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Multiplication operators on the Bergman
spaces of pseudoconvex domains

Akaki Tikaradze

Abstract. Let Ω ⊂ Cn be a bounded smooth pseudoconvex domain,
and let f = (f1, . . . , fn) : Ω ⊂ Cn be an n-tuple of holomorphic functions

on Ω. In this paper we study commutants of the corresponding multi-
plication operators {Tf1 , . . . , Tfn} = Tf on the Bergman space A2(Ω).
One of our main results is a geometric description of the algebra of com-
mutants of {Tf , Tf

∗}, generalizing a result by Douglas, Sun and Zheng,
2011.
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1. Introduction

Let Ω ⊂ Cn be a bounded smooth pseudoconvex domain. The Bergman
space of all square integrable holomorphic functions on Ω will be denoted by
A2(Ω), while the subspace of all bounded holomorphic functions on Ω will
be denoted by H∞(Ω). Given a function f ∈ L∞(Ω), one defines the corre-
sponding Toeplitz operator with the symbol f : Tf : A2(Ω)→ A2(Ω), as the
composition of the multiplication operator by f followed by the orthogonal
projection from L2(Ω) to A2(Ω). If f is holomorphic, then Tf = Mf is the
multiplication operator by f. Questions related to commutants of Toeplitz
operators have been of great interest for some time.

This paper is largely motivated by the following problem.
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Problem 1. Let f = (f1, . . . , fn) : Ω → Cn be a holomorphic mapping in
a neighbourhood of Ω with a nontrivial Jacobian determinant. Describe the
algebra of commutants of {Tfi , 1 ≤ i ≤ n} = Tf .

It is of a special interests to describe the largest C∗-subalgebra of the
above algebra, the algebra of commutants of {Tf , T ∗f } (here and everywhere

T ∗f denotes {T ∗fi , 1 ≤ i ≤ n}). Indeed, reducing subspaces of Tf correspond
to projections in this algebra.

Both of the above questions have been extensively studied for the past
several decades when n = 1 and Ω = D is the unit disc. Indeed, by a result
of Thomson [Th], it suffices to study the commutants of Tf when f is a finite
Blaschke product. In this case it can be described it terms of the Riemann
surface f−1 ◦ f(D′), where D′ is D with preimages of the critical values of
f removed [[Co], Theorem 3] (although Cowen and Thomson worked in the
Hardy space setting, their results easily carry over to the Bergman space).

In a recent important work by Douglas, Sun and Zheng [DSZ], the algebra
of commutants of {Tf , T ∗f } is explicitly described. In particular, they show

that its dimension equals to the number of connected components of f−1 ◦
f(D′) ([DSZ], Theorem 7.6). Also noteworthy are results of Guo and Huang,
who under the assumption that f : D → f(D) is a covering map, described
among other things the commutant of {Tf , T ∗f } in terms of fundamental

group of f(D) [[GuoH2], Theorem 1.3].
Motivated by these results, we extend them to high dimensional domains.

Namely, we introduce a certain n-dimensional complex manifold Wf (Defi-
nition 1)

Wf ⊂ (Ω \ Z)×f (Ω \ Z) = {(z, w), f(z) = f(w), z, w ∈ Ω \ Z}
defined as the largest open subset of (Ω\Z)×f (Ω\Z) such that the projection
p : Wf → Ω \ Z is a covering map, where Z is the preimage of all critical

values of f on Ω. Under some mild assumptions on Ω, f (Assumptions 1,
2) we prove that the algebra of commutants of {Tf , Tf ∗} is isomorphic to
the algebra of locally constant functions on Wf under convolution product
(Theorem 6.1). This is a generalization of the above mentioned theorem by
Douglas, Sun and Zheng [DSZ]. Our proof closely follows their ideas.

We also study the commutant of Tf in the Toeplitz algebra of Ω, the
norm closed subalgebra of B(A2(Ω)) generated by all Toepltiz operators
Th, h ∈ L∞(Ω). Motivated by a result of Axler, Cuckovic and Rao [AxCR]
on commutants of analytic Toeplitz operators in one variable, we prove that
the commutant of Tf in the Toeplitz algebra of Ω consists of multiplication
operators by bounded holomorphic functions on Ω, Theorem 5.7.

The paper is organized as follows. The first three sections have a prepara-
tory nature. In Section 2 we establish some Nullstellensatz-type statements
for the Bergman space A2(Ω) that play a crucial role in studying the com-
mutants of Tf . In Sections 3 and 4, we introduce some geometric objects
attached to Ω, f (Section 3), and convolution algebras associated to them
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(Section 4.1). Central parts of the paper are Sections 5 and 6, in which our
main results about commutants of Tf and {Tf , T ∗f } are established.

2. Nullstellensatz for the Bergman space

Throughout this paper given a holomorphic mapping g : Ω→ Cn,Ω ⊂ Cn,
we will denote the determinant of the Jacobian of g by Jg.

In this section we will prove a (weak) version of Nullstellensatz for the
Bergman space of a bounded pseudoconvex domain in Cn (Theorem 2.6).
This result will be crucial for studying commutants of Tf . All the results
in this section follow well-known approach of using Koszul and ∂̄-complex
for proving Nullstellensatz type statements on pseudoconvex domains and
are essentially well-known (see for example [PS]). We include proofs for a
reader’s convenience.

As always, let Ω ⊂ Cn be a bounded pseudoconvex domain. We will
denote by A∞(Ω) the set of all holomorphic functions on Ω which are C∞-
smooth on Ω. Let f = (f1, . . . , fm) : Ω→ Cm be an m-tuple of holomorphic
functions from A∞(Ω), which will also be viewed as a holomorphic mapping
to Cm. Let us recall the definition of the Koszul double complex of f on Ω.
Define the ∂̄-Koszul double complex (K, bf , ∂̄) on Ω as follows

K =
⊕

Ki,j ,Ki,j = Λi(V )⊗C C
∞
0,j(Ω)

where V = ⊕mi=1Cvi, and C∞0,j(Ω) denotes the space of all C∞-smooth (0, j)-

forms on Ω There is a natural product on K defined as follows

(u⊗ ω1) · (v ⊗ ω2) = (u ∧ v)⊗ (ω1 ∧ ω2).

Differentials of this bicomplex are ∂̄ : Ki,j → Ki,j+1 and the Koszul differ-
ential bf : Ki,j → Ki−1,j defined as follows

bf

(∑
i

vi ⊗ ωi
)

=
∑
i

fiω,

bf (x · y) = bf (x) · y + (−1)ix · bf (y), x ∈ Ki,j , ∂̄(u⊗ ω) = u⊗ ∂̄(ω)

Clearly ∂̄bf = bf ∂̄.

Lemma 2.1. In the above setting let U ⊂⊂ Ω be an open subset such
that f−1(0) ∩ Ū = ∅. Let w ∈ Ki,j be such that bf (w) = ∂̄(w) = 0, and
supp(w) ⊂ U. Then there exists w′ ∈ Ki+1,j such that w = bfw

′, ∂̄(w′) = 0.

Proof. Let w ∈ Ki,j . We will proceed by the descending induction on i.
We claim that there exists y ∈ Ki+1,j supported on U such that bfy = w.

Indeed, let gi ∈ C∞(Ω) be such that (
∑

i figi)U = 1. Therefore

bf

((∑
vi ⊗ gi

)
· w
)

= w.
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Then ∂̄(y) ∈ Ki+1,j+1 satisfies the inductive assumption, so there exists z
such that bf (z) = ∂̄(y) and ∂̄(z) = 0. Let z1 be such that ∂̄(z1) = z (it exists
by Kohn’s theorem). Replacing y by y − bf (z1) we are done. �

Corollary 2.2. Let f1, . . . , fn ∈ A∞(Ω) and let U ⊂⊂ Ω be an open subset
of Ω such that f−1(0) ⊂ U. If g ∈ A∞(Ω) such that g ∈

∑
i fiA(U), then

g ∈
∑

i fiA
∞(Ω).

Proof. Let hi ∈ C∞(Ω̄)∩A(U) such that g =
∑

i fihi. Then bx = ∂̄(x) = 0
where x =

∑
vi ⊗ ∂̄(hi). Thus by the above there exists z ∈ K2,0 such that

x = b(∂̄(z)). Then

∂̄
(∑

vi ⊗ hi − b(z)
)

= 0, b
(∑

vi ⊗ hi − bf (z)
)

= g.

Let us write
∑
fi ⊗ hi − b(z) as

∑
vi ⊗ hi. Then

g =
∑
i

fihi, hi ∈ A∞(Ω). �

For a subset S ⊂ Ω, we will denote by I(S) the ideal of holomorphic
functions on Ω which vanish on S.

The proof below directly follows the proofs of similar statements by Over-
lid [Øv], Hakim–Sibony [HS].

Corollary 2.3. Let f = f1, . . . , fm ∈ A∞(Ω) be such that f−1(0) is a finite
set. If the Jacobian of f has the full rank on each point of f−1(0), then

I(f−1(0)) ∩A∞(Ω) =
∑
i

fiA
∞(Ω).

Proof. Let h ∈ I(F−1(0))∩A∞(Ω). It follows from the Hilbert Nullstellen-
satz for the local complex analytic case [[GunR], III.A.7] that there exists an
open neighbourhood U of f−1(0), and gi ∈ A(U), such that h|U =

∑
i fi|Ugi.

Now by Corollary 2.2 we are done. �

We will need the following assumption on Ω. It was first introduced in
[AgS], see also [PS].

Assumption 1. Ω ⊂ Cn is a connected smooth bounded pseudoconvex do-
main, such that for any z ∈ ∂Ω, A∞(Ω) ∩ I(z) is dense in A2(Ω).

Recall the following simple lemma.

Lemma 2.4. Assumption 1 is satisfied for bounded smooth strongly pseu-
doconvex domains or star-shaped smooth pseudoconvex domains.

Proof. Notice that to verify Assumption 1, it suffices to check the following:
for a given z ∈ ∂Ω, there exists a sequence fn ∈ A∞(Ω) such that fn(z) = 1
and limn→∞ ‖fn‖A2(Ω) = 0. Indeed, let g ∈ A∞(Ω). Then g − g(z)fn ∈ I(z)

and limn→∞(g − g(z)fn) = g in A2(Ω). Thus, A∞(Ω) ∩ I(z) is dense in
A∞(Ω), and since A∞(Ω) is dense in A2(Ω) by a result of Catlin [[Ca],
Theorem 3.1.4], it follows that A∞(Ω) ∩ I(z) is dense in A2(Ω).
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Now let us suppose that Ω is a smooth strongly pseudoconvex domain.
Let z ∈ ∂Ω. It is well-known that z is a peak point. Let f ∈ A∞(Ω) be such
that f(z) = 1, |f(w)| < 1, w ∈ Ω \ z. Then limm→∞ ‖fm‖2 = 0.

Now let Ω be a star shaped smooth domain. Without loss of generality,
we may assume that rΩ ⊂ Ω, 0 ≤ r ≤ 1. Let θ ∈ ∂Ω. Let f ∈ A2(Ω) be such
that limw→θ(f(w)) =∞. Existence of such f follows for example from [[Ca2],
Lemma1, page 153]. Then fr(z) = f(rz) ∈ A∞(Ω) and ‖fr‖2 ≤ r−2n‖f‖2,
while limr→1 fr(θ) =∞. �

We have another:

Lemma 2.5. If Ω satisfies Assumption 1, then for any finite set S ⊂ ∂Ω,
A∞(Ω) ∩ I(S) is dense in A2(Ω).

Proof. Put S = {zi}1≤i≤m. Let ε > 0. Let g ∈ A∞(Ω). Let φi ∈ A∞(Ω) be
such that φi(zj) = δij . Let gi ∈ A∞(Ω) such that gi(zi) = 1, ‖gi‖ < ε (such
gi exists by Assumption 1). Then g −

∑
i g(zi)φigi ∈ I(S) and∥∥∥∥∑

i

g(zi)φigi

∥∥∥∥
2

< ‖g‖L∞(Ω)

∑
i

‖φi‖A2(Ω)ε.

Thus, A∞(Ω)∩ I(S) is dense in A∞(Ω), and since A∞(Ω) is dense in A2(Ω),
we are done. �

For w ∈ Ω, we will denote by Kw ∈ A2(Ω) the reproducing kernel of the
Bergman space A2(Ω). Thus 〈g,Kw〉 = g(w) for any g ∈ A2(Ω). Also, denote
by kw the normalized Bergman kernel Kw

‖Kw‖ .

Now we are redady to prove the main result of this section.

Theorem 2.6. Suppose that domain Ω ⊂ Cn satisfies Assumption 1. Let
f = (f1, . . . , fn) : Ω → Cn be a holomorphic mapping such that Jf is not

identically 0. If Jf is nonzero on f−1(0) ∩ Ω, then(∑
fiA

2(Ω)
)⊥

=
∑

w∈f−1(0)

CKw.

Proof. Let us put S = f−1(0) ∩ Ω = {w1, . . . , wm} and S′ = f−1(0) ∩ ∂Ω.
It follows from Corollary 2.3 that∑

i

fiA
∞(Ω) = I(f−1(0)) ∩A∞(Ω).

Now we claim that

(A2(Ω) ∩ I(S))⊥ =
∑

w∈f−1(0)

CKw.

Indeed, it is clear that Kw ⊥ (A2(Ω)∩I(S)) for all w ∈ S. On the other hand,
since Kw, w ∈ S are linearly independent and codimension of (A2(Ω)∩I(S))
in A2(Ω) is at most m = |S|, we obtain the desired equality.



1332 AKAKI TIKARADZE

Thus it suffices to show that
∑
fiA

2(Ω) is dense in A2(Ω) ∩ I(S). It
suffices to check that I(f−1(0))∩A∞(Ω̄) is dense in A2(Ω)∩ I(S) by Corol-
lary 2.3. Let f ∈ A2(Ω) ∩ I(S), and let fn ∈ A∞(Ω̄) ∩ I(S′) be such that
limn→∞ fn = f in A2(Ω). Let gi, i = 1, . . . ,m be polynomials such that
gi(wj) = δij , gi(S

′) = 0. Put φn = fn −
∑m

i=1 fn(wi)gi. Then φn(wj) = 0 for
all j, n. Also, for any i, limn→∞ fn(wi) = 0. Therefore, limn→∞ φn = f and
φn ∈ I(f−1(0))∩A∞(Ω̄). So, I(f−1(0))∩A∞(Ω̄) is dense in A2(Ω)∩I(S). �

3. Some geometry related to Ω, f

In the rest of the paper, we will fix once and for all a domain Ω ⊂ Cn
satisfying Assumption 1 and a holomorphic mapping

f = (f1, . . . , fn) : Ω→ Cn

in a neighbourhood of Ω such that determinant of its Jacobian Jf is not
identically 0. The goal of this section is to define a certain complex manofold
Wf (Definition 3.2) and establish some of its basic properties in relation to
the mapping f. It will play a crucial role in studying commutants of Tf .

Given a function g : X → Y , we will denote by X ×g X the set

{(z, w) ∈ X ×X|g(z) = g(w)}.

Let us fix once and for all several notations related with Ω, f.

Notation 1. Put

Z = f−1(f(V (Jf ))), Ω′ = Ω \ Z,

where V (Jf ) is the zero locus of Jf in Ω. We will also put

Ω′′ = Ω′ \ f−1(f(∂Ω)).

Thus, Ω′′ ×f Ω′′ ⊂ Ω′ ×f Ω′ are n-dimensional complex manifolds. As
usual p1, p2 : Ω′ ×f Ω′ → Ω′ denote the projections on the first, second co-
ordinate respectively. Clearly both p1, p2 are surjective finite-to-one locally
biholomorphic mappings.

Remark that f : Ω′′ → f(Ω′′) is a proper locally biholomorphic mapping.
Therefore it is a covering map. Also, Ω′ is connected while Ω′′ might not be.

In this setting we have the following result.

Lemma 3.1. Let W be an open subset of Ω′×f Ω′ such that p1|W : W → Ω′

is a covering. Then p2|W : W → Ω′ is also a covering. In particular,
∂(W ) ⊂ ∂(Ω′) ×f ∂(Ω′), and p1|W , p2|W : W → Ω \ Z are coverings, where

W denotes the closure of W in (Ω \ Z)×f (Ω \ Z).

Proof. Let z ∈ Ω′. Let X ⊂ Ω be a closed set of measure 0 such that
X ∩ f−1(f(z)) = ∅ and Ω′ \ X is simply connected. Since by assumption
p1|W → Ω′ is a covering, Then the projection

p1 : W \ p−1
1 (X)→ Ω′ \X
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is an m-fold trivial covering for some m. So there exist holomorphic em-
beddings ρi : Ω′ \ X → Ω′, 1 ≤ i ≤ m such that for any u ∈ Ω′ \ X we
have

p−1
1 (u) ∩W = {(u, ρi(u)), 1 ≤ i ≤ m}.

Put U = Ω′ \ f−1(f(X)). Then z ∈ U, f−1(f(U)) ∩ Ω = U and Ω′ \ U has
measure 0. Since ρi induces a bijection on f−1(f(u)) ∩ Ω for all u ∈ U, it
follows that ρi : U → U is a bijection for all 1 ≤ i ≤ m. Remark that the set
of bijections {ρi}1≤i≤m is not closed under taking compositions or inverses.

Therefore

p2 : p−1
2 (U) ∩W = {(ρ−1

i (z), z), z ∈ U, 1 ≤ i ≤ m} → U

is an m-fold trivial covering. Since U is a neighbourhood of z, we conclude
that p2|W : W → Ω′ is a covering map.

Let (an) = (zn, wn) ∈W be a sequence in W converging to the boundary
∂(W ). Since p1|W , p2|W : W → Ω′ are proper mappings as shows above, we
get that both (zn), (wn) converge to ∂(Ω′). Therefore,

∂(W ) ⊂ ∂(Ω′)×f ∂(Ω′).

Let z′ ∈ ∂(Ω) \ Z. Let Y ⊂ Ω′ be a simply connected open subset such
that Y contains a neighbourhood of z′ in Ω. Just as above,
let ρi : Y → Ω′, 1 ≤ i ≤ m be holomorphic embeddings such that

p−1
1 (Y ) ∩W = {(y, ρi(y)), 1 ≤ i ≤ m, y ∈ Y }.

Without loss of generality ρi(Y ) ∩ ρj(Y ) = ∅, i 6= j. Thus, (z′, ρi(z
′)),

1 ≤ i ≤ m are distinct points in p−1
1 (z′) ∩ ∂(W ). By shrinking Y further

we may assume that each ρi extends to a holomorphic embedding from a
neighbourhood of Y into a neighbourhood of Ω. Now let w ∈ ∂(Ω) \ Z be
such that (z, w) ∈ ∂(W ). Then, there is a sequence (zn, wn) ∈W converging
to (z′, w). We may assume that zn ∈ Y and wn = ρi(zn) for a fixed i. So
w = ρi(z

′). Therefore

W ∩ p−1
1 (Y ) = {(y, ρi(y)), y ∈ Y , 1 ≤ i ≤ m}

Hence p1|W : W → Ω \ Z is an m-fold covering. �

Now we are ready define a certain open subset Wf ⊂ Ω′ ×f Ω′ which is
the main object of this section.

Definition 3.2. LetWf ⊂ Ω′×fΩ′ be the union of all connected components
W of Ω′ ×f Ω′ such that the projection p1|W : W → Ω′ is a covering map.

In particular, the diagonal ∆(Ω′) = {(z, z), z ∈ Ω′} is a connected com-
ponent of Wf .

The following lemma summarizes properties of Wf that will be used later.

Lemma 3.3. Wf is symmetric and transitive: if (z, w) ∈Wf then (w, z) ∈
Wf , if (z, t) ∈Wf and (t, s) ∈Wf , then (z, w) ∈Wf .
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Proof. It follows directly from Lemma 3.1 that Wf is symmetric. Put

U = {(z, w) ∈ Ω′ ×f Ω′|∃t ∈ Ω′ s.t(z, t) ∈Wf , (t, w) ∈Wf}.

Clearly p1 : U → Ω′ is locally a biholomorphic mapping. We will show that
it is also a proper mapping. Indeed, let K be a compact subset of Ω′. Then
p1|Wf

((p2|Wf )−1(K)) = K ′ is also compact. Hence p1|Wf
((p2|Wf )−1(K ′)) =

K ′′ is compact too. Therefore (p2|U )−1(K) ⊂ K ′′ × K is compact. So
p2 : U → Ω′ is proper, therefore it is a covering map. Hence U = Wf . �

Remark that if f : Ω→ f(Ω) is a proper mapping, then p1 : Ω′×f Ω′ → Ω′

is a covering, thus in this case Wf = Ω′ ×f Ω′.

4. Convolution algebras

The purpose of this section is to fix some notations and recall basics
results related to convolution algebras of finite covering maps.

Let f : X → Y be a finite a finite covering map of topological spaces.
Recall the standard notation

X ×f X = {(z, w) ∈ X ×X, f(z) = f(w)}.

We have two projections

p1, p2 : X ×f X → X, p1(z, w) = z, p2(z, w) = w.

Let W be a symmetric, reflexive subset of X ×f X (see Lemma 3.3) such
that p1|W : W → X is a covering map. Recall that in this setting C[W ]
(C-valued continuous functions on W ) is an associative algebra under the
convolution product ?:

φ ? ψ(z, w) =
∑

(z,t),(t,w)∈W

φ(z, t)ψ(t, w), φ, ψ ∈ C[W ].

Given g ∈ C[W ], one defines the corresponding weighted composition oper-
ator Sg : C[X]→ C[X] as follows

Sg(φ)(x) =
∑

(x,w)∈W

g(x,w)φ(w), φ ∈ C[X], x ∈ X.

This way C[X] becomes a left (C[W ], ?)-module. It is straightforward to
check that Sg commutes with Tf , where Tf : C[X] → C[X] is the multipli-
cation operator by f.

If in addition X,Y,W are complex manifolds and f is locally biholomor-
phic mapping, then A(W ) (the space of all holomorphic functions on W ) is
a subalgebra of (C[W ], ?).

Definition 4.1. Let f : X → Y,W ⊂ X ×f X be as above. We will
denote by A(W ) the algebra of all locally constant functions on W under
the convolution product. If f : X → Y is a finite covering, then we will
denote A(X ×f X) by A(X, f).
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If f : X → Y is a finite covering, and X,Y are path connected, locally
simply connected spaces, then A(X, f) can be naturally identified with the
Hecke algebra of all bi -π1(X)-invariant C-valued functions on π1(Y ) under
the convolution product. In particular, if f : X → Y is a normal covering,
then A(X, f) is isomorphic to the group algebra C[π1(Y )/f∗π1(X)].

Let Y ′ ⊂ Y. Then f : X ′ = f−1(Y ′)→ Y ′ is a covering map, and we have
an algebra homomorphism A(X, f) → A(X ′, f ′) given by the restriction of
elements of A(X, f) on X ′ ×f X ′.

Let f : M → N be a finite covering map of connected real manifolds with
boundaries. Then we get restrictions of f which are again covering maps

f : M \ ∂(M)→ N \ ∂(N), f : ∂(M)→ ∂(N).

In this setting we have the following easy but useful lemma.

Lemma 4.2. Suppose that ∂(M)(hence ∂(N)) is connected and π1(∂(N))
is Abelian. Then A(M,f) = A(M \ ∂(M), f) is a commutative algebra.

Proof. We have ∂(M ×f M) = ∂(M) ×f ∂(M). Let X ′ be a connected
component of M ×f M. Then p1 : X ′ →M is a covering map, hence ∂(X ′)
is a nonempty component of ∂(M)×f ∂(M). Hence, if φ ∈ A(M,f) is such
that φ|X

′ 6= 0 then the image of φ in A(∂(N), f) is nonzero on ∂(X ′). So,
A(M,f) embeds into A(∂(M), f). Since X ′ \ ∂(X ′) = X ′ \ (∂(M)×f ∂(M))
is connected, we obtain that A(M,f) = A(M \ ∂(M), f). Since π1(∂(N)) is
Abelian, ∂M → ∂N is a normal covering. Therefore

A(∂(M), f) = C[π1∂(N)/π1∂(M)].

Hence A(∂(M), f) is commutative. This implies that A(M \∂(M), f) is also
commutative. �

5. Commutants of Tf

The goal of this section is to relate commutants of Tf to holomorphic
functions on Wf (Definition 3.2). This will be achieved by Theorem 5.2. As
an application we will show that there are no nonzero compact operators in
the commutant of Tf (Theorem 5.4).

Recall notations from Notation 1. At first we will show the following
preliminary

Lemma 5.1. Let S : A2(Ω) → A2(Ω) be a bounded linear operator which
commutes with Tf . Then there exists a function Φ on Ω′×f Ω′ such that for
any g ∈ A2(Ω) we have

S(g)(z) =
∑

w∈f−1(f(z))∩Ω

Φ(z, w)g(w), z ∈ Ω′.

Moreover, Φ is holomorphic on Ω′′ ×f Ω′′.
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Proof. We claim that for any z ∈ Ω′, we have

S∗(Kz) ∈
∑

w∈f−1(f(z))

CKw.

Indeed, given gi ∈ A∞(Ω), then⋂
Ker(T ∗gi) = (

∑
giA

2(Ω))⊥.

Applying this to gi = fi − fi(z), and using Theorem 2.6 we get that⋂
i

T ∗fi−fi(z) =
∑

w∈f−1(f(z))

CKw

and S∗ preserves this space. In particular we may write

S∗(Kz) =
∑

w∈f−1(f(z))

Φ(z, w)Kw

for some Φ(z, w) ∈ C. Thus for any g ∈ A2(Ω), we have

〈g, S∗(Kw)〉 = 〈S(g),Kw〉 = S(g)(w) =
∑

w∈f−1(f(z))

Φ(z, w)g(w).

Recall that Ω′′ → f(Ω′′) is a covering map. Thus, for any z ∈ Ω′′, there
exists an open neighbourhood z ∈ U ⊂ Ω′′ and holomorphic embeddings
ρ1, . . . , ρm : U → Ω such that

f−1(f(z)) = {ρ1(z), . . . , ρm(z)}, z ∈ U.

Denote Φ(z, ρi(z)) by φi(z). Thus,

S(g)(z) =
∑
i

φi(z)g(ρi(z)), g ∈ A2(Ω), z ∈ U.

Fix z ∈ U. Let us choose polynomials g1, . . . , gm ∈ C[z1, . . . , zn] such
that the matrix A = gi(ρj(z)) is nondegenerate. Thus, its inverse is a
holomorphic matrix in a neighbourhood of z. Therefore,

(ψi)1≤i≤m = A−1(S(gi)1≤i≤m)

is holomorphic. So, Φ is holomorphic on Ω′′ ×f Ω′′. �

The following is the main result of this section, which is well-known when
Ω is a unit disc in C and f is a finite Blaschke product.

Theorem 5.2. Suppose that a bounded linear operator S : A2(Ω)→ A2(Ω)
commutes with Tf . Then there exists a holomorphic function Φ on Wf such
that for any z ∈ Ω′, g ∈ A2(Ω) one has

S(g)(z) =
∑

(z,w)∈Wf

Φ(z, w)g(w).
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Proof. We know from Lemma 5.1 that there exists a function Φ on Ω′×f Ω′

such that

S(g)(z) =
∑

w∈f−1(f(z))

Φ(z, w)g(w), z ∈ Ω′, g ∈ A2(Ω).

Moreover, Φ is holomorphic on Ω′′ ×f Ω′′, where recall that

Ω′′ = Ω′ \ f−1(f(∂Ω))).

Let us denote by W ′ the support of Φ in Ω′ ×f Ω′. We will prove that
p1|W ′ : W ′ → Ω′ is a covering map.

Let z ∈ Ω′. Let Ω1 be a neighbourhood of Ω such that f is extends to a
holomorphic mapping on it. We will follow very closely Thomson’s argument
[Th]. Let Y ⊂ Ω′ be a small neighbourhood of z, and let ρ1, . . . , ρl : Y → Ω1

be holomorphic embeddings such that

f(ρi(w)) = w, f−1(f(w)) ∩ Ω ⊂ {ρi(z)1≤i≤l}.

Let Pz ⊂ {1, . . . , l} be defined ass follows: i ∈ Pz if there exists w ∈ Y
so that ρi(w) ∈ Ω and Φ(w, ρi(w)) 6= 0. By making Y smaller if necessary,

we may assume that ρi(Y ) ∩ ρj(Y ) = ∅ for i 6= j. We claim that for all
i ∈ Pz, ρi(Y ) ⊂ Ω. Indeed, suppose that for some i, ρi(Y ) is not a subset of
Ω. Let ε > 0 be such that

ε <
d(ρi(Y ), ρj(Y ))√

n
, j 6= i.

For each j 6= i let us pick k such that |zk − wk| > ε for all z ∈ ρi(Y ), w ∈
ρj(Y ). For w ∈ Y, put

hwi (z) =
∏
j 6=i

(zk − ρj(w)k) ∈ C[z1, . . . , zn].

Then hwi (z) vanishes on ρj(w), j 6= i and hwi (ρi(w)) 6= 0. It follows that
S(hwj (z))(w) = 〈hwj , S∗Kw〉 is a holomorphic function on U. Then the func-

tion S(hwi (z))(w) = Φ(w, ρi(w))hwi (ρi(w)) is not identically 0, but vanishes

on ρ−1
i (Ω1 \Ω), which contains a nonempty open subset by the assumption

(recall that ρi is an open mapping). Hence S(hwi (z))(w) = 0 for all w ∈ Y,
a contradiction.

To summarize, we have holomorphic embeddings ρi : Y → Ω1, 1 ≤ i ≤ l
and a subset Pz ⊂ {1, . . . , l}, such that f(ρi(w)) = F (w), w ∈ Y, and for any
i ∈ Pz, ρi(Y ) ⊂ Ω′, there exists w ∈ Y, so that Φ(w, ρi(w)) 6= 0. Moreover,
Φ(w, ρj(w)) = 0 for all j /∈ Pz. Thus, for any w ∈ Y we have

{(w, ρi(w))i∈Pz} = p−1
1 (w) ∩W ′.

Therefore p1|W ′ : W ′ → Ω′ is a covering. Hence, W ′ is a union of connected
components of Wf . Let us extend Φ to W by 0 on W \W ′. Then for any
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g ∈ A2(Ω), z ∈ Ω′ we have

S(g)(z) =
∑

(z,w)∈Wf

Φ(z, w)g(w).

It can be shown that Φ is holomorphic exactly as in the end of the proof of
Lemma 5.1. �

Before proceeding further, let us summarize various choices that we have
made in relation to f,Wf .

Proposition 5.3.

(1) There is an open subset Y ⊂ Ω′ such that ∂Y ∩ ∂Ω contains a
nonempty subset of ∂Ω. There are holomorphic embeddings

ρi : Ȳ → Ω \ Z, 1 ≤ i ≤ m
such that

p−1
1 (Y ) ∩Wf = {(y, ρi(y)), y ∈ Y, 1 ≤ i ≤ m},

ρi(∂(Y ) ∩ ∂Ω) = ∂Ω ∩ ∂(ρi(Y )),

ρi(Ȳ ) ∩ ρj(Ȳ ) = ∅, i 6= j.

(2) There is an open subset U ⊂ Ω′, such that Ω \U has measure 0 and
biholomorphic mappings ρi : U → U, 1 ≤ i ≤ m such that

p−1
1 (U) ∩Wf = {(z, ρi(z)), z ∈ U, 1 ≤ i ≤ m}.

Proof. Let Y ⊂ Ω \Z be a an open subset such that Ȳ is simply connected
and ∂(Y ) ∩ ∂Ω contains an open subset of ∂Ω. Thus p1 : p−1

1 (Ȳ ) ∩Wf → Ȳ
is a trivial covering. Therefore there exist holomorphic mappings

ρi : Ȳ → Ω \ Z, 1 ≤ i ≤ m
such that

p−1
1 (Y ) ∩Wf = {(y, ρi(y)), y ∈ Y, 1 ≤ i ≤ m}.

Recall that ∂Wf ⊂ ∂Ω ×f ∂Ω. Therefore, ρi(Ȳ ∩ ∂Ω) = ρi(Ȳ ) ∩ ∂Ω. By
shrinking Y further, we get that ρi(Ȳ ) ∩ ρj(Ȳ ) = ∅, i 6= j.

Part (2) follows directly from the proof of Lemma 3.2. �

Our next goal is to prove the following theorem.

Theorem 5.4. Let S : A2(Ω) → A2(Ω) be a compact operator such that it
commutes with Tf . Then S = 0.

Before proving the theorem we will need to recall some facts about the
asymptotic behaviour of the Bergman kernel function Kw as w approached
the boundary of Ω.

The following statement follows immediately from the well-known local-
ization property of the Bergman kernel [[Oh], Localization Lemma, page 2],
combined with the transformation formula of the Bergman kernel function
under a biholomorphic mapping.
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Proposition 5.5. Let Ω ⊂ Cn be a smooth bounded pseudoconvex domain.
Let z1, z2 ∈ ∂Ω and z1 ∈ U1, z

2 ∈ U2 be open neighbourhoods, such that there
exists a biholomorphic mapping ρ : Ω ∩ U1 → Ω ∩ U2, so that ρ(z1) = z2.
Then ‖Kw‖ = O(‖Kρ(w)‖), w ∈ U1 ∩ Ω and limw→∂Ω ‖Kw‖ =∞.

We will also need the following standard fact. We include its proof for a
reader’s convenience. Recall that kw denotes the normalized Bergman kernel
function at w.

Lemma 5.6. Let Ω ⊂ Cn be a smooth bounded pseudoconvex domain. Then
kw → 0 weakly as w → ∂Ω

Proof. 1 Let g ∈ A2(Ω). For ε > 0 let gε ∈ A∞(Ω) be such that

‖g − gε‖A2(Ω) < ε.

Then we have

|〈g, kw〉| < ε+ 〈gε, kw〉 ≤ ε+ ‖gε‖L∞(Ω)/‖Kw‖A2(Ω)

Therefore, lim sup |〈g, kw〉| ≤ ε as w → ∂Ω. �

Now we are ready to prove Theorem 5.4.

Proof of Theorem 5.4. We will use notations from Proposition 5.3. It
follows from Theorem 5.2 and its proof that there are holomorphic functions
φi ∈ A(Y ) such that

S(g(w)) =
∑
i

φ(w)g(ρi(w)), w ∈ Y.

Next we will look at the two variable Berezin transform of S. Since S is a
compact operator and since by Lemma 5.6 kw weakly as w → ∂Ω, we have

lim
w1,w2→∂Ω

〈S(Kw1),Kw2〉
‖Kw1‖‖Kw2‖

= 0.

Recall ε > 0, and functions hwi (z) =
∏
j 6=i hij(z, w), from the proof of

Theorem 5.2: here hij(z, w) = (zk − ρj(w)k) is linear in z such that

|hij(z, w)| ≥ ε, z ∈ ρi(Y ), w ∈ Y, i 6= j.

Since Ω is bounded, there exists M > 0 such that ‖hwi (z)‖ < M for all
i, z ∈ Ω, w ∈ Y. Thus, for all w ∈ Y.

|〈S(hwi ),Kw〉| ≤M‖S‖‖Kw‖.

Then,

〈S(hwi ),Kw〉 =
∑
j

φj(w)hwi (ρi(w)) = φi(w)
∏
j 6=i

hji(ρj(w), ρi(w)).

1Communicated to us by S. Sahutoglu.
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By our assumption ∏
j 6=i
|hji(ρj(w), ρi(w))| ≥ εm−1.

This implies that there is N such that |Kρi(w)(ρj(w))| < N for all i 6= j, w ∈
Y. Thus, there exists L > 0, such that φi(w) ≤ L||Kw|| for all i, w ∈ Y.

We have

〈S(Kρi(w)),Kw〉 =
∑
j

φj(w)Kρi(w)(ρj(w)).

So, for i 6= j we have

lim
w→∂Ω∩∂U

φj(w)Kρi(w)(ρj(w))

‖Kw‖‖Kρi(w)‖
= 0.

Therefore,

lim
w→∂Ω∩∂Y

φi(w)‖Kρi(w)‖
‖Kw‖

= 0,

which by Proposition 5.5 implies that limw→∂Ω∩∂Y φi(w) = 0 for all i. This
implies that φi = 0 for all i by the Boundary uniqueness theorem [Ch, p.
289]. �

As a consequence of Theorem 5.4 we have the following result about the
commutant of Tf in the Toeplitz algebra of Ω.

Corollary 5.7. Let Ω ⊂ Cn be a bounded smooth strongly pseudoconvex
domain. If S is an element of the Toeplitz algebra of Ω which commutes with
Tf , then S is a multiplication operator by a bounded holomorphic function
on Ω.

The proof of Corollary 5.7 is based on compactness of the Hankel oper-
ators Hφ̄, φ ∈ A∞(Ω) (follows from [[Pe], Theorem 1.2]), and the following
well known identity relating Toeplitz and Hankel operators

[Tg, Tφ] = H∗ḡHφ, g ∈ H∞(Ω), φ ∈ L∞(Ω).

Proof of Corollary 5.7. It follows from the preceding discussion that for
any g ∈ L∞(Ω), the commutator [Tzi , Tg] is compact for all 1 ≤ i ≤ n. Thus
for any element S of the Toeplitz algebra of Ω, operators [Tzi , S], 1 ≤ i ≤ n
are compact. If in addition S commutes with Tf , then [Tzi , S], 1 ≤ i ≤ n are
compact operators in the commutant of Tf . Thus by Theorem 5.4 [Tzi , S] = 0
for all i. Now by [SSU] S = Th for some h ∈ H∞(Ω). �

6. Commutants of {Tf , T
∗
f }

In this section we will relate the commutant algebra of {Tf , T ∗f } with the

algebra A(Wf ) (Definition 4.1).
The following assumption on the mapping f will play a key role.
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Assumption 2. Assume that Z = f−1(f(V (Jf ))) is not dense in the Zariski
topology of Ω : There exists a nonzero g ∈ A∞(Ω) such that g(Z) = 0.

This assumption is satisfied if f is a rational mapping, if n = 1, or f :
Ω→ f(Ω) is a proper mapping [Ru].

The following is the main result of the paper.

Theorem 6.1. Assume that Assumption 1 holds for Ω. Then the algebra of
commutants of {Tf , T ∗f } is isomorphic to a subalgebra of A(Wf ). If in addi-
tion mapping f satisfies Assumption 2, then these algebras are isomorphic.

Proof. Recall that p1|Wf : Wf → Ω′ is a covering. From now on we will
denote p1|Wf by p1 for simplicity. Similarly, p2|Wf

will be abbreviated to
p2. We will define an algebra homomorphism

ι : A(Wf )→ HomC(A(Ω′), A(Ω′))

as follows. Let c ∈ A(Wf ), φ ∈ A(Ω′). We will define a holomorphic function
ιc(φ) ∈ A(Ω′) in the following way. We put

ιc(φ)(z) =
∑

(z,w)∈W

c(z, w)
Jf (z)

Jf (w)
φ(w), z ∈ Ω′.

Clearly ιc(φ) ∈ A(Ω′). It is straightforward to check that ι is an algebra
homomorphism. To define ιc(φ) more explicitly we will use notations from
Proposition 5.3 Recall that by the chain rule

Jρi(z) =
Jf (z)

Jf (ρi(z))
.

Therefore

ιc(φ)(z) =
∑
i

c(z, ρi(z))Jρi(z)φ(ρi(z)), z ∈ Ω′.

In what follows given g ∈ A(Ω′), z ∈ Ω′, by Jρg(ρ(z)) we will denote
the column vector (Jρi(z)g(ρi(z)))1≤i≤m in Cm. Now we follow very closely
Guo–Huang [[GuoH], the proof of Proposition 3.4].

Lemma 6.2. Suppose that S : A2(Ω)→ A2(Ω) commutes with Tf . Let U ⊂
Ω′ be as above. Then there exists a holomorphic mapping Φ : U → glm(C)
such that JρS(g)(ρ(z)) = Φ(z)Jρg(ρ)(z).

Proof. Using Theorem 5.2, there exists c ∈ A(W ) such that

S(g)(z) =
∑
i

Jρi(z)c(z, ρi(z))g(ρi(z)) =
∑

(z,w)∈W

c(z, w)
Jf (z)

Jf (w)
g(w).

Then the i-th coordinate of the vectorJρS(g)(ρ(z)) is

Jf (z)

Jf (w)

∑
τ∈p−1

1 (w)

Jf (w)

Jf (τ)
c(w, τ)g(τ), w = ρi(z).
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Let us put Φ(z)jk = c(ρj(z), ρk(z)). Now it follows easily that

JρS(g)(ρ(z)) = Φ(z)Jρg(ρ)(z). �

Now let assume that both S, S∗ commute with Tf . Then by the above
lemma there exist holomorphic mappings Φ,Ψ : U → glm(C) such that

JρS(g)(ρ(z)) = Φ(z)Jρg(ρ)(z), JρS
∗(g)(ρ(z)) = Ψ(z)Jρg(ρ)(z).

Let λ, µ ∈ Ω. Given two polynomials P,Q ∈ C[x1, . . . , xn] we have

〈P (Tf )S(Kλ), Q(Tf )Kµ〉 = 〈P (Tf )(Kλ), Q(Tf )S∗(Kµ)〉.

So ∫
U
PQ̄(f)(z)S(Kλ)K̄µdV (z) =

∫
U
PQ̄(F )(z)(Kλ)S∗(Kµ)dV (z)

Using the Stone–Weierstrass approximation, we see that for any g ∈
C(F (Ω)) one has∫

U
g(F (z))S(Kλ)K̄µdzV =

∫
U
g(F (z))(Kλ)S∗(Kµ)dzV.

Thus the same equality holds for any g ∈ L∞(F (Ω)). This implies using
change of variables that for all z ∈ U∑

j

|Jρj (z)|2S(Kλ)(ρj(z))Kµ(ρj(z))

=
∑
j

|Jρj (z))|2Kλ(ρj(z))S∗(Kµ)(ρj(z))),

the latter equality can be rewritten as

〈Φ(z)Jρ(z)Kλ(ρ(z)), Jρ(z)Kµ(ρ(z))〉
= 〈Jρ(z)Kλ(ρ(z)),Ψ(z)Jρ(z)Kµ(ρ(z))〉,

where inner product is the standard one in Cm. Next we will use the following
simple lemma.

Lemma 6.3. For any z ∈ Ω′ vectors {Jρ(z)Kλ(ρ(z))}λ∈Ω span Cm.

Proof. Let vector a = (ai)
m
i=1 ∈ Cm be perpendicular to

{Jρ(z)Kλ(ρ(z))}λ∈Ω.

Thus for all λ ∈ Ω

0 =
m∑
i=1

aiJρi(z)Kλ(ρi(z)) =
m∑
i=1

aiJρi(z)Kρi(z)(λ).

Since Jρi(z) 6= 0 and Kρi(z), 1 ≤ i ≤ m are linearly independent, it follows
that a = 0. �
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Now it follows from the above Lemma that Ψ(z) is the adjoint of Φ(z).
Since Φ,Ψ are holomorphic, it follows that Φ,Ψ are locally constant func-
tions on U.

Thus, we conclude that if S : A2(Ω)→ A2(Ω) is a bounded linear operator
such that S, S∗ commute with Tf , then there exists a locally constant func-
tion c on Wf , such that S = ιc. This implies that the algebra of commutants
of {Tf , T ∗f } is isomorphic to a subalgebra of A(Wf ).

Now let us assume that Assumption 2 is satisfied. Therefore, by Bell’s
result A2(Ω′) = A2(Ω) [[Be], Removable singularity theorem]. Next, suppose
that c ∈ H∞(Wf ) is bounded holomorphic function on W and φ ∈ A2(Ω).
Then we claim that ιc(φ) ∈ A2(Ω). Indeed, it follows from the change of
variables that for all 1 ≤ i ≤ m

‖c(z, ρi(z))Jρi(z)φ(ρi(z))‖L2(U) ≤ ‖c‖L∞(W )‖φ‖L2(Ω′).

Therefore,
‖ιc(φ)‖A2(Ω′) ≤ m‖c‖L∞(W )‖φ‖L2(Ω′).

Hence ιc(φ) ∈ A2(Ω).

Let c ∈ A(W ). Put c∗(z, w) = c(w, z), (z, w) ∈ W. Let φ, ψ ∈ A2(Ω). We
have

〈ιc(φ), ψ〉A2(Ω) =
∑
j

∫
U
c(z, ρj(z))Jρj (z)φ(ρj(z))ψ(z)dV (z)

=
∑
j

∫
ρj(U)

φ(w)c(ρj
−1(w), w)Jρj−1(w)ψ(ρj−1(w))dV (w),

the latter equals to 〈φ, ιc∗(ψ)〉A2(Ω). Thus, we have shown that for any c ∈
A(W ), ιc : A2(Ω) → A2(Ω) is a bounded linear operator commuting with
Tf . Moreover (ιc)

∗ = ιc∗ . This concludes the proof of Theorem 6.1. �

As a consequence, we can reprove the following theorem of Douglas, Puti-
nar and Wang [[DPW], Theorem 2.3].

Theorem 6.4. Let f ∈ A∞(D) be a finite Blaschke product on the unit disc
D. Then the algebra of commutants of {Tf , T ∗f } is isomorphic to

C⊕ · · ·⊕︸ ︷︷ ︸
q

C,

where q equals the number of irreducible components of D′ ×f D′.

Proof. It follows from Definition 4.1 that dimCA(D′, f) = q. The algebra
of commutants of {Tf , T ∗f } is isomorphic to A(D′, f) by Theorem 6.1. But

A(D′, f) is isomorphic to a subalgebra of A(∂(D), f) by Lemma 4.2, which is
commutative since π1(∂D) = Z is Abelian. Thus, the algebra of commutants
of {Tf , T ∗f } is a q-dimensional commutative Von Neumann algebra, hence it
must be isomorphic to C⊕ · · ·⊕︸ ︷︷ ︸

q

C. �
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