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Cross-wired lamplighter groups and
linearity of automata groups

Ning Yang

Abstract. We consider the two generalizations of lamplighter groups:
automata groups generated by Cayley machines and cross-wired lamp-
lighter groups. For a finite step two nilpotent group with central squares,
we study its associated Cayley machine and give a presentation of the
corresponding automata group. We show the automata group is a cross-
wired lamplighter group and does not embed in the wreath product of a
finite group with a torsion free group. For a subfamily of such finite step
two nilpotent groups, we prove that their associated automata groups
are linear.
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1. Introduction

The so called lamplighter group is a popular object of study. It is de-
fined as a restricted wreath product Z2 o Z, namely a semi-direct product
(⊕ZZ2) o Z with the action of Z on ⊕ZZ2 by shifts, where Z denotes inte-
gers and Z2 denotes Z/2Z. It is an infinitely presented 2-generated group.
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It is step-2 solvable and has exponential growth. In general, a lamplighter
group could be a group of the form F o Z where F is some nontrivial fi-
nite group. There are two kinds of generalization of lamplighter groups:
automata groups generated by Cayley machines [11, 17] and cross-wired
lamplighter groups [2].

Grigorchuk and Żuk [11] showed that the lamplighter group Z2 o Z can
be constructed as the automata group of a 2-state automaton. They used
this automaton to compute the spectrum and spectral measure associated
to random walks on the group, leading to a counterexample of the strong
form of the Atiyah conjecture. Silva and Steinberg [17] showed that, for
a finite abelian group F , the lamplighter group F o Z can be generated by
a reset automaton, which they called the Cayley machine of the group F .
Woryna [24] showed similar results for automata over changing alphabet.
Pochon [15] first studied the Cayley machine of a finite nonabelian group
around 2005. She gave the structure of the group generated by the Cayley
machine of the Dihedral group of order 8. We extend her unpublished result
to a large class of groups.

Theorem 1.1. Let G be a finite step-2 nilpotent group. Assume the square
of each element of G is central. Then the automata group generated by its
Cayley machine has following presentation:

〈G, x | [g, x2nhx−2n] = [g, x2n−1hx−2n+1] = xn[g, h]x−n, g, h ∈ G,n ∈ Z〉,

where the bracket denotes group commutator.

Thus, the theorem of Silva and Steinberg for the case of finite abelian
groups is a corollary of Theorem 1.1. For a finite nonabelian group F ,
F oZ can not be an automata group. Indeed, for such finite group F , F oZ is
residually finite if and only if F is abelian [12]. On the other hand, automata
groups are always residually finite [10]. Silva and Steinberg conjectured that
in the case of finite nonabelian group, the resulting automata group does
not embed in the wreath product of a finite group with a torsion free group.
In the appendix of [13], Kambites, Silva and Steinberg partially proved the
conjecture. They showed for any finite nonabelian group that is not a direct
product of an abelian group with a 2-group which is nilpotent of class 2, its
associated automata group can not embed in a wreath product of a finite
group with a torsion free group. We show the case when it contains a 2-group
which is nilpotent of class 2.

Theorem 1.2. Let G be a finite nonabelian group containing a 2-group that
is nilpotent of class 2. Then the automata group generated by its Cayley
machine does not embed in a wreath product of a finite group with a torsion
free group.

Combining results in the appendix of [13], we have:
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Theorem 1.3. The automata group associated to any finite nonabelian
group does not embed in a wreath product of a finite group with a torsion
free group.

Some Cayley graphs of lamplighter groups are examples of Diestel–Leader
graphs [3, 14, 22, 23]. Eskin, Fisher, and Whyte proved [6, 7, 8] that a finitely
generated group is quasi-isometric to a lamplighter group if and only if it acts
properly and cocompactly by isometries on some Diestel–Leader graph. In
[2], Cornulier, Fisher and Kashyap studied quasi-isometric rigidity question
of lamplighter groups by studying the cocompact lattices in the isometry
group of the Diestel–Leader graphs. They showed that these lattices are
not necessarily lamplighters and gave an algebraic characterization of them.
They call these cocompact lattices cross-wired lamplighter groups. Lamp-
lighter groups are examples of cross-wired lamplighters. It is suggested by
L. Bartholdi that automata groups associated to some finite groups might
provide other examples of cross-wired lamplighter groups. We show that the
automata groups in Theorem 1.1 are cross-wired lamplighter groups.

Theorem 1.4. The automata groups in Theorem 1.1 are cross-wired lamp-
lighter groups.

Cornulier, Fisher and Kashyap also give interesting examples that are not
virtually lamplighter groups [2]. Let q be a prime power, and consider the
Laurent polynomial ring Fq[t±1]. Let H be the Heisenberg group, consisting
of unitriangular 3 × 3 matrices. Consider the action of Z on H(Fq[t±1])
defined by the automorphism

Φ :

 1 x z
0 1 y
0 0 1

 7→
 1 tx t2z

0 1 ty
0 0 1

 .

Then the group H(Fq[t±1]) oΦ Z is a cross-wired lamplighter group. This
construction applies to other nilpotent groups over local field of positive
characteristic with similar contraction Z action. In the beginning, we be-
lieved that the automata groups in Theorem 1.1 might be totally different
examples of cross-wired lamplighters from those examples above, or even
nonlinear. By linear we mean the group can be embedded in a general
linear group over some fields. As we know, many automata groups are non-
linear. The Grigorchuk groups [9, 5] are automata groups, of intermediate
growth and hence nonlinear. But the lamplighter group Z2 oZ is linear over
function fields [23]. So it is interesting to study the linearity/nonlinearity
of those automata groups above. We find the following surprising. Let
Q8 be the quaternion group of order 8 and M2n be the Iwasawa/modular

group of order 2n, n ≥ 3, M2n = 〈a, b | a2n−1
= b2 = e, bab−1 = a2n−2+1〉.

The automata groups associated to Q8 and M2n have index two subgroups
behaving like above linear examples with diagonal contraction Z action.
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Theorem 1.5. The automata groups associated to Q8 and M2n are linear
over Z2[t±1].

Acknowledgments. The author would like to express his deep gratitude
to his advisor, Professor David Fisher, for consistent support, enlighten-
ing guidance and encouragement. He is grateful to Laurent Bartholdi and
Michael Larsen for their interests and inspiring discussions. He thanks Yves
de Cornulier for comments on an early draft of this paper. He also want to
thank the anonymous referee for many helpful suggestions and corrections.

2. Automata groups

2.1. Preliminaries: automata and Cayley machine. This subsection
is similar with part of [13].

A finite (Mealy) automaton [4, 10, 13, 17] A is a 4-tuple (Q,A, δ, λ),
where Q is a finite set of states, A is a finite alphabet, δ : Q×A→ Q is the
transition function and λ : Q×A→ A is the output function. We write qa
for δ(q, a) and q ◦ a for λ(q, a). Let A∗ be the set of all words in letters of
A. These functions extend to the free monoid A∗ by

q(ab) = (qa)b,

q ◦ (ab) = (q ◦ a)(qa) ◦ b.(2.1)

Let Aq denote the initial automaton A with designated start state q ∈ Q.
There is a function Aq : A∗ → A∗ given by w 7→ q ◦w. This function is word
length preserving and extends continuously [10] to the set of right infinite
words Aω via

(2.2) Aq(a0a1 · · · ) = lim
n→∞

Aq(a0 · · · an),

where Aω is given the product topology and so homeomorphic to a Cantor
set. If the function λq : A → A, defined by λq(a) = q ◦ a, is a permutation
for each q, then Aq is an isometry of Aω with metric d(u, v) = 1/(n + 1),
where n is the length of the longest common prefix of u and v [10]. In this
case the automaton is called invertible and its inverse is dented by A−1.
Let Γ = G(A), A invertible, be the group generated by all Aq’s with q ∈ Q,
and it is called the automata group generated by automaton A.

Let T be the Cayley tree of A∗, then Γ acts on T by rooted tree automor-
phisms [10] via the action (2.1). The induced action on the boundary ∂T ,
the space of infinite directed paths from the root, is the action (2.2) of Γ on
Aω. Let Aut(T ) be the automorphism group of T . It is the iterated permu-
tational wreath product of countably many copies of the left permutation
group (SA, A) [1, 10, 16], where SA is the symmetric group on A. For a
group Γ = G(A) generated by an automaton over A, one has the embedding

(2.3) (Γ, Aω) ↪→ (S|A|, A) o (Γ, Aω).

Here we use the notation such that the wreath product of left permutation
groups has a natural projection to its leftmost factor. Let A = {a1, . . . , an}.
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In wreath product coordinates, an element in the automata group can be
represented as σ(f1, . . . , fn), where σ ∈ SA and f1, . . . , fn ∈ Γ. It acts on
the word aix2x3 . . . over A by the rule

σ(f1, . . . , fn)(aix2x3 . . . ) = σ(ai)fi(x2x3 . . . ).

Multiplication in wreath product coordinates is given by

(2.4) σ(f1, . . . , fn)τ(g1, . . . , gn) = στ(fτ(1)g1, . . . , fτ(n)gn),

where σ, τ ∈ SA ∼= S{1,2,...,n} and f1, . . . , fn, g1, . . . , gn ∈ Γ. The map sends
Aq to the element with wreath product coordinates:

Aq = λq(Aqa1 , . . . ,Aqan).

Its inverse is given by

A−1
q = λ−1

q (A−1
a1 , . . . ,A

−1
an ).

Let G = {g1 = 1, g2, . . . , gn} be a nontrivial finite group. By the Cayley
machine C(G) of G we mean the automaton with state G and alphabet G.
Both the transition and the output functions are the group multiplication,
i.e., at state g0 on input g the machine goes to state g0g and outputs g0g.
The state function λg is just left translation by g and hence a permutation, so
C(G) is invertible. The study of the automata group of the Cayley machine
of a finite group was initiated by Silva and Steinberg [17].

An automaton is called a reset automaton if, for each a ∈ A, |Qa| = 1;
that is, each input resets the automaton to a single state. Silva and Steinberg
[17] showed that the inverse of a state C(G)g, g ∈ G, is computed by the
corresponding state of the reset automaton A(G) with states and input
alphabet G, where at state g0 on input g the automaton goes to state g and
outputs g−1

0 g. Therefore

C(G)−1
g = A(G)g, G(C(G)) = G(A(G)).

In this case, from (2.3), we have the embedding

G(A(G)) ↪→ (G,G) o (G(A(G)), Gω).

In wreath product coordinates,

(2.5) A(G)g = g−1(Ag1 , . . . ,Agn).

Let x := A(G)1 = C(G)−1
1 . Notice that [17], applying (2.4),

xA(G)−1
g = xC(G)g

= (Ag1 , . . . ,Agn)g(C(G)gg1 . . . , C(G)ggn)

= g(Agg1C(G)gg1 , . . . ,AggnC(G)ggn)

= g(1, . . . , 1),

so we can identify G with a subgroup of G(A(G)) via g ↔ xA(G)−1
g . Recall

from [17] Equation 4.3 or by (2.5) that

x(f0, f1, f2, f3, f4, . . . ) = (f0, f
−1
0 f1, f

−1
1 f2, f

−1
2 f3, f

−1
3 f4, . . . ),
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x−1(f0, f1, f2, f3, f4, . . . ) = (f0, f0f1, f0f1f2, f0f1f2f3, f0f1f2f3f4, . . . ),

where (f0, f1, f2, f3, f4, . . . ) ∈ Gω.
Let

N := 〈xnGx−n | n ∈ Z〉.
It is shown in [17] that x has infinite order, N is a locally finite group and
G(A(G)) = N o 〈x〉, where x acts on N by conjugates. If G is abelian, it is
shown in [17] that

G(A(G)) ∼= G o Z.
That is the automata group is a lamplighter group. If G is nonabelian
and not of nilpotency class 2, then G(A(G)) does not embed in the wreath
product of a finite group with a torsion free group.

The depth of an element γ ∈ Γ is the least integer n (if it exists, otherwise
infinity) so that γ only changes the first n letters of a word. For example,
g ∈ G has depth 1. Here is a useful lemma about depth:

Lemma 2.1. [17] Let A = (Q,A, δ, λ) be an invertible reset automaton and
let a = Ap, b = Aq. Suppose f ∈ Γ has depth n, then afb−1 has depth at
most n+ 1.

Let

N0 := 〈xnGx−n | n ≥ 0〉.
It is shown in [17] that xngx−n, g 6= 1, has depth n + 1 and so N0 consists
of finitary automorphisms. It is shown in [17] that the elements of the form
A(G)g ∈ Γ with g ∈ G generate a free subsemigroup of Γ.

2.2. Proof of Theorem 1.1. Let

G = {g1 = 1, g2, . . . , gk}

be a group of nilpotency class two, for some k ∈ N. Moreover we assume
g2
i = gigi is central in G for each i, 1 ≤ i ≤ k. The dihedral group D8 of

order 8 and the quaternion group Q8 are examples of such G.
Note that every finite group of nilpotency class two is obtained by tak-

ing direct products of finite groups of prime power order and class two.
Therefore, G must be a 2-group direct product with abelian factors.

Let C(G) be the Cayley machine of G, then G(C(G)) is generated by

{C(G)g1 , C(G)g2 , . . . , C(G)gk}.

Let x = C(G)−1
g1 . Then by (2.5), in wreath product coordinates,

x = 1
(
C(G)−1

g1 , C(G)−1
g2 , . . . , C(G)−1

gk

)
.

It has infinite order. Identifying G with a subgroup of C(G) via g 7→ xC(G)g,
then we have

(2.6) C(G)g = x−1g, C(G)−1
g = g−1x.
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Therefore, for any g, h ∈ G,

(2.7) C(G)−1
g C(G)h = g−1xx−1h = g−1h.

From previous subsection, xngx−n has depth n + 1 for n ≥ 0. Also, we
have

xngx−n = C(G)−ng1 gC(G)ng1

= (C(G)−ng1 , . . . , C(G)−ngk )g(1, . . . , 1)(C(G)ng1 , . . . , C(G)ngk)

= (C(G)−ng1 , . . . , C(G)−ngk )g(C(G)ng1 , . . . , C(G)ngk)

= g
(
C(G)−ngg1C(G)ng1 , C(G)−ngg2C(G)ng2 , . . . , C(G)−nggkC(G)ngk

)
= g
(
C−ngg1C

n
g1 , C

−n
gg2C

n
g2 , . . . , C

−n
ggk
Cngk
)
,

where in the last step, we write C as C(G) for simplicity. We will keep on
using this notation.

Let N = 〈xngx−n | n ∈ Z, g ∈ G〉, then G(C(G)) = N o 〈x〉, where x acts
on N by conjugates. We show the following key lemma.

Lemma 2.2. For any n ≥ 0, any f, g, h ∈ G,

xngx−nh = hx[n
2

][h, g−1]x−[n
2

]xngx−n,

hxngx−n = xngx−nx[n
2

][g, h−1]x−[n
2

]h,

and xl[g, h]x−l commutes with xmfx−m as long as n ≥ l,m ≥ 0, where [n2 ]
denotes the least integer greater than or equal to n

2 .

Proof. The proof is by induction.
The case of n = 0 is trivial: gh = h[h, g−1]g.
Let n = 1. Then

xgx−1h = g
(
C−1
gg1Cg1 , C

−1
gg2Cg2 , . . . , C

−1
ggk
Cgk
)
h(1, . . . , 1)

= gh
(
C−1
ghg1
Chg1 , C

−1
ghg2
Chg2 , . . . , C

−1
ghgk
Chgk

)
,

and

hx[h, g−1]x−1xgx−1 = hxh−1ghx−1

= h(1, . . . , 1)h−1gh
(
C−1
h−1ghg1

Cg1 , C−1
h−1ghg2

Cg2 , . . . , C−1
h−1ghgk

Cgk
)

= gh
(
C−1
h−1ghg1

Cg1 , C−1
h−1ghg2

Cg2 , . . . , C−1
h−1ghgk

Cgk
)
.

Applying (2.6) and (2.7) we then have, for any f ∈ G,

C−1
ghfChf = f−1h−1g−1hf = C−1

h−1ghf
Cf .

By comparing wreath product coordinates, xgx−1h = hx[h, g−1]x−1xgx−1.
Similarly we have hxgx−1 = xgx−1x[g, h−1]x−1h.

Since G is of nilpotency class two, both [g, h] and x[g, h]x−1 commute
with f and xfx−1, for any g, h, f ∈ G.
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Let n = 2. Then we compute

x2gx−2h = g
(
C−2
gg1C

2
g1 , C

−2
gg2C

2
g2 , . . . , C

−2
ggk
C2
gk

)
h(1, . . . , 1)

= gh
(
C−2
ghg1
C2
hg1 , C

−2
ghg2
C2
hg2 , . . . , C

−2
ghgk
C2
hgk

)
,

and

hx[h, g−1]x−1x2gx−2

= h(1, . . . , 1)[h, g−1]
(
C−1
h−1ghg−1g1

Cg1 , C−1
h−1ghg−1g2

Cg2 , . . . , C−1
h−1ghg−1gk

Cgk
)

· g
(
C−2
gg1C

2
g1 , C

−2
gg2C

2
g2 , . . . , C

−2
ggk
C2
gk

)
= ghg−1

(
C−1
h−1ghg−1g1

Cg1 , C−1
h−1ghg−1g2

Cg2 , . . . , C−1
h−1ghg−1gk

Cgk
)

· g
(
C−2
gg1C

2
g1 , C

−2
gg2C

2
g2 , . . . , C

−2
ggk
C2
gk

)
= gh

(
C−1
h−1ghg1

Cgg1C−2
gg1C

2
g1 , C

−1
h−1ghg2

Cgg2C−2
gg2C

2
g2 , . . . , C

−1
h−1ghgk

CggkC
−2
ggk
C2
gk

)
.

For any f ∈ G, applying (2.7) we compute

C−2
ghfC

2
hf = C−1

ghff
−1h−1g−1hfChf

= f−1h−1g−1(xf−1h−1g−1hfx−1hf)

= f−1h−1g−1hfxg−1x−1,

and

C−1
h−1ghf

CgfC−2
gf C

2
f =

(
(h−1ghf)−1gf

)(
f−1g−1fxg−1x−1

)
= f−1h−1g−1hfxg−1x−1 = C−2

ghfC
2
hf .

So, x2gx−2h = hx[h, g−1]x−1x2gx−2, since they have same wreath prod-
uct coordinates.

On the other hand, notice that

[h, g−1][g, h−1] = h−1ghg−1g−1hgh−1 = h−1gg−1hgh−1hg−1 = 1,

then we have

hx2gx−2 = hx2gx−2x[h, g−1]x−1x[g, h−1]x−1

= hxxgx−1[h, g−1]x−1x[g, h−1]x−1

= hx[h, g−1]xgx−1x−1x[g, h−1]x−1

= hx[h, g−1]x−1x2gx−2x[g, h−1]x−1

= x2gx−2hx[g, h−1]x−1 = x2gx−2x[g, h−1]x−1h.

Since G is of nilpotency class two, then x2[g, h]x−2 commutes with f and
x2fx−2, for any g, h, f ∈ G. Also we have



CROSS-WIRED LAMPLIGHTERS AND AUTOMATA GROUPS 387

x2[g, h]x−2xfx−1 = xx[g, h]x−1fx−1

= xfx[g, h]x−1x−1

= xfx−1x2[g, h]x−2.

Similarly, [g, h] and x[g, h]x−1 commute with f, xfx−1 and x2fx−2, for any
g, h, f ∈ G. Then we proved the lemma for the case of n = 2.

Now we assume the lemma is true for all m ≤ 2n, we need to show the
cases of 2n+ 1 and 2n+ 2.

Applying (2.7), we have

x2n+1gx−2n−1h

= g
(
C−2n−1
gg1 C2n+1

g1 , C−2n−1
gg2 C2n+1

g2 , . . . , C−2n−1
ggk

C2n+1
gk

)
h(1, . . . , 1)

= gh
(
C−2n−1
ghg1

C2n+1
hg1

, C−2n−1
ghg2

C2n+1
hg2

, . . . , C−2n−1
ghgk

C2n+1
hgk

)
,

and similarly x2ngx−2nh = gh
(
C−2n
ghg1
C2n
hg1
, C−2n

ghg2
C2n
hg2
, . . . , C−2n

ghgk
C2n
hgk

)
.

On the other hand, we compute

hxn+1[h, g−1]x−n−1x2n+1gx−2n−1

= h[h, g−1]
(
C−n−1

[h,g−1]g1
Cn+1
g1 , C−n−1

[h,g−1]g2
Cn+1
g2 , . . . , C−n−1

[h,g−1]gk
Cn+1
gk

)
g
(
C−2n−1
gg1 C2n+1

g1 , C−2n−1
gg2 C2n+1

g2 , . . . , C−2n−1
ggk

C2n+1
gk

)
= gh

(
C−n−1

[h,g−1]gg1
Cn+1
gg1 C

−2n−1
gg1 C2n+1

g1 , C−n−1
[h,g−1]gg2

Cn+1
gg2 C

−2n−1
gg2 C2n+1

g2 ,

. . . , C−n−1
[h,g−1]ggk

Cn+1
ggk
C−2n−1
ggk

C2n+1
gk

)
= gh

(
C−n−1

[h,g−1]gg1
C−ngg1C

2n+1
g1 , C−n−1

[h,g−1]gg2
C−ngg2C

2n+1
g2 , . . . , C−n−1

[h,g−1]ggk
C−nggkC

2n+1
gk

)
,

and similarly

hxn[h, g−1]x−nx2ngx−2n

= gh
(
C−n

[h,g−1]gg1
C−ngg1C

2n
g1 , C

−n
[h,g−1]gg2

C−ngg2C
2n
g2 , . . . , C

−n
[h,g−1]ggk

C−nggkC
2n
gk

)
.

Note that, by inductive hypothesis and comparing wreath product coor-
dinates, we have, for any f ∈ G,

C−2n
ghf C

2n
hf = C−n

[h,g−1]gf
C−ngf C

2n
f .

Then, applying (2.6) and (2.7), for any f ∈ G, we compute

C−2n−1
ghf C2n+1

hf

= C−1
ghfC

−n
[h,g−1]gf

C−ngf C
2n
f Chf

= (ghf)−1x
(
([h, g−1]gf)−1x

)n(
(gf)−1x

)n−1

· f−1g−1f
(
x−1f

)2n−1
x−1hf
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= (ghf)−1

(
n∏
l=1

xl([h, g−1]gf)−1x−l

)(
2n−1∏
l=n+1

xl(gf)−1x−l

)

· x2nf−1g−1fx−2n

(
2n−1∏
l=1

xlfx−l

)
hf

= (ghf)−1h

(
n∏
l=1

xl([h, g−1]gf)−1x−l

)(
2n−1∏
l=n+1

xl(gf)−1x−l

)

· x2nf−1g−1fx−2n

(
2n−1∏
l=1

xlfx−l

)
f

(
n−1∏
l=1

xl[gf, h]2x−l

)

· xn[gf, h][f−1g−1f, h][f, h]x−n

(
n−1∏
l=1

xl[f, h]2x−l

)

= (ghf)−1h

(
n∏
l=1

xl([h, g−1]gf)−1x−l

)(
2n−1∏
l=n+1

xl(gf)−1x−l

)

· x2nf−1g−1fx−2n

(
2n−1∏
l=1

xlfx−l

)
f

= ([h, g−1]gf)−1x
(
([h, g−1]gf)−1x

)n(
(gf)−1x

)n−1

· f−1g−1f
(
x−1f

)2n−1
x−1f,

where [gf, h][f−1g−1f, h][f, h] = 1 follows from direct calculation. Also we
have

C−n−1
[h,g−1]gf

C−ngf C
2n+1
f

=
(
([h, g−1]gf)−1x

)n+1(
(gf)−1x

)n−1
f−1g−1f

(
x−1f

)2n
=([h, g−1]gf)−1x

(
([h, g−1]gf)−1x

)n(
(gf)−1x

)n−1
f−1g−1f

(
x−1f

)2n−1
x−1f.

Thus we get

(2.8) C−2n−1
ghf C2n+1

hf = C−n−1
[h,g−1]gf

C−ngf C
2n+1
f .

So, by comparing wreath product coordinates, we obtain

x2n+1gx−2n−1h = hxn+1[h, g−1]x−n−1x2n+1gx−2n−1.

On the other hand, by commutativity we have

hx2n+1gx−2n−1 = hx2n+1gx−2n−1xn+1[h, g−1]x−n−1xn+1[g, h−1]x−n−1

= hxn+1[h, g−1]xngx−nx−n−1xn+1[g, h−1]x−n−1

= x2n+1gx−2n−1hxn+1[g, h−1]x−n−1

= x2n+1gx−2n−1xn+1[g, h−1]x−n−1h.
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For any f, g, h ∈ G, 0 ≤ m ≤ 2n + 1, the commutativity of xmfx−m

with x2n+1[g, h]x−2n−1 and of xm[g, h]xm with x2n+1fx−2n−1 follow from
the same trick. So we proved the case of 2n+ 1.

Now we prove the case of 2n+ 2. By previous calculation, we have

x2n+2gx−2n−2h = gh
(
C−2n−2
ghg1

C2n+2
hg1

, C−2n−2
ghg2

C2n+2
hg2

, . . . , C−2n−2
ghgk

C2n+2
hgk

)
,

and

hxn+1[h, g−1]x−n−1x2n+2gx−2n−2

= gh
(
C−n−1

[h,g−1]gg1
C−n−1
gg1 C2n+2

g1 , C−n−1
[h,g−1]gg2

C−n−1
gg2 C2n+2

g2 ,

. . . , C−n−1
[h,g−1]ggk

C−n−1
ggk

C2n+2
gk

)
.

Again we compare wreath product coordinates. Applying (2.8) and (2.7),
for any f ∈ G,

C−2n−2
ghf C2n+2

hf = C−1
ghfC

−2n−1
ghf C2n+1

hf Chf = C−1
ghfC

−n−1
[h,g−1]gf

C−ngf C
2n+1
f Chf

= (ghf)−1x
(
([h, g−1]gf)−1x

)n+1(
(gf)−1x

)n−1
f−1g−1f

(
x−1f

)2n
x−1hf

= (ghf)−1

(
n+1∏
l=1

xl([h, g−1]gf)−1x−l

)(
2n∏

l=n+2

xl(gf)−1x−l

)
x2n+1f−1g−1f

· x−2n−1

(
2n∏
l=1

xlfx−l

)
hf

= (ghf)−1h

(
n+1∏
l=1

xl([h, g−1]gf)−1x−l

)(
2n∏

l=n+2

xl(gf)−1x−l

)
x2n+1f−1g−1f

· x−2n−1

(
2n∏
l=1

xlfx−l

)
f

(
n∏
l=1

(
xl[gf, h][gf, h]x−l

))
xn+1[f−1g−1f, h]x−n−1

·

(
n∏
l=1

(
xl[f, h][f, h]x−l

))

= (ghf)−1h

(
n∏
l=1

xl([h, g−1]gf)−1x−l

)
xn+1([h, g−1]gf)−1[f−1g−1f, h]x−n−1

·

(
2n∏

l=n+2

xl(gf)−1x−l

)
x2n+1f−1g−1fx−2n−1

(
2n∏
l=1

xlfx−l

)
f.

On the other hand,

C−n−1
[h,g−1]gf

C−n−1
gf C2n+2

f

=
(
([h, g−1]gf)−1x

)n+1(
(gf)−1x

)n
f−1g−1f

(
x−1f

)2n+1
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= (ghf)−1h

(
n∏
l=1

xl([h, g−1]gf)−1x−l

)(
2n∏

l=n+1

xl(gf)−1x−l

)
x2n+1f−1g−1f

· x−2n−1

(
2n∏
l=1

xlfx−l

)
f.

Since ([h, g−1]gf)−1[f−1g−1f, h] = (gf)−1, then

C−2n−2
ghf C2n+2

hf = C−n−1
[h,g−1]gf

C−n−1
gf C2n+2

f ,

and thus

x2n+2gx−2n−2h = hxn+1[h, g−1]x−n−1x2n+2gx−2n−2.

Moreover, this implies

hx2n+2gx−2n−2 = x2n+2gx−2n−2xn+1[g, h−1]x−n−1h,

by the commutativity trick.
For any f, g, h ∈ G, 0 ≤ m ≤ 2n + 2, the commutativity of xmfx−m

with x2n+2[g, h]x−2n−2 and of xm[g, h]xm with x2n+2fx−2n−2 follow from
nilpotency. So we prove the case of 2n+ 2 and hence the lemma. �

Lemma 2.3. For any g, h ∈ G,n,m ∈ Z, xn[g, h]x−n lies in the center of
N , and

xngx−nxmhx−m = xmhx−mx[n+m
2

][h, g−1]x−[n+m
2

]xngx−n.

Proof. We assume n ≥ m.
Let f ∈ G. We compute

xn[g, h]x−nxmfx−m = xmxn−m[g, h]xm−nfx−m

= xmfxn−m[g, h]xm−nx−m

= xmfx−mxn[g, h]x−n,

and

xngx−nxmhx−m = xmxn−mgxm−nhx−m

= xmhx[n−m
2

][h, g−1]x−[n−m
2

]xn−mgxm−nx−m

= xmhx−mx[n+m
2

][h, g−1]x−[n+m
2

]xngx−n

= xmhx−mx[n+m
2

][h, g−1]x−[n+m
2

]xngx−n.

The case of n ≤ m is similar. �

Lemma 2.4. Given any nontrivial torsion element γ ∈ G(C(G)), it can be
written uniquely in the following form:

(2.9) γ = xi1f1x
−i1xi2f2x

−i2 . . . xijfjx
−ij ,

where i1 < i2 < · · · < ij are integers, j ≥ 1 and f1, f2, . . . , fj ∈ G\{g1 = 1}.
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Proof. Since γ is a product of conjugates by x of elements in G, by Lem-
ma 2.3, γ can be written in the form of (2.9). So we only need to show the
uniqueness.

Let γ = xi1f1x
−i1xi2f2x

−i2 . . . xijfjx
−ij = 1, where i1 < i2 < · · · < ij and

f1, f2, . . . , fj ∈ G. Then 1 = x−i1γxi1 = f1x
i2−i1f2x

−i2+i1 . . . xij−i1fjx
−ij+i1

has depth ij − i1 + 1 ≥ 1, if fj 6= 1. Hence, by an inductive argument, we
have fi = 1, 1 ≤ i ≤ j. It completes the proof. �

Proof of Theorem 1.1 . Note that [17] G(C(G)) = N o 〈x〉 and the iden-
tities in Lemma 2.3 is equivalent to the relations in Theorem 1.1. Then the
theorem follows from Lemma 2.3 and Lemma 2.4. �

In the end of [13], Kambites, Silva and Steinberg conjectured that the
automata group associated to any finite nonabelian group can not have
bounded torsion. The following corollary disproves the conjecture.

Corollary 2.5. Let G be a finite nilpotent group of class 2. Assume the
square of each element of G is central, then G(C(G)) has bounded torsion.

Proof. Let |G| = k. Note that k is even. Let γ be a torsion element. Since
every commutator has order at most 2, then by Lemma 2.4 and Theorem 1.1
we have γ2k = 1, i.e., the order of any torsion element is a factor of 2k. �

2.3. Nonembedding into wreath products.

Lemma 2.6. Let G be a finite 2-group of nilpotency class 2. Then G has a
subgroup H in which each square element is central in H.

Proof. By assumption on G, there exists a noncentral element g ∈ G such
that g2 is central. Similarly, there exists h ∈ G so that it does not com-
mute with g but h2 commutes with g. Then the subgroup H of G generated
by g and h is nilpotent of class 2. We show each square element in H is
central in H. Since g2 and h2 are central, it suffices to show for squares
of alternate products of g or g−1 with h or h−1. Since g−1 = gg−1g−1 and
h−1 = hh−1h−1, it reduces to squares of alternate products of g with h. Since
(ghg)2 = ghgghg = g4h2, by symmetry we only need to show that (gh)2 is
central. Indeed, we have ghghh(hghgh)−1 = ghghhh−1g−1h−1g−1h−1 =
gh(ghg−1h−1)g−1h−1 = ghg−1ghg−1h−1h−1 = ghhg−1h−1h−1 = 1, and
similarly ghghg(gghgh)−1 = 1 by symmetry. �

Proof of Theorem 1.2. Let G′ be the 2-group. Let g be a noncentral
element in G′ such that g2 is central. Let h ∈ G′ so that it does not commute
with g but h2 commutes with g. Then the subgroup H of G generated by g
and h is nilpotent of class 2. By previous lemma, each square element of H
is central in H.

For each n ∈ N, we consider the element

γn = (xnhx−n)g(xnh−1x−n).
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Each such element is a conjugate of the torsion element g by another torsion
element xnhx−n. γn has depth at most n + 1. Since every conjugacy class
in the torsion subgroup of any wreath product of a finite group with a
torsion-free group is finite, see [13] Lemma 6.4, it suffices to show that γn
has depth at least [n2 ]. Indeed, γn = gx[n

2
][g, h−1]x−[n

2
] has depth [n2 ] + 1 by

Lemma 2.1. �

Proof of Theorem 1.3. Combining Theorem 1.2 with results in the ap-
pendix of [13], the theorem follows. �

3. Cross-wired lamplighter groups

The Cayley graph of lamplighter groups can be examples of Diestel–
Leader graphs, for particular choices of generators [3, 14, 22, 23]. Cross-
wired lamplighter groups [2] are defined to be cocompact lattices of the
isometry group of Diestel–Leader graphs. Cornulier, Fisher and Kashyap
[2] give a necessary and sufficient condition for a locally compact group to
be isomorphic to a closed cocompact subgroup in the isometry group of a
Diestel–Leader graph. The following is the sufficient condition for the case
of discrete groups.

Theorem 3.1. [2] Let Γ be a discrete group, with a semidirect product
decomposition Γ = Ho〈t〉, where H is infinite and t is torsion free. Assume
that H has subgroups L and L′ such that:

• tLt−1 and t−1L′t are finite index subgroups, of index m and n, in L
and L′ respectively;
•
⋃
k∈Z t

−kLtk =
⋃
k∈Z t

kL′t−k = H (these are increasing unions);
• L ∩ L′ is finite;
• the double coset space L\H/L′ is finite.

Then Γ is finitely generated, m = n and Γ has a proper, transitive action
on some Diestel–Leader graph.

3.1. Proof of Theorem 1.4.

Proof of Theorem 1.4. In order to show the automata groups are cross-
wired lamplighters, it suffices to check the conditions in above theorem.

Let

G = {g1 = 1, g2, ..., gk},
L = 〈xnGx−n, n ≥ 0〉,
L′ = 〈xnGx−n, n ≤ −1〉.

(1) We show that xLx−1 and x−1L′x are finite index subgroups in L and
L′ respectively. Note that xLx−1 = 〈xnGx−n, n ≥ 1〉 < L. Lem-
ma 2.2 implies that every element in L can be written as an element
in g(xLx−1) for some g ∈ G. So the index of xLx−1 in L is finite.
Similarly x−1L′x = 〈xnGx−n, n ≤ −1〉 has finite index in L′.
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(2) We show that
⋃
n∈Z x

−nLxn =
⋃
n∈Z x

nL′x−n = N, and the unions
are increasing. Note that

⋃
n∈Z x

−nLxn is a subgroup of N and⋃
n∈Z x

−nLxn contains all the generators of N . Thus⋃
n∈Z

x−nLxn = N.

Similarly we have
⋃
n∈Z x

nL′x−n = N. The unions are the unions of
increasing subgroups, by the definitions of L and L′.

(3) We show L ∩ L′ is finite. Indeed, it follows from Lemma 2.4 that
L ∩ L′ is trivial. We give an alternative proof below using the idea
of depth. By Lemma 2.1, each generator of L has finite depth, so do
the elements of L. It suffices to show every nontrivial element of L′

has infinite depth. Let 1 6= g ∈ G. Since

x−1gx = (Cg1 , Cg2 , . . . , Cgk)g(C−1
g1 , C

−1
g2 , . . . , C

−1
gk

)

= g
(
Cgg1C−1

g1 , Cgg2C
−1
g2 , . . . , CggkC

−1
gk

)
= g
(
x−1gg1(g1)−1x, x−1gg2(g2)−1x, . . . , x−1ggk(gk)

−1x
)

= g(x−1gx, x−1gx, . . . , x−1gx),

then x−1gx acts on any infinite word in Gω by multiplying g on the
left to each letter in the word, and hence has infinite depth. Assume
xngx−n has finite depth m for some n ≤ −2. Then by Lemma 2.1,
x−1gx has depth at most m− n− 1, which is a contradiction. Thus
xngx−n has infinite depth for each n ≤ −1.

Let

1 6= γ = xn1f1x
−n1xn2f2x

−n2 . . . xnpfpx
−np

be a reduced element of L′, where p ∈ N, n1, n2, . . . , np ≤ −1. Then
by Lemma 2.4, we can rewrite this element as

xm1h1x
−m1xm2h2x

−m2 . . . xmqhqx
−mq ,

for some q ∈ N,m1 < m2 < · · · < mq ≤ −1. Then

x−m1−1
(
xm1h1x

−m1xm2h2x
−m2 . . . xmqhqx

−mq
)
xm1+1

= x−1h1xx
m2−m1−1h2x

−m2+m1+1 . . . xmq−m1−1hqx
−mq+m1+1,

has infinite depth, since all conjugates of hi, i ≥ 2 in the product
have finite depth but x−1h1x. Thus, by Lemma 2.1, γ has infinite
depth. Therefore, L ∩ L′ is trivial.

(4) We show that the double coset space L\N/L′ is finite. It follows
from Lemma 2.3, as shown in the proof of (3) that products of con-
jugates can be written as products of conjugates in either increasing
or decreasing order, that L\N/L′ is trivial. �
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Remark 3.2. A cross-wired lamplighter is said to be symmetric [2] if it
admits an automorphism α such that if π is the projection to Z (which is
unique up to sign) then π ◦ α = −π, and virtually symmetric if it admits a
symmetric subgroup of finite index. G(C(D8)) is symmetric, but G(C(Q8))
is not symmetric.

Remark 3.3. The lamplighter group F o Z can be interpreted as follows.
The generator of Z describes the walk of a lamplighter along an infinite
street with a streetlamp at each integer. Each streetlamp has |F | states.
The generators of F represent the ability of the lamplighter to change the
state of the lamp at his current position. This description is most intuitive
where F = Z2 and lamps are simply on or off. For the group G in The-
orem 1.1, the cross-wired lamplighter G(C(G)) = 〈G, x〉 can be interpreted
in a similar but more complicated way. The generator x still describe the
walk of a lamplighter. Each streetlamp has |G| states, including off as a
state represented by 1 ∈ G. The states of lamps are determined by the
normal form in Lemma 2.4. The generators of G now represent the ability
of the lamplighter to change the states of the lamps not only at his current
position, but also at some positions between his and the [mid] position of his
and the position of the lamp to the farthest right (positive direction) which
is on. The change of state of lamps on the right is up to a commutator state.
This interpretation gives one cross-wired pattern for cross-wired lamplighter
groups.

4. Linearity of automata groups

In this chapter, we are going to prove Theorem 1.5. In particular, the
automata groups in Theorem 1.5 are essentially those linear examples of
cross-wired lamplighter groups constructed in [2]. We can only show linearity
of the cases of Q8 and M2n . It is interesting if one can show all cases
considered in Theorem 1.1. We begin with some notations and lemmas.

4.1. Notations. Let UTm(Z2[t±1]) be m×m upper unitriangular matrices
over Laurent polynomial ring Z2[t±1]. Let g = (gij), h = (hij) be elements
in UTm(Z2[t±1]) and ḡ = (ḡij), h̄ = (h̄ij) be their inverses.

Lemma 4.1. ḡii = 1, ḡi,i+1 = gi,i+1, and ḡij , j > i, satisfies the recursive
formula

ḡij =

j∑
k=i+1

gikḡkj .

Proof. ḡii = 1. For j > i, we have

0 =

j∑
l=i

gilḡlj = giiḡij +

j∑
l=i+1

gilḡlj = ḡij +

j∑
l=i+1

gilḡlj . �

The following lemma will be very helpful in calculation.
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Lemma 4.2. Suppose [g, h]i,j = 0 as long as 0 < j − i < m− 1 , then

[g, h]1m =
m−1∑
k=2

(g1khkm + h1kgkm).

Proof.

[g, h]1m =
m∑
i=1

m∑
k=i

m∑
j=k

ḡ1ih̄ikgkjhjm

=

m∑
k=1

m∑
j=k

h̄1kgkjhjm +

m∑
i=2

m∑
k=i

m∑
j=k

ḡ1ih̄ikgkjhjm

=

m∑
j=1

g1jhjm +

m∑
k=2

m∑
j=k

k∑
l=2

h1lh̄lkgkjhjm +

m∑
i=2

m∑
k=i

m∑
j=k

i∑
l=2

g1lḡlih̄ikgkjhjm

=
m∑
j=1

g1jhjm +
m∑
l=2

m∑
k=l

m∑
j=k

h1lh̄lkgkjhjm +
m∑
l=2

m∑
i=l

m∑
k=i

m∑
j=k

g1lḡlih̄ikgkjhjm

=
m∑
j=1

g1jhjm +
m∑
l=2

h1l

m∑
k=l

m∑
j=k

h̄lkgkjhjm +
m∑
l=2

g1l

m∑
i=l

m∑
k=i

m∑
j=k

ḡlih̄ikgkjhjm

=

m∑
j=1

g1jhjm +

m∑
l=2

h1lglm +

m−1∑
l=2

g1l0 + g1m =

m−1∑
k=2

(g1khkm + h1kgkm). �

We recall here the commutator identities in group theory:

(4.1) [a, bc] = [a, c]c−1[a, b]c, [ab, c] = b−1[a, c]b[b, c],

where a, b, c are elements of a group F .
For the group G in Theorem 1.1, G(C(G)) = 〈G, x〉. Let

G2(C(G)) := 〈G, xGx−1, x2〉.
Then it is an index two subgroup of G(C(G)).

4.2. Linearity of G(C(Q8)). Let

Q8 = 〈a, b | a4 = 1, a2 = b2, b−1ab = a−1〉.
It has center Z(Q8) = 〈a2〉. Then G(C(Q8)) is generated by {a, b, x}, and
G2(C(Q8)) is generated by {a, b, xax−1, xbx−1, x2}.

Lemma 4.3. Any nontrivial torsion element of G(C(Q8)) can be uniquely
written in the following form:(

k∏
r=1

xirax−ir

)(
l∏

r=1

xjrbx−jr

)(
n∏
r=1

xmra2x−mr

)
,

where i1 < i2 < · · · < ik, j1 < j2 < · · · < jl, and m1 < m2 < · · · < mn.

Proof. It follows from Lemma 2.4 and the group structure of Q8. �
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Theorem 4.4. G2(C(Q8)) embeds into GL6(Z2[t±1]).

Proof. Let

α : {a, b, xax−1, xbx−1, x2} → GL6(Z2[t±1])

be the function specified by

α(a) =


1 t 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

α(b) =


1 0 t 0 0 0
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

α(xax−1) =


1 1 0 1 0 0
0 1 0 0 0 t−1

0 0 1 0 0 0
0 0 0 1 0 t−1 + 1
0 0 0 0 1 1
0 0 0 0 0 1

 ,

α(xbx−1) =


1 0 1 0 1 0
0 1 0 0 0 t−1

0 0 1 0 0 t−1

0 0 0 1 0 t−1

0 0 0 0 1 t−1 + 1
0 0 0 0 0 1

 ,

α(x2) =


1 0 0 0 0 0
0 t 0 0 0 0
0 0 t 0 0 0
0 0 0 t 0 0
0 0 0 0 t 0
0 0 0 0 0 t2

 .

Easily {α(a), α(b)} and {α(xax−1), α(xbx−1)} generates copies of Q8.
Next, we show that the map α may extend to a group homomorphism from
G2(C(Q8)) to GL6(Z2[t±1]).
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Simply extending α to generators of the torsion subgroup by conjugating
by α(x2), we then have

α(x2nax−2n) =


1 t−n+1 0 0 0 0
0 1 0 0 0 t−n

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

α(x2nbx−2n) =


1 0 t−n+1 0 0 0
0 1 0 0 0 t−n

0 0 1 0 0 t−n

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

α(x2n+1ax−2n−1) =


1 t−n 0 t−n 0 0
0 1 0 0 0 t−n−1

0 0 1 0 0 0
0 0 0 1 0 t−n−1 + t−n

0 0 0 0 1 t−n

0 0 0 0 0 1

 ,

α(x2n+1bx−2n−1) =


1 0 t−n 0 t−n 0
0 1 0 0 0 t−n−1

0 0 1 0 0 t−n−1

0 0 0 1 0 t−n−1

0 0 0 0 1 t−n−1 + t−n

0 0 0 0 0 1

 .

To show α extends to a group homomorphism, it suffices to check those
relations in Theorem 1.1, or more precisely in our index two subgroup case,
those identities in Lemma 2.3. Indeed, applying Lemma 4.2 where the as-
sumptions can be easily verified in our case (multi-dimensional Heisenberg
groups), it is straightforward that α(xnax−n) commutes with α(xmax−m)
and that α(xnbx−n) commutes with α(xmbx−m). Moreover, applying Lem-
ma 4.2, we calculate

[α(x2nax−2n), α(x2mbx−2m)]

=




1 t−n+1 0 0 0 0
0 1 0 0 0 t−n

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,


1 0 t−m+1 0 0 0
0 1 0 0 0 t−m

0 0 1 0 0 t−m

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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=


1 0 0 0 0 t−m−n+1

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = α([x2nax−2n, x2mbx−2m]),

[α(x2n+1ax−2n−1), α(x2m+1bx−2m−1)]

=




1 t−n 0 t−n 0 0
0 1 0 0 0 t−n−1

0 0 1 0 0 0
0 0 0 1 0 t−n−1 + t−n

0 0 0 0 1 t−n

0 0 0 0 0 1

 ,


1 0 t−m 0 t−m 0
0 1 0 0 0 t−m−1

0 0 1 0 0 t−m−1

0 0 0 1 0 t−m−1

0 0 0 0 1 t−m−1 + t−m

0 0 0 0 0 1





=


1 0 0 0 0 t−n−m

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = α([x2n+1ax−2n−1, x2m+1bx−2m−1]),

[α(x2nax−2n), α(x2m+1bx−2m−1)]

=




1 t−n+1 0 0 0 0
0 1 0 0 0 t−n

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,


1 0 t−m 0 t−m 0
0 1 0 0 0 t−m−1

0 0 1 0 0 t−m−1

0 0 0 1 0 t−m−1

0 0 0 0 1 t−m−1 + t−m

0 0 0 0 0 1





=


1 0 0 0 0 t−n−m

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = α([x2nax−2n, x2m+1bx−2m−1]),

and
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[α(x2n+1ax−2n−1), α(x2mbx−2m)]

=




1 t−n 0 t−n 0 0
0 1 0 0 0 t−n−1

0 0 1 0 0 0
0 0 0 1 0 t−n−1 + t−n

0 0 0 0 1 t−n

0 0 0 0 0 1

 ,


1 0 t−m+1 0 0 0
0 1 0 0 0 t−m

0 0 1 0 0 t−m

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





=


1 0 0 0 0 t−n−m

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = α([x2n+1ax−2n−1, x2mbx−2m]).

Therefore, the compatibility of α with the identities in Lemma 2.3 follows
from the commutator identities in group theory (4.1).

Finally, we show the homomorphism α has trivial kernel. First note that
any torsion free element does not lie in the kernel. Let γ be a torsion
element in G(C(Q8)). It has the normal form as in Lemma 4.3. Let α(γ) =(
α(γ)ij

)
= I, the identity matrix. α(γ)14 = 0 implies that there are no odd

conjugates of a in the normal form of γ. Then, α(γ)12 = 0 implies that
there are no conjugates of a in γ. Moreover, α(γ)15 = 0 implies that there
are no odd conjugates of b in γ and hence α(γ)13 = 0 implies that there are
no conjugates of b in γ. α(γ)16 = 0 implies that there are no conjugates of
a2 in γ. So, α(γ) = I implies that γ is trivial. �

Remark 4.5. Since virtually linear implies linear, then we have the linearity
of G(C(Q8)).

4.3. Linearity of G(C(M2n)). Now, we consider the Iwasawa/modular
group M2n of order 2n, n ≥ 3, where

M2n = 〈a, b | a2n−1
= b2 = e, bab−1 = a2n−2+1〉.

It has center Z(M2n) = 〈a2〉 and derived subgroup [M2n ,M2n ] = 〈a2n−2〉.
Actually, G = {1, a, a2, ..., a2n−1−1, b, ab, a2b, ..., a2n−1−1b}.
G(C(M2n)) = 〈a, b, x〉. G2(C(M2n)) = 〈a, b, xax−1, xbx−1, x2〉 is a index

two subgroup of G(C(M2n)).

Lemma 4.6. Any nontrivial torsion element of G(C(M2n)) can be uniquely
written in the following form:

k∏
r=1

xirasrx−ir
l∏

r=1

xjrbx−jr
n∏
r=1

xmr [a, b]x−mr ,

where i1 < i2 < · · · < ik, j1 < j2 < · · · < jl, m1 < m2 < · · · < mn, and
1 ≤ s1, s2, · · · , sk ≤ 2n−2 − 1.
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Proof. It follows from Lemma 2.4 and the group structure of M2n . �

Theorem 4.7. G2(C(M2n)) embeds into GL2n−1+2(Z2[t±1]).

Proof. The idea of the proof is similar with the case of Q8.
Let Ei,j , 1 ≤ i, j ≤ 2n−1 + 2, denote the (2n−1 + 2) × (2n−1 + 2) matrix

with 1 in the i-th row j-th column and 0 everywhere else. Ei,i is simply
denoted by Ei.

Let α be the map from the generating set {a, b, xax−1, xbx−1, x2} to
GL2n−1+2(Z2[t±1]) satisfying:

α(a) = I + E1,2 +
2n−2−2∑
m=1

E2m,2m+2 + E2n−1−2,2n−1+2 + E1,2n−1 ,

α(b) = I + E2n−1,2n−1+2 + E2n−1+1,2n−1+2,

α(xax−1) = I + t−1
2n−3∑
m=1

E2m−1,2m+1 +

2n−2−1∑
m=2n−3+1

E2m−1,2m+1

+ E2n−1−1,2n−1+2 + t−2n−3
E1,2n−1+1,

α(xbx−1) = I + t−2n−3
E2n−1,2n−1+2 + E2n−1+1,2n−1+2,

α(x2) = E1 +
2n−2−1∑
m=1

(tmE2m + tmE2m+1) + t2
n−3

E2n−1 + t2
n−3

E2n−1+1

+ t2
n−2

E2n−1+2.

It is easy to verify that α(a) has order 2n−1 and α(a)2n−2
= I+E1,2n−1+2.

α(a) has 2n−2 + 1 nonzero entries above the diagonal, and α(a)m, 2 ≤ m ≤
2n−1, has at least 2n−1 −m nonzero entries above the diagonal. Indeed,

α(a)2 = I + E1,4 +
2n−2−3∑
m=1

E2m,2m+4 + E2n−1−4,2n−1+2,

α(a)4 = I + E1,8 +
2n−2−5∑
m=1

E2m,2m+8 + E2n−1−8,2n−1+2,

...

α(a)2j = I + E1,2j+1 +
2n−2−2j−1∑

m=1

E2m,2m+2j+1 + E2n−1−2j+1,2n−1+2,

...

α(a)2n−3
= I + E1,2n−2 +

2n−2−2n−3−1∑
m=1

E2m,2m+2n−2 + E2n−1−2n−2,2n−1+2,



CROSS-WIRED LAMPLIGHTERS AND AUTOMATA GROUPS 401

α(a)2n−2
= I + E1,2n−1+2,

α(a)2n−1
= I.

Moreover, we have similar properties with α(xax−1) because of similar con-
struction:

α(xax−1)2n−2
= I + t−2n−3

E1,2n−1+2,

α(xax−1)2n−1
= I.

Applying Lemma 4.2 where the assumptions are easily verified, we see
that

[α(a), α(b)] = I + E1,2n−1+2 = α(a)2n−2
,

[α(xax−1), α(xbx−1)] = I + t−2n−3
E1,2n−1+2 = α(xax−1)2n−2

.

Since α(b)2 = α(xbx−1)2 = I, then {α(a), α(b)} and {α(xax−1), α(xbx−1)}
generates two copies of M2n .

Next, we show that α extends to a group homomorphism. Extending α,
we have

α(x2kax−2k) = I + t−kE1,2 + t−k
2n−2−2∑
m=1

E2m,2m+2

+ t−kE2n−1−2,2n−1+2 + t−2n−3kE1,2n−1 ,

α(x2kbx−2k) = I + t−2n−3kE2n−1,2n−1+2 + t−2n−3kE2n−1+1,2n−1+2,

α(x2k+1ax−2k−1) = I + t−1−k
2n−3∑
m=1

E2m−1,2m+1 + t−k
2n−2−1∑

m=2n−3+1

E2m−1,2m+1

+ t−kE2n−1−1,2n−1+2 + t−2n−3(k+1)E1,2n−1+1,

α(x2k+1bx−2k−1) = I + t−2n−3(k+1)E2n−1,2n−1+2 + t−2n−3kE2n−1+1,2n−1+2,

α(xk[a, b]x−k) = I + t−2n−3kE1,2n−1+2.

Applying Lemma 4.2 where the assumptions are easily verified because
of the alternating nonzero entries construction of α(a) and α(xax−1) and
symmetricity of the formula in the lemma, we see that α(xkax−k)’s commute
with each other, so do α(xkbx−k)’s. Moreover, we see that α(xka2x−k)’s
commute with α(xkbx−k)’s and

[α(x2kax−2k), α(x2lbx−2l)] = I + t−2n−3(k+l)E1,2n−1+2

= α(xk+l[a, b]x−k−l),

[α(x2k+1ax−2k−1), α(x2lbx−2l)] = I + t−2n−3(k+l+1)E1,2n−1+2

= α(xk+l+1[a, b]x−k−l−1),

[α(x2kax−2k), α(x2l+1bx−2l−1)] = I + t−2n−3(k+l+1)E1,2n−1+2

= α(xk+l+1[a, b]x−k−l−1),
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[α(x2k+1ax−2k−1), α(x2l+1bx−2l−1)] = I + t−2n−3(k+l+1)E1,2n−1+2

= α(xk+l+1[a, b]x−k−l−1).

Therefore, the compatibility of α with the identities in Lemma 2.3 follows
from above calculations and commutator identities (4.1).

Finally, we show the homomorphism α has trivial kernel. Note that any
torsion free element does not lie in the kernel. Let γ be a torsion element in
G2(C(M2n)). It has the normal form as in Lemma 4.6. Suppose α(γ) = I.
α(γ)1,2 = 0 implies that there are no even conjugates of a2k−1, 1 ≤ k ≤ 2n−3,
in the normal form of γ. α(γ)1,3 = 0 implies that there are no odd conjugates

of a2k−1, 1 ≤ k ≤ 2n−3, in γ. Moreover, α(γ)1,2m = 0, 2 ≤ m ≤ n − 2,

imply that there are no even conjugates of a2k−2, 2 ≤ k ≤ 2n−3, in γ and
α(γ)1,2m+1 = 0, 2 ≤ m ≤ n− 2, implies that there are no odd conjugates of

a2k−2, 2 ≤ k ≤ 2n−3, in γ. α(γ)2n−1,2n−1+2 = α(γ)2n−1+1,2n−1+2 = 0, implies
that there are no conjugates of b in γ and α(γ)1,2n−1+2 = 0 implies that there
are no conjugates of [a, b] in γ. Thus, α(γ) = I implies that γ is trivial. �

Remark 4.8. As pointed out by L. Bartholdi, the linear representations
given in this chapter are not optimal in the sense that they do not have the
least degree. In the optimal case, we may lose the diagonal action of x2. It is
suggested by the anonymous referee that it should be possible to give a more
conceptual and general proof of linearity that covers all cases in Theorem 1.1,
and that the representation should be sought in GL(F2[H, t±1]), where H is
a subgroup of G(C(G)) generated by G and x−1Gx.

Remark 4.9. M. Larsen asked whether or not F being a finite p-group is a
necessary and sufficient condition for G(C(F )) to be linear over one field. We
only know the necessity. Ju. E. Vapnè [18, 19] and, independently, B. A. F.
Wehrfritz [21, 20] give necessary and sufficient conditions for a lamplighter
group to be linear over some field. In particular, Zp o Z is only linear over
characteristic p. Since G(C(F )) might contain copies of Zp o Z, for different
p’s, then F being a finite p-group is a necessary condition for G(C(F )) to
be linear over some field. But this of course does not rule out the cases of
embedding into a product of general linear groups over different fields.
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