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On the uniqueness of algebraic curves
passing through n-independent nodes

Hakop Hakopian and Sofik Toroyan

Abstract. A set of nodes in the plane is called n-independent if for
arbitrary data at those nodes, there is a (not necessarily unique) polyno-
mial of degree at most n that matches the given information. We proved
in a previous paper (Hakopian–Toroyan, 2015) that the minimal num-
ber of n-independent nodes determining uniquely the curve of degree
k ≤ n passing through them equals to D := (1/2)(k−1)(2n+ 4−k) + 2.
In this paper we bring a characterization of the case when at least two
curves of degree k pass through the nodes of an n-independent node set
of cardinality D−1. Namely, we prove that the latter set has a very spe-
cial construction: All its nodes but one belong to a (maximal) curve of
degree k−1. We show that this result readily yields the above cited one.
At the end, an important application to the Gasca–Maeztu conjecture
is presented.
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1. Introduction

Denote the space of all bivariate polynomials of total degree ≤ n by Πn:

Πn =

 ∑
i+j≤n

aijx
iyj

 .
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We have that

N := Nn := dim Πn = (1/2)(n+ 1)(n+ 2).

Consider a set of s distinct nodes

Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}.

The problem of finding a polynomial p ∈ Πn which satisfies the conditions

(1.1) p(xi, yi) = ci, i = 1, . . . , s,

is called interpolation problem.
A polynomial p ∈ Πn is called an n-fundamental polynomial for a node

A = (xk, yk) ∈ Xs if

p(xi, yi) = δik, i = 1, . . . , s,

where δ is the Kronecker symbol. We denote this fundamental polynomial
by p?k = p?A = p?A,Xs

. Sometimes we call fundamental also a polynomial that
vanishes at all nodes of Xs but one, since it is a nonzero constant times a
fundamental polynomial.

Next, let us consider an important concept of n-independence (see [7],
[11]).

Definition 1.1. A set of nodes X is called n-independent if all its nodes
have n-fundamental polynomials. Otherwise, if a node has no n-fundamental
polynomial, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary
condition of n-independence of Xs is s ≤ N .

Suppose a node set Xs is n-independent. Then by the Lagrange formula
we obtain a polynomial p ∈ Πn satisfying the interpolation conditions (1.1):

p =

s∑
i=1

cip
?
i .

In view of this, we get readily that the node set Xs is n-independent if and
only if the interpolating problem (1.1) is solvable, meaning that for any data
(c1, . . . , cs) there is a polynomial p ∈ Πn (not necessarily unique) satisfying
the interpolation conditions (1.1).

Definition 1.2. The interpolation problem with a set of nodes Xs and Πn

is called n-poised if for any data (c1, . . . , cs) there is a unique polynomial
p ∈ Πn satisfying the interpolation conditions (1.1).

The conditions (1.1) give a system of s linear equations with N unknowns
(the coefficients of the polynomial p). The poisedness means that this system
has a unique solution for arbitrary right side values. Therefore a necessary
condition of poisedness is s = N. If this condition holds then we obtain from
the linear system:
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Proposition 1.3. A set of nodes XN is n-poised if and only if

p ∈ Πn and p
∣∣
XN

= 0 =⇒ p = 0.

Thus, geometrically, the node set XN is n-poised if and only if there is no
curve of degree n passing through all its nodes.

It is worth mentioning:

Proposition 1.4. For any set XN−1, i.e., set of cardinality N − 1, there is
a curve of degree n passing through all its nodes.

Indeed, the existence of the curve reduces to a system of N − 1 linear ho-
mogeneous equations with N unknowns – the coefficients of the polynomial
of degree n.

It follows from Proposition 1.3 also that a node set of cardinality N is
n-poised if and only if it is n-independent.

Next, let us describe the main result of this paper. Suppose we have
an n-poised set XN . From what was said above we can conclude readily
that through any N − 1 nodes of X there pass a unique curve of degree n.
Indeed, this curve is given by the fundamental polynomial of the missing
node. Next, through any N − 2 nodes of X there pass more than one curve
of degree n, for example the curves given by the fundamental polynomials of
two missing nodes. Thus we have that the minimal number of n-independent
nodes determining uniquely the curve of degree n equals to N − 1.

In [14] we considered this problem in the case of arbitrary degree k, k ≤
n − 1. We proved that the minimal number of n-independent nodes deter-
mining uniquely the curve of degree k ≤ n− 1 equals

D := (1/2)(k − 1)(2n+ 4− k) + 2.

Or, more precisely, for any n-independent set of cardinality D there is at
most one curve of degree k ≤ n−1 passing through its nodes, while there are
n-independent node sets of cardinality D−1 through which pass at least two
such curves. Let us mention that the case k = n− 1 of the above described
problem is considered in [2].

In this paper we bring a characterization of the sets of cardinality D − 1
through which pass at least two curves of degree k. Namely, we prove that
in this case all the nodes of X but one belong to a curve of degree k −
1. Moreover, this latter curve is a maximal curve meaning that it passes
through maximal possible number of n-independent nodes (see Section 3).

As we will see in Section 5, this result readily yields the above mentioned
result of [14].

At the end let us bring a well-known Berzolari–Radon construction of
n-poised sets (see [3], [15]).

Definition 1.5. A set of N = 1 + · · · + (n + 1) nodes is called Berzolari–
Radon set for degree n, or briefly BRn set, if there exist lines `1, `2, . . . , `n+1,
such that the sets `1, `2 \ `1, `3 \ (`1 ∪ `2), . . . , `n+1 \ (`1 ∪ · · · ∪ `n) contain
exactly (n+ 1), n, n− 1, . . . , 1 nodes, respectively.
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2. Some properties of n-independent nodes

Let us start with the following simple (see, e.g., [12], Lemma 2.3; [11]
Lemma 2.2) lemma.

Lemma 2.1. Suppose that a node set X is n-independent and a node A /∈ X
has n-fundamental polynomial with respect to the set X∪{A}. Then the latter
node set is n-independent, too.

Indeed, one can get readily the fundamental polynomial of any node B ∈
X with respect to the set Y := X ∪ {A} by using a linear combination of
the given fundamental polynomial p?A and the fundamental polynomial of B
with respect to the set X .

Evidently, any subset of n-poised set is n-independent. According to the
next lemma any n-independent set is a subset of some n-poised set:

Lemma 2.2 (e.g., [9], Lemma 2.1). Any n-independent set X with #X < N
can be enlarged to an n-poised set.

Proof. It suffices to show that there is a node A such that the set X ∪ {A}
is n-independent. By Proposition 1.4 there is a nonzero polynomial q ∈ Πn

such that q
∣∣
X = 0. Now, in view of Lemma 2.1, we may choose a desirable

node A by requiring only that q(A) 6= 0. Indeed, then q is a fundamental
polynomial of A with respect to the set X ∪ {A}. �

Denote the linear space of polynomials of total degree at most n vanishing
on X by

Pn,X =
{
p ∈ Πn : p

∣∣
X = 0

}
.

The following is well-known.

Proposition 2.3 (e.g., [9], [11]). For any node set X we have that

dimPn,X ≥ N −#X .

Moreover, equality takes place here if and only if the set X is n-independent.

From Lemma 2.1 one gets readily:

Corollary 2.4 (e.g., [12], Corollary 2.4). Let Y be a maximal n-independent
subset of X , i.e., Y ⊂ X is n-independent and Y ∪ {A} is n-dependent for
any A ∈ X \ Y. Then we have that

(2.1) Pn,Y = Pn,X .

Proof. We have that Pn,X ⊂ Pn,Y , since Y ⊂ X . Now, suppose that p ∈
Πn, p

∣∣
Y = 0 and A is any node of X . Then Y ∪ {A} is dependent and

therefore, in view of Lemma 2.1, p(A) = 0. �

From (2.1) and Proposition 2.3 (part “moreover”) we have that

(2.2) dimPn,X = N −#Y,
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where Y is any maximal n-independent subset of X . Thus, all the maximal
n-independent subsets of X have the same cardinality, which is denoted by
Hn(X ) − the Hilbert n-function of X . Hence, according to (2.2), we have
that

dimPn,X = N −Hn(X ).

3. Maximal curves

An algebraic curve in the plane is the zero set of some bivariate polynomial
of degree at least 1. We use the same letter, say p, to denote the polynomial
p ∈ Πk \Πk−1 and the corresponding curve p of degree k defined by equation
p(x, y) = 0.

According to the following well-known statement there are no more than
n+ 1 n-independent points in any line:

Proposition 3.1. Assume that ` is a line and Xn+1 is any subset of `
containing n+ 1 points. Then we have that

p ∈ Πn and p|Xn+1 = 0 =⇒ p = `r,

where r ∈ Πn−1.

Denote

d := d(n, k) := Nn −Nn−k = (1/2)k(2n+ 3− k).

The following is a generalization of Proposition 3.1.

Proposition 3.2 ([16], Prop. 3.1). Let q be an algebraic curve of degree
k ≤ n without multiple components. Then the following hold:

(i) Any subset of q containing more than d(n, k) nodes is n-dependent.
(ii) Any subset Xd of q containing exactly d = d(n, k) nodes is n-

independent if and only if the following condition holds:

(3.1) p ∈ Πn and p|Xd
= 0 =⇒ p = qr,

where r ∈ Πn−k.

Suppose that X is an n-poised set of nodes and q is an algebraic curve
of degree k ≤ n. Then of course any subset of X is n-independent too.
Therefore, according to Proposition 3.2(i), at most d(n, k) nodes of X can
lie in the curve q. Let us mention that a special case of this when q is a set
of k lines is proved in [6].

This motivates the following definition.

Definition 3.3 ([16], Def. 3.1). Given an n-independent set of nodes Xs,
with s ≥ d(n, k). A curve of degree k ≤ n passing through d(n, k) points of
Xs, is called maximal.
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Note that the maximal line, as a line passing through n + 1 nodes, is
defined in [4]. Let us mention that q = `1 · · · `k is a maximal curve of degree
k of the node set BRn (see Def. 1.5), where k = 1, . . . , n.

We say that a node A ∈ X uses a polynomial q ∈ Πk if the latter divides
the fundamental polynomial p = p?A, i.e., p = qr, for some r ∈ Πn−k.

Next, we bring a characterization of maximal curves:

Proposition 3.4 ([16], Prop. 3.3). Let a node set X be n-poised. Then a
polynomial µ of degree k, k ≤ n, is a maximal curve if and only if it is used
by any node in X \ µ.

Note that one side of this statement follows from Proposition 3.2(ii). In
the case of degree one this was proved in [4].

For other properties of maximal curves we refer reader to [16], [13].

Proposition 3.5. Assume that σ is an algebraic curve of degree k, with-
out multiple components, and Xs ⊂ σ is any n-independent node set of
cardinality s, s < d(n, k). Then the set Xs can be extended to a maximal
n-independent set Xd ⊂ σ of cardinality d = d(n, k).

Proof. It suffices to show that there is a point A ∈ σ \Xs such that the set
Xs+1 := Xs ∪ {A} is n-independent. Assume to the contrary that there is
no such point, i.e., the set Xs+1 := Xs ∪ {A} is n-dependent for any A ∈ σ.
Then, in view of Lemma 2.1, A has no fundamental polynomial with respect
to the set Xs+1. In other words we have

p ∈ Πn and p
∣∣
Xs

= 0 =⇒ p(A) = 0 for any A ∈ σ.

From here we obtain that

Pn,Xs ⊂ Pn,σ := {qσ : q ∈ Πn−k} .
Now, in view of Proposition 2.3, we get from here

N − s = dimPn,Xs ≤ dimPn,σ = Nn−k.

Therefore s ≥ d(n, k), which contradicts the hypothesis. �

Let us mention that, as it follows from the above proof, the condition
(3.1) does not hold if d < d(n, k).

The following lemma follows readily from the fact that the Vandermonde
determinant, i.e., the main determinant of the linear system described just
after Definition 1.2, is a continuous function of the nodes of XN .

Lemma 3.6 (e.g., [8], Remark 1.14). Suppose that XN = {(xi, yi)}Ni=1 is an
n-poised set. Then there is a positive number ε such that any set

X ′N = {(x′i, y′i)}Ni=1,

with the property that the distance between (x′i, y
′
i) and (xi, yi) is less than

ε, for each i, is n-poised too.

From here, in view of Lemma 2.2 we get readily:
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Corollary 3.7. Suppose that Xs = {(xi, yi)}si=1 is an n-independent set.
Then there is a positive number ε such that any set X ′s = {(x′i, y′i)}si=1, with
the property that the distance between (x′i, y

′
i) and (xi, yi) is less than ε, for

each i, is n-independent too.

Finally, let us bring a well-known lemma:

Lemma 3.8. Suppose that two different curves of degree at most k pass
through all the nodes of X . Then for any node A /∈ X there is a curve of
degree at most k passing through A and all the nodes of X .

Indeed, if the given curves are σ1 and σ2 then the desired curve can be
found easily in the form of linear combination c1σ1 + c2σ2.

4. Main result

In a previous paper we determined the minimal number of n-independent
nodes that uniquely determine the curve of degree k, k ≤ n, passing through
them:

Theorem 4.1 ([14], Thm. 1). Assume that X is an n-independent set of
d(n, k−1) + 2 nodes lying in a curve of degree k with k ≤ n. Then the curve
is determined uniquely by these nodes. Moreover, there is an n-independent
set of d(n, k− 1) + 1 nodes such that more than one curves of degree k pass
through all its nodes.

Let us mention that this result is obvious in the case k = n, while in the
case k = n− 1 it was established in [2].

In this section we characterize the case when more than one curve of
degree k, k ≤ n− 1, passes through the nodes of an n-independent set X of
cardinality d(n, k − 1) + 1.

As we will see later in Section 5 this result yields readily Theorem 4.1.

Theorem 4.2. Assume that X is an n-independent set of d(n, k − 1) + 1
nodes with k ≤ n− 1. Then two different curves of degree k pass through all
the nodes of X if and only if all the nodes of X but one lie in a maximal
curve of degree k − 1.

Proof. Let us start with the inverse implication. Assume that d(n, k − 1)
nodes of X are located in a curve µ of degree k − 1. Therefore the curve µ
is maximal and the remaining node of X , which we denote by A, is outside
of it: A /∈ µ.

Now assume that `1 and `2 are two different lines passing through A.
Then it is easily seen that `1µ and `2µ are two different curves of degree k
passing through all the nodes of X .

Now let us prove the direct implication. Assume that there are two curves
of degree k : σ1 and σ2 that pass through all the nodes of the n-independent
set X with #X = d(n, k − 1) + 1. Let us start by choosing a node B /∈ X
such that the following three conditions are satisfied:
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(i) The set X ∪ {B} is n-independent.
(ii) B does not lie in any line passing through two nodes of X .

(iii) B does not lie in the curves σ1 and σ2.

Let us verify that one can find a such node. Indeed, in view of Lem-
ma 2.2, we can start by choosing a node B′ satisfying the condition (i).
Then, according to Corollary 3.7, for some positive ε all the nodes in ε
neighborhood of B′ satisfy the condition (i). Finally, from this neighborhood
we can choose a node B satisfying the conditions (ii) and (iii), too.

Next, in view of Lemma 3.8, there is a curve σ of degree at most k passing
through all the nodes of X ′ := X ∪ {B}. According to the condition (iii)
σ is different from σ1 and σ2. Then notice that the curve σ passes through
more than d(n, k − 1) nodes and therefore its degree equals to k and it has
no multiple component.

Now, by using Proposition 3.5, let us extend the set X ′ till a maximal
n-independent set X ′′ ⊂ σ. Notice that, since #X ′′ = d(n, k), we need to
add d(n, k)− (d(n, k−1)+2) = n−k nodes to X ′, denoted by C1, . . . , Cn−k:

X ′′ := X ∪ {B} ∪ {Ci}n−ki=1 .

Thus the curve σ becomes maximal with respect to this set.
Then let us consider n − k − 1 lines `1, `2, . . . , `n−k−1 passing through

the nodes C1, C2, . . . , Cn−k−1, respectively. We require that each line passes
through only one of the mentioned nodes and therefore the lines are distinct.
We require also that none of these lines is a component (factor) of σ. Finally

let us denote by ˜̀ the line passing through the nodes B and Cn−k.
Now notice that the following polynomial

σ1 ˜̀`1 `2 . . . `n−k−1

of degree n vanishes at all the d(n, k) nodes of X ′′ ⊂ σ. Consequently,
according to Proposition 3.2, σ divides this polynomial:

(4.1) σ1 ˜̀`1 `2 . . . `n−k−1 = σ q, q ∈ Πn−k.

The distinct lines `1, `2, . . . , `n−k−1 do not divide the polynomial σ ∈ Πk,
therefore all they have to divide q ∈ Πn−k. Thus q = `1 . . . `n−k−1`

′, where
`′ ∈ Π1. Therefore, we get from (4.1):

σ1 ˜̀= σ `′.

If the lines ˜̀, `′ coincide then the curves σ1, σ coincide, which is impossible.
Therefore the line ˜̀ has to divide σ ∈ Πk:

σ = ˜̀r, r ∈ Πk−1.

Now, we are going to derive from this relation that the curve r passes through
all the nodes of the set X but one. Indeed, σ passes through all the nodes of
X . Therefore these nodes are either in the curve r or in the line ˜̀. But the
latter line passes through B, and according to the condition (ii), it passes
through at most one node of X . Thus r passes through at least d(n, k − 1)
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nodes of X . Since r is a curve of degree k−1 we conclude that r is a maximal
curve and passes through exactly d(n, k − 1) nodes of X . �

It is worth mentioning that for any n-independent node set X of cardi-
nality d(n, k − 1) + 1, where k ≤ n− 1, we have that

dimPk,X ≤ 2,

where an equality takes place if only if all the nodes of X but one lie in a
maximal curve of degree k − 1.

Indeed, if

dimPk,X ≥ 2

then according to Theorem 4.2 we have that all the nodes of X but one lie
in a maximal curve µ of degree k−1. Now, according to Proposition 3.2, we
have that

Pk,X = {αµ|α ∈ Π1, α(A) = 0} ,
where A ∈ X is the node outside of µ. Therefore we get readily

dimPk,X = dim {α|α ∈ Π1, α(A) = 0} = 2.

5. A corollary

Here we verify that our main result yields Theorem 4.1, which in view of
Theorem 4.2, states that for any n-independent set X of cardinality

d(n, k − 1) + 2

there is at most one curve of degree k, k ≤ n, passing through all its nodes.

Proof of Theorem 4.1. Note that the case k = n is evident, since

d(n, n− 1) + 2 = N − 1.

Now assume that k ≤ n − 1. Choose a node A ∈ X and consider the set
Y := X \ {A}. If there is at most one curve of degree which passes through
all the nodes of Y then the same is true also for the set X and we are
done. Thus assume that there are at least two curves of degree k which pass
through all the nodes of the set Y. Then, according to Theorem 4.2, all the
nodes of Y but one, denoted by B, lie in a maximal curve µ of degree k− 1.
Therefore, all the nodes of X but A and B lie in the curve µ. Now, in view
of Proposition 3.2, any curve of degree k passing through all the nodes of X
has the following form

p = `µ,

where ` ∈ Π1. Finally notice that the line ` passes through the nodes A
and B and therefore is determined in a unique way. Hence p is determined
uniquelly, too. �
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6. An application to the Gasca–Maeztu conjecture

Let us recall that a node A ∈ X uses a line ` means that ` is a factor of
the fundamental polynomial p = p?A, i.e., p = `r, for some r ∈ Πn−1.

A GCn-set in plane is an n-poised set of nodes where the fundamental
polynomial of each node is a product of n linear factors. Note that this
always takes place in the univariate case.

The Gasca–Maeztu conjecture states that any GCn-set possesses a subset
of n+ 1 collinear nodes.

It was proved in [5] that any line passing through exactly 2 nodes of a
GCn-set X can be used at most by one node from X , provided that the
Gasca–Maeztu conjecture is true for all degrees not exceeding n.

Recently, it was announced in [1], that this result holds for any poised
set X , without other restrictions. By the way it follows readily also from
Theorem 4.2.

Below we consider the case of lines passing through exactly 3 nodes.

Corollary 6.1. Let X be an n-poised set of nodes and ` be a used line which
passes through exactly 3 nodes. Then ` is used either by exactly one or by
exactly three nodes from X . Moreover, if it is used by three nodes, then they
are noncollinear.

Proof. Assume that ` ∩ X = {A1, A2, A3}. Assume also that there are two
nodes B,C ∈ X using the line ` :

p?B = ` q1, p?C = ` q2,

where q1, q2 ∈ Πn−1.
Both the polynomials q1, q2 vanish at N − 5 nodes of the set

X ′ := X \ {A1, A2, A3, B,C}.

Hence these N − 5 = d(n, n − 2) + 1 nodes do not uniquelly determine the
curve of degree n − 1 passing through them. By Theorem 4.2 there exists
a maximal curve µ of degree n − 2 passing through N − 6 nodes of X ′
and the remaining node denoted by D is outside of it. Now, according to
Proposition 3.4, the node D uses µ :

p?D = µq, q ∈ Π2.

This quadratic polynomial q has to vanish at the three nodes A1, A2, A3 ∈ `.
Therefore, in view of Proposition 3.1, we have that q = ``′ with `′ ∈ Π1.
Hence the node D uses the line ` :

p?D = µ``′, `′ ∈ Π1.

Thus if two nodes B,C ∈ X use the line ` then there exists a third node
D ∈ X using it and all the nodes of Y := X \ {A1, A2, A3, B,C,D} lie in a
maximal curve µ of degree n− 2 :

(6.1) Y ⊂ µ.
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Next, let us show that there is no fourth node using `. Assume by way
of contradiction that except of the nodes B,C,D, there is a fourth node E
using `. Of course we have that E ∈ Y.

Then B and E are using ` therefore, as was proved above, there exists a
third node F ∈ X (which may coincide or not with C or D) using it and all

the nodes of Ỹ := X \ {A1, A2, A3, B,E, F} are located in a maximal curve
µ̃ of degree n− 2. We have also that

(6.2) p?E = µ̃q̃, q̃ ∈ Π2.

Now, notice that both µ and µ̃ pass through all the nodes of the set
Z := X \ {A1, A2, A3, B, C,D,E, F} with #Z ≥ N − 8.

Then, we get from Theorem 4.1, with k = n−2, that N−8 = d(n, n−3)+2
nodes determine the curve of degree n − 2 passing through them uniquely.
Thus µ and µ̃ coincide.

Therefore, in view of (6.1) and (6.2), p?E vanishes at all the nodes of Y,
which is a contradiction since E ∈ Y.

Now, let us verify the last “moreover” statement. Suppose three nodes
B,C,D ∈ X use the line `. Then, as we obtained earlier, the nodes

Y := X \ {A1, A2, A3, B,C,D}

are located in a maximal curve µ of degree n − 2. Suppose conversely that
the nodes B,C and D are lying in a line `1. Then we have that all the
nodes of the set X are lying in the curve µ``1 of degree n. This, in view of
Proposition 1.3, is a contradiction. �
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