu2 (A) ∼= [A2, A⊗R KR] in the next
section.

Proof. Since [A0,K
R ⊗C A] ∼= lim

n→∞
[A0,Mn(A)] it suffices to define Θ for

φ : A0 → Mn(A). To show that the formula above gives a well-defined
function Θ, we first mention that φ∗([u0]) does not depend on the homotopy
class of φ. Here let us show more carefully that the homomorphisms

φ : A0 →Mn(A) and φ′ =
(
φ 0
0 0

)
: A0 →Mn+1(A)

will give the same element of KOu0 (A). We have

φ2(u0) = U(φ(h0), φ(x0), φ(k0)) =

(
1n − 2φ(h0) 2φ(x0)∗

2φ(x0) 2φ(k0)− 1n

)
and

φ′2(u0) = U(φ′(h0), φ′(x0), φ′(k0))

=


1n − 2φ(h0) 0 2φ(x0)∗ 0

0 1 0 0
2φ(x0) 0 2φ(k0)− 1n 0

0 0 0 −1


showing that [φ2(u0)] = [φ′2(u0)] in KOu0 (A), hence Θ([φ]) = Θ([φ′]). There-
fore Θ is well-defined.

Now suppose that we have an element [u] ∈ KOu0 (A) where u ∈M2n(Ã) is
a unitary that satisfies u∗ = u and λ∗([u]) = 0 in KOu0 (R). After conjugating
by a unitary in M2n(R) we can assume that λ(u) =

( 1n 0
0 −1n

)
and there exists

h, k, x ∈Mn(A) such that

u = U(h, x, k) =

(
1n − 2h 2x∗

2x 2k − 1n

)
.
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Since it is not guaranteed that h and k are orthogonal, we define the elements

(10) h′ =

(
h 0
0 0

)
, k′ =

(
0 0
0 k

)
, and x′ =

(
0 0
x 0

)
in M2n(A). Then u represents the same element of KOu0 (A) as the self-
adjoint unitary

u′ := U(h′, x′, k′) =


1n − 2h 0 0 2x∗

0 1n 0 0
0 0 −1n 0

2x 0 0 2k − 1n

 ∈M4n(Ã).

Since h′ and k′ are orthogonal and U(h′, x′, k′) is a unitary, by Proposi-
tion 3.3 there is a homomorphism φu : A0 → M2n(A) such that h0, k0, and
x0 map to h′, k′, and x′ respectively. Then

Θ([φu]) = [φu(U(h0, x0, k0))] = [u′] = [u]

showing that Θ is surjective.
In fact, we show that the construction of φu in the previous paragraph

defines a homomorphism Φ from KOu0 (A) to [A0, lim
n→∞

Mn(A)]; and that Φ is

inverse to Θ. First of all, if u and v are self-adjoint unitaries in M2n(Ã) that
are homotopic through self-adjoint unitaries satisfying λ(ut) =

( 1n 0
0 −1n

)
,

then the construction in the previous paragraph results in a homotopy be-

tween φu and φv. Now let u ∈ M2n(Ã) and let v =
(
u 0 0
0 1 0
0 0 −1

)
∈ M2n+2(Ã).

We show that φu and φv are equivalent elements of [A0,K
R ⊗R A]. If we

write u =
(

1n−2h 2x∗

2x 2k−1n

)
then we can write

v =


1n − 2h 2x∗ 0 0

2x 2k − 1n 0 0
0 0 1 0
0 0 0 −1

 .

In order to have λ(v) of the right form, we conjugate v by a unitary in
M2n+2(R) and we write instead

v =


1n − 2h 0 0 2x∗

0 1 0 0
0 0 −1 0

2x 0 0 2k − 1n



=

1n+1 − 2

(
h 0
0 0

)
2

(
0 x∗

0 0

)
2

(
0 0
x 0

)
2

(
0 0
0 k

)
− 1n+1

 .
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Hence, φv will map the elements h0, k0, and x0, respectively, to the elements

h′v =


h 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , k′v =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 k

 , and x′v =


0 0 0 0
0 0 0 0
0 0 0 0
x 0 0 0


in M2n+2(Ã) and thus we see that φv is unitary equivalent to

(
φu 0
0 0

)
. It

follows that Φ is well-defined.
We have already seen above that Θ ◦ Φ is the identity on KOu0 (A). To

see that Φ ◦ Θ is the identity on [A0,K
R ⊗R A], let φ : A0 → Mn(A) be a

given homomorphism. Let h = φ(h0), x = φ(x0), and k = φ(k0). Then
Θ(φ) = [φ2(u0)] = [U(h, x, k)]. Then the reader can verify that (Φ ◦ Θ)(φ)
carries h0, x0, and k0 to h′, x′, and k′ in M2n(A) as given by Equations (10).
We will show that

(
φ 0
0 0

)
and (Φ ◦ Θ)(φ) are homotopic by producing a

homotopy of triples {ht, xt, kt} from {h, x, k} to {h′, x′, k′} in M2n(A) that
satisfy (for each t) the conditions that htkt = 0 and that U(ht, xt, kt) is a

unitary in M4n(Ã). For t ∈ [0, 1], let

rt =

(
cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
.

Then let ht = h′, kt = rtk
′r∗t , and xt = rtx

′. The reader can verify directly
that htkt = 0 and that U(ht, xt, kt) is a unitary for all t since

U(ht, xt, kt) =

(
12n 0
0 rt

)
· U(h′, x′, k′) ·

(
12n 0
0 r∗t

)
. �

We end this section by giving a rephrasing of the definition of KOu0 in
the context of C∗,τ -algebras. This gives a description of KOu0 (A, τ) that is
parallel to the forthcoming descriptions of KOuj (A, τ) for all values of j.

Definition 5.9. Let (A, τ) be a unital C∗,τ -algebra. Let U (0)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NM2n(A) satisfying u2 = 1 and uτ = u. Let ∼0

be the equivalence relation on U (0)
∞ (A, τ), generated by

(1) u0 ∼0 u1 if ut ∈M2n(A) is a continuous path of self-adjoint unitaries
satisfying uτt = ut; and

(2) u ∼0 ι(0)
n (u) for u ∈ M2n(A) where ι(0)

n : M2n(A) → M2n+2(A) is
given by

ι(0)
n (a) = diag

(
a, I(0)

)
where I(0) =

(
1 0
0 −1

)
.

Then we define KOu0 (A, τ) = U (0)
∞ (A, τ)/ ∼0, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (0)

∞ (A, τ).

Since the sets U (0)
∞ (A, τ) and U (0)

∞ (Aτ ) are identical and have the same
equivalence relation, the following is immediate.
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Proposition 5.10. Let (A, τ) be a C∗,τ -algebra and let

Aτ = {a ∈ A | aτ = a∗}
be the associated real C∗-algebra. Then there is an isomorphism

KOu0 (A, τ) ∼= KOu0 (Aτ ).

5.2. KO2 via unitaries. In this section, we will produce the definition of
KOu2 (A, τ) and we will prove that

KOu2 (A, τ) ∼= [(qC, ]), (K⊗A, τ)] ∼= [A2,K
R ⊗Aτ ].

From Theorem 4.13, we know that [A2,K
R ⊗ Aτ ] ∼= KO2(A). This will

then imply that KOu2 (A) ∼= KO2(A) (where the latter is defined in terms of
projections in the double suspension).

Definition 5.11. Let (A, τ) be a unital C∗,τ -algebra. Let U (2)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NM2n(A) satisfying u2 = 1 and uτ = −u. Let ∼2

be the equivalence relation on U (2)
∞ (A, τ), generated by

(1) u0 ∼2 u1 if ut ∈M2n(A) is a continuous path of self-adjoint unitaries
satisfying uτt = −ut; and

(2) u ∼2 ι
(2)
n (u) for u ∈ M2n(A) where ι(2)

n : M2n(A, τ) → M2n+2(A) is
given by

ι(2)
n (a) = diag(a, I(2)) where I(2) =

(
0 i
−i 0

)
.

Then we define KOu2 (A, τ) = U (2)
∞ (A, τ)/ ∼2, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (2)

∞ (A, τ).

Proposition 5.12. KOu2 (A, τ) is a homotopy invariant functor from the
category of unital C∗,τ -algebras to the category of abelian groups.

Proof. We note that the set U (2)
∞ (A, τ) is closed under conjugation by el-

ements in O(2n). Furthermore, since SO(2n) is connected, conjugation by
any element in SO(2n) induces the identity automorphism on KOu2 (A, τ).

For any u, v ∈ U (2)
∞ (A, τ), with u ∈M2m(A) and v ∈M2n(A) we have(

0 12n

12m 0

)(
u 0
0 v

)(
0 12m

12n 0

)
=

(
v 0
0 u

)
.

Since
(

0 12n
12m 0

)
∈ SO(2n+ 2m), it follows that [u] + [v] = [v] + [u] .

By definition the element [I(2)] is an identity for the semigroup. We defer
the proof that there are inverses until Proposition 5.14 below. �

Proposition 5.13. KOu2 (R) = KOu2 (C, id) ∼= Z2.

Proof. Let u ∈ M2n(C) be a self-adjoint, skew-symmetric unitary. As in

Section 4 of [27], there is a factorization u = x ·diag(I(2), . . . , I(2)) ·xTr where
x ∈ O(2n). Then depending on whether x ∈ SO(2n) or not, we can find a
path from x either to 12n or to diag(12n−1,−1). Therefore, we either have

u ∼2 diag(I(2), . . . , I(2), I(2)) or u ∼2 diag(I(2), . . . , I(2),−I(2)).
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Thus there are at most two equivalence classes of U (2)
∞ (C, id). Further-

more, I(2) �(2) −I(2) as the two elements are distinguished by the value of
the Pfaffian (see Theorem 4.1 of [27]). Since

diag(I(2), I(2)) ∼2 diag(−I(2),−I(2))

it follows that KOu2 (C, id) ∼= Z2. �

The proof above indicates that two self-adjoint skew-symmetric unitaries
in M2n(C) represent the same element of KOu2 (C, id) if and only if they have
the same Pfaffian (although there are different conventions regarding how
the Pfaffian is actually defined, especially when n is odd). We establish the

notation I(2)
n = diag(I(2), . . . , I(2)) ∈M2n(C) for the standard representative

of the identity in KOu2 (C, id).

Proposition 5.14. Every element of KOu2 (A, τ) has an inverse. If u ∈
M2n(A) and n is even, then the inverse of [u] is [−u].

Proof. Let A be unital and let u be a self-adjoint, skew-symmetric unitary
in M2n(A). Then the matrix

ut =

(
cos(πt/2) · u i sin(πt/2) · 12n

i sin(πt/2) · 12n − cos(πt/2) · u

)
for t ∈ [0, 1], gives a continuous path of self-adjoint skew-symmetric unitaries
from

(
u 0
0 −u

)
to
(

0 i·12n
−i·12n 0

)
. Depending on the parity of n, the latter matrix

is similar via conjugation by a special orthogonal matrix either to I
(2)
2n or

to diag(I
(2)
2n−1,−I

(2)). So in KOu2 (A, τ), we either have [u] + [−u] = 0 or

[u] + [−u] + [−I(2)] = 0. �

Definition 5.15. For a C∗,τ -algebra (A, τ), we define KOu2 (A, τ) = ker(λ∗)

where λ : Ã→ R is the natural projection on the unitization of A.

Proposition 5.16. Let A be a real C∗-algebra. Any element of KOu2 (A)

can be represented as [u] where u ∈ M2n(Ã) is a unitary satisfying uτ = u

and λ(u) = I(2)
n .

Proof. Let u be a skew-symmetric self-adjoint unitary in M2n(Ã) such that

[λ(u)] = 0 in KOu2 (C, id). Then λ(u) = xI(2)
n xTr for some x ∈ SO(2n). Let

v = xTrux ∈M2n(Ã). Then u ∼2 v and λ(v) = I(2)
n as desired. �

Recall from Section 2 that there is an isomophism

(M2(A), τ) ∼= (M2(A), τ̃),

where τ̃ is an alternate form of the transpose operator on matrices. Thus
one can make the following alternative definition of KOu2 (A) using τ̃ in place
of τ .



UNITARY PICTURE OF K-THEORY 1177

Definition 5.17. Let (A, τ) be a unital C∗,τ -algebra. Let Ũ (2)
∞ (A, τ) be

the set of all unitaries u in ∪n∈NM2n(A) satisfying u2 = 1 and uτ̃ = −u.

Let ∼2 be the equivalence relation on Ũ (2)
∞ (A, τ), generated by

(1) u0 ∼2 u1 if ut ∈M2n(A) is a continuous path of self-adjoint unitaries

satisfying uτ̃t = −ut; and

(2) u ∼2 ι(2)
n (u) for u ∈ M2n(A) where ι(2)

n : M2n(A) → M2n+2(A) is
given by

ι(2)
n (a) = diag(a, 1,−1).

Then we define K̃Ou2 (A, τ) = Ũ (2)
∞ (A, τ)/ ∼2, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ Ũ (2)

∞ (A, τ).

There is a natural isomorphism KOu2 (A, τ) ∼= K̃Ou2 (A, τ) given by conju-
gation by the matrix W introduced in Section 2. This model of KOu2 (A, τ)
will be used only in this section to obtain our results.

We set a different convention for the action of the involution τ̃2n = T̃r⊗τn
on M2n(A) (similar to our discussion of the action of ] and ]̃ in Section 2).
We use the formula (

x y
z w

)τ̃
=

(
wτn yτn

zτn xτn

)
where x, y, z, w ∈Mn(A). This convention changes the formula for

ι(2)
n : M2n(A)→M2n+2(A)

given in Definition 5.17. Instead of the formula there we have

ι(2)
n

(
x y
z w

)
=


x 0 y 0
0 1 0 0
z 0 w 0
0 0 0 −1


for x, y, z, w ∈Mn(A). With this notation, if x ∈M2n(A) satisfies xτ̃ = −x,

then the element y = ι(2)
n (x) also satisfies yτ̃ = −y. With this notation, the

trivial element of K̃Ou2 (R) ∼= Z2 is represented by
(

1n 0
0 −1n

)
for any n.

Theorem 5.18. For any C∗,τ -algebra (A, τ), there is a natural isomorphism

[(qC, ]), (K⊗A, τ)] ∼= KOu2 (A).

Proof. Assume A is unital. We will prove that there is an isomorphism

between [(qC, ]), (KR⊗A, τ)] and K̃Ou2 (A, τ) using a similar proof to that of
Proposition 5.8. Let

u0 = U(h0, x0, k0) =


1− 2t 0 0 2

√
t− t2

0 1 0 0
0 0 −1 0

2
√
t− t2 0 0 2t− 1

 ∈M2(q̃C)
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and note that we have u]⊗T̃r
0 = −u0; so [u0] ∈ KOu2 (qC, ]). If φ : (qC, ]) →

(Mn(A), τ) is a C∗,τ -algebra homomorphism, then φ(u0) ∈ Ũ (2)
∞ (A, τ). We

define Θ(φ) = [φ(u0)] ∈ K̃Ou2 (A, τ). To show this is well-defined, we need
to consider φ′ =

(
φ 0
0 0

)
.

We can now check that as in the proof of Proposition 5.8,

φ2(u0) =

(
1n − 2φ(h0) 2φ(x0)∗

2φ(x0) 2φ(k0)− 1n

)
,

φ′2(u0) =


1n − 2φ(h0) 0 2φ(x0)∗ 0

0 1 0 0
2φ(x0) 0 2φ(k0)− 1n 0

0 0 0 −1

 .

Thus we have Θ(φ′(u0)) = ι(2)
n (φ(u0)), showing that Θ is well defined.

To construct an inverse to Θ (as in the proof of Proposition 5.8), suppose

u ∈ M2n(Ã) is a unitary satisfying u2 = 1, uτ̃ = −u, and λ(u) =
(

1n 0
0 −1n

)
.

Then there exist h, x, k ∈Mn(A) such that

u = U(h, x, k) =

(
1n − 2h 2x∗

2x 2k − 1n

)
.

The conditions that u = u∗ and uτ̃ = −u are equivalent to the conditions
that h and k are self-adjoint, they are interchanged by τ , and xτ = −x.

We now construct modified elements h′, k′, x′ that satisfy the same con-
ditions as well as the condition h′k′ = 0. Let

W2n = 1√
2

(
i · 1n 1n
1n i · 1n

)
∈M2n(C)

(generalizing the definition of W from Section 2) and define

h′ = W2n

(
h 0
0 0

)
W ∗2n = 1

2

(
h ih
−ih h

)
,

k′ = W ∗2n
(
k 0
0 0

)
W2n = 1

2

(
k −ik
ik k

)
,

x′ = W ∗2n ( x 0
0 0 )W ∗2n = 1

2

( −x −ix
−ix x

)
,

in M2n(A). We leave it to the reader to check that h′ and k′ are self-
adjoint, that h′k′ = 0, that (h′)τ = k′, and that (x′)τ = −x′. The following
calculation shows that u′ = U(h′, x′, k′) is a unitary:

u′ =
(

12n−2h′ 2(x′)∗

2x′ 2k′−12n

)
=

(
12n−2W2n

(
h 0
0 0

)
W ∗2n 2W2n

(
x∗ 0
0 0

)
W2n

2W ∗2n(x 0
0 0 )W ∗2n 2W ∗2n

(
k 0
0 0

)
W2n−12n

)

=
(
W2n 0

0 W ∗2n

)( 12n−2
(
h 0
0 0

)
2
(
x∗ 0
0 0

)
2(x 0

0 0 ) 2
(
k 0
0 0

)
−12n

)(
W ∗2n 0

0 W2n

)
=
(
W2n 0

0 W ∗2n

)
· ι(2)(u) ·

(
W ∗2n 0

0 W2n

)
.
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where ι(2) : M2n(A)→M4n(A) is the composition ι
(2)
2n−1 . . . ι

(2)
n+1ι

(2)
n and

ι(2)(u) =


1n − 2h 0 2x∗ 0

0 1n 0 0
2x 0 2k − 1n 0
0 0 0 −1n

 .

Thus u′ = U(h′, x′, k′) is a unitary that satisfies

u′ = (u′)∗ and (u′)τ̃ = −u′.

By Proposition 3.3, there is a homomorphism

φu : (qC, ])→ (M2n(A), τ)

such that φu(h0) = h′, φu(k0) = k′, and φu(x0) = x′. Thus (φu)2(u0) = u′.
We claim that u ∼2 u′, which will imply that Θ(φu) = [u] as desired.

Specifically, we will show that u′ is homotopic to ι(2)(u) in M4n(A). The

previous calculation shows that u′ = vι(2)(u)v∗ where v =
(
w 0
0 w∗

)
. So it

suffices to show that vxv∗ ∼2 x for any self-adjoint unital x ∈ M4n(A)

satisfying xτ̃ = −x. Let

W4n = 1√
2

(
i · 12n 12n

12n i · 12n

)
.

For any x ∈M4n(A) we have xτ̃ = −x if and only if

(W4nxW
∗
4n)τ = −(W4nxW

∗
4n).

Then as U (2)(A, τ) is closed under conjugation by SO(4n), so Ũ (2)(A, τ) is
closed under conjugation by elements in

S̃O(4n) = W ∗4nSO(4n)W4n.

Now v ∈ S̃O(4n) since

W4nvW
∗
4n =

1√
2


0 1 −1 0
1 0 0 −1
1 0 0 1
0 1 1 0

 ∈ SO(4n).

Since SO(4n) is connected, so is S̃O(4n). Therefore there is path in S̃O(4n)
from v to the identity which proves that vxv∗ ∼2 x.

This completes the proof that Θ(φu) = [u]. The rest of the proof consists
in showing that the construction described is actually an inverse to Θ. This
proceeds as in the proof of Proposition 5.8. �
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5.3. KO4 via unitaries.

Definition 5.19. Let (A, τ) be a unital C∗,τ -algebra. Let U (4)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NM4n(A) satisfying u2 = 1 and u]⊗τ = u. Let

∼4 be the equivalence relation on U (4)
∞ (A, τ), generated by

(1) u0 ∼4 u1 if ut ∈M4n(A) is a continuous path of self-adjoint unitaries

satisfying u]⊗τt = ut; and

(2) u ∼4 ι(4)
n (u) for u ∈ M4n(A) where ι(4)

n : M4n(A) → M4n+4(A) is
given by

ι(4)
n (a) = diag(a, I(4)) where I(4) = diag(1, 1,−1,−1).

Then we define KOu4 (A, τ) = U (4)
∞ (A, τ)/ ∼4, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (0)

∞ (A, τ).

In the above definition, the formulas for ι(4)
n , for I(4), and for addition

implicitly assume the particular convention for the action of the involution
]⊗ τ on M4n(A) as discussed in Section 2. Under this convention, the addi-

tion formula and the formula for ι(4)
n in Definition 5.19 preserve membership

in U (4)
∞ (A).

Proposition 5.20. If (A, τ) is a unital C∗,τ -algebra, then

KOu4 (A, τ) ∼= KO4(A, τ).

In particular, KOu4 (C, id) = Z.

Proof. An element of U (4)
∞ (A, τ) is given by a self-adjoint unitary u ∈

M2(C)⊗M2n(A) that satisfies u]⊗τ = u. This is the same as an element of

U (0)
∞ (M2(C)⊗A, ]⊗ τ). Therefore U (4)

∞ (A, τ) ∼= U (0)
∞ (M2(C)⊗A, ]⊗ τ) and

hence KOu4 (A, τ) ∼= KOu0 (M2(C)⊗A, ]⊗ τ).
As a special case of the Künneth formula (the Main Theorem of [5]), for

a real C∗-algebra A we know that KOn(A) ∼= KOn+4(H ⊗ A). The same
statement in terms of C∗,τ -algebras is that

KOn(A, τ) ∼= KOn+4(M2(C)⊗A, ]⊗ τ).

Combining this with Theorem 5.6,

KOu4 (A, τ) ∼= KOu0 (M2(C)⊗A, ]⊗ τ)

∼= KO0(M2(C)⊗A, ]⊗ τ)

∼= KO4(A, τ). �

The identity element of KOu4 (C, id) ∼= Z is represented by I(4) ∈M4(C) or,

more generally, by I(4)
n = diag(I(4), . . . , I(4)) ∈ M4n(C). The isomorphism

KOu4 (C, id)→ Z can be written as [u] 7→ 1
4trace(u).

Theorem 5.21. KOu4 (A, τ) is a homotopy invariant functor from the cat-
egory of unital C∗,τ -algebras to the category of abelian groups. The inverse
of an element [u] in KOu4 (A, τ) is given by [−u].



UNITARY PICTURE OF K-THEORY 1181

Proof. The first statement follows immediately from Proposition 5.20. The
statement about inverses follows from Proposition 5.2 and the statement in
the proof of Proposition 5.20 that U (4)

∞ (A, τ) ∼= U (0)
∞ (M2(C)⊗A, ]⊗ τ). �

Definition 5.22. Let (A, τ) be any C∗,τ -algebra. Then we define

KOu4 (A, τ) = ker(λ∗)

where λ∗ : KOu4 (Ã, τ)→ KOu4 (C, id).

Combining Theorem 5.21 with this definition gives the following.

Theorem 5.23. If (A, τ) is any C∗,τ -algebra, then KOu4 (A, τ) ∼= KO4(A, τ).

Theorem 5.24. Let (A, τ) be a C∗,τ -algebra. Any element of Ku
4 (A, τ) can

be represented as [u] where u ∈ Mn(Ã) satisfies u2 = 1, u]⊗τ = u, and

λ∗(u) = I(4)
n .

Proof. Consider the following commutative diagram in which each row is
a short exact sequence and g is the isomorphism described in the proof of
Proposition 5.20.

KOu0 (M2(C)⊗A, ]⊗ τ) //

id
��

KOu0 ((M2(C)⊗A)∼, ]⊗ τ)
λ∗ //

k∗
��

KOu0 (C, id)

ι∗

��

KOu0 (M2(C)⊗A, ]⊗ τ) //

g

��

KOu0 (M2(C)⊗ Ã, ]⊗ τ)
λ∗ //

g
��

KOu0 (M2(C), ])

g

��

KOu4 (A, τ) // KOu4 (Ã, τ)
λ∗ // KOu4 (C, id).

It follows from the diagram that any element of KOu4 (A, τ) can be written
as gk∗([u]) where [u] ∈ KOu0 ((M2(C) ⊗ A)∼, ] ⊗ τ) and λ∗([u]) = 0. Using
Proposition 5.5, we can take u ∈ M2n((M2(C) ⊗ A)∼) such that u2 = 1,

u]⊗τ = u, and λ(u) = I
(0)
2n . Then v = gk(u) ∈ M4n(Ã) satisfies v2 = 1,

v]⊗τ = v, and λ(v) = I(4)
n as desired. �

5.4. KO6 via unitaries.

Definition 5.25. Let (A, τ) be a unital C∗,τ -algebra. Let U (6)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NM2n(A) satisfying u2 = 1 and u]⊗τ = −u. Let

∼6 be the equivalence relation on U (6)
∞ (A, τ), generated by

(1) u0 ∼6 u1 if ut ∈M2n(A) is a continuous path of self-adjoint unitaries

satisfying u]⊗τt = ut; and

(2) u ∼6 ι(4)
n (u) for u ∈ M2n(A) where ι(6)

n : M2n(A) → M2n+2(A) is
given by

ι(6)
n (a) = diag(a, I(6)) where I(6) =

(
0 i
−i 0

)
.

Then we define KOu6 (A, τ) = U (6)
∞ (A, τ)/ ∼6, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (0)

∞ (A, τ).
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If, in the definition above, we only used unitaries in M4n(A), then it would
be clear that KOu6 (A, τ) is isomorphic to KOu2 (M2(C)⊗A, ]⊗ τ). However,
the allowed inclusion of unitaries in M2n(A) does not change the group in the
limit. Therefore, the following results follow a development that is similar
to that for KOu4 (A, τ).

Proposition 5.26. If (A, τ) is a unital C∗,τ -algebra, then

KOu6 (A, τ) ∼= KO6(A, τ).

In particular, KOu6 (C, id) = 0.

Proposition 5.27. KOu6 (A, τ) is a homotopy invariant functor from the
category of unital C∗,τ -algebras to the category of abelian groups. The in-
verse of an element [u] in KOu6 (A, τ) is given by [−u] if u ∈M2n(A).

Definition 5.28. Let (A, τ) be any C∗,τ -algebra. Then we define

KOu6 (A, τ) = ker(λ∗)

where λ∗ : KOu6 (Ã, τ)→ KOu6 (C, id).

Proposition 5.29. If (A, τ) is any C∗,τ -algebra, then

KOu6 (A, τ) ∼= KO6(A, τ).

Proposition 5.30. Let (A, τ) be a C∗,τ -algebra. Any element of Ku
6 (A, τ)

can be represented as [u] where u ∈M4n(Ã) satisfies u2 = 1, u]⊗τ = u, and

λ∗(u) = I(6)
n .

6. K-theory via unitaries — the odd cases

6.1. KO1 via unitaries. The following definitions and theorems represent
the standard development of KO1(A) as in Chapter 8 of [34] for the complex
case. They are included here for reference and terminology; and the proofs
will be omitted as appropriate.

Definition 6.1. Let A be a real unital C∗-algebra. Let U (1)
∞ (A) be the set

of all unitaries u in ∪n∈NMn(A). Let ∼1 the equivalence relation on U (1)
∞ (A),

generated by

(1) u0 ∼1 u1 if ut ∈Mn(A) is a continuous path of unitaries for t ∈ [0, 1];
and

(2) u ∼1 ι
(1)
n (u) for u ∈ Mn(A) where ι(1)

n : Mn(A) → Mn+1(A) is given
by

ι(1)
n (a) = ( a 0

0 1 ) = diag(a, 1).

Then we define KOu1 (A) = U (1)
∞ (A)/ ∼1, with a binary operation given by

[u] + [v] = [( u 0
0 v )] for u, v ∈ U (1)

∞ (A).

Proposition 6.2. KOu1 (A) is a homotopy invariant functor from the cate-
gory of unital C∗-algebras to the category of abelian groups. The inverse of
an element [u] in KOu1 (A) is given by [u∗].



UNITARY PICTURE OF K-THEORY 1183

Proposition 6.3. KOu1 (R) ∼= Z2. The isomorphism KOu1 (R)→ Z2 is given
by [u] 7→ det(u).

Definition 6.4. Let A be any unital C∗-algebra. Then we define KOu1 (A) =

ker(λ∗) where λ : Ã→ R is the natural projection from the unitization of A
with kernel isomorphic to A.

Proposition 6.5. Let A be a real C∗-algebra. Any element of KOu1 (A) can

be represented as [u] where u ∈Mn(Ã) is a unitary satisfying λ(u) = 1n.

Proof. Let u ∈ Mn(Ã) be a unitary element satisfying λ∗([u]) = 0 ∈
KOu1 (R). This implies that det(λ(u)) = 1 so there is a path ut of uni-
taries in Mn(R) such that u0 = 1n and u1 = λ(u). Then vt = u(ut)

∗ is a

path of unitaries in Mn(Ã) such that v0 = u and λ(v1) = λ(u)u∗1 = 1n. �

Proposition 6.6. For any real C∗-algebra there is an isomorphism

Γ: KOu1 (A)→ KOu0 (SA)

given as follows. Let u ∈ Mn(Ã) be a unitary, satisfying λ(u) = 1n. Let

vt ∈ M2n(Ã) be a continuous path of unitaries such that v0 = 12n, v1 =
diag(u, u∗), and λ(vt) = 12n for all t ∈ [0, 1]. Then

Γ([u]) =
[
2vt
(

1n 0
0 0

)
v∗t − 12n

]
.

Proof. There is an isomorphism γ : KOu1 (A)→ KO0(SA) given by

γ([u]) =
[
v
(

1n 0
0 0

)
v∗
]
− [1n]

where v is as in the statement of the theorem above. This is well-known in
the complex case (see for example Theorem 10.1.3 of [34]) and works the
same in the real case. Then the isomorphism Γ is given by Γ = Θ ◦ γ where
Θ is from Theorem 5.6. �

Corollary 6.7. For any real C∗-algebra A, there is a natural isomorphism
KOu1 (A) ∼= KO1(A).

We end this section by giving a rephrase of the definition of KOu1 in the
context of a C∗,τ -algebra. This gives a description of KOu1 (A, τ) that is
parallel to the forthcoming descriptions of KOuj (A, τ) for all values of j.

Definition 6.8. Let (A, τ) be a unital C∗,τ -algebra. Let U (1)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NMn(A) satisfying uτ = u∗. Let ∼1 be the

equivalence relation on U (1)
∞ (A, τ), generated by

(1) u0 ∼1 u1 if ut ∈ Mn(A) is a continuous path of unitaries satisfying
uτt = u∗t ; and

(2) u ∼1 ι
(1)
n (u) for u ∈ Mn(A) where ι(1)

n : Mn(A) → Mn+1(A) is given
by

ι(1)
n (a) = diag (a, 1) .
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Then we define KOu1 (A, τ) = U (1)
∞ (A, τ)/ ∼1, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (1)

∞ (A, τ).

As in Proposition 5.10, the sets U (1)
∞ (A, τ) and U (1)

∞ (Aτ ) are easily seen
to be identical.

Proposition 6.9. Let (A, τ) be a C∗,τ -algebra and let

Aτ = {a ∈ A | aτ = a∗}
be the associated real C∗-algebra. Then there is an isomorphism

KOu1 (A, τ) ∼= KOu1 (Aτ ).

6.2. KO−1 via unitaries.

Definition 6.10. Let (A, τ) be a unital C∗,τ -algebra. Let U (−1)
∞ (A, τ) be

the set of all unitaries u in ∪n∈NMn(A) that satisfy uτ = u. Let ∼(−1) be

the equivalence relation on U (−1)
∞ (A, τ), generated by

(1) u0 ∼(−1) u1 if ut ∈Mn(A) is a continuous path of unitaries satisfying
uτt = ut; and

(2) u ∼(−1) ι
(−1)
n (u) for u ∈ Mn(A) where ι(−1)

n : Mn(A) → Mn+1(A) is
given by

ι(−1)
n (a) = diag(a, 1).

Then we define KOu−1(A, τ) = U (−1)
∞ (A, τ)/ ∼(−1), with a binary operation

given by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (−1)

∞ (A, τ).

Proposition 6.11. KOu−1(C, id) = 0.

Proof. Let u ∈ Mn(C) be a unitary element such that uTr = u. By Corol-

lary 4.4.4 of [22], there exists a unitary v such that u = vTrv. Since the
group of unitaries in Mn(C) in path connected, we can find a path vt from

v to 1n and let ut = vTr
t vt be the path of unitaries from u to 1n satisfying

uTr
t = ut. �

Proposition 6.12. KOu−1(A, τ) is a homotopy invariant functor from the
category of unital C∗,τ -algebras to the category of abelian groups. The in-
verse of an element [u] in KOu−1(A, τ) is given by [u∗].

Proof. We leave the question of functoriality and homotopy invariance to
the reader, and show that the binary operation is commutative.

Let u ∈ Mn(A) and v ∈ Mm(A) be unitaries satisfying uτ = u and
vτ = v. First we claim that there exists a unitary w in Mn+m(R) such
that w ( u 0

0 v )w∗ = ( v 0
0 u ) and detw = 1. If either m or n is even, then w

can be taken to be the obvious change of basis matrix corresponding to
an even permutation of the basis elements. On the other hand if m and
n are both odd then let w′ be the odd permutation matrix that satisfies
w′ ( u 0

0 v ) (w′)∗ = ( v 0
0 u ). Then let w = w′

(
1n 0
0 −1m

)
. This proves the claim.

Then let wt be a path of special orthogonal matrices from 1n+m to w and
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consider the path xt = wt ( u 0
0 v )w∗t . Verifying that this satisfies xτt = xt

completes the proof.
For the statement about inverses, we claim that if u is a unitary in Mn(A)

that satisfies uτ = u, then
(
u 0
0 u∗

)
∼(−1)

(
1n 0
0 1n

)
. Indeed,

vt =

(
cos ((π/2)t) · u sin ((π/2)t) · 1n
sin ((π/2)t) · 1n − cos ((π/2)t) · u∗

)
is a homotopy from

(
u 0
0 −u∗

)
to
(

0 1n
1n 0

)
satisfying vτt = vt. Since any matrix

of the form w =
(
u 0
0 λu∗

)
for |λ| = 1 satisfies wτ = w, we have(

u 0
0 u∗

)
∼(−1)

(
u 0
0 −u∗

)
.

The argument given in the proof of Proposition 6.11 above implies that(
0 1n

1n 0

)
∼(−1)

(
1n 0
0 1n

)
. �

Definition 6.13. Let (A, τ) be any C∗,τ -algebra. Then we define

KOu−1(A, τ) = ker(λ∗).

Since KOu−1(C, id) = 0 it follows that KOu−1(A, τ) = KOu−1(Ã, τ).

Proposition 6.14. Let (A, τ) be a C∗,τ -algebra and let Ã be the unitization.

Any element of KOu−1(A, τ) can be represented as [u] where u ∈ Mn(Ã) is
a unitary satisfying uτ = u and λ(u) = 1n.

Proof. Let u be a unitary in Mn(Ã) such that uτ = u. Let x = λ(u) ∈
Mn(C). As in the proof of Proposition 6.11, write x = yTry where y is a
unitary in Mn(C) and let yt be a path of unitaries from 1n to y. Then

zt = (y∗t )
Truy∗t is a path from u to a unitary z1 in Mn(Ã) that satisfies

λ(z1) = 1n. Also, note that we have zτt = zt for all t. �

Proposition 6.15. For any C∗,τ -algebra (A, τ), there is a natural isomor-
phism

KOu−1(A, τ) ∼= [(C0(S1), id), (KR ⊗R A, τ)].

Proof. Let u0 be the identity function in C(S1). That is, u0(z) = z for
all z ∈ S1. Then [u0] ∈ KOu−1(C(S1), τ) ∼= Z. For any φ : (C0(S1), id) →
(Mn(A), τ), we can extend to the unitization to obtain φ : (C(S1), id) →
(Mn(Ã), τ) and write θ([φ]) = [φ(u0)] ∈ KOu−1(A). For φ′ =

(
φ 0
0 0

)
we have

φ′(u0) =
(
φ(u0) 0

0 1

)
, so θ([φ]) = θ([φ′]). This gives us a well defined natural

transformation

Θ: [(C0(S1), id), (KR ⊗A, τ)]→ KOu−1(A, τ).

Conversely suppose u ∈ Mn(Ã) is a unitary satisfying uτ = u. There is

a unique unital homomorphism φ : C(S1,C)→Mn(Ã) such that φ(u0) = u,

and it is easily seen that φ satisfies φ(xid) = φ(x)τ for all x. Thus φ is a

C∗,τ -algebra homomorphism φ : (C(S1), id) → (Mn(Ã), τ). The restriction
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yields a homomorphism φ : (C0(S1), id)→ (Mn(A), τ) ⊂ (KR ⊗R A, τ). This
construction gives an inverse to Θ. �

Corollary 6.16. For any C∗,τ -algebra (A, τ), there is a natural isomor-
phism

KOu−1(A, τ) ∼= KO−1(A, τ).

Proof. This follows from Proposition 6.14 above and Theorem 4.13 (re-
membering that A−1 = (C0(S1 \ {1}), id)). �

6.3. KO3 via unitaries.

Definition 6.17. Let (A, τ) be a unital C∗,τ -algebra. Let U (3)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NM2n(A) satisfying u]⊗τ = u. Let ∼3 be the

equivalence relation on U (3)
∞ (A, τ), generated by

(1) u0 ∼3 u1 if ut ∈M2n(A) is a continuous path of unitaries satisfying

u]⊗τt = ut; and

(2) u ∼3 ι(3)
n (u) for u ∈ M2n(A) where ι(3)

n : M2n(A) → M2n+2(A) is
given by

ι(3)
n = diag (a, 12) .

Then we define KOu3 (A, τ) = U (3)
∞ (A, τ)/ ∼3, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (3)

∞ (A, τ).

Here we are using the same convention on the involution ]⊗ τ as we did
in Definition 5.19 for KOu4 (A, τ).

Proposition 6.18. If (A, τ) is a unital C∗,τ -algebra, then

KOu3 (A, τ) ∼= KO3(A, τ).

In particular, KOu3 (C, id) = 0.

Proof. An element of U (3)
∞ (A, τ) is given by a unitary u ∈M2(C)⊗Mn(A)

that satisfies u]⊗τ = u. This is the same as an element of

U (−1)
∞ (M2(C)⊗A, ]⊗ τ).

Therefore U (3)
∞ (A, τ) ∼= U (−1)

∞ (M2(C)⊗A, ]⊗ τ); and hence

KOu3 (A, τ) = KOu−1(M2(C)⊗A, ]⊗ τ).

As a special case of the Künneth formula (the Main Theorem of [5]), for a
real C∗-algebra A we know that KOn(A) ∼= KOn+4(H⊗A). In terms of C∗,τ -
algebras, this is the statement that KOn(A, τ) ∼= KOn+4(M2(C)⊗A, ]⊗ τ).
Therefore

KOu3 (A, τ) ∼= KOu−1(M2(C)⊗A, ]⊗ τ)

∼= KO−1(M2(C)⊗A, ]⊗ τ)

∼= KO3(A, τ). �
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Proposition 6.19. KOu3 (A, τ) is a homotopy invariant functor from the
category of unital C∗,τ -algebras to the category of abelian groups. The in-
verse of an element [u] in KOu3 (A, τ) is given by [u∗].

Proof. This follows immediately from Proposition 6.18. The statement
about inverses follows from Proposition 6.12 and the statement in the proof
of Proposition 6.18 that U (3)

∞ (A, τ) ∼= U (−1)
∞ (M2(C)⊗A, ]⊗ τ). �

Definition 6.20. Let (A, τ) be any C∗,τ -algebra. Then we define

KOu3 (A, τ) = ker(λ∗)

where λ∗ : KOu3 (Ã, τ)→ KOu3 (C, id).

Combining Proposition 6.19 with this definition gives the following.

Proposition 6.21. If (A, τ) is any C∗,τ -algebra, then

KOu3 (A, τ) ∼= KO3(A, τ).

Proposition 6.22. Let (A, τ) be a C∗,τ -algebra. Any element of KOu3 (A, τ)

can be represented as [u] where u ∈ Mn(Ã) satisfies u]⊗τ = u and λ∗(u) =
1n.

Proof. Let u ∈ U3(Ã, τ) = U−1(M2(C) ⊗ Ã, ] ⊗ τ). The unital homomor-

phism (M2(C)⊗ A)∼ ↪→ M2(C)⊗ Ã induces an isomorphism on KOu−1(−).
Therefore, using Proposition 6.14, we can replace u by an equivalent unitary

v in Mn(M2(C) ⊗ Ã) ⊂ U−1(M2(C) ⊗ Ã, ] ⊗ τ) that satisfies λn(v) = 12n

where λ : (M2(C)⊗A)∼ → C and λn : Mn ((M2(C)⊗A)∼)→Mn(C).

Now, we consider the same unitary v as an element in U3(Ã, τ). In that

context it is a unitary in M2n(Ã) and it satisfies λ2n(v) = 12n where λ : Ã→
C and λ2n : M2n(Ã)→M2n(C). �

6.4. KO5 via unitaries.

Definition 6.23. Let (A, τ) be a unital C∗,τ -algebra. Let U (5)
∞ (A, τ) be the

set of all unitaries u in ∪n∈NM2n(A) satisfying u]⊗τ = u∗. Let ∼5 be the

equivalence relation on U (5)
∞ (A, τ), generated by

(1) u0 ∼5 u1 if ut ∈M2n(A) is a continuous path of unitaries satisfying

u]⊗τt = u∗t ; and

(2) u ∼5 ι(5)
n (u) for u ∈ M2n(A) where ι(5)

n : M2n(A) → M2n+2(A) is
given by

ι(5)
n (a) = diag (a, 12) .

Then we define KOu5 (A, τ) = U (5)
∞ (A, τ)/ ∼5, with a binary operation given

by [u] + [v] = [( u 0
0 v )] for u, v ∈ U (5)

∞ (A, τ).

In this definition we use the same convention for ] ⊗ τ as discussed for
Definition 6.17.
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Proposition 6.24. If (A, τ) is a unital C∗,τ -algebra, then

KOu5 (A, τ) ∼= KO5(A, τ).

In particular, KOu5 (C, id) = 0.

Proof. The proof is the same as the proof of Proposition 6.18, using

KOu5 (A, τ) = KOu1 (M2(C)⊗A, ]⊗ τ). �

Proposition 6.25. KOu5 (A, τ) is a homotopy invariant functor from the
category of unital C∗,τ -algebras to the category of abelian groups. The in-
verse of an element [u] in KOu5 (A, τ) is given by [u∗].

Proof. This follows from Proposition 6.24. �

Definition 6.26. Let (A, τ) be any C∗,τ -algebra. Then we define

KOu5 (A, τ) = ker(λ∗)

where λ∗ : KOu5 (Ã, τ)→ KOu5 (C, id).

The following result is immediate from our development so far.

Proposition 6.27. If (A, τ) is any C∗,τ -algebra, then

KOu5 (A, τ) ∼= KO5(A, τ).

Proposition 6.28. Let (A, τ) be a C∗,τ -algebra. Any element of KOu5 (A, τ)

can be represented as [u] where u ∈Mn(Ã) satisfies u]⊗τ = u∗ and λ∗(u) =
1n.

Proof. There is a proof similar to that of Proposition 6.22, but instead we
give the following slightly more constructive proof.

Let u ∈ M2n(Ã, τ) be a unitary satisfying u]⊗τ = u∗. Then λ(u) is a

unitary in M2n(C) satisfying u] = u∗, which is to say that u is a unitary
in Mn(H). Since the unitary group of Mn(H) is connected (this follows for
example from Theorem 1 of [39]), there exists a path vt from 12n to λ(u) in

M2n(C) satisfying v]t = v∗t . Then uv∗t is the desired path from u to a unitary
w = uv∗1 satisfying λ(w) = 1n. �

7. Summary and examples

The following theorem and Table 3 summarize the unitary description of
KO-theory from the previous two sections. The statements about KU will
be clarified later in this section.

Theorem 7.1. Let (A, τ) be a C∗,τ -algebra, not necessarily unital. Let ni
be the positive integer, Si be the symmetry relation, and I(i) ∈ Mni(C) be
the neutral element as specified in Table 3, for i ∈ {−1, 0, . . . , 6}.

Then there exist natural isomorphisms KOui (A, τ) ∼= KOi(A
τ ) for all i,

where KOui (A, τ) is defined to be group of equivalence classes of unitaries

u in ∪n∈NMni·n(Ã) that satisfy Si and satisfy λ(u) = diag(I(i), . . . , I(i)).
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Table 3. Unitary Picture of K-theory — The Ten-Fold Way

K-group ni Si I(i)

complex
KUu0 (A, τ) 2 u = u∗

(
1 0
0 −1

)
KUu1 (A, τ) 1 – 1

real

KOu−1(A, τ) 1 uτ = u 1

KOu0 (A, τ) 2 u = u∗, uτ = u∗
(

1 0
0 −1

)
KOu1 (A, τ) 1 uτ = u∗ 1

KOu2 (A, τ) 2 u = u∗, uτ = −u
(

0 i·1
−i·1 0

)
KOu3 (A, τ) 2 u]⊗τ = u 12

KOu4 (A, τ) 4 u = u∗, u]⊗τ = u∗ diag(12,−12)

KOu5 (A, τ) 2 u]⊗τ = u∗ 12

KOu6 (A, τ) 2 u = u∗, u]⊗τ = −u
(

0 i·1
−i·1 0

)
In the unitary picture, the K-theory of a C∗,τ -algebra (A, τ)
consists of unitaries in matrix algebras over A satisfying the
symmetry Si. See Theorem 7.1.

The equivalence relation is generated by path homotopy (within unitaries

satisfying Si) and by the relation u ∼ diag(u, I(i)). The binary operation is
defined by [u] + [v] = [diag(u, v)].

Similar statements are made for KUui (A, τ).

Remark 7.2. The inverse of an element [u] ∈ KOui (A, τ) is given by [u∗]
if i is odd. In the even case, the inverse of [u] ∈ KOui (A, τ) is [−u] when

i = 0, 4; or when i = 2, 6 and u ∈Mni·n(Ã) with n even.

Remark 7.3. The restriction that λ(u) = I(i)
n = diag(I(i), . . . , I(i)) could be

replaced by the weaker condition that [λ(u)] = 0 ∈ KOuI (C, id) = KOui (R).
We have shown in each case that a representative of KOui (A, τ) can always
be found that satisfies the stronger λ condition. We have not proven, but
we believe to be true in each of the ten cases, that the equivalence rela-
tion can be taken to be path homotopy not only within unitaries satisfying
the appropriate symmetry, but also within unitaries satisfying the stronger
condition λ(u) = diag(I(i), . . . , I(i)).

Remark 7.4. If (A, τ) is already a unital C∗,τ -algebra, it is not neces-

sary to work in the unitization Ã. We can realize KOui (A, τ) using uni-
taries in Mni(A) satisfying the correct symmetries (and without any λ
restriction). The isomorphism between the picture of KOui (A) given by
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unitaries in Mni(A) and that given by unitaries in Mni(Ã) is given by

[u] 7→ [u− I(i)
n · (1A)n + I(i)

n · 1n].

Remark 7.5. In the cases where the matrices are required to be of di-
mensions that are multiples of 2 or 4, it is possible to write down a pic-
ture of K-theory so that any unitary (satisfying the symmetry) in any di-
mension of square matrices represents a K-class. However, this would re-
quire a carefully specified and consistent choice of each of the embeddings
Mn(A) ↪→ Mn+1(A). These choices would not be canonical and the desig-
nated “neutral element” would look different for different values of n.

Remark 7.6. Let u be a unitary in Mn(Ã) and let x ∈ O(n) ⊂Mn(R). If u
satisfies any symmetry Si for −1 ≤ i ≤ 2, then so does xux∗. Furthermore,
[u] = [xux∗] ∈ KOui (A) if x ∈ SO(n) (since SO(n) is connected). The
equality [u] = [xux∗] also holds if x ∈ O(n) and −1 ≤ i ≤ 1. Indeed, if
detx = −1, then diag(x,1,−1) ∈ SO(n + 2) and diag(x,−1) ∈ SO(n + 1)
so we have

[u] = [diag(u,1,−1)] = [diag(x,1,−1) · diag(u,1,−1) · diag(x∗, 1,−1)]

= [diag(xux∗,1,−1)] = [xux∗] (for i = 0).

[u] = [diag(u,1)] = [diag(x,−1) · diag(u,1) · diag(x∗,−1)]

= [diag(xux∗,1)] = [xux∗] (for i = ±1).

However, for i = 2, we may have [u] 6= [xux∗] ∈ KOu2 (A) if x ∈ O(n).
Similar comments hold for 3 ≤ i ≤ 6, with respect to conjugation by

elements in the image of the injective homomorphism O(n) ↪→ O(2n) or
SO(n) ↪→ SO(2n) given by

x1 1 x1 2 . . . x1n

x2 1 x2 2 . . . x2n
...

...
. . .

...
xn 1 xn 2 . . . xnn

 7→

x1 112 x1 212 . . . x1n12

x2 112 x2 212 . . . x2n12
...

...
. . .

...
xn 112 xn 212 . . . xnn12

 .

7.1. KUu
i (A) for real C∗-algebras. First note that Definitions 5.1 and

6.1 carry over to the complex setting and give pictures of the K-theory
groups Ku

0 (A) and Ku
1 (A) for any complex C∗-algebra A. Specifically,

Ku
0 (A) is given in terms of self-adjoint unitaries in M2n(A) and Ku

1 (A) is
given in terms of unitaries in Mn(A). The same proofs carry over to show
that Ku

0 (A) ∼= K0(A) and Ku
1 (A) ∼= K1(A) for any complex C∗-algebra A.

Following the convention in [5], [6], and later papers; we define KUi(A) as
a functor on the category of real C∗-algebra via complexification as follows:

Definition 7.7. For a real C∗-algebra A, define

KUi(A) = Ki(AC) ∼= Ku
i (AC)

for i = 0, 1.
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Alternatively, if (A, τ) is a C∗,τ -algebra, then we have KUi(A, τ) ∼= Ki(A)
since A is exactly the complexification of the real C∗-algebra Aτ corre-
sponding to (A, τ). Thus we end up with unitary pictures KUu0 (A, τ) and
KUu1 (A, τ) in terms of self-adjoint unitaries and unitaries in matrix alge-
bras over A, exactly as described in Theorem 7.1 referring to the first two
lines of Table 3. The fact that the symmetry relations for KUui (A, τ) do
not actually involve τ reflects the fact that these groups depend only on the
underlying C∗-algebra A and not on the real structure imposed on A.

In fact, for each i there is a natural transformation

cui : KOui (A, τ)→

{
KUu0 (A, τ) for i even

KUu1 (A, τ) for i odd.

defined simply by [u] 7→ [u]. These are clearly well-defined and natural, since
in each case we are forgetting the extra symmetry requirement involving τ .
To simplify notation, we define KUui (A, τ) for all i by

KUui (A, τ) =

{
KUu0 (A, τ) for i even

KUu1 (A, τ) for i odd

so that we can simply write cui : KOui (A, τ)→ KUui (A, τ) in all cases.
We will verify in Proposition 7.10 below that, for any real C∗-algebra B,

the homomorphism cui coincides with the frequently used homomorphism
ci : KOi(B) → KUi(B) induced by the injective *-algebra homomorphism
c : B → BC, This natural transformation appears for example in Section 1.4
of [37] and Section 1.2 of [5] and forms one of the maps of the crucial long
exact sequence relating real and complex K-theory.

First, note that the complexification functor B  BC, rephrased in terms
of C∗,τ -algebras, is equivalent to the functor (A, τ)  (A ⊕ A, σ) where
(a1, a2)σ = (aτ2 , a

τ
1). The *-homomorphism c : B → BC, rephrased in terms

of C∗,τ -algebras, is the injective (∗, τ)-homomorphism c̃ : (A, τ)→ (A⊕A, σ)
given by c̃(a) = (a, a). To verify these claims, one can verify that the
restricted map c̃ : Aτ → (A ⊕ A)σ is the same, up to isomorphism, as the
canonical inclusion of Aτ into its complexification A. Indeed,

Aτ = {a ∈ A | a∗ = aτ}

and

(A⊕A)σ = {(a1, a2) ∈ A⊕A | (a1, a2)σ = (a1, a2)∗}
= {(a1, a

∗τ
1 ) | d ∈ A} ∼= A.

Lemma 7.8. Let (A, τ) be a C∗,τ -algebra. Consider the C∗,τ -algebra

(A⊕A, σ).

Then there is an isomorphism

Γ: KUui (A, τ)→ KOui (A⊕A, σ).
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Proof. For i = 0, 1, define a homomorphism by [x] 7→ [(x, x∗τ )], and check
that it is well-defined and is a bijection on the appropriate symmetry classes
of unitaries. For i = −1 use [x] 7→ [(x, xτ )], and for i = 2 use [x] 7→
[(x,−xτ )]. For i = 3, 4, 5, 6, use the same formulas replacing τ with ]⊗τ . �

Lemma 7.9. The diagram below commutes.

KOui (A, τ)
cui //

c̃∗ ((

KUui (A, τ)

Γ
��

KOui (A⊕A, σ).

Proof. Let [x] ∈ KOui (A, τ). For each i, we use the formulas c̃i([x]) =
[(x, x)] and ci([x]) = [x], and the formula for θ([x]) given in the proof of
Lemma 7.8. Combining these formulas with the symmetries that x is as-
sumed to satisfy, it follows that the diagram commutes for each i. �

Proposition 7.10. Let (A, τ) be a C∗,τ -algebra and let Aτ be the corre-
sponding real C∗-algebra. Then cui : KOui (A, τ) → KUui (A, τ) corresponds
to the natural transformation ci : KOi(A

τ ) → KUi(A
τ ) via the identifica-

tions KOui (A, τ) ∼= KOi(A
τ ) and KUui (A, τ) ∼= KUi(A

τ ).

Proof. The claim is that for any C∗,τ -algebra (A, τ) the diagram

KOui (A, τ)
cui //

��

KUui (A, τ)

��

KOi(A, τ)
ci // KUi(A, τ)

KOi(A
τ )

ci // KUi(A
τ )

commutes, where the vertical arrows represent the appropriate natural iso-
morphisms from the previous sections.

By Lemma 7.9, it follows that cui is equivalent to the natural homomor-
phism induced by the homomorphism A ↪→ AC. Since ci is induced by the
same homomorphism, and since the isomorphisms KOui (A, τ) ∼= KOi(A

τ )
and KUui (A, τ) ∼= KUi(A

τ ) are natural with respect to real *-algebra ho-
momorphisms, the result follows. �

7.2. Examples. The following theorem will identify for each i a specific
unitary that generates the K-theory for each of the corresponding classifying
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algebra Ai. Let

Q = 1√
2


1 0 0 −i
0 1 i 0
0 i 1 0
−i 0 0 1

 ∈M4(C)

be the unitary matrix (from Lemma 1.3 of [19]) which facilitates an equiva-

lence between the involutions ]̃⊗] and Tr4. That is, the equations QxTrQ∗ =

(QxQ∗)̃]⊗] and Q∗x]̃⊗]Q = (Q∗xQ)Tr hold for all x ∈ M4(A) for any C∗-
algebra A.

Example 7.11. For each i, the class of a generator of KOui (Ai) ∼= Z is
given by a unitary element xi as described below.

• [x−1] ∈ KOu−1(A−1). (C0(S1 \ {1},C), id) is the associated C∗,τ -
algebra. The unitary is

x−1 = z ∈ C(S1,C)

which satsifies (x−1)id = x−1.
• [x0] ∈ KOu0 (A0). The associated C∗,τ -algebra is, (qC,Tr). The

unitary is

x0 =

(
1−2t 0 0 2

√
t−t2

0 1 0 0
0 0 −1 0

2
√
t−t2 0 0 2t−1

)
∈M2(q̃C)

which satisfies x0 = x∗0 and xTr
0 = x∗0.

• [x1] ∈ KOu1 (A1). The associated C∗,τ -algebra is (C0(S1 \ {1},C), ζ).
The unitary is

x1 = z ∈ C(S1,C)

which satsifies (x1)ζ = x∗1.
• [x2] ∈ KOu2 (A2). The associated C∗,τ -algebra is, (qC, ]). The uni-

tary is

x2 = Wx0W
∗ ∈M2(q̃C)

which satisfies x2 = x∗2 and x]2 = −x2 (where W is as in Section 2).
• [x3] ∈ KOu3 (A3). The associated C∗,τ -algebra is

(M2(C)⊗ C0(S1 \ {1},C), ]⊗ id).

The unitary is

x3 = Qdiag(z, 1, 1, 1)Q∗ ∈M2(C)⊗M2(C)⊗ C0(S1,C)

which satisfies (x3)̃]⊗]⊗id = x3.
• [x4] ∈ KOu4 (A4). The associated C∗,τ -algebra is, (M2(C)⊗qC, ]⊗Tr).

The unitary is

x4 = Qdiag(x0, 1, 1,−1,−1)Q∗ ∈M2(C)⊗M2(C)⊗ q̃C

which satisfies (x4)̃]⊗]⊗Tr = x∗4.
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• [x5] ∈ KOu5 (A5). The associated C∗,τ -algebra is

(M2(C)⊗ C0(S1 \ {1},C), ]⊗ ζ).

The unitary is

x5 = Qdiag(z, 1, 1, 1)Q∗ ∈M2(C)⊗M2(C)⊗ C0(S1,C)

which satisfies (x5)̃]⊗]⊗ζ = x∗5.

• [x6] ∈ KOu6 (A6). The associated C∗,τ -algebra is, (qC, T̃r). The
unitary is

x6 = x0 ∈M2(q̃C)

which satisfies x6 = x∗6 and (x6)]⊗T̃r = −x6.

Proof. For each i, we know from Propositions 3.1 and 3.2 that KOui (Ai) ∼=
Z and that ci : KO

u
i (Ai)→ KUui (Ai) is an isomorphism.

The statement that [x0] generates KOu0 (A0) ∼= Z is Proposition 5.7. It
follows that cu0 [x0] = [x0] generates KUu0 (A0) ∼= Z. (This fact can also be
derived from the fact that [1

2(x0 + 1)] − [1] is the generator of KU0(qC) as
in Section 3 of [25].) Now for i = 2, 4, 6, we also have cui ([xi]) = [x0] ∈
KUui (Ai) ∼= KUu0 (qC). Since cui is an isomorphism on KOui (Ai) it follows
that [xi] must be generator of KOui (Ai).

For i odd, let z be the identity function on S1. It is known that [z] is a
generator of KUu1 (C0(S1 \ {1})). Again in each case, we have cui ([xi]) = [z]
so it follows that [xi] is a generator of KOi(Ai) ∼= Z. �

Example 7.12. Recall that the groups of KO∗(R) ∼= KO∗(C, id), are given
by

KO∗(R) =


Z, i = 0, 4,

Z2, i = 1, 2,

0, i = 3, 5, 6, 7.

Summarizing from discussions in the previous sections, we identify explicit
generators for the non-zero groups, with our unitary picture.

(1) The generator of KOu0 (C, id) ∼= Z is [12].
(2) The generator of KOu1 (C, id) ∼= Z2 is [−1].
(3) The generator of KOu2 (C, id) ∼= Z2 is [

(
0 −i
i 0

)
].

(4) The generator of KOu4 (C, id) ∼= Z is [14].

Notice also that KUu0 (C, id) ∼= Z is generated by [12]. In terms of these
generators, it is easy to verify that the homomorphisms ci : KO

u
i (C, id) →

KUui (C, id) agree with their known behavior. For example c0 : Z→ Z is an
isomorphism. The class of [−1] is non-trivial in KOu2 (C, id) but is trivial
in KUu2 (C, id); this corresponds to the fact that c2 : Z2 → Z is trivial (as it
must be of course). Also, we have that c4 : Z → Z is multiplication by 2,
since [14] is twice the generator of KUu0 (C, id).
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Example 7.13. Let ζ be the reflection on C(S1,C) or C(S2,C) correspond-
ing to negation of the y coordinate. (x, y, z) 7→ (x,−y, z). Let 1 denote the
point (1, 0, . . . , 0) in Sn−1 (for n = 2, 3, 4).

(1) The generator of KOu1
(
C0(S1 \ {1}), ζ

) ∼= Z is the class of the uni-
tary u, where

u(x+ iy) = x+ iy.

(2) The generator of KOu−1

(
C0(S1 \ {1}), id

) ∼= Z is the class of the
unitary u, where

u(x, y) = x+ iy.

(3) The generator of KOu0
(
C0(S2 \ {1}, ζ

) ∼= Z is the class of the unitary
u, where

u(x, y, z) =

(
z x− iy

x+ iy −z

)
.

(4) The generator of KOu−2

(
C0(S2 \ {1}), id

) ∼= Z is the class of the
unitary u, where

u(x, y, z) =

(
z x− iy

x+ iy −z

)
.

(5) The generator of KOu
−3

(
C0(S3 \ {1}), id

) ∼= Z is the class of the
unitary u, where

u(x, y, z, w) =

(
iz − w ix+ y
ix− y −iz − w

)
.

Proof. Results (1) and (2) are restatements from Example 7.11.

For (3), first check that u = uζ = u∗. The equation λ(u) = I(0) does not
hold exactly, but it does hold on the level ofKOu0 (C). Using the isomorphism
θ from Theorem 5.6, we have θ([u]) = [1

2(u+12)]− [1] = [p0]− [1] where p0 =
1
2

(
1+z x−iy
x+iy 1−z

)
. But we know from the discussion preceding Proposition 4.8

that KO0(C0(S2 \ {1}), ζ) ∼= Z is generated by [p0]− [1]. This proves (3).
Since cu0 : KO0(C0(S2\{1}), ζ)→ KU0(C0(S2\{1}), ζ) is an isomorphism,

it follows that [u] also generates

KU0(C0(S2 \ {1}), ζ) = KU0(C0(S2 \ {1}), id).

For (4), check that u]⊗id = −u. Now we also know that

c−2 : KOu−2

(
C0(S2 \ {1}; id

)
→ KUu−2

(
C0(S2 \ {1}; id

)
is an isomorphism and [u] is the same generator of

KUu−2

(
C0(S2 \ {1}; id

)
= KU0(C0(S2 \ {1}); id)

identified in the previous paragraph. So [u] is also a generator of

KO−2(C0(S2 \ {1}), id).
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For (5), check that u is a unitary and that u]⊗id = u∗. The transformation

c−3 : KOu−3

(
C0(S3 \ {1}), id

)
→ KUu1

(
C0(S3 \ {1}), id

)
is known to be an isomorphism and sends u to the known generator of
π3(SO(2)) so also to a generator of KU1

(
C0(S3 \ {1}), id

)
. �

We will return to specific computations of KO(−) groups and elements
of KO(−) represented by unitaries in Section 9.

8. The boundary map

There exist known natural boundary maps ∂i : KOi(B, τ)→ KOi−1(I, τ)
for a short exact sequence

(11) 0→ (I, τ)→ (A, τ)→ (B, τ)→ 0.

In this section, we will derive concrete formulas for these boundary maps
described in term of the unitary pictures of K-theory. The approach we will
take is to first write down specific formulas for maps

♣i : KOui (B, τ)→ KOui−1(I, τ),

then prove that those formulas give well defined and natural homomor-
phisms, and finally prove that the homomorphisms coincide with ∂i via the
natural isomorphisms KOui (−) ∼= KOi(−). We start with the odd cases
i = −1, 1, 3, 5. For each of these the basic formula will be the same, but
we will have to conjugate by a different unitary Y (i) in each case in order
to obtain a unitary v that is in the correct symmetry class and satisfies
λ(u) = I(i−1)

n . Easier formulas would be possible if we relaxed the λ condi-
tion (see Remark 7.3).

We must introduce notation for several classes of unitaries that will be
used for conjugation in these definitions. First let us recall from Section 5
that we have the matrix

W2n = 1√
2

(
i · 1n 1n
1n i · 1n

)
∈M2n(C),

which satisfies

W2n

(
1n 0
0 −1n

)
W ∗2n =

(
0 i · 1n

−i · 1n 0

)
.

Generalizing the matrix Q used in Section 7, we define

Q4n = 1√
2

(
12n −I(2)

n

I(2)
n 12n

)
∈M4n(C).

The key property, as in Lemma 1.3 of [19], is that for all x ∈ M4n(A) we

have Q4nx
τQ∗4n = (Q4nxQ

∗
4n)̃]⊗]⊗τ where ]̃ and ] are as defined in Section 2.

Let V2n ∈M2n(R) be the unique permutation matrix such that (for diag-
onal matrices) we have

V2ndiag(λ1, . . . , λ2n)V ∗2n = diag(λ1, λn+1, λ2, λn+2, . . . , λn, λ2n).
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Then for all matrices x ∈M2n(A) we have

V2nx
]̃⊗τV ∗2n = (V2nxV

∗
2n)]⊗τ

where ] and ]̃ are defined as in Section 2. Similarly, let X4n ∈ M4n(R) be
the unique permutation matrix such that (for diagonal matrices) we have

X4ndiag(λ1, . . . , λ4n)X∗4n

= diag(λ1, λ2, λ2n+1, λ2n+2, λ3, λ4, λ2n+3, λ2n+4, . . . , , λ4n).

Definition 8.1. Suppose we have an exact sequence as in Sequence (11).
Let π denote both the quotient map π : A → B and its extension to

Mn(Ã) → Mn(B̃) for every n. Furthermore, we assume I = ker(π) and

we identify the unit in Ĩ with that of Ã.

(1) Suppose [u] ∈ KOu1 (B, τ) where u ∈ Mn(B̃) is a unitary with uτ =

u∗ and λ(u) = I(1)
n . Then define

♣1([u]) =

[
Y

(1)
2n

(
2aa∗ − 1n 2a

√
1n − a∗a

2a∗
√

1n − aa∗ 1n − 2a∗a

)
Y

(1)∗
2n

]
∈ KOu0 (I, τ)

where a in Mn(Ã) is any lift of u with ‖a‖ ≤ 1 and aτ = a∗; and

Y
(1)

2n = V2n.

(2) Suppose [u] ∈ KOu−1(B, τ) where u ∈ Mn(B̃) is a unitary with

uτ = u and λn(u) = I(−1)
n . Then define

♣−1([u]) =

[
Y

(−1)
2n

(
2aa∗ − 1n 2a

√
1n − a∗a

2a∗
√

1n − aa∗ 1n − 2a∗a

)
Y

(−1)∗
2n

]
∈ KOu6 (I, τ)

where a in Mn(Ã) is any lift of u with ‖a‖ ≤ 1 and aτ = a; and

Y
(−1)

2n = V2nW2n.

(3) Suppose that [u] ∈ KOu5 (B, τ) where u ∈M2n(B̃), is a unitary with

u]⊗τ = u∗ and λ2n(u) = I(5)
n . Then define

♣5([u]) =

[
Y

(5)
4n

(
2aa∗ − 1n 2a

√
1n − a∗a

2a∗
√

1n − aa∗ 1n − 2a∗a

)
Y

(5)∗
4n

]
∈ KOu4 (I, τ)

where a in M2n(Ã) is any lift of u with ‖a‖ ≤ 1 and a]⊗τ = a∗; and

Y
(5)

4n = X4n.

(4) Suppose that [u] ∈ KOu3 (B, τ) where u ∈ M2n(B̃) is a unitary with

u]⊗τ = u and λ2n(u) = I(3)
n . Then define

♣3([u]) =

[
Y

(3)
4n

(
2aa∗ − 1n 2a

√
1n − a∗a

2a∗
√

1n − aa∗ 1n − 2a∗a

)
Y

(3)∗
4n

]
where a in M2n(Ã) is any lift of u with ‖a‖ ≤ 1 and a]⊗τ = a; and

Y
(3)

4n = V4nQ4nW4n.

Lemma 8.2. The maps ♣i are well-defined group homomorphisms, for i
odd.
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Proof. We need to show that the unitaries constructed all satisfy the correct
relations, that the choice of lift is not important, that some lift is always
available, that homotopy is respected, that embedding into larger matrices
via ι(i)n does not effect the outcome, and that the addition is respected at
the level of K-theory.

For convenience, we define

B(a) =

(
2aa∗ − 1n 2a

√
1n − a∗a

2a∗
√

1n − aa∗ 1n − 2a∗a

)
.

Making repeated use of the equality 2a
√

1− a∗a = 2
√

1− aa∗a, we find that
B(a)∗ = B(a) and that

B(a)2 =(
(2aa∗ − 1n)

2
+ 4a (1n − a∗a) a∗ 4aa∗a

√
1n − a∗a− 4a

√
1n − a∗aa∗a

4a∗
√

1n − aa∗aa∗ − 4a∗aa∗
√

1n − aa∗ (1n − 2a∗a)
2

+ 4a∗ (1n − aa∗) a

)
= 12n

so that B(a) is always self-adjoint unitary. In each case, we will check
that B(a) satisfies the appropriate symmetry based on the symmetry that
a satisfies.

(1) First we consider the map for i = 1,

♣1 : KOu1 (B, τ)→ KOu0 (I, τ).

We start with u in Mn(B̃), a unitary with uτ = u∗ and λn(u) = 1n. There

exists a lift x in Mn(Ã) such that π(x) = u and then we necessarily have
λn(x) = 1n. Set y = 1

2 (x+ xτ∗) to obtain the relation yτ = y∗. We utilize

the usual function f(λ) = min(
√

1/λ, 1) and set a = yf(y∗y). Then a
satisfies ‖a‖ ≤ 1, aτ = a∗, and π(a) = u. The condition λ(a) = 1n follows
automatically since a is a lift of u. This shows that an appropriate lift exists.

Now, suppose that a is any suitable lift of u and let B′(a) = Y
(1)

2n B(a)Y
(1)∗

2n .
Then

λ(B′(a)) = Y
(1)

2n λ(B(a))Y
(1)∗

2n = Y
(1)

2n

(
1n 0
0 −1n

)
Y

(1)∗
2n = I(0)

n .

This shows that B′(a) ∈M2n(Ĩ).
Using (a∗a)τ = a∗a and (aa∗)τ = aa∗, we have

B(a)τ =

(
(2aa∗ − 1)τ

(
2a∗
√

1− aa∗
)τ(

2a
√

1− a∗a
)τ

(1− 2a∗a)τ

)
=

(
2aa∗ − 1 2a

√
1− a∗a

2a∗
√

1− aa∗ 1− 2a∗a

)
= B(a).

Thus B(a)τ = B(a). Since Y
(1)

2n is a real orthogonal matrix, B′(a) =

Y
(1)

2n B(a)Y
(1)∗

2n satisfies the same relation, which means that B′(a) is the
right sort of unitary to define an element of KOu0 (I, τ). (In fact, in this
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case we have [B(a)] = [B′(a)] ∈ KOu0 (I, τ). We used B′(a) in our definition

because it satisfies λ(B′(a)) = I(0)
n .)

If we have two lifts a0 and a1 with the required relations, then the straight
line

at = (1− t)a0 + ta1

satisfies the relations at every point, and so B(at) provides the needed ho-
motopy showing that

[
B′(a1)

]
=
[
B′(a2)

]
.

Suppose now that we have a homotopy ut of unitaries in Mn(B̃) satisfying
uτt = u∗. By working with the surjection

M2n((C[0, 1], Ã))→M2n((C[0, 1], B̃))

induced by π, the techniques of the first paragraph of this proof show that
there is a lift at of the homotopy ut, which then is a homotopy between a
lift of u0 and one for u1.

To complete the proof that ♣1 is well defined, we need to show that the
results of this construction for u and for

v = ι(1)
n (u) =

(
u 0
0 1

)
are the same element of KOu0 (I). In fact, this result follows from a special
case (taking v = 1) of the argument below that ♣1 is additive.

Suppose that u ∈ Mm(B̃) and v ∈ Mn(B̃) are unitaries representing
elements in KOu1 (B, τ); and let a and b be self-adjoint unitary lifts of u and
v, respectively, such that aτ = a∗ and bτ = b∗. Then diag(a, b) is a lift of
diag(u, v). Consider the two matrices

B

(
a 0
0 b

)
=


2aa∗ − 1m 0 2a

√
1m − a∗a 0

0 2bb∗ − 1n 0 2b
√

1n − b∗b
2a∗
√

1m − aa∗ 0 1m − 2a∗a 0

0 2b∗
√

1n − bb∗ 0 1n − 2b∗b


and

(
B(a) 0

0 B(b)

)
=


2aa∗ − 1m 2a

√
1m − a∗a 0 0

2a∗
√

1m − aa∗ 1m − 2a∗a 0 0

0 0 2bb∗ − 1n 2b
√

1n − b∗b
0 0 2b∗

√
1n − bb∗ 1n − 2b∗b


in M2m+2n(Ĩ) and observe that

V2m+2nB

((
a 0
0 b

))
V ∗2m+2n =

(
V2mB(a)V ∗2m 0

0 V2nB(b)V ∗2n

)
showing that ♣1([u] + [v]) = ♣1([u]) +♣1([v]).

(2) Now we consider

♣−1 : KOu−1(B, τ)→ KOu6 (I, τ).

This time, we start with a unitary u ∈ Mn(B̃) that satisfies uτ = u and
λ(u) = 1n. Using a similar construction as in the previous case, we find
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an element a ∈ Mn(Ã) that is a lift of u, has norm at most 1, and satisfies

aτ = a. For any such a, define B′(a) = Y
(−1)

2n B(a)Y
(−1)∗

2n . Then we have

λ(B′(a)) = V2nW2n

(
1n 0
0 −1n

)
W ∗2nV

∗
2n = V2n

(
0 i1n
−i1n 0

)
V ∗2n = I(6)

n .

We have B(a)2 = 12n as before, so B′(a)2 = 12n. We show that

(W2nB(a)W ∗2n)̃]⊗τ = −W2nB(a)W ∗2n

from which it follows that (B′)]⊗τ = −B′. Indeed,

(W2nB(a)W ∗2n)̃]⊗τ = W2nB(a)̃]⊗τW ∗2n (since W ]̃
2n = −W ∗2n)

= W2n(−B(a))W ∗2n (using aτ = a)

= −W2nB(a)W ∗2n.

Then the formua V2nx
]̃⊗τV ∗2n = (V2nxV

∗
2n)]⊗τ implies that B′(a)]⊗τ =

−B′(a). So [B′(a)] is an element of KO6(I, τ) as desired.
The proof that ♣−1 is independent of the choice of lift and of the ho-

motopy class of [u] is similar to that in the previous case. To show that
♣−1([u]) = ♣−1([diag(u,1)]), we again appeal to a special case of the addi-
tivity argument in the next paragraph.

Let a ∈ Mm(Ã) and b ∈ Mn(B̃) be lifts of unitaries u and v, satisfying
aτ = a and bτ = b. Then check that

B′
(
a 0
0 b

)
= V2m+2nW2m+2nB

(
a 0
0 b

)
W ∗2m+2nV

∗
2m+2n

=

(
V2mW2mB(a)W ∗2mV

∗
2m 0

0 V2nW2nB(b)W ∗2nV
∗

2n

)
=

(
B′(a) 0

0 B′(b)

)
.

(3) For

♣5 : KOu5 (B, τ)→ KOu4 (I, τ),

we will focus on the two crucial aspects: that the proposed element satisfies
the symmetries required to be an element of KOu4 (I, τ) and that it is respects
addition. The other aspects are similar to the previous cases.

Start with a unitary u ∈M2n(B̃) satisfying u]⊗τ = u∗ and λ(u) = I(5)
n =

12n and suppose that a ∈ M2n(Ã) satisfies a]⊗τ = a∗, ‖a‖ ≤ 1, and λ(a) =

12n. Let B′(a) = Y
(5)

4n B(a)Y
(5)∗

4n . Then we have

λ(B′(a)) = Y
(5)

4n

(
12n 0
0 −12n

)
Y

(5)∗
4n = diag(12,−12, . . .12,−12) = I(4)

n .

Using the fact that a]⊗τ = a∗, we can show that B(a)]⊗τ = B(a)∗ just as
in the proof of (1) (with the involution ]⊗ τ in place of τ). Conjugation by
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Y
(5)

4n rearranges the 2×2 blocks of the matrix and the action of ] is contained
within each such block, so we have

Y
(5)

4n x
]⊗τY

(5)∗
4n =

(
Y

(5)
4n xY

(5)∗
4n

)]⊗τ
.

Thus B′(a)]⊗τ = B′(a)∗.

Let a ∈ M2m(Ã) and b ∈ M2n(B̃) be lifts of unitaries u and v, satisfying

a]⊗τ = a∗ and b]⊗τ = b∗. Then

B′
(
a 0
0 b

)
= X4m+4nB

(
a 0
0 b

)
X∗4m+4n

=

(
X4mB(a)X∗4m 0

0 X4nB(b)X∗4n

)
=

(
B′(a) 0

0 B′(b)

)
.

(4) Show that ♣3 : KOu3 (B, τ)→ KOu2 (I, τ) is well-defined. We will prove
that the proposed element satisfies the symmetries required to be an element
of KOu2 (I, τ) and that it is additive.

Suppose that u is a unitary in M2n(B̃) satisfying u]⊗τ = u and λ(u) =

I(3)
n = 12n, and that a ∈ M2n(Ã) is lift of norm not more than 1 satisfying

the same symmetry. Let B(a) be as before and let B′(a) = Y
(3)

4n B(a)Y
(3)∗

4n

where Y
(3)

4n = V4nQ4nW4n. Then we have

λ(B′(a)) = Y
(3)

4n λ(B(a))Y
(3)∗

4n

= V4nQ4nW4ndiag(12n,−12n)W ∗4nQ
∗
4nV

∗
4n

= 1
2V4n

(
12n −I(2)

n

I(2)
n 12n

)(
0 i · 12n

−i · 12n 0

)(
12n I(2)

n

−I(2)
n 12n

)
V ∗4n

= V4n

(
0 i · 12n

−i · 12n 0

)
V ∗4n

= diag(I(2), . . . , I(2)) = I
(2)
2n .

Now a]⊗τ = a∗ implies that B(a)̃]⊗]⊗τ = −B(a) similar to case (2). Also

W ]̃⊗]
4n = −W ∗4n so

(W4nB(a)W ∗4n)̃]⊗]⊗τ = W4nB(a)̃]⊗]⊗τW ∗4n = −W4nB(a)W ∗4n.

Now we have Q4nx
τQ∗4n = (Q4nxQ

∗
4n)̃]⊗]⊗τ for all x, from it which it follows

that Q∗4nx
]̃⊗]⊗τQ4n = (Q4nxQ

∗
4n)τ . Thus

(Q4nW4nB(a)W ∗4nQ
∗
4n)τ = −Q4nW4nB(a)W ∗4nQ

∗
4n.

Since V4n is special orthogonal, the same formula holds for

B′(a) = V4nQ4nW4nB(a)W ∗4nQ
∗
4nV

∗
4n.
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showing that B′(a) represents an element in KOu2 (I, τ).

For additivity, let a ∈M2m(Ã) and b ∈M2n(B̃) be lifts of unitaries u and

v, satisfying a]⊗τ = a and b]⊗τ = b. Then

B

(
a 0
0 b

)
=


2aa∗ − 12m 0 2a

√
12m − a∗a 0

0 2bb∗ − 12n 0 2b
√

12n − b∗b
2a∗
√

12m − aa∗ 0 12m − 2a∗a 0

0 2b∗
√

12n − bb∗ 0 12n − 2b∗b


as before. Taking advantage of the block matrix structure of Q4n and W4n

and B

(
a 0
0 b

)
, we have

Q4m+4nW4m+4nB

(
a 0
0 b

)
W ∗4m+4nQ

∗
4m+4n =


A11 0 A12 0
0 B11 0 B12

A21 0 A22 0
0 B21 0 B22


where (

A11 A12

A21 A22

)
= Q4mW4mB(a)W ∗4mQ

∗
4m,(

B11 B12

B21 B22

)
= Q4nW4nB(b)W ∗4nQ

∗
4n.

Hence,

V4m+4nQ4m+4nW4m+4nB

(
a 0
0 b

)
W ∗4m+4nQ

∗
4m+4nV

∗
4m+4n

=

(
Q4mW4mB(a)W ∗4mQ

∗
4m 0

0 Q4nW4nB(b)W ∗4nQ
∗
4n

)
,

which shows that B′
(
a 0
0 b

)
=

(
B′(a) 0

0 B′(b)

)
. �

Definition 8.3. Suppose we have an exact sequence in Sequence (11). Let

π denote both the quotient map π : A → B and its extension to Mn(Ã) →
Mn(B̃) for every n. Furthermore, we assume I = ker(π) and we identify the

unit in Ĩ with that of Ã.

(1) Suppose [u] ∈ KOu2 (B, τ) where u ∈M2n(B̃) is a unitary with uτ =

−u, u∗ = u, and λ(u) = I(2)
n . Then define

♣2([u]) = [− exp(πia)] ∈ KOu1 (I, τ)

where a in M2n(Ã) is any lift of u with −1 ≤ a ≤ 1 and aτ = −a.

(2) Suppose [u] ∈ KOu0 (B, τ) where u ∈M2n(B̃) is a unitary with uτ =

u∗ = u, and λ(u) = I(0)
n . Then define

♣0([u]) = [− exp(πia)] ∈ KOu−1(I, τ)

where a in M2n(Ã) is any lift of u with −1 ≤ a ≤ 1 and aτ = a.
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(3) Suppose [u] ∈ KOu6 (B, τ) where u ∈ M2n(B̃) is a unitary with

u]⊗τ = −u, u∗ = u, and λ(u) = I(6)
n . Then define

♣6([u]) = [− exp(πia)] ∈ KOu5 (I, τ)

where a in M2n(Ã) is any lift of u with −1 ≤ a ≤ 1 and a]⊗τ = −a.

(4) Suppose [u] ∈ KOu4 (B, τ) where u ∈ M4n(B̃) is a unitary with

u]⊗τ = u∗ = u and λ(u) = I(4)
n . Then define

♣4([u]) = [− exp(πia)] ∈ KOu3 (I, τ)

where a in M4n(Ã) is any lift of u with −1 ≤ a ≤ 1 and a]⊗τ = a.

Lemma 8.4. The maps ♣i are well-defined group homomorphisms, for i
even.

Proof. This involves proving all the same assertions as in the proof of
Lemma 8.2 above.

(1) First we consider ♣2 : KOu2 (B, τ) → KOu1 (I, τ). Suppose u is a uni-

tary in M2n(B̃) with uτ = −u and u∗ = u and λ(u) = I(2)
n . We can lift

by standard methods to an element a ∈ Mn(Ã) with −1 ≤ a ≤ 1 and are

guaranteed λ(a) = I(2)
n automatically. Replacing with the element 1

2(a−aτ ),
we can assume the relation aτ = −a. This shows that an appropriate lift
exists.

Now consider any lift a of u satisfying −1 ≤ a ≤ 1, aτ = −a, and
λ(a) = I(2)

n . Let E(a) = − exp(πia), which is of course a unitary when a

is self-adjoint; and satisfies E(aτ ) = E(a)τ and E(−a) = E(a)∗. Since I(2)

has eigenvalues ±1 we find λ(E(a)) = 12n and we have also the familiar fact
that E(a) is a unitary when a is self-adjoint. As to the real structure, we
check

E(a)τ = E(aτ ) = E(−a) = E(a)∗,

so we have indeed obtained a representative of an element in KOu1 (I, τ).
If we have two lifts a0 and a1 with the required relations, then the straight

line

at = (1− t)a0 + ta1

satisfies the relations at every point, and so E(at) provides the needed ho-
motopy showing [E(a1)] = [E(a2)]. To deal with a homotopy from ut in

Mn(B̃), we again use the surjection

M2n((C[0, 1], Ã))→M2n((C[0, 1], B̃))

induced by π to get at, a homotopy of lifts covering the ut. Then E(at) is
the needed homotopy.

Next we compare the results of this construction for u and that for

v = diag(u, I(2)) =

 u 0 0
0 0 i
0 −i 0

 .
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Take a to be a lift of u with −1 ≤ a ≤ 1 and aτ = −a, and take b =
diag(a, I(2)) as an appropriate lift of v. Then E(b) = diag(E(a), E(I(2))) =
diag(E(a), 12) showing [E(a)] = [E(b)].

Finally, showing that ♣i is a group homomorphism is straightforward
in each even case, since we have E(diag(a, b)) = diag(E(a), E(b)) exactly
(rather than just up to homotopy as in the odd cases).

(2) Next we show that ♣0 : KOu0 (B, τ) → KOu−1(I, τ) is well defined.

Suppose u in M2n(B̃) is unitary with uτ = u = u∗ and λ2n(u) = I(0)
n . Lift

to an element a ∈Mn(Ã) with −1 ≤ a ≤ 1 and the condition λ2n(a) = I(0)
n

is immediate. Make the appropriate replacement to obtain aτ = a.
Now for any lift a of u with −1 ≤ a ≤ 1, aτ = a, and λ(a) = I(0)

n , we
see even more easily this time that λ(E(a)) = I2n and that E(a) is unitary.
This time the real structure calculation is

E(a)τ = E(aτ ) = E(a),

so we have [E(a)] ∈ KOu−1(I, τ) as desired.
Dealing with different lifts and dealing with a homotopy of ut, is accom-

plished just as in (1).
Finally, we need to compare the results of this construction for u and for

v = diag(u, I(0)). Let a be a lift of u and b = diag(a, I(0)) be a lift of v.

Then E(b) = diag(E(a), E(I(0))) = diag(E(a), 12), showing that ♣0([u]) =
♣0([v]).

(3), (4) The proofs that ♣4 and ♣6 are well defined are the same as the
proofs that ♣0 and ♣2 are well defined, using ]⊗ τ instead of τ everywhere.

�

Lemma 8.5. Each ♣i is natural with respect to morphisms of short exact
sequences of real C∗-algebras.

Proof. Suppose we have a commutative diagram

0 // (I1, τ) //

ι

��

(A1, τ)
π1 //

α

��

(B1, τ) //

β

��

0

0 // (I2, τ) // (A2, τ)
π2 // (B2, τ) // 0

of real C∗,τ -algebras, with exact rows. We show that ι∗ ◦ ♣i = ♣i ◦ β∗ for
all i.

Suppose that [u1] ∈ KOui (B1, τ) is given by a unitary u1 ∈ Mn(B̃1)
satisfying the specific symmetry relations and λ requirement. Let u2 =

β(u1) ∈Mn(B̃2). Then select an element a1 ∈Mn(Ã1) such that π1(a1) = u
and a1 satisfies the requirements for the lift described in the definition of
♣i. Then a2 = α(a1) satisfies π2(a2) = u2 and a2 satisfies the requirements
to be an appropriate lift of u2. In the case that i is odd, since B(α(a1)) =
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α(B(a1)), we have

α∗♣i([u1]) = α∗([Y
(i)B(a1)Y (i)∗])

= [Y (i)α(B(a1))Y (i)∗]

= [Y (i)B(a2)Y (i)∗]

= ♣i([u2])

= ♣iα∗([u1]).

A similar calculation using E(a1) instead of B(a1) addresses the even cases.
�

For reference, we include a parallel definition of the index maps in the
complex case.

Definition 8.6. Suppose we have a exact sequence of real C∗-algebras. Let

π denote both the quotient map π : A → B and its extension to Mn(Ã) →
Mn(B̃) for every n. Furthermore, we assume I = ker(π) and we identify the

unit in Ĩ with that of Ã.

(1) Suppose [u] ∈ KUu1 (B) where u ∈ Mn(B̃) is a unitary with λ(u) =

I(1)
n . Then define

♣1([u]) =

[(
2aa∗ − 1n 2a

√
1n − a∗a

2a∗
√

1n − aa∗ 1n − 2a∗a

)]
∈ KUu0 (I)

where a in Mn(Ã) is any lift of u with ‖a‖ ≤ 1.

(2) Suppose [u] ∈ KUu0 (B) where u ∈ Mn(B̃) is a unitary with u = u∗

and λ(u) = I(0)
n . Then define

♣0([u]) =
[
−eπia

]
∈ KUu1 (I)

where a in Mn(Ã) is any lift of u with −1 ≤ a ≤ 1.

These homomorphisms are well-defined and natural, as can be shown by
proofs similar to those we have just performed in the real case. In a sense
made precise by the following lemma, these definitions of the index map are
equivalent to the standard definitions found in the literature.

Lemma 8.7. Let 0 → I → A → B → 0 be a short exact sequence of real
C∗-algebras.

(1) For all 0 ≤ i < 8, the following diagram commutes

KOui (B)
♣i //

ci

��

KOui−1(I)

ci−1

��

KUui (B)
♣i // KUui−1(I).
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(2) For all 0 ≤ i < 2, the following diagrams commute up to sign

KUu1 (B)
♣1 //

∂1 &&

KUu0 (I)

Θ
��

KUu0 (B)
♣0 //

Θ
��

KUu1 (I)

KU0(I) KU0(B)

∂0

88

where Θ is the isomorphism of Theorem 5.6 and ∂i is the boundary
map of the literature in the complex setting.

Proof. Statement (1) is immediate from the definitions of ♣i for each i,
noting that KUui (−) classes are unchanged by conjugation by any unitary
in Mn(C).

For statement (2), first let [u] ∈ KUu1 (B) where u ∈ Mn(B̃) is a unitary

with λ(u) = 1n. Find a lift a ∈Mn(Ã) of norm at most 1. Then

(Θ ◦ ♣1)([u]) = Θ([B(a)])

=
[

1
2(B(a) + 12n)

]
− [1n]

=

[(
aa∗ + 1n a

√
1n − a∗a

a∗
√

1n − aa∗ 1n − a∗a

)]
− [1n] .

On the other hand, using the description of ∂1 from Proposition 9.2.2 of
[34], it is defined in terms of the same lift a and works out to

∂1([u]) = [1n]−
[(

aa∗ + 1n a
√

1n − a∗a
a∗
√

1n − aa∗ 1n − a∗a

)]
.

Hence the diagram commutes after adjusting by a factor of −1.

Now let [u] ∈ KUu0 (B) where u ∈ M2n(B̃) is a unitary with u = u∗ and

λ(u) = I(0)
n . Then Θ([u]) =

[
1
2(u+ 12n)

]
− [1n]. Let a ∈ M2n(Ã) be a lift

of u satisfying −1 ≤ a ≤ 1. Then a′ = 1
2(a+ 12n) is a self-adjoint lift of the

projection p = 1
2(u+12n) so using the formulas for ∂0 from Proposition 12.2.2

of [34] or 9.3.2 of [4],

(∂0 ◦Θ)([u]) = ∂0([p]− [1n])

= [exp(2πia′)]

= [exp(πi(a+ 12n))]

= [− exp(πia)]

= ♣0([u]). �

Our goal for the rest of this section is to prove that in the real case the
homomorphisms ♣i and ∂i are the same, up to the same sign adjustment
necessary in Lemma 8.7 above. Since any convention of the index map
can be adjusted by a sign, we will henceforth assume that the diagrams in
Lemma 8.7 commute exactly and prove that ♣i = ∂i exactly for all i.
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For each i ∈ {0, 1, . . . , 7}, the algebra Ai is generated by a finite number of
elements. By Theorem 5.1.5 of [38], which is the real C∗-algebra counterpart
of Theorem 2.10 of [26], there exist universal real C∗-algebras on a given set
of generators subject to the relation that these generators are bounded in
norm by 1. Thus, for each i, there is such a real C∗-algebra Pi and a
surjective homomorphism

ρi : Pi → Ai.

Furthermore, since the relation is liftable, the algebras Pi are projective.
From this we obtain the short exact sequences

0→ Ji → Pi
ρi−→ Ai → 0

which are universal for the boundary map in a sense that we will take ad-
vantage of in the proof of Theorem 8.9 below.

Lemma 8.8. For all i we have ∂i = ♣i : KOui (Ai)→ KOui−1(Ji).

Proof. Since Pi is projective, we have KCRT(Pi) ∼= 0, so ∂i : KO
u
i (Ai) →

Ku
i−1(Ji) is an isomorphism of degree −1. By Theorems 3.1 and 3.2, both of

these groups are isomorphic to Z. In fact, since KCRT(Ai) ∼= Σ−iKCRT(R),
the structure of this CRT-module also implies that all four groups in the
diagram below are isomorphic to Z, and that the vertical maps ci and ci−1

are isomorphisms:

KOui (Ai)

ci

��

∂i // KOui−1(Ji)

ci−1

��

KUui (Ai)
∂i // KUui−1(Ji).

This diagram commutes by the naturality of the index map and the natural-
ity of the complexification map. By Lemma 8.7, the diagram also commutes
if we replace ∂i in the upper horizontal arrow with ♣i. It follows that these
two homomorphisms must coincide. �

Theorem 8.9. For all i, ∂i = ♣i.

Proof. Let

0→ I → A→ B → 0

be a short exact sequence of C∗,τ -algebras. Let ξ ∈ KOui (B). Then by The-
orem 4.13 for some integer n there exists a homomorphism φ : Ai →Mn(B),
such that φ∗([xi]) = ξ. Since Pi is projective, there exists a homomorphism
ψ and we obtain a homomorphism of short exact sequences,

0 // Ji //

��

Pi
ρi

//

ψ
��

Ai //

φ
��

0

0 // Mn(I) // Mn(A) // Mn(B) // 0
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which then induces a commutative diagram on K-theory

KOui (Ai)

φ∗
��

∂i or ♣i // KOui−1(Ji)

��

KOui (Mn(B))
∂i or ♣i // KOui−1(Mn(Ii)).

This diagram commutes if we take the horizontal homomorphisms to be
both ∂i or both ♣i. Since these two choices coincide for the upper arrow,
they must coincide for the lower arrow on ξ.

Finally, consider the commutative diagrams below arising from the mor-
phism of the original short exact sequence into the same one tensored by
Mn:

KOui (B)

��

∂i or ♣i // KOui−1(Ii)

��

KOui (Mn(B))
∂i or ♣i // KOui−1(Mn(Ii)).

Since the vertical arrows are isomorphisms, the result of the previous para-
graph shows that ∂i = ♣i : KOui (B)→ KOui−1(I). �

9. Boundary map examples: spheres and Calkin algebras

Example 9.1. Let σ be the involution on C(S1) given by fσ(z) = f(−z).
The corresponding real C∗-algebra is {f ∈ C(S1,C) | f(−z) = f(z)} which
is isomorphic to the real C∗-algebra T associated with self-conjugate K-
theory discussed in [5]. The groups KOi(T ) are calculated in Corollary 1.6
of [5], but we will present a self-contained calculation of KO∗(C(S1), σ) and
also find unitary elements representing generators of the non-trivial KO-
classes.

Let σ also denote the involution on C⊕C given by (z, w)σ = (w, z). Then
there is a short exact sequence

0→ (C0(S1 \ {±1}), σ)→ (C(S1), σ)
π−→ (C⊕ C, σ)→ 0

where π = (ev1, ev−1) and we will describe the boundary maps

∂i : KO
u
i (C⊕ C, σ)→ KOui−1(C0(S1 \ {±1}), σ).

By Lemma 7.8, we have

KOui (C⊕ C, σ) ∼= KUi(C) ∼=

{
Z i even

0 i odd.

Similarly, since there is an isomorphism

(C0(S1 \ {±1}), σ) ∼= (C0(0, 1)⊕ C0(0, 1), σ),
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we have

KOui (C0(S1 \ {±1}), σ) ∼=

{
0 i even

Z i odd.

Thus for i even we have ∂i : Z→ Z and we claim that

∂i =

{
0 i = 0, 4

2 i = 2, 6

(up to sign determined by the choices of isomorphism).
From Example 7.12 and Lemma 7.8, the generator of KOu0 (C⊕C, σ) is [w]

where w = (12, 12). This lifts to a = 12 ∈M2(C(S1,C)), which still satisfies
a∗ = a and aσ = a∗. Then ∂0([w]) = [− exp(πi12)] = [12], so ∂0 = 0.

The generator of KOu2 (C ⊕ C, σ) is [w] where w = (12,−12). One lift of
w is a ∈M2(C(S1,C)) defined by

a(e2πit) =

(
f(t) 0

0 f(t)

)
where f(t) =

{
1− 4t 0 ≤ t ≤ 1/2

−3 + 4t 1/2 ≤ t ≤ 1.

Check that a∗ = a and aσ = −a. Then ∂2([w]) = [E(a)] = [− exp(πia)]. We
have

E(a)(e2πit) =

(
− exp(πif(t)) 0

0 − exp(πif(t))

)
so

E(a) =

(
v 0
0 v

)
where v(z) =

{
z2 Im(z) ≥ 0

z2 Im(z) < 0.

Using the natural isomorphism

(C0(S1 \ {±1}), σ) ∼= (C0(0, 1)⊕ C0(0, 1), σ)

and combining Example 7.12 and Lemma 7.8, we see that [v] is a generator
of KOu1 (C0(S1 \ {±1}), σ). Thus [E(a)] is two times a generator.

For i = 4, the generator of KOu4 (C⊕ C, σ) is [w] where

w = (diag(1, 1, 1,−1), diag(1, 1,−1, 1)) ∈M4(C)⊕M4(C).

To verify this, note that w]⊗σ = w and that [diag(1, 1, 1,−1)] is a generator
of KU0(C, id). Then a lift of w is a where

a(x, y) = diag
(
12,
( x y
y −x

))
∈M4(C(S1)).

which satisfies a]⊗σ = a. Since a in fact is a self-adjoint unitary, then [E(a)]
is the trivial class.

Finally, for i = 6, the generator of KOu6 (C⊕ C, σ) is [w] where

w = (12,−12) .

This satisfies w]⊗σ = −w and a lift a that satisfies a]⊗σ = −a is

a(e2πit) = diag(f(t), f(t)).
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Then E(a) = diag(v, v). Again this implies that [E(a)] is two times a
generator.

Therefore, we have

i 0 1 2 3 4 5 6 7

KOi(C(S1), σ) Z Z2 0 Z Z Z2 0 Z

We will show furthermore that the non-trivial KO-groups have generators
represented by the following unitaries.

• KOu−1(C(S1), σ) ∼= Z generated by [w−1] where w−1(z) = z2.

• KOu0 (C(S1), σ) ∼= Z generated by [w0] where w0 = 12.
• KOu1 (C(S1), σ) ∼= Z2 generated by [w1] where w1(z) = −1
• KOu3 (C(S1), σ) ∼= Z generated by [w3] where w3(z) = diag(z,−z).
• KOu4 (C(S1), σ) ∼= Z generated by [w4] where

w4(x, y) = diag
(
12,
( x y
y −x

))
.

• KOu5 (C(S1), σ) ∼= Z2 generated by [w5] where w5(z) = diag(z, z).

For i = 0, 4, we know that π∗ is surjective, so it is just a matter of checking
that the induced class [π(wi)] is a known generator of KOui (C ⊕ C, σ). For
i odd, in each case we start with a known generator [xi] of

KOui (C0(S1 \ {±1}), σ)

and find the induced element in KOui (C0(S1), σ).
For example, for i = 1, consider the unitary

x1 =

{
z2 Im(z) ≥ 0

z2 Im(z) < 0

which represents the generating class of KOu1 (C0(S1 \ {±1}), σ). Note that
ev−1(x1) = ev1(x1) = 1. However, as a class of KOu1 (C(S1), σ)) ∼= Z we
have [x1] = [−1] since there is a homotopy from x1 to w1 unitaries wt
satisfying (wt)

]⊗σ = wt. Indeed, note that x1 restricted to the right half of
the circle is a unitary-valued path from −1 to −1 which is homotopic to a
constant through such paths. Also note that any such path on the right half
of the circle can be extended to a function on the whole circle satisfying the
proper symmetry. (For unitaries in (C(S1), σ) there is no requirement that
ev1 = 1.).

For i = 3, we start with the unitary

x3 =

{
diag(z2, 1) Im(z) ≥ 0

diag(1, z2) Im(z) < 0.

representing a class in KOu1 (C0(S1 \ {±1}), σ). In KOu3 (C(S1, σ)) ∼= Z
we have [x3] = [w3] where w3 is as above. Indeed, if f(z) is any unitary-

valued function on the circle such that f(1) = 1, then
(
f(z) 0

0 f(−z)

)
is in the
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appropriate symmetry class for KOu3 (C(S1), σ). Now, the two choices

f(z) = z and f(z) =

{
z2 Im(z) ≥ 0

1 Im(z) < 0

yield the two unitaries x3 and w3 under consideration. Since these two
choices of f are themselves homotopic, they yield a homotopy from x3 to
w3.

In a similar way, we obtain the given generator

[w5] ∈ KOu5 (C(S1, σ)) ∼= Z2.

Example 9.2. We now study the boundary maps for the short exact se-
quence

(12) 0
ι−→ (C0(S1 \ {±1}), ζ)→ (C(S1), ζ)

π−→ (C⊕ C, id)→ 0

where π = (ev1, ev−1) and f ζ(z) = f(z). The associated real C∗-algebra to
(C(S1), ζ) is

A = {f : S1 → C | f(z) = f(z)}.
There is a different split exact sequence involving A, namely

0→ 0→ S−1R→ A→ R→ 0

which easily implies KO∗(A) ∼= KO∗(R) ⊕ Σ−1KO∗(R), with individual
groups shown in the table below.

i 0 1 2 3 4 5 6 7

KOi(C(S1), ζ) Z Z⊕ Z2 Z2 ⊕ Z2 Z2 Z Z 0 0

However, we will independently calculate the boundary maps associated
with the Sequence (12) using our methods, arrive at the same abstract
groups, and identify explicit unitary generators.

To compute

∂i : KO
u
i (C⊕ C, id)→ KOui−1(C0(S1 \ {±1}), ζ)

we first identify the relevant groups as

i 0 1 2 3 4 5 6 7

KOui (C⊕ C, id) Z2 Z2
2 Z2

2 0 Z2 0 0 0

KOui−1(C0(S1 \ {±1}), ζ) 0 Z 0 Z 0 Z 0 Z

so we know right away that ∂i = 0 unless i = 0, 4. For i = 0, 4 we have
∂i : Z ⊕ Z → Z. We will show that ∂0(r, s) = r − s and ∂2(r, s) = 2r − 2s
(with appropriate identifications).

Suppose j = 0. Recall that I(0) = diag(1,−1). Then generators of
KOu0 (C⊕ C, id) are [w1] and [w2] where

w1 =
(

12, I
(0)
)
, w2 =

(
I(0), 12

)
∈M2(C)⊕M2(C).
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We find self-adjoint lifts ai of wi to be

a1(e2πit) =

(
1 0
0 f(t)

)
and a2(e2πit) =

(
1 0
0 −f(t)

)
where f is as in Example 9.1. Check that aζi = ai. Then ∂0([wi]) = [ui]
where ui = − exp(πiai) so

u1 =

(
1 0
0 v

)
and u2 =

(
1 0
0 v∗

)
and v is as in Example 9.1 (check that vζ = v). We have an isomorphism
(C0(S1 \{±1}), ζ) ∼= (C0(0, 1)⊕C0(0, 1), σ). Since [v] represents a generator
of KOu−1(C0(S1 \ {±1}), ζ) ∼= Z and [u1] = −[u2], this proves our claim for
∂0.

Now suppose j = 4. The generators of KOu4 (C⊕ C, id) are represented
by the unitaries

w1 = (14, I
(4)) and w2 = (I(4), 14)

that satisfy w]⊗id
i = wi. Lifts of wi that satisfy a]⊗ζi = ai are

a1(e2πit) = diag(1, 1, f(t), f(t)) and a2(e2πit) = diag(1, 1,−f(t),−f(t)).

Therefore ∂1([wi]) = [E(ai)] = [ui] where

u1 = diag(1, 1, v, v) and u2 = diag(1, 1, v∗, v∗).

Through the isomorphisms

Z ∼= KUu1 (C0(0, 1), id) ∼= KOu3 (C0(0, 1)⊕ C0(0, 1), σ)

∼= KOu3 (S1 \ {±1}, ζ)

we conclude that the KOu3 (S1\{±1}, ζ) ∼= Z class of a unitary is determined
by the winding number of that unitary on the top half of the circle. Thus
[diag(v, v)] is twice a generator. (A generator would be given for example
by a unitary such as w3 below). Since [u1] = −[u2], This proves the claim
for i = 4.

Now that the boundary maps are understood, the only group that is not
fully determined up to isomorphism by the exact sequences isKOu1 (C(S1), ζ)
which is an extension of Z2⊕Z2 by Z. We will show that KOu1 (C(S1), ζ) ∼=
Z ⊕ Z2. Note that the generator of KOu1 (C0(S1 \ {±1}), ζ) is given by [v′]

where v′(z) = z2 (check that (v′)ζ = (v′)∗). The image ι∗[v
′] is divisible by

2 in KOu1 (C(S1), ζ), since [ι(v′)] = 2[v′′] where v′′(z) = z (again, check that

(v′′)ζ = (v′′)∗). This shows that the extension problem for

0→ Z
ι∗−→ KOu1 (C(S1), ζ)

π∗−→ Z2
2 → 0

is solved by KOu1 (C(S1), ζ) ∼= Z⊕ Z2.
Now that we have determined the groups KOui (C(S1), ζ) up to isomor-

phism, we identify the generators and write down specific isomorphisms.
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• KOu0 (C(S1), ζ) ∼= Z generated by [w0] where w0 = 12. The isomor-
phism can be realized as [w] 7→ 1

2trace(w(1)).

• KOu1 (C(S1), ζ) ∼= Z⊕Z2 generated by [w1] and [w′1] where w1(z) = z
and w′1(z) = −1. Clearly, [w′1] generates the element of order 2. The
map

KOu1 (C(S1), ζ)→ Z⊕ Z2

is described by

[w] =
(
winding(t 7→ det

(
w(e2πit)

)
), 1

2 −
1
2 det(w(1))

)
where t is in [0, 1].
• KOu2 (C(S1), ζ) ∼= Z2 ⊕ Z2 generated by [w2] and [w′2] where

w2(x+ iy) =

(
y ix
−ix y

)
and w′2(x+ iy) =

(
y −ix
ix y

)
.

Moreover, a nice formula is that the isomorphism KOu2 (C(S1), ζ)→
Z2 ⊕ Z2 is given by

[w] 7→ (sign(Pf(w(1)), sign(Pf(w(−1))) .

• KOu3 (C(S1), ζ) ∼= Z2 generated by [w3] where

w3(z) =



(
z2 0

0 1

)
Im z ≥ 0(

1 0

0 z2

)
Im z < 0.

The class of any unitary w can be determined by looking at the
winding number of w restricted to the top half of the circle (modulo
2).
• KOu4 (C(S1), ζ) ∼= Z generated by [w4] where w4 = 14. The isomor-

phism can be realized as [w] 7→ 1
2trace(w(1)).

• KOu5 (C(S1), ζ) ∼= Z generated by [w5] where

w5(z) =



(
z2 0

0 1

)
Im z ≥ 0(

1 0

0 z2

)
Im z < 0.

The class of any unitary w can be determined by looking at the
winding number of w restricted to the top half of the circle.

Sketch of Proof. For i = 0, 1, 2 it suffices to show that the shown genera-
tors map via π∗ to corresponding generators of KOui (C⊕C, id). For i = 4, it
suffices to show that the shown generator [14] maps via π∗ to the generator
of the kernel of ∂4. This generator corresponds to (2, 2) in our conventional
isomorphism KOu3 (C⊕ C, id) ∼= Z⊕ Z.
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For i = 3, 5 it suffices to show that the shown generators are the image of
generators of KOui (C0(S1 \ {±1}), ζ).

For example, to identify the generators of KO2(C(S1), ζ) ∼= Z2 ⊕ Z2,

first note that (w2)ζ = −w2 and similarly for w′2. We know that π∗ is an

isomorphism on KOu2 (−) so it suffices to note that [π(w2)] = [I(2),−I(2)]

and [π(w′2)] = [−I(2), I(2)] which are the generators of KOu2 (C ⊕ C, id) ∼=
Z2 ⊕ Z2. �

Example 9.3. We will consider the exact sequence

0→ C0(U,R)→ C(D,R)→ C(S1,R)→ 0

where D is the unit disk and U = D \ S1 is the interior of D. In terms of
C∗,τ -algebras, we have

0→ (C0(U), id)→ (C(D), id)→ (C(S1), id)→ 0.

We shall disregard the summands of KOu∗ (C(D), id) and KOu∗ (C(S1), id)
associated with the unit, so we consider the reduced K-theory

0→ C0(U,R)→ C0(D \ {1},R)→ C0(S1 \ {1},R)→ 0.

Then the boundary map is an isomorphism

∂i : KO
u
i (C0(S1 \ {1}), id)→ KOui−1(C0(U), id)

with the groups as shown.

i −2 −1 0 1 2 3 4 5

KOu∗ (C(S1 \ {1}), id) 0 Z Z2 Z2 0 Z 0 0
KOui (C0(U), id) Z Z2 Z2 0 Z 0 0 0

We will focus on the case when i = −1. The free abelian generator of
KOu−1(C0(S1 \ {1}), id) is [w−1] where w−1(x, y) = x+ iy, clearly satisfying

wid
−1 = w−1. Then an appropriate lift of z in C(D) is a(x, y) = x + iy, so

∂−1[w−1] = [W2B(a)W ∗2 ] ∈ KO−2(C0(U), id) where

B(a) =

(
2aa∗ − 1 2a

√
1− a∗a

2a∗
√

1− aa∗ 1− 2a∗a

)
=

(
2(x2 + y2)− 1 2(x+ iy)

√
1− (x2 + y2)

2(x− iy)
√

1− (x2 + y2) 1− 2(x2 + y2)

)
.

Notice that on the boundary of D, B(a) = diag(1,−1) so λ(W2B(a)W ∗2 ) =

I(2) as expected.
There is a continuous map from S2 \ {(0, 0, 1)} to U given by

(x, y, z) 7→

√
z + 1

2(x2 + y2)
(x, y)
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which gives an isomorphism C0(S2 \ {(0, 0, 1)}) to C0(U). Under this trans-
formation, we have

B(a) =

(
z x+ iy

x− iy −z

)
∈M2(C(S2)).

Then

W2B(a)W ∗2 =

(
−y x+ iz

x− iz y

)
which is equivalent (via a rigid automorphism of the sphere) to the generator
of KOu−2(C0(S2 \ {1})) ∼= Z that was identified in Example 7.13.

Our final example uses our machinery to deal with index maps applied to
Fredholm operators with various symmetries. For a more direct approach,
and one that allows for a Z2-graded in addition to a real structure, see [18].

Example 9.4. Let BR be the real C∗-algebra of bounded operators on a
separable infinite dimensional real Hilbert space and let KR be the ideal of
compact operators. Then we have a short exact sequence

0→ KR → BR π−→ QR → 0

where QR is the real Calkin algebra. For any real C∗-algebra A, it follows
from Theorem 1.12 and Proposition 1.15 of [5] that KO∗(A) = 0 if and only

if KU∗(A) = 0. Therefore KO∗(B
R) = 0 and ∂i : KOi(QR)→ KOi−1(KR) is

an isomorphism for each i. Therefore,

i 0 1 2 3 4 5 6 7

KOi(QR) 0 Z Z2 Z2 0 Z 0 0

KOi(K
R) Z Z2 Z2 0 Z 0 0 0

We will identify the generators of KOui (KR) and, working backwards, the

generators of KOui (QR) for all i.

Let e be a rank 1 projection in KR and let ι : R → KR be the homomor-
phism given by t 7→ te, which induces an isomorphism on KO∗(−). The
generators of KOui (R) are given in Example 7.12. Recall that the generator
of KOu0 (R) was identified as [12] where 12 ∈M2(R). Working in the unitiza-

tion R̃ this corresponds to the unitary w = diag(0, 2)+diag(1,−1) ∈M2(R̃),
which satisfies [λ(w)] = [diag(1,−1)] = 0 (see Remark 7.4). Then the gen-

erator of KOu0 (KR) is given by [̃ι(w)] = [diag(1, 2e − 1)], as shown below.

The rest of the generators of KOi(K
R) for i = 1, 2, 4 are worked out sim-

ilarly. Note that these unitary representatives are given in terms of the
C∗,τ -algebra (K, τ) where τ is the associated involution on K.

• The generator of KOu0 (KR) is given by [w0] where

w0 = diag(1, 2e− 1, ) ∈M2(K̃).

• The generator of KOu1 (KR) is given by [w1] where w1 = −2e+1 ∈ K̃.
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• The generator of KOu2 (KR) is given by [w2] where

w2 =

(
0 i(−2e+ 1)

i(2e− 1) 0

)
∈M2(K̃).

• The generator of KOu4 (KR) is given by [w4] where

w4 = diag(1,1, 2e− 1, 2e− 1) ∈M4(K̃).

In each case, an element generating KOui (R) corresponds to an element in

KOui (KR) via [u] 7→
[
(u− I(i)

n )⊗ e+ I(i)
n ⊗ 1K

]
.

Let s ∈ BR be the one-sided shift operator defined by s(ei) = ei+1 where
{ei} is a given basis of the underlying (real) Hilbert space. Then s satisfies

sτ = s∗. Let u = π(s) ∈ QR, which is a unitary and also satisfies uτ = u∗.

We claim that that generators of KOui (QR) are the following.

• The generator of KOu1 (QR) is given by [v1] where v1 = u ∈M1(Q̃).

• The generator of KOu2 (QR) is given by [v2] where

v2 =

(
0 iu
−iu∗ 0

)
∈M2(Q̃).

• The generator of KOu3 (QR) is given by [v3] where

v3 =

(
u 0
0 u∗

)
∈M2(Q̃),

• The generator of KOu5 (QR) is given by [v5] where v5 = diag(u, u) ∈
M2(Q̃).

Proof. In each case, we verify that ∂i([vi]) = [wi−1] and then the result
follows since ∂i is an isomorphism.

For the first statement, we calculate ∂1([v1]) = ∂1([u]). First lift u back

to the partial isometry s ∈ BR. Using the formulas s∗s = 1 and ss∗ = 1− e
we have

B(s) =

(
2ss∗ − 1 2s

√
1− s∗s

2s∗
√

1− ss∗ 1− 2s∗s

)
=

(
1− 2e 0

0 −1

)
.

Then, noting that Y
(1)

2 = 12, we have

∂1[u] = [Y
(1)

2 B(s)Y
(1)

2 ] = [diag(1− 2e,−1)] = [diag(1, 2e− 1)],

which is the generator of KOu0 (KR).
For the second statement, first notice that v2 is a self-adjoint unitary and

that vτ2 = −v2. The appropriate lift to K̃ is

a =

(
0 is
−is∗ 0

)
.
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Then

∂2([v2])

=

[
− exp

(
π

(
0 −s
s∗ 0

))]
=

[
−
((

1 0
0 1

)
+ π

(
0 −s
s∗ 0

)
+
π2

2!

(
−1 + e 0

0 −1

)
+
π3

3!

(
0 s
−s∗ 0

)
+ · · ·

)]
=

[
−
((

e 0
0 0

)
+ cos

(
π ·
(

1− e 0
0 1

))
+ sin

(
π ·
(

0 −s
s∗ 0

)))]
=

[(
1− 2e 0

0 1

)]
= [w1]

which is the desired generator of KOu1 (KR).

Now consider v3, which is a unitary that satisfies v]⊗τ3 = v3. The obvious
lift is diag(s, s∗) ∈ B. We calculate

B

((
s 0
0 s∗

))
=


1− 2e 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 −1 + 2e


and then conjugate by Y

(3)
4 = V4Q4W4 to obtain

B′ =


0 i(1− e) 0 −ie

−i(1− e) 0 ie 0
0 −ie 0 i(1− e)
ie 0 −i(1− e) 0

 .

Notice that λ(B′) = I
(2)
2 as expected. The class [B′] corresponds to the class

in KOu2 (R) given by the unitary

C ′ =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ∈M4(R).

The Pfaffian of C ′ distinguishes it from the trivial element represented by

I
(2)
2 =


0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0

 .

Therefore, [B′] = [w2] is the non-trivial class in KOu2 (KR).
Finally, the proof for v5 is similar to that for v1. The lift for v5 is a =

diag(s, s) and then

∂5([v5]) = [B(a)] = [diag(1− 2e,1− 2e,−1,−1)] = [w4]
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as desired. (The conjugation matrix in this case is Y
(4)

4 = X4 = 14.) �
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