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On t-reductions of ideals in pullbacks

S. Kabbaj, A. Kadri and A. Mimouni

Abstract. Let R be an integral domain and I a nonzero ideal of R.
An ideal J ⊆ I is a t-reduction of I if (JIn)t = (In+1)t for some pos-
itive integer n; and I is t-basic if it has no t-reduction other than the
trivial ones. This paper investigates t-reductions of ideals in pullback
constructions of type �. Section 2 examines the correlation between the
notions of reduction and t-reduction in pseudo-valuation domains. Sec-
tion 3 solves an open problem on whether the finite t-basic and v-basic
ideal properties are distinct. We prove that these two notions coincide
in any arbitrary domain. Section 4 features the main result, which es-
tablishes the transfer of the finite t-basic ideal property to pullbacks in
line with the result in Fontana–Gabelli, 1996, on PvMDs and the re-
sult in Gabelli–Houston, 1997, on v-domains. This allows us to enrich
the literature with new families of examples, which put the class of do-
mains subject to the finite t-basic ideal property strictly between the
two classes of v-domains and integrally closed domains.
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1. Introduction

Throughout, all rings considered are commutative with identity. Let R be
a ring and I a proper ideal of R. An ideal J ⊆ I is a reduction of I if
JIn = In+1 for some positive integer n. The notion of reduction was intro-
duced by Northcott and Rees to contribute to the analytic theory of ideals
in Noetherian local rings via minimal reductions. An ideal which has no
reduction other than itself is called a basic ideal; and a ring has the finite
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basic ideal property (resp., basic ideal property) if every finitely generated
ideal (resp., every ideal) of R is basic. In [18, 19], Hays investigated reduc-
tions of ideals in Noetherian rings and Prüfer domains. He provided several
conditions for an ideal to be basic. His two main results asserted that a
domain R is Prüfer (resp., one-dimensional Prüfer) if and only if R has the
finite basic ideal property (resp., basic ideal property).

Let R be a domain and I a nonzero fractional ideal of R. The v-, t-, and
w-closures of I are defined, respectively, by Iv := (I−1)−1, It := ∪Jv, where
J ranges over the set of finitely generated subideals of I, and Iw = ∩IRM
where M ranges over the set of maximal t-ideals of R. Now, let ? be a star
operation on R and I a nonzero ideal of R. An ideal J ⊆ I is a ?-reduction
of I if (JIn)? = (In+1)? for some positive integer n.

In [23], the authors extended Hays’ aforementioned results to PvMDs;
namely, a domain has the finite w-basic ideal property (resp., w-basic ideal
property) if and only if it is a PvMD (resp., PvMD of t-dimension one). They
also investigated relations among the classes of domains subject to various ?-
basic properties. In this vein, the problem of whether the finite t- and v-basic
ideal properties are distinct was left open. In [28], the authors investigated
the t-reductions and t-integral closure of ideals establishing satisfactory t-
analogues of well-known results, in the literature, on the integral closure
of ideals and its correlation with reductions. One of their main result [28,
Theorem 3.5] asserts that the t-closure and t-integral closure of an ideal
coincide in the class of integrally closed domains.

This paper investigates t-reductions of ideals in pullback constructions of
type � (defined in Section 4). Section 2 examines the correlation between the
notions of reduction and t-reduction in pseudo-valuation domains. Section 3
solves an open problem raised in [23] on whether the finite t-basic and v-basic
ideal properties are distinct. We prove that these two notions coincide in any
arbitrary domain. Section 4 features the main result, which establishes the
transfer of the finite t-basic (equiv., v-basic) ideal property to pullbacks in
line with Fontana–Gabelli’s result on PvMDs [10, Theorem 4.1] and Gabelli–
Houston’s result on v-domains [14, Theorem 4.15]. This allows us to enrich
the literature with new families of examples, which put the class of domains
subject to the finite t-basic ideal property strictly between the two classes
of v-domains and integrally closed domains.

For a full treatment of the topic of reduction theory, we refer the reader
to [26]. For more details about star operations, we refer the reader to [11]
and [17, Sections 32 and 34].

2. t-Reductions in pseudo-valuation domains

We first recall the definitions of t-reduction and related concepts such as the
trivial t-reduction and (finite) t-basic ideal property.

Definition 2.1 ([23, 28]). Let R be a domain and I a nonzero ideal of R.
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(a) An ideal J ⊆ I is a t-reduction of I if (JIn)t = (In+1)t for some
integer n ≥ 0. The ideal J is a trivial t-reduction of I if Jt = It.

(b) I is t-basic if it has no t-reduction other than the trivial t-reductions.
(c) R has the (finite) t-basic ideal property if every nonzero (finitely

generated) ideal of R is t-basic.

For any star operation ?, the ?-reduction and related concepts are defined
likewise. This is not to be confused with Epstein’s c-reduction [6, 7, 8], which
generalizes the original notion of reduction in a different way and was studied
in different settings. Namely, let c be a closure operation. An ideal J ⊆ I
is a c-reduction of I if Jc = Ic. Thus, for c := ?, Epstein’s c-reduction
coincides with the trivial ?-reduction.

In the sequel, we will be using the following obvious facts, for nonzero
ideals J ⊆ I, without explicit mention:

J is a t-reduction of I ⇔ J is a t-reduction of It ⇔ Jt is a t-reduction of It.

Recall that R is a pseudo-valuation domain if R is local and shares its
maximal ideal with a valuation overring V or, equivalently, if R is a pullback
issued from the following diagram

R = ϕ−1(k) −→ k
↓ ↓
V

ϕ−→ K := V/M

where (V,M) is a valuation domain (with residue field K) and k is a subfield
of K. For the sake of simplicity, we will say that R is a pseudo-valuation do-
main issued from (V,M, k). For more details on pseudo-valuation domains,
see [20, 21] and also [1, 2, 4, 5, 33].

Note that a reduction is necessarily a t-reduction; and the converse is
not true in general. The next result investigates necessary and sufficient
conditions for the notions of reduction and t-reduction to coincide in pseudo-
valuation domains. This result can be used readily to provide examples
discriminating between the two notions of reduction and t-reduction.

Theorem 2.2. Let R be a pseudo-valuation domain issued from (V,M, k)
and set K := V/M . Then, the following statements are equivalent:

(i) For every nonzero ideals J ⊆ I, J is a t-reduction of I ⇐⇒ J is a
reduction of I.

(ii) For each k-vector subspace W of K containing k, Wn is a field for
some positive integer n.

Proof. (i)⇒(ii) Let W be a k-vector subspace of K with k $W $ K. Let
0 6= a ∈M and consider the ideals of R

J := aR ⊆ I := aϕ−1(W ).

Let r ≥ 1. Then, the fact that k $W yields

(R : Ir) = a−rϕ−1(k : W r) = a−rM
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and then

(Ir)v = arM−1 = arV.

By [24, Proposition 4.3], the t- and v- operations coincide in R. Hence, we
have

(JI)t = (aI)t = aIt = aIv = a2V = (I2)v = (I2)t

and so J is a t-reduction of I. By (i), J must be a reduction of I and so

an+1ϕ−1(Wn) = JIn = In+1 = an+1ϕ−1(Wn+1)

for some positive integer n. It follows that ϕ−1(Wn) = ϕ−1(Wn+1); i.e.,
Wn = Wn+1. Therefore Wn = (Wn)2 and thus Wn is a ring. In particular,
let 0 6= λ ∈ K and let Wo := k+ λk. Then, there is some positive integer m
such that

k + λk + · · ·+ λmk = Wm
o

= Wm+1
o

= k + λk + · · ·+ λm+1k.

So, λm+1 ∈ k + λk + · · ·+ λmk. Therefore λ is algebraic over k and thus K
is algebraic over k. Consequently, Wn is a field, as desired.

(ii)⇒(i) Let J ⊆ I be a t-reduction of I; i.e., (JIn)t = (In+1)t for some
positive integer n. If I is an ideal of V , then both JIn and In+1 are ideals
of V so that JIn and In+1 are divisorial ideals of R by [20, Theorem 2.13].
Therefore, we obtain

JIn = (JIn)v = (JIn)t = (In+1)t = (In+1)v = In+1.

That is, J is a reduction of I. Next, assume that I is not an ideal of V .
Then, by [3, Theorem 2.1(n)], I = aϕ−1(W ) for some nonzero a ∈ M and
some k-vector space W with k ⊆W ⊂ K. Assume that k = W ; i.e., I = aR.
Then Jt = aR. Now, if J $ aR, then a−1J $ R, hence a−1J ⊆ M , whence
J ⊆ aM . Since M is a divisorial ideal of R [22, Corollary 5], we obtain

aR = Jt ⊆ (aM)t = aMt = aM

which is a contradiction. So, necessarily, J = I. Next, assume k $ W .
Suppose J is an ideal of V . Then JIn would be an ideal of V and hence a
divisorial ideal of R, yielding

anJ = JIn = (JIn)v = (JIn)t = (In+1)t = (In+1)v = an+1V,

where the last equality is already handled in (i) ⇒ (ii). It follows that

J = aV = IV ⊇ I ⊇ J.
That is, J = I is an ideal of V , absurd. Hence, J is not an ideal of V .
So, since J ⊆ I, we may assume that J = aϕ−1(F ), where F is a k-vector
subspace of W . Now by hypothesis, W s = W s+1 is a field for some s ≥ 1.
It follows that

FW s = W s+1
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yielding

JIs = as+1ϕ−1(FW s) = as+1ϕ−1(W s+1) = Is+1.

Hence J is a reduction of I, completing the proof of the theorem. �

Note that the condition (ii) in the above result forces K to be algebraic
over k. In this vein, this fact can be used readily to provide examples of
domains where the two notions of reduction and t-reduction are distinct.

Example 2.3. Let R be a pseudo-valuation domain issued from (V,M, k)
and set K := V/M .

(a) Assume that K is a transcendental extension of k. Then, the notions
of reduction and t-reduction are distinct in R. For instance, pick a
transcendental element λ ∈ K over k and let

W := k + kλ, I := aφ−1(W ) and J =: aR.

Then, J is a proper t-reduction of I, but I is basic in R, as seen in
the proof of (i)⇒(ii) of Theorem 2.2, above.

(b) Assume that [K : k] is finite. Then for every k-submodule W of K
with k ⊆W ⊆ K, some power of W is a field, and hence the notions
of reduction and t-reduction coincide in R.

Given nonzero ideals J ⊆ I, if Jt is a reduction of It, then J is a t-
reduction of I. The converse is not true in general as shown by [28, Example
2.2] which consists of a domain containing two t-ideals J $ I such that
J is a t-reduction but not a reduction of I. The next result provides a
class of (integrally closed) pullbacks where the two assumptions are always
equivalent.

Proposition 2.4. Let R be a pseudo-valuation domain and let J ⊆ I be
nonzero ideals of R. Then, J is a t-reduction of I if and only if Jt is a
reduction of It.

Proof. Sufficiency is trivial. For the necessity, assume R is issued from
(V,M, k) and, without loss of generality, R $ V . Next, let J be a t-reduction
of I. Then, Jt is a t-reduction of It and hence we may assume that J
and I are both t-ideals. So (JIn)t = (In+1)t, for some integer n ≥ 1.
If I is an ideal of V , as in the proof of Theorem 2.2 ((ii)⇒(i)), we get
JIn = (JIn)t = (In+1)t = In+1; that is, J is a reduction of I. Next, suppose
that I is not an ideal of V . By [3, Theorem 2.1(n)], I = aϕ−1(W ) for some
nonzero a ∈M and some k-vector space W with k ⊆ W ⊂ K := V/M . We
claim that k = W . Otherwise, we would get, via [24, Proposition 4.3], that
I = It = Iv = aV , where the last equality is already handled in the proof
of Theorem 2.2 ((i)⇒(ii)). It follows that I is an ideal of V , the desired
contradiction. So, necessarily, k = W and then I = aR. By [23, Lemma
1.2], I is t-basic; that is, J = I, completing the proof. �
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The class of Prüfer domains is, so far, the only known class of domains
where these two notions of reduction and t-reduction coincide. We close this
section with the next result, which features necessary conditions for such a
coincidence. For this purpose, recall that a domain where the trivial and
w-operations are the same is said to be a DW-domain [16, 25, 31]. Common
examples of DW-domains are pseudo-valuation domains, Prüfer domains,
and quasi-Prüfer domains (i.e., domains with Prüfer integral closure) [12,
Page 190].

Proposition 2.5. Let R be a domain where the notions of reduction and
t-reduction coincide for all ideals of R. Then:

(1) Every nonzero prime ideal of R is a t-ideal. In particular, R is a
DW-domain.

(2) R is integrally closed if and only if R has the finite t-basic ideal
property.

(3) R is a PvMD if and only if R is a Prüfer domain.

Proof. (1) Let P be a nonzero prime ideal of R. Clearly, P is a t-reduction
of Pt. By hypothesis, P is then a reduction of Pt. But every prime ideal is
a C-ideal (i.e., it is not a proper reduction of any larger ideal) [18, Page 58].
It follows that P = Pt, as desired. In particular, every maximal ideal of R
is a t-ideal and, hence, R is a DW-domain by [31, Proposition 2.2].

(2) Assume that R is integrally closed and let I be a finitely generated
ideal of R and J a t-reduction of I. By hypothesis, J is a reduction of I.
So, by a combination of [26, Corollary 1.2.5] and [32, Proposition 2.2(iii)],
we get I ⊆ J ⊆ Jt, where J denotes the integral closure of J . It follows that
Jt = It; i.e., I is t-basic, as desired. The converse is true for any arbitrary
domain R by [23, Lemma 1.3].

(3) Assume R is a PvMD. By hypothesis, the notions of reduction and
t-reduction coincide in R and, hence, R is a DW-domain by (1) above. By
[16, Theorem 1.2], R is a Prüfer domain. The converse is trivial. �

3. Equivalence of the finite t- and v-basic ideal properties

For the reader’s convenience, recall that a domain is called a v-domain if all
its nonzero finitely generated ideals are v-invertible; an excellent reference
for v-domains is Fontana & Zafrullah’s comprehensive survey paper [13].
Also, recall from [23] the following diagram of implications, which puts into
perspective the finite basic ideal property for each of the t-, v-, and w-
operations:

Krull domain
⇓

PvMD = Finite w-basic ideal property
⇓

v-domain
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⇓
Finite v-basic ideal property

⇓
Finite t-basic ideal property

⇓
Integrally closed domain

The problem of whether the fourth implication is reversible was left open
in [23, Section 3]. The main result of this section (Theorem 3.2) solves this
open problem. For this purpose, recall from [28] the following: Let R be a
domain and I a nonzero ideal of R. An element x ∈ R is t-integral over I if
there is an equation xn+a1x

n−1 + · · ·+an−1x+an = 0 with ai ∈ (Ii)t ∀i =
1, . . . , n. Consider the two sets:

Ĩ :=
{
x ∈ R | x is t-integral over I

}
Î :=

{
x ∈ R | I is a t-reduction of (I, x)

}
.

Ĩ is called the t-integral closure of I and is an integrally closed ideal [28,

Theorem 3.2], on the other hand, it is not known if, in general, Î is an ideal
(see Question 3.5 below). We always have

It ⊆ Ĩ ⊆ Î

where the first containment is trivial and the second is asserted by [28,
Proposition 3.7] and can be strict as shown by [28, Example 3.10(a)]. How-

ever, for the trivial operation, it is well-known that the equality Ĩ = Î always
holds [26, Corollary 1.2.2]; this fact was used to show that the integral clo-
sure of an ideal is an ideal [26, Corollary 1.3.1]. Finally, in order to put
Theorem 3.2 into perspective, recall the following important result.

Theorem 3.1 ([28, Theorem 3.5]). For a domain R, the following two
assertions are equivalent:

(i) It = Ĩ for each nonzero (finitely generated) ideal I of R.
(ii) R is integrally closed.

Now, to the main result of this section.

Theorem 3.2. For a domain R, the following assertions are equivalent:

(i) It = Î for each nonzero (finitely generated) ideal I of R.
(ii) R has the finite t-basic ideal property.
(iii) R has the finite v-basic ideal property.

The proof of this result requires the following two lemmas.

Lemma 3.3 ([23, Lemma 1.7]). Let R be a domain and let I be a finitely
generated ideal of R. If J ⊆ I is a t-reduction of I, then there exists a
finitely generated ideal K ⊆ J such that K is a t-reduction of I.
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Note that, for any given ?-operation, ?-reductions of (integral) ideals can
be naturally extended to fractional ideals. The following lemma collects
basic results on ?-reductions of (fractional) ideals.

Lemma 3.4. For a domain R, let K ⊆ J ⊆ I and J ′ ⊆ I ′ be nonzero
fractional ideals of R.

(1) If J and J ′ are ?-reductions of I and I ′, respectively, then J + J ′ is
a ?-reduction of I + I ′ and JJ ′ is a ?-reduction of II ′.

(2) If K is a ?-reduction of J and J is a ?-reduction of I, then K is a
?-reduction of I.

(3) If K is a ?-reduction of I, then J is a ?-reduction of I.
(4) J is a ?-reduction of I ⇔ Jn is a ?-reduction of In.
(5) If J = (a1, . . . , ak), then: J is a ?-reduction of I ⇔ (an1 , . . . , a

n
k) is

a ?-reduction of In.

Proof. Substitute “?” for “t” and “fractional ideals” for “(integral) ideals”
in the proofs of [28, Lemmas 2.5, 2.6 and 2.7]. �

Proof of Theorem 3.2. In view of the diagram mentioned at the begin-
ning of this section, we only need to prove (i)⇔(ii)⇒(iii). First, let us prove

that if the equality Î = It holds for all nonzero finitely generated ideals then
it holds for all nonzero ideals. Indeed, let I be an ideal of R and x ∈ R such
that I is a t-reduction of (I, x). So,

(I(I, x)n)t = ((I, x)n+1)t

for some positive integer n. Hence, xn+1 ∈ (I(I, x)n)t. Whence, xn+1 ∈ Av
for some finitely generated ideal A ⊆ I(I, x)n. Moreover, there exist finitely
generated subideals Fo, F1 . . . , Fn of I such that

A ⊆ Fo(F1, x)(F2, x) · · · (Fn, x).

Set F :=
∑n

i=o Fi ⊆ I. Then, A ⊆ F (F, x)n and so

xn+1 ∈ (F (F, x)n)v = (F (F, x)n)t.

It follows that

((F, x)n+1)t = (F (F, x)n, xn+1)t ⊆ (F (F, x)n)t.

Thus, F is a t-reduction of (F, x). Since F is finitely generated, then by

hypothesis x ∈ F̂ = Ft ⊆ It. Consequently, Î ⊆ It and, as mentioned above,
the reverse inclusion always holds by [28, Proposition 3.7].

Assume that R has the finite t-basic ideal property and let I be a finitely

generated ideal of R and x ∈ Î. Necessarily, It = (I, x)t which forces

x ∈ It. Consequently, Î = It. Conversely, assume that (i) holds. Let
I := (a1, . . . , an) be a nonzero finitely generated ideal of R (n ≥ 1) and let
J be a t-reduction of I. By Lemma 3.3, we may assume that J is finitely
generated. Clearly, we have

J ⊆ (J, a1, . . . , an−1) ⊆ I.
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By [28, Lemma 2.6], (J, a1, . . . , an−1) is a t-reduction of I which can be
regarded as

(
(J, a1, . . . , an−1), an

)
. Hence, by hypothesis,

an ∈ ̂(J, a1, . . . , an−1) = (J, a1, . . . , an−1)t.

It follows that

It = (J, a1, . . . , an−1)t.

But J , being a t-reduction of It, is also a t-reduction of (J, a1, . . . , an−1).
Therefore, we re-iterate the above process by removing one generator at
each step. Eventually, we get It = Jt, as desired. This proves (i)⇔(ii).

Assume that R has the finite t-basic ideal property and let I be a finitely
generated ideal of R and J a v-reduction of I. So

Jv =
⋂
λ∈Λ

(aλ)

where the (aλ)’s are the nonzero principal fractional ideals of R containing
J by [17, Theorem 34.1]. By Lemma 3.4, (aλ) = (J, aλ) is a v-reduction of
(I, aλ) for each λ ∈ Λ. Hence (aλ) is a t-reduction of (I, aλ) as both ideals
are finitely generated. Since R has the finite t-basic ideal property, one
can easily verify that every nonzero fractional ideal of R is t-basic. Hence,
(aλ) = (I, aλ)t for each λ ∈ Λ. Therefore

Iv = It ⊆
⋂
λ∈Λ

(aλ) = Jv.

Hence, Iv = Jv; that is, I is v-basic. This proves (ii)⇒(iii), completing the
proof of the theorem. �

New examples of domains subject to the finite t-basic (equiv., v-basic)
ideal property will be provided in the next section. We close this section
with the following open question:

Question 3.5. Let I be a nonzero ideal, is Î always an ideal?

4. Transfer of the finite t-basic ideal property to pullbacks

Let us fix notation for this section. Let T be a domain, M a maximal ideal
of T , K its residue field, ϕ : T −→ K the canonical surjection, and D a
proper subring of K with quotient field k. Let R be the pullback issued
from the following diagram of canonical homomorphisms:

R −→ D
( � ) ↓ ↓

T
ϕ−→ K = T/M.

So, R := ϕ−1(D) $ T . This section establishes necessary and sufficient
conditions for a pullback of type � issued from local domains to inherit the
finite t-basic (equiv., v-basic) ideal property. Recall that a domain with the
t-basic ideal property is completely integrally closed [23, Proposition 1.4].
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Therefore, by [17, Lemma 26.5], a pullback of type � never has the t-basic
ideal property.

It is worthwhile recalling that the finite t-basic ideal property lies between
the two notions of v-domain and integrally closed domain [23]; and that the
finite w-basic ideal property coincides with the PvMD property [23, Theorem
2.1]. Also, the transfer of the notions of PvMD and v-domain to pullbacks
was established, respectively, by Fontana & Gabelli in [10] and by Gabelli
& Houston in [14], which summarizes as follows:

Theorem 4.1 ([10, Theorem 4.1] & [14, Theorem 4.15]). Let R be a pullback
of type �. Then, R is PvMD (resp., v-domain) if and only if T and D are
PvMDs (resp., v-domains), TM is a valuation domain, and k = K.

Finally, recall that if T is integrally closed, then the integral closure of R is
ϕ−1(D), where D denotes the integral closure of D in K. This follows easily
from the fact that R and T have the same quotient field. Next, we announce
the main result of this section which allows us to enrich the literature with
new families of examples, putting the new class of domains subject to the
finite t-basic ideal property strictly between the two classes of v-domains
and integrally closed domains.

Theorem 4.2. Let R be a pullback of type � such that T is local. Then,
R has the finite t-basic ideal property if and only if T and D have the finite
t-basic ideal property and k = K.

Proof. Assume that R has the finite t-basic ideal property. We first prove
that k = K. Assume, by way of contradiction, that k $ K. By [14,
Proposition 2.4], there is an element x ∈ T \R with (R : (1, x)) = M . Hence

x2(R : (1, x)) = x2M ⊆ TM ⊆ R; i.e., x2 ∈ (1, x)v.

Therefore, for any nonzero m ∈M , we have

x2m2 ∈ (m2, xm2)v = (m2, xm2)t

and so
((m,xm)2)t = (m2, xm2)t = (m(m,xm))t

forcing (m) to be a t-reduction of (m,xm) in R. Whence, (m,xm)t = (m).
It follows that xm ∈ (m) and thus x ∈ R, the desired contradiction. Next,
we prove that T has the finite t-basic ideal property. Below, we denote by v1

and t1 the v- and t- operations with respect to T . Let I be a nonzero finitely
generated proper ideal of T and J a t-reduction of I. So (JIn)t1 = (In+1)t1
for some positive integer n. We may assume, by Lemma 3.3, that J is finitely
generated. If (In+1)v1 is principal; say, (In+1)t1 = (In+1)v1 = (a) for some
nonzero a ∈ T , then

aJt1 = (JIn+1)t1 = (In+2)t1 = aIt1

yielding Jt1 = It1 . Next, suppose that (JIn)v1 = (In+1)v1 is not principal.
Since k = K, then T is a localization of R (cf. [9, 27]). So, J = BT and
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I = AT , for some nonzero finitely generated ideals B ⊆ A of R. By [14,
Proposition 2.7(1)(b)], we obtain

(An+1)t = (An+1)v = (In+1)v1 = (In+1)t1 = (JIn)t1 = (JIn)v1 = (BAn)v

= (BAn)t.

It follows that B is a t-reduction of A and thus Bt = At. By [29, Lemma
3.4], we get

Jt1 = (BtT )t1 = (AtT )t1 = It1 .

Therefore, in both cases, we showed that J is a trivial t-reduction of I, as
desired. Next, we show that D has the finite t-basic ideal property. Let A be
a nonzero finitely generated ideal of D and let B be a t-reduction of A. Let
tD denote the t-operation with respect to D. So, (BAn)tD = (An+1)tD for
some positive integer n. We may assume, by Lemma 3.3, that B is finitely
generated. By [10, Corollary 1.7], I := ϕ−1(A) and J := ϕ−1(B) are two
nonzero finitely generated ideals of R (containing M). Since k = K, by [10,
Proposition 1.6(a) & Proposition 1.8(a3)], we obtain

(JIn)t = (ϕ−1(BAn))t = ϕ−1((BAn)tD) = ϕ−1((An+1)tD) = (ϕ−1(An+1))t

= (In+1)t.

Hence J is a t-reduction of I and thus Jt = It. It follows that

BtD = ϕ(ϕ−1(BtD)) = ϕ(Jt) = ϕ(It) = ϕ(ϕ−1(AtD)) = AtD

completing the proof of the “only if” assertion.
Conversely, assume that T and D have the finite t-basic ideal property

and k = K. Notice that, in presence of the latter assumption, M cannot be
finitely generated [14, Lemma 4.1]. Also, recall that we always have Mv = M
[22, Corollary 5]. Next, let I be a nonzero finitely generated ideal of R and
let J be a finitely generated subideal of I with (JIn)t = (In+1)t for some
positive integer n. By [15, Proposition 1.6], any ideal of R is comparable to
M . So, we envisage two cases:

Case 1. Suppose that M $ I. We first claim that M $ In+1; otherwise,
In+1 ⊆ M yields, by [10, Proposition 1.1], T = (IT )n+1 = In+1T ⊆ MT =
M , absurd. Moreover, we have M $ J ; otherwise, we would have

J ⊆M $ In+1 ⊆ Jt = Jv,

which is absurd. Further, we claim that M $ JIn; otherwise, JIn ⊆ M
yields via [10, Proposition 1.1]

T = (JT )(IT )n = (JIn)T ⊆MT = M,

which is absurd. Now, let A := ϕ(I) and B := ϕ(J), two nonzero finitely
generated ideals of D. Therefore, by [10, Prop. 1.6(b) & Prop. 1.8(b3)], we
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get

(BAn)tD = (ϕ(JIn))tD = ϕ((JIn)t) = ϕ((In+1)t) = (ϕ(In+1))tD

= (An+1)tD .

Hence B is a t-reduction of A and thus BtD = AtD . It follows that

Jt = ϕ−1(ϕ(Jt)) = ϕ−1(BtD) = ϕ−1(AtD) = ϕ−1(ϕ(It)) = It.

Case 2. Suppose that I $ M . If II−1 * M , then there is a nonzero
x ∈ qf(R) with M $ xI ⊆ R, hence xJt = xIt by Case 1, whence Jt = It.
So, we may assume II−1 ⊆M . Now, note that (JIn)−1 = (In+1)−1. So, by
[15, Proposition 2.2(1)], we have

(JInT )t1 = (JInT )v1

= ((JInT )−1)−1

= ((JIn)−1T )−1

= ((In+1)−1T )−1

= ((In+1T )−1)−1

= (In+1T )v1

= (In+1T )t1 .

Hence JT is a t-reduction of IT . It follows, via [15, Proposition 2.2(1)], that

J−1T = (JT )−1 = ((JT )v1)−1 = ((JT )t1)−1 = ((IT )t1)−1 = ((IT )v1)−1

= (IT )−1 = I−1T.

On the other hand, the assumption II−1 ⊆M yields

(IT )(IT )−1 = II−1T ⊆MT = M.

Hence IT is not invertible and, a fortiori, not principal in T . Therefore, by
[14, Proposition 2.7(a)], we get

J−1 ⊆ J−1T = I−1T = (IT )−1 = (M : I) = I−1 ⊆ J−1.

Consequently, It = Iv = Jv = Jt, completing the proof of the theorem. �

Theorem 4.2 allows us to enrich the literature with new families of ex-
amples, which put the class of domains subject to the finite t-basic ideal
property strictly between the two classes of integrally closed domains and
v-domains.

Example 4.3. Consider any non-trivial pseudo-valuation domain R issued
from (V,M, k) with k algebraically closed in K := V/M . Then, R is an
integrally closed domain by [3, Theorem 2.1], which does not have the fi-
nite t-basic ideal property by Theorem 4.2. Moreover, the two notions of
reduction and t-reduction are distinct in R by Proposition 2.5(2).
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Example 4.4. Consider any pullback R of type � issued from (T,M,D)
where qf(D) = T/M , T is a non-valuation local v-domain, and D is a v-
domain. Then, R has the finite t-basic ideal property by [23, Proposition 1.6]
and Theorem 3.2 and Theorem 4.2, which is not a v-domain by [14, Theorem
4.15]. One can easily build non-valuation local v-domains via pullbacks
through [14, Theorem 4.15].

Here is a specific example, where we ensure, moreover, that the two no-
tions of reduction and t-reduction are distinct.

Example 4.5. Let T := Q(X)[[Y,Z]] = Q(X) + M and R := Z[X] +
M . Clearly, T and D := Z[X] have the finite t-basic property (since they
are Noetherian Krull domains). By Theorem 4.2, R has the finite t-basic
property. Also R is not a v-domain since T is a non-valuation local domain.
Next, let 0 6= a ∈ Z and consider the finitely generated ideal of R given by
I := (a,X)Z[X] +M = aR +XR. Clearly I−1 = R and so (Is)−1 = R, for
every positive integer s. In particular, we have

(I2I)t = (I3)t = (I3)v = R = (I2)v = (I2)t

and hence I2 is a t-reduction of I. However, I2 is not a reduction of I;
otherwise, if In+2 = I2In = In+1, for some n ≥ 1, this would contradict [30,
Theorem 76]. It follows that the notions of reduction and t-reduction are
distinct in R, as desired.

We close this section with the following two open questions.

Question 4.6. Is Theorem 4.2 valid for the classical pullbacks R = D+M
issued from T := K +M not necessarily local? The idea here is that (since
k = K, then) T = S−1R for S := D \ {0}. Clearly, the current proof of the
“only if” assertion works for this context.

Question 4.7. Is Theorem 4.2 valid for the non-local case through an ad-
ditional assumption on TM? The idea here is that, “(k = K and hence)
RM = TM” is a necessity for the finite t-basic property; and for the PvMD
and v-domain notions, RM = TM is a valuation domain. So, one needs to
investigate this localization for the t-basic ideal property in this context.
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