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Nonhyperbolic free-by-cyclic and
one-relator groups

J. O. Button and R. P. Kropholler

Abstract. We show that the free-by-cyclic groups of the form F2 o Z
act properly cocompactly on CAT(0) square complexes. We also show
using generalized Baumslag–Solitar groups that all known groups de-
fined by a 2-generator 1-relator presentation are either SQ-universal or
are cyclic or isomorphic to a soluble Baumslag–Solitar group.
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1. Introduction

The recent far reaching work of Agol and Wise proves that a word hyper-
bolic group G acting properly and cocompactly on a CAT(0) cube complex
must be virtually special, implying that G has a finite index subgroup which
embeds in a right angled Artin group (RAAG). A host of very strong con-
clusions then apply to the group G, for instance G will be linear (over C or
even over Z) and (if G is not elementary) also large, namely G has a finite
index subgroup surjecting to a nonabelian free group.

However, if G is a finitely presented nonhyperbolic group acting properly
and cocompactly on a CAT(0) cube complex, then the above consequences
need no longer hold, indeed G can even be simple [10]. Therefore suppose
we have a class of finitely presented groups which is believed to be a well
behaved class, but which contains both word hyperbolic and non-word-hy-
perbolic examples. We can ask: first, do all examples in this class have a
nice geometric action, namely a proper cocompact action on a CAT(0) cube
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complex, and second: do they all enjoy these strong group theoretic prop-
erties which are a consequence of being a virtually special group. Note that
for non-word-hyperbolic groups, satisfying this geometric condition need not
imply such group theoretic properties.

In this paper the classes of groups we will be interested in are the following
three: groups of the form FkoαZ for Fk a free group of finite rank k and α an
automorphism of Fk (we refer to these as “free-by-cyclic groups”); the more
general class of ascending HNN extensions Fk∗θ of finite rank free groups,
where rather than θ having to be an automorphism, as in the free-by-cyclic
case, we allow θ to be any injective endomorphism of Fk; and finally the class
of groups admitting a presentation with 2 generators and 1 relator, which
we refer to as 2-generator 1-relator groups. This last class neither contains
nor is contained in either of the other two classes but there is considerable
overlap.

In the free-by-cyclic case, it was recently shown in [20] that such word
hyperbolic groups do act properly and cocompactly on a CAT(0) cube com-
plex, and therefore are virtually special groups. However, Gersten in [18]
gave an example of a free-by-cyclic group which cannot act properly and co-
compactly on any CAT(0) space, so this result cannot hold in general in the
non-word-hyperbolic case. In Gersten’s paper the free group has rank 3 but
in Section 2 we consider free-by-cyclic groups of the form F2 oα Z, none of
which are word hyperbolic. Therefore it is of interest to show directly that
they act properly and cocompactly on CAT(0) cube complexes, which we do
in Section 2. This work is based on unpublished work of Bridson and Lustig.
Those authors give us the method of changing the natural topological model
of the standard 2 complex (shown in Figure 1) to get rid of a pocket of pos-
itive curvature, and in this way they go on to show that these groups act on
2-dimensional CAT(0) complexes. We expand on this by showing that one
can build these complexes from squares. This also strengthens a result of
T. Brady [5] who showed that there is a 2-complex of nonpositive curvature
made from equilateral triangles with fundamental group F2 oα Z.

In Section 3 we consider 2-generator 1-relator groups. It is conceiv-
able, but very definitely open, that a word hyperbolic 2-generator 1-relator
group always acts properly and cocompactly on a CAT(0) cube complex
(for instance see [33] Conjecture 1.9). However on moving to the non-word-
hyperbolic case we see a different picture emerging because a group acting
properly and cocompactly on any CAT(0) space cannot contain a Baumslag–
Solitar group BS(m,n) where |m| 6= |n|. Thus the examples of such nasty
Baumslag–Solitar groups as BS(2, 3) mean that we need not always have
largeness nor linearity, or even residual finiteness. However there is a prop-
erty akin to but weaker than largeness which might be held by all 2-generator
1-relator groups except for the soluble groups BS(1,m) and Z, even in the
absence of residual finiteness. This is the property of a group G being SQ-
universal: namely that every countable group embeds in a quotient of G.
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It was conjectured by P. M. Neumann in [28] back in 1973 that a noncyclic
1-relator group is either SQ-universal or isomorphic to BS(1,m). Now it
was shown in [32] that a group having a 1-relator presentation with at least
3 generators is SQ-universal, leaving the 2-generator 1-relator case. Also
[30] from 1995 showed that all nonelementary word hyperbolic groups are
SQ-universal and this was generalized to nonelementary groups which are
hyperbolic relative to any collection of proper subgroups in [1] from 2007.

Recently the concept of a group being acylindrically hyperbolic, which is
more general than being hyperbolic with respect to a collection of proper
subgroups and which implies SQ-universality, was introduced in [31] and
studied in [27] where one application was to 2-generator 1-relator groups.
The authors divided these groups into three classes with the first consisting
of groups that they could show were acylindrically hyperbolic. We prove
in Theorem 3.2 that all the groups in their second case, which they show
are not acylindrically hyperbolic, are indeed SQ-universal unless equal to
BS(1,m). In fact every group here is formed by taking an HNN extension
with base equal to a quotient of some free-by-cyclic group Fk oα Z for α
finite order, along with infinite cyclic edge groups. The proof proceeds by
identifying them as generalized Baumslag–Solitar groups, whereupon we also
show in Theorem 3.2 that any generalized Baumslag–Solitar group either is
SQ-universal or is isomorphic to BS(1,m) or Z.

This leaves their third case, which is exactly the class of 2-generator 1-
relator groups that are ascending HNN extensions of finite rank free groups.
Here we are not quite able to establish SQ-universality of all of these groups
not equal to BS(1,m) or Z, though it is known to hold for the free-by-cyclic
case. However we do show in Corollary 3.4 that the only possible exception
would be a 2-generator 1-relator group equal to a strictly ascending HNN
extension of a finite rank free group which either fails to be word hyperbolic
and contains no Baumslag–Solitar subgroup, or does contain a Baumslag–
Solitar subgroup (but does not contain Z × Z) and where all finite index
subgroups have first Betti number equal to 1. In both cases it is conjectured
that no such examples exist, so we have established P. M. Neumann’s con-
jecture for all the known 2-generator 1-relator groups. We also obtain some
general unconditional statements, such as Corollary 3.5 which says that if
the relator is in the commutator subgroup of F2 then G is SQ-universal or
equal to Z × Z. We then finish by considering in Section 4 which free by
cyclic groups FkoαZ for k ≥ 2 are acylindrically hyperbolic and show that,
modulo an unpublished assertion in [17], the answer is exactly when α has
infinite order in Out(Fk).

Acknowledgements. We would like to thank Martin Bridson and Martin
Lustig for allowing us to reproduce the results from [8] here, as well as the
anonymous referee for comments on the previous version of this paper.
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2. Square complexes for free-by-cyclic groups in the rank 2
case

In this section we will prove the following:

Theorem 2.1. Let φ be an automorphism of F2. Then the group F2 oφ Z
acts freely, cellularly, properly and cocompactly on a CAT(0) square complex.

As mentioned before there are many nice consequences of word hyperbolic
groups acting properly and cocompactly on CAT(0) cube complexes. How-
ever, no automorphism of F2 is hyperbolic since they all fix the conjugacy
class of [a, b]±1.

However, there are still advantages to having a group act on a CAT(0)
cube complex. For instance, abelian subgroups are quasi-isometrically em-
bedded, and such groups are biautomatic [19, 29] and have a deterministic
solution to the word problem in quadratic time [16].

Groups which act on CAT(0) square complexes have the further nice
property that all of their finitely presented subgroups also act properly and
cocompactly on CAT(0) square complexes. This is proved using a tower
argument (see [7],p. 217) and the fact that a sub complex of a nonpositively
curved square complex is itself a nonpositively curved square complex (this
may fail in higher dimensions). The construction also shows that for F2-
by-Z groups their geometric dimension is equal to their CAT(0) dimension,
namely 2.

2.1. Preliminaries. We assume that the reader is familiar with the basics
of CAT(0) geometry for which the standard reference is [7].

Definition 2.2. We say a metric space is nonpositively curved if for each
point there is a neighbourhood which is CAT(0).

In the following we will study 2 dimensional piecewise euclidean (PE)
complexes. These are complexes built from polygonal subsets of R2 by gluing
along edges, whereupon we put the natural path metric on the resulting
complexes. For full details see [7].

Square complexes are special examples of PE complexes where all the cells
are squares.

The following theorems of Gromov allow one to check whether a complex
is nonpositively curved just by looking at the links of vertices.

Theorem 2.3 ([6]). A PE complex with finitely many isometry types of cells
is nonpositively curved if and only if the link of each vertex is a CAT(1)
space.

In the two dimensional case the link of any vertex is a graph and so this
can be reduced to the following.

Lemma 2.4 ([7]). A graph is CAT(1) if it contains no circuits of length
less than 2π.
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Definition 2.5. We say that an action is proper if for each compact set K
the set {g ∈ G : gK ∩K 6= ∅} is finite.

As these groups will be the fundamental groups of nonpositively curved
spaces, they have an action on the universal cover. Since the spaces are
compact the action will be proper and cocompact and it will also be a free
action since these groups are torsion free.

The groups Gφ that we shall be concerned with are mapping tori of
F2 = F (x, y) by a single automorphism φ ∈ Aut(F2). These groups have
presentations of the form

〈x, y, t|txt−1 = φ(x), tyt−1 = φ(y)〉.
We start by considering the case of automorphisms which are of finite

order.

Proposition 2.6. If φ ∈ Aut(Fn) has order q in Out(Fn) then Gφ is the
fundamental group of a nonpositively curved 2-complex. Furthermore, this
is finitely covered by Γ× S1 where Γ is a graph with fundamental group Fn.

Proof. Every finite order automorphism φ of Fn can be realised as an isom-
etry of a finite graph Γ; see for instance [13] Theorem 2.1. Let

X = Γ× [0, 1]/(x, 0) ∼ (φ(x), 1).

X is locally isometric to Λ× (−ε, ε) where Λ is a contractible subset of a
graph. This will be CAT(0) and so X is nonpositively curved.

If we take the cover corresponding to the kernel of the map to Zq, taking
t to a generator of Zq, this will be Γ× S1. �

We now want to look at automorphisms of infinite order. It is well known
that the isomorphism class of Gφ is dependant only on the conjugacy class
of φ in Out(Fn).

Theorem 2.7. [5] The semigroup Ω generated by −I, F, L and R contains
a conjugate of every infinite order matrix in GL2(Z). Where

F =

(
0 1
1 0

)
, R =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
.

As such we will only need to realise the automorphisms corresponding to
these in our groups.

2.2. The construction. We will now construct nonpositively curved com-
plexes with Gφ as their fundamental groups, when φ is in the semigroup
generated by

λ : a 7→ ba ρ : a 7→ a

b 7→ b b 7→ ab

ι : a 7→ a−1 σ : a 7→ b

b 7→ b−1 b 7→ a.
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Figure 1. The 2-complex associated to λ.

We see that from the above this gives us all F2-by-Z groups.
We start with the obvious 2-complex shown in Figure 1 for the automor-

phism λ. This has a repeated corner which means it cannot support a metric
of nonpositive curvature.

To get rid of the repeated corner we cut our building blocks along the
dotted line identifying the triangles with the repeated corner, resulting in
our basic building blocks shown in Figure 2.

Every element of Ω has the form φ = η0 . . . ηn−1θ where ηi = ρ or λ and
θ is one of the following automorphisms of order 2:

ψ1 : (a, b) 7→ (a, b)

ψ2 : (a, b) 7→ (a−1, b−1)

ψ3 : (a, b) 7→ (b, a)

ψ4 : (a, b) 7→ (b−1, a−1).

We can assume that we only apply one of these and we do it at the end. This
is because in Out(F2) the first and second give central elements whereas ψ4

is equal to the composition ψ2ψ3 and ρψ3 = ψ3λ.
We glue our blocks together to get a complex which realises any auto-

morphism in Ω, so up to isomorphism we have all groups Gφ. We do this
in the following way: in Figure 2 let i = 0 so that we have the positive and
the negative vertices t±1

0 at each end of t0. On performing the given gluing

we have that t±1
0 are not identified, but if we further stick these two ver-

tices together by identifying a0, b0 with a1, b1 respectively then the resulting
2-complex has fundamental group F2 oλ Z or F2 oρ Z. Now suppose that
our automorphism φ = η0 . . . ηn−1θ, where θ is one of the four special finite
order automorphisms above. For each i between 0 and n−1 we have a copy
Ci of the 2-complex associated to either λ or ρ in Figure 2 which contains
the edge ti. We then glue Ci to Ci+1 by the identity between the ai+1, bi+1,
which means that the vertex t−i is identified with t+i+1 (the edge ti is oriented

from t−i to t+i ). Finally we glue Cn−1 back to C0 by identifying the an, bn
with a0, b0 so that t−n−1 becomes equal to t+0 .

We say a vertex is at time i if it is the vertex where ti−1 and ti meet.
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Figure 2. The basic building blocks for the construction
with angles labelled.

We start with the case of vertices of time not equal to 0, thus these will be
where our complexes Ci−1 and Ci are glued together by the identity between
the ai, bi.

The link of such a vertex is shown in Figure 3. We now want to assign
angles such that there are no circuits of length less than 2π.

If we assign angles as in Figure 2, then we get two types of link as shown
in Figure 3. Figure 3 i) corresponds to the automorphisms at the i-th
stage both being ρ or both being λ. Figure 3 ii) corresponds to when one
automorphism is λ and one is ρ.

We can see in either case that the link has no circuits of length less than
2π.

We now look at the case of the vertex at time 0. This will have to take
into account the map θ. We can consider the link as being split into 2
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Figure 4. The 2 halves of a link.

halves as shown in Figure 4. The finite order maps defined earlier give
vertex identifications. There are 16 possible links we may get in this way,
corresponding to which automorphisms meet and to one of the 4 finite order
automorphisms. All of these give a link which is homeomorphic to the 1
skeleton of a tetrahedron with the set of angles depicted in Figure 3.

2.2.1. Square Complexes. With a more careful assignment of angles we
can see that the complexes above can be made into square complexes.

We split the automorphism φ into one of three types depending on its
decomposition in the semigroup described earlier:

(1) φ = ρn or λn;
(2) φ = (ρλ)n(ρθ)ε or (λρ)n(λθ)ε where θ ∈ {ψ3, ψ4} and ε ∈ {0, 1};
(3) all other automorphisms.
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Figure 5. The 2 possible cases of automorphisms meeting
at a vertex.

We will assign angles to our building blocks based on which meet at time
i. We have depicted the two cases of our building blocks meeting at a vertex.

In Case 1 each time our building blocks meet, it will be of the type
depicted in Figure 5 i). In this case we keep the angle assignment we had
before and make the edges labelled aj or bj on the vertical sides of the two
rectangles of length 2 and the other edges of length 1. We then make the
edge between the 2 triangles of length

√
2 and subdivide the rectangles into

squares of edge length 1, thus replacing the two triangles with a new building
block which is the square formed by gluing them together. The link of the
original vertices in this complex are depicted in Figure 6 i), where the edges
corresponding to ai and bi have been suppressed as they have valence 2.

In Case 2 each time our building blocks meet, it will be of the type
depicted in Figure 5 ii). In this case we collapse the triangles to the vertical
line labelled ai or bi. Subdivide the resulting rectangles into 2 squares of side
length 1. The link of the original vertices in this complex are depicted in
Figure 6 ii), where the edges corresponding to ai and bi have been suppressed
as they have valence 2.

In Case 3 we will have a mix of both Figures 5 i) and ii) and we collapse
all the triangles to lines as we did for Case 2. This introduces degenerate
squares from building blocks meeting as in Figure 5 i), which could affect
the topology of the overall complex if there were a cylinder of such squares.
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Figure 7. The links for automorphisms in Case 3.

However, this will not happen as the only time a cylinder of degenerate
squares could occur is if our automorphism is in Case 1.

The links of vertices in these complexes are depicted in Figure 7, where
the edges corresponding to ai and bi have been suppressed as they have
valence 2. The case of edges of 0 length are the degenerate squares where
in fact the two edges become identified.

In all the cases we see that the resulting complex will be a nonpositively
curved square complex.

3. SQ universal groups

A countable group G is said to be SQ-universal (standing for Subgroup
Quotient) if every countable group can be embedded in a quotient of G. This
immediately implies that G contains a nonabelian free group and also that
G has uncountably many normal subgroups. Moreover SQ-universality is a
consequence of G being large (having a finite index subgroup surjecting to
a nonabelian free group). However an infinite simple group S containing F2
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would not be SQ-universal, nor would a just infinite group such as PSLn(Z)
for n ≥ 3.

As for examples of groups which are SQ-universal, we have all nonele-
mentary word hyperbolic groups by [30]. This means that word hyperbolic
groups with property (T) provide lots of further examples of groups which
are SQ-universal but not large. Moreover by [1] a finitely generated group
which is hyperbolic relative to any collection of proper subgroups is SQ-
universal (or virtually cyclic).

An important class of groups in this area is 1-relator groups. It was
shown in [2] in 1978 that any group with a presentation of deficiency at
least 2 (thus any group having an n-generator 1-relator presentation for
n ≥ 3) is large, leaving 2-generator 1-relator groups. The question of when
such a group G contains F2 has been known for some time: yes, unless
G is isomorphic to a Baumslag–Solitar group of the form BS(1, n) (where
n ∈ Z − {0}) or is cyclic. Largeness is a different matter; for instance [15]
showed that the group BS(m,n) is large if and only if m and n are not
coprime. However for the intermediate property of SQ-universality there is
a conjecture that appeared in [28] in 1973: a noncyclic 1-relator group is
SQ-universal unless it is isomorphic to BS(1, n), thus if true this would be
equivalent to containing F2. Although [32] showed in 1974 that a group with
an n-generator 1-relator presentation for n ≥ 3 is SQ-universal (which was
then subsumed by the largeness result mentioned above), for 2-generator
1-relator groups progress was only made in special cases.

However recently the concept of a group being acylindrically hyperbolic
was introduced in [31]. We will not need the definition of acylindrical hy-
perbolicity here, just the fact also in [31] that such a group is SQ-universal.
If a group is nonelementary and is relatively hyperbolic with respect to a
collection of proper subgroups then it is also acylindrically hyperbolic. This
was followed up in [27] where the theory was applied to various situations,
including 1-relator groups to obtain the following. Here a subgroup H of
a group G is s-normal in G if H is infinite and moreover H ∩ gHg−1 is
infinite for all g ∈ G. The relevance of this is that an s-normal subgroup of
an acylindrically hyperbolic group must also be acylindrically hyperbolic, so
for instance H ∼= Z being s-normal in G implies that G is not acylindrically
hyperbolic (though it could certainly be SQ-universal or even large).

Proposition 3.1 ([27] Proposition 4.20). Let G be a group with two gener-
ators and one defining relator. Then at least one of the following holds:

(i) G is acylindrically hyperbolic.
(ii) G contains an infinite cyclic s-normal subgroup. More precisely,

either G is infinite cyclic or it is an HNN-extension of the form

G = 〈a, b, t | at = b, w = 1〉

of a 2-generator 1-relator group H = 〈a, b | w(a, b)〉 with nontrivial
center, so that ar = bs in H for some r, s ∈ Z\{0}. In the latter case



766 J. O. BUTTON AND R. P. KROPHOLLER

H is (finitely generated free)-by-cyclic and contains a finite index
normal subgroup splitting as a direct product of a finitely generated
free group with an infinite cyclic group.

(iii) G is isomorphic to an ascending HNN extension of a finite rank free
group.

Moreover, the possibilities (i) and (ii) are mutually exclusive.

Thus this establishes that groups in class (i) are SQ-universal. We will
show the same for groups in (ii) then discuss results for (iii). When con-
sidering groups in Case (ii), we will use the class of generalized Baumslag–
Solitar, or GBS, groups. These can be defined as those finitely generated
groups which act on a tree with infinite cyclic vertex and edge stabilisers.
The two recent papers [23] and [24] cover a lot of ground in this area and we
now mention the points we will be using, referring to them for more detail.

We can describe a GBS group using the graph of groups theory, where
we are given a finite graph (possibly with self loops and/or multiple edges)
along with a label, which is a nonzero integer, at each end of each edge.
Then every vertex and edge group can be regarded as a copy of the integers
Z generated by 1 ∈ Z, with the two labels on an edge describing the inclusion
map of the edge group into each of the neighbouring vertex groups by giving
us the image in each vertex group of the generator 1 from the edge group.
(Thus the modulus of this label tells us the index of this edge group in
the adjacent vertex group and so determines the subgroup of the vertex
group uniquely, but there are still two possibilities for the inclusion map,
coming from the sign of this label.) In general many different finite labelled
graphs can give rise to isomorphic GBS groups. One operation that can be
performed without change of the underlying group is an elementary collapse.
This is when one end of an edge e next to a vertex v is labelled ±1 and the
edge is not a self loop. We can then contract this edge and multiply all other
labels next to v by the label at the other end of e. By doing this repeatedly,
we may assume that any edge with an end labelled by ±1 is a self loop.

Note that all GBS groups have deficiency 1, that is they admit a pre-
sentation with one more generator than relator. In particular there always
exists a surjective homomorphism from any GBS group to Z.

Theorem 3.2. If the group G is as in Case (ii) of the preceding Proposition
then G is a generalized Baumslag–Solitar group. Moreover any generalized
Baumslag–Solitar group is either SQ-universal or it is isomorphic to the
Baumslag–Solitar group BS(1, j) for some j ∈ Z \ {0} or is infinite cyclic.

Proof. For the first part we can use Theorem C of [22]. This states that the
noncyclic finitely generated groups of cohomological dimension 2 that have
an infinite cyclic s-normal subgroup are exactly the generalized Baumslag–
Solitar groups. Now a 1-relator group has cohomological dimension 2 if the
relator is not a proper power by [25], but a proper power gives rise to a
group with torsion, whereas the groups in Case (ii) are all torsion free.
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Now let Γ be the underlying graph of our graph of groups that results in
the GBS group G. As mentioned above we assume that the only edge labels
equal to ±1 appear on self loops.

It is well known that if Γ contains more than one cycle (here we include
self loops as cycles), then G surjects to F2 and so is SQ-universal, because
we introduce a stable letter for each cycle when forming G, and all vertex
subgroups can be quotiented out to leave only these stable letters which
have no relations between them.

It is also known that if Γ is a tree then G is virtually Fk × Z for k ≥ 2
which is large, hence so is G. This can be seen by quoting Proposition 4.1
of [23] which states that a group is a GBS group with nontrivial centre if
and only if it is of the form Fk oα Z with α having finite order in Out(Fk).
Now here G will certainly have a nontrivial centre, namely an element which
is a common power of all the generators of the vertex subgroups as these
form a generating set for G. Moreover in the case of a tree the surjective
homomorphism θ from G to Z has the property that no nontrivial element
of a vertex (or edge) group lies in its kernel, as if so then the whole vertex
group does, thus so do the neighbouring edge groups and so on across the
whole tree.

We now assume that Γ has exactly one cycle C. First assume this is not a
self loop. We pick one edge e lying in C and remove the interior of e to form
a tree T and a group H coming from considering T as the corresponding
graph of groups. Thus we have our homomorphism θ : H � Z as above,
with G obtained from H by taking generators h1, h2 of the vertex groups at
each end v1, v2 of e and then adding a stable letter t which results in the
presentation

G = 〈H, t|rels(H), thm1 t
−1 = hn2 〉

where m,n are the labels at each end of e, neither of which are 0 or ±1.
We now obtain a surjection from G to a Baumslag–Solitar group using the
following folklore lemma:

Lemma 3.3. Let G be an HNN extension of the group H amalgamating
the subgroups A,B via the isomorphism φ : A → B. Suppose we have a
homomorphism θ from H onto a quotient Q with θ(A) isomorphic to θ(B)
such that φ descends to an isomorphism φ from θ(A) to θ(B), meaning that φ
is well defined and bijective with φθ = θφ. (This occurs if and only if φ(K) =
L for K,L the kernels of the restriction of θ to A,B respectively.) Then on
forming the HNN extension R of Q with stable letter s amalgamating θ(A)
and θ(B) via φ, we have that the original HNN extension G has this new
HNN extension R as a quotient.

Proof. We define a homomorphism from the free product H ∗ 〈t〉 onto R
sending t to s and h ∈ H to θ(H) ∈ Q. We see that this factors through G
because any relation in G of the form tat−1 = φ(a) has the left hand side
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mapped by θ to sθ(a)s−1 and the right hand side to φθ(a), and these two
things are equal in R by the HNN construction. �

Consequently in our case we have G surjects to BS(k1m, k2n), where
k1 = θ(h1) which is not equal to zero as mentioned above because H is
formed from a tree, and similarly for k2. Now a Baumslag–Solitar group
BS(i, j) = 〈t, a|tait−1 = aj〉 is known to be SQ-universal if neither of i, j
equal ±1, by Lemma 1.4.3 of [14] if i and j are coprime, and by the well
known trick of setting ad equal to the identity when d > 1 divides i and j,
to get a surjection to Z∗Zd which is virtually free otherwise. As |m| and |n|
are both greater than 1, we have that G surjects to an SQ-universal group
and so itself is SQ-universal.

We are now only left with the case where there is a single self loop L
in our graph Γ. Here we thank the anonymous referee for providing the
following simplification of our original argument: if L = Γ thenG is an actual
Baumslag–Solitar group BS(m,n), so we are done as above if |m|, |n| 6= 1
and we have a soluble Baumslag–Solitar group and hence the exception
in Theorem 3.2 if one of |m|, |n| is equal to 1. Otherwise there will be a
separating edge e of Γ such that, on removal of the interior of e, we are
left with two components Γ1 and Γ2 giving rise to the groups G1 and G2,
where Γ1 is a tree (possibly a single vertex) and Γ2 contains the self loop
L. We set v1, v2 to be the distinct vertices of e where vi ∈ Γi and h1, h2 to
be the generators of the respective vertex groups. We also suppose that e
is labelled by the integer k at the Γ1 end and l at the Γ2 end, whereupon
|k| (and also |l|) is not equal to 1. Then G is the amalgamated free product
G1 ∗hk1=hl2G2. Now we have a surjection of G2 to Z obtained from the stable

letter of the loop L and this sends h2 to the identity. Thus on taking any
prime p dividing k and any surjective homomorphism θ : G1 � Z, whose
existence is guaranteed as G1 is a GBS group, we can compose with the
natural quotient map to obtain a homomorphism θp : G1 � Zp which sends

hk1 to the identity. These can now be combined into a homomorphism from
G itself onto Zp ∗ Z, which is SQ-universal and hence so is G. �

Note: this result can be compared to [23] Theorem 6.7 in which the large
GBS groups are determined, but there are cases for which the graph Γ is a
single cycle where the group G is SQ-universal but not large.

We now come to Case (iii), that of G being equal to the strictly ascending
HNN extension Fk∗θ of Fk, where θ : Fk → Fk is injective but need not be
surjective. Here we can quote results of the first author in [11]. Theorem
5.4 of that paper states that G will be SQ-universal whenever θ is an au-
tomorphism (unless G ∼= Z,Z× Z or the Klein bottle group when the rank
k is 0 or 1). This is proved by showing that Z × Z ≤ G implies that G

is large, and then invoking Ol’shanskĭi’s theorem on the SQ-universality of
word hyperbolic groups and the result in [9] that not containing Z× Z and
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being word hyperbolic are equivalent in the class of groups Fk∗θ when θ is
an automorphism.

In the case where G is a strictly ascending HNN extension of a finite rank
free group, we have further results but they are not quite definitive. Again we
have that if Z×Z ≤ G then G is large (or is equal to Z×Z or the Klein bottle
group) by [11] Corollary 4.6. However in the strictly ascending case there
are examples where G does not contain Z×Z but does contain a Baumslag–
Solitar subgroup, which must be of the form BS(1,m) for |m| 6= 1 so that G
fails to be word hyperbolic. In [21] it is conjectured that a strictly ascending
HNN extension of a finite rank free group is is word hyperbolic if it does
not contain a Baumslag–Solitar subgroup and this conjecture seems to be
widely believed, but a proof might well require the machinery of train track
maps to be developed in full for injective endomorphisms of Fk. Moreover
it is an open question whether a 1-relator group (or indeed a group with a
finite classifying space) containing no Baumslag–Solitar subgroups is word
hyperbolic, so we would be covered in our case if any of these (or their
intersection) turned out to be true.

As for when G contains BS(1,m) for |m| 6= 1, [11] Theorem 4.7 states
that either G is large, or G is itself a Baumslag–Solitar group of the form
BS(1, n), or G 6∼= BS(1, n) but G has virtual first Betti number equal to
1 and it is conjectured that the last case does not occur. Putting all this
together, we have our result on the SQ-universality of 2-generator 1-relator
groups:

Corollary 3.4. If G is a group given by a 2-generator 1-relator presentation
that is not Z, Z×Z or the Klein bottle group then either G is an SQ-universal
group, or G is a strictly ascending HNN extension Fk∗θ of a free group Fk
which is not word hyperbolic and such that either:

(i) G contains no Baumslag–Solitar subgroup (conjecturally this does
not occur), or

(ii) G contains a Baumslag–Solitar group BS(1,m) for |m| 6= 1 but does
not contain Z× Z and the virtual first Betti number of G is 1 (con-
jecturally this only occurs if G ∼= BS(1, n) for |n| 6= 1).

We finish this section with a couple of unconditional results.

Corollary 3.5. If G = 〈a, b|w(a, b)〉 and w is in the commutator subgroup
of F (a, b) (and without loss of generality cyclically reduced) then G is SQ-
universal, except when G ∼= Z × Z for w a cyclic permutation of aba−1b−1

or its inverse.

Proof. This proceeds by using the BNS invariant Σ ⊆ S1 of G in [3] and
the proof is very similar to Theorem D of that paper. The idea is that
Σ is an open subset of S1 and if Σ ∪ −Σ is not all of S1 then we have
a homomorphism χ : G � Z that expresses G as a nonascending HNN
extension. The Magnus decomposition of this extension is such that G is
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either in Case (i) or Case (ii) of Proposition 3.1, so that G is SQ-universal
by that theorem for Case (i) or by Theorem 3.2 for Case (ii).

Otherwise we have Σ∩−Σ 6= ∅ as S1 is connected, which means that the
kernel of χ is finitely generated and consequently the 1-relator group G can
be expressed as Fk oα Z, which is SQ-universal if k ≥ 2. If k = 1 then α is
the identity as G surjects to Z×Z, so G = Z×Z and therefore admits only
the above 2-generator 1-relator presentations by [26] Theorem 4.11. �

Finally an SQ-universal group can be thought of as one with many infinite
quotients whereas an infinite residually finite group can be thought of as
having many finite quotients. We see that all 2-generator 1-relator groups
therefore have many quotients of some kind:

Corollary 3.6. A group with a 2-generator 1-relator presentation is either
SQ-universal or residually finite.

Proof. This follows from Corollary 3.4 because [4] proved that a strictly
ascending HNN extension of a finite rank free group is residually finite. �

4. Acylindrically hyperbolic mapping tori of free groups

For the three cases in the last section, we had that the groups in Case (i)
were all acylindrically hyperbolic whereas none in Case (ii) were. However
when considering groups in Case (iii) for SQ-universality, we did this inde-
pendently of results on acylindrically hyperbolic groups. It can therefore be
asked which mapping tori of finite rank free groups are acylindrically hyper-
bolic and indeed this is exactly Problem 8.2 in [27]. Moreover a solution just
for the 1-relator groups in this class would then completely determine which
2-generator 1-relator groups are acylindrically hyperbolic, which is Problem
8.1 of [27].

It is clear that an ascending HNN extension Fk oα Z of Fk formed using
an automorphism α of finite order in Out(Fk) will not be acylindrically
hyperbolic because of the existence of an infinite order element in the centre.
Thus a possible answer to Problem 8.2 is that all other ascending HNN
extensions of Fk are acylindrically hyperbolic with the exception of BS(1,m)
when k = 1. This would imply two mutually exclusive cases for these groups:
either they are acylindrically hyperbolic or they are generalized Baumslag–
Solitar groups, and it would also imply in answer to Problem 8.1 of [27] that
a 1-relator group is acylindrically hyperbolic if and only if it does not contain
an infinite cyclic s-normal subgroup. As a partial answer to Problem 8.2 we
have:

Proposition 4.1. If a finitely generated group G of cohomological dimen-
sion 2 has a finite index subgroup H splitting over Z then either G is acylin-
drically hyperbolic or it is a generalized Baumslag–Solitar group.



NONHYPERBOLIC FREE-BY-CYCLIC AND ONE-RELATOR GROUPS 771

Proof. We can apply [22] Theorem C to H as it also has cohomological
dimension 2. This implies that if H splits over A ∼= Z ≤ H and A is s-
normal then H is a generalized Baumslag–Solitar group and therefore so
is G by [22] Corollary 3 (ii) as it is torsion free. Otherwise we can apply
Corollaries 2.2 and 2.3 of [27] which state that if H is an amalgamated free
product or HNN extension over an edge group which is not s-normal and
not equal to a vertex group under any inclusion then H is acylindrically
hyperbolic and therefore so is G by [27] Lemma 3.8. However if A ∼= Z
is equal to a vertex group then we have H = BS(1,m) which is also a
generalized Baumslag–Solitar group. �

Corollary 4.2. An ascending HNN extension Fk∗θ for k ≥ 2 that virtually
splits over Z is either acylindrically hyperbolic or is virtually Fk × Z.

Proof. All ascending HNN extensions of Fk have geometric and thus coho-
mological dimension 2, so by Proposition 4.1 we obtain acylindric hyperbol-
icity unless we have a generalized Baumslag–Solitar group. They are all also
residually finite, but by [24] Corollary 7.7 a generalized Baumslag–Solitar
group is not residually finite unless it is virtually Fk × Z or BS(1,m) when
k = 1. The latter case gives rise to soluble groups which therefore cannot
contain Fk for k ≥ 2. �

We finish by returning to the case where the mapping torus is formed
using an automorphism, so we are back in the class of free-by-cyclic groups
G = Fk oα Z, and we will consider which of these groups are acylindrically
hyperbolic. Of course this will be true if G is word hyperbolic or hyperbolic
with respect to a collection of proper subgroups. There are plenty of exam-
ples of word hyperbolic free-by-cyclic groups when k ≥ 3. When k = 2 there
are none, but most are relatively hyperbolic with respect to the peripheral
Z× Z subgroup because they will be the fundamental group of a finite vol-
ume hyperbolic 1-punctured torus bundle. The exceptions are when the
monodromy has finite order, giving the virtually F2 × Z case which cannot
be acylindrically hyperbolic, and parabolic monodromy where all groups will
be commensurable with G = F (a, b) oλ Z.

As for other free-by-cyclic groups, let us now assume that [α] ∈ Out(Fk)
is a polynomially growing automorphism. We can therefore quote recent re-
sults on this in [12] which itself utilises the train track technology of Bestvina,
Feighn and Handel. The two facts from [12] Section 5 that we now use are
that:

• If [α] is polynomially growing then there is a positive power [αj ]
in UPG(Fk), which is the subgroup of polynomially growing outer
automorphisms whose abelianised action on Zk has unipotent image.
• If [α] ∈ UPG(Fk) then Fk oα Z splits over Z.

Corollary 4.3. If [α] ∈ Out(Fk) is a polynomially growing automorphism
then G = Fk oα Z is acylindrically hyperbolic unless [α] has finite order in
Out(Fk).
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Proof. By taking a power of α, which corresponds to a finite index sub-
group of G, we have splittings over Z of this finite index subgroup and so
Corollary 4.2 immediately implies this. �

This adds to results in the literature that provide a description of free-
by-cyclic groups according to the type of hyperbolicity: for G = Fkoα Z we
have that:

• G is word hyperbolic if and only if no positive power of α sends
w ∈ Fk \ {id} to a conjugate of itself.
• It is claimed that G is relatively hyperbolic if [α] is not of polyno-

mial growth. (This is from the unpublished manuscript [17] where
the peripheral subgroups are the mapping tori of the polynomially
growing subgroups under [α] of Fk.)

Thus if the above claim is true then we would have that G is not acylindri-
cally hyperbolic if and only if [α] ∈ Out(Fk) has finite order.
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