
New York Journal of Mathematics
New York J. Math. 21 (2015) 1093–1115.

Left determined model categories

Philippe Gaucher

Abstract. Several methods for constructing left determined model
structures are expounded. The starting point is Olschok’s work on lo-
cally presentable categories. We give sufficient conditions to obtain left
determined model structures on a full reflective subcategory, on a full
coreflective subcategory and on a comma category. An application is
given by constructing a left determined model structure on star-shaped
weak transition systems.

Contents

1. Introduction 1093

2. Olschok model category 1095

3. Restriction to a reflective subcategory 1097

4. Restriction to a coreflective subcategory 1099

5. Olschok model category and comma category 1101

6. The homotopy theory of star-shaped weak transition systems 1110

References 1113

1. Introduction

Summary. The notion of combinatorial model category is a powerful frame-
work for doing homotopy [Bek00] [Ros09]. It consists of a locally presentable
category equipped with a cofibrantly generated model structure. Among
them, there are the left determined ones in the sense of [RT03], that is
the combinatorial model categories such that the class of weak equivalences
is minimal with respect to a given class of cofibrations. The interest of
constructing left determined model structures is that, for a given class of
cofibrations, all other ones are left Bousfield localizations of the left deter-
mined one. J. H. Smith conjectured that for any locally presentable category
and any set of maps I, there exists a left determined combinatorial model
category such that the class of cofibrations is generated by I. This state-
ment is a consequence of Vopěnka’s principle [RT03, Theorem 2.2]. To our
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knowledge, the conjecture is still open without assuming this large-cardinal
axiom.

A remarkable step towards a proof of this conjecture is Olschok’s paper
[Ols09b]. The latter paper generalizes Cisinski’s work about the homotopy
theory of toposes [Cis02] to the framework of locally presentable categories.
It proves the existence of this left determined model structure under reason-
able hypotheses.

Several model structures are constructed in [Gau11], [Gau14], [Gau15b]
using Olschok’s work. The common pattern of all these constructions is to
start from an application of Oslchok’s theorem and to restrict the model
structure to reflective and coreflective full subcategories.

We expound here in full generality these methods. This paper is written
for two reasons:

(1) We will use these methods repeatedly in our studies of higher di-
mensional transition systems,1 in particular in the companion paper
[Gau15a].

(2) We hope that some people will find these methods useful and maybe
generalizable.

This paper is therefore designed to be a toolbox. Not only are methods
for obtaining left determined model structures on reflective and coreflective
subcategories given in this paper, but also sufficient conditions for the stan-
dard model structure on a comma category to be left determined as well.
This paper ends with an application to star-shaped weak transition systems.

Outline of the paper. Section 2 recalls Olschok’s work and introduces the
notion of Olschok model structure. When the associated cartesian cylinder
is very good, we obtain a left determined model structure by choosing an
empty set of generating anodyne cofibrations. There is nothing new in this
section except Proposition 2.6. Section 3 explains how to restrict an Olschok
model category to a full reflective subcategory. Theorem 3.1 encompasses
all constructions made in [Gau11], [Gau14] and [Gau15b] on reflective sub-
categories. Section 4 explains how to restrict an Olschok model category
to a full coreflective subcategory (Theorem 4.1, Theorem 4.3 and Theo-
rem 4.4). Theorem 4.1 is implicitly used in [Gau11] and [Gau15b]: we prove
the statement in full generality. Section 5 explains how to obtain Olschok
model categories on comma categories (Theorem 5.8). Finally, Section 6 is
devoted to an application of Theorem 5.8 and Theorem 4.3 to star-shaped
weak transition systems. The last section is the only one which is specific
to the theory of higher transition systems.

Prerequisites and notations. All categories are locally small. The set of
maps in a category K from X to Y is denoted by K(X,Y ). The class of
maps of a category K is denoted by Mor(K). The composite of two maps is

1This is a work in progress belonging to the interface between algebraic topology and
concurrency theory in computer science
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denoted by fg instead of f ◦ g. The initial (final resp.) object, if it exists,
is always denoted by ∅ (1 resp.). The identity of an object X is denoted
by IdX . A subcategory is always isomorphism-closed. Let f and g be two
maps of a locally presentable category K. Write f�g when f satisfies the
left lifting property (LLP) with respect to g, or equivalently g satisfies the
right lifting property (RLP) with respect to f . Let us introduce the notations
injK(C) = {g ∈ K,∀f ∈ C, f�g} and cofK(C) = {f ∈ K,∀g ∈ injK(C), f�g}
where C is a class of maps of K. We refer to [AR94] for locally presentable
categories, and to [Ros09] for combinatorial model categories. We refer
to [Hov99] and to [Hir03] for model categories. For general facts about
weak factorization systems, see also [KR05]. The reading of the first part
of [Ols09a], published in [Ols09b], is recommended for any reference about
good, cartesian, and very good cylinders.

2. Olschok model category

This is a section recalling Olschok’s construction and introducing thereby
the notion of Olschok model category. Note that Proposition 2.6 is new.

2.1. Notation. For every map f : X → Y and every natural transformation
α : F → F ′ between two endofunctors of a locally presentable category K,
the map f ? α is defined by the diagram:

FX

αX

��

f
// FY

��

αY

��

F ′X

F ′f

00

// •
f?α

##

F ′Y.

For a set of morphisms A, let A ? α = {f ? α, f ∈ A}.

2.2. Definition. Let K be a locally presentable category. A cylinder is a
triple (Cyl : K → K, γ : Id⊕ Id⇒ Cyl, σ : Cyl⇒ Id) consisting of a functor
Cyl : K → K and two natural transformations γ = γ0 ⊕ γ1 : Id⊕ Id ⇒ Cyl
and σ : Cyl ⇒ Id such that the composite σγ is the codiagonal functor
Id⊕ Id⇒ Id.

2.3. Definition. Let K be a locally presentable category. Let (C,W,F)
be a cofibrantly generated model structure on K where C is the class of
cofibrations, W the class of weak equivalences and F the class of fibrations.
A cylinder for (C,W,F) is a cylinder

(Cyl : K → K, γ : Id⊕ Id⇒ Cyl, σ : Cyl⇒ Id)
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such that the functorial map σX : Cyl(X) → X belongs to W for every
object X. The cylinder is good if the functorial map γX : X tX → Cyl(X)
is a cofibration for every object X. It is very good if moreover the map
σX : Cyl(X)→ X is a trivial fibration for every object X. A good cylinder
is cartesian if:

• The functor Cyl : K → K has a right adjoint Path : K → K called
the path functor.
• If f is a cofibration, then so are f ? γ0, f ? γ1 and f ? γ.

The notions of Definition 2.3 can be adapted to a cofibrantly generated
weak factorization system (L,R) by considering the combinatorial model
structure (L,Mor(K),R). A cylinder with respect to a set of maps I is a
cylinder for the weak factorization system (cofK(I), injK(I)), i.e., for the
model structure (cofK(I),Mor(K), injK(I)).

2.4. Notation. Let I and S be two sets of maps of a locally presentable
category K. Let Cyl : K → K be a cylinder with respect to I. Denote by
ΛK(Cyl, S, I) the set of maps defined as follows:

• Λ0
K(Cyl, S, I) = S ∪ (I ? γ0) ∪ (I ? γ1)

• Λn+1
K (Cyl, S, I) = ΛnK(Cyl, S, I) ? γ

• ΛK(Cyl, S, I) =
⋃
n>0 ΛnK(Cyl, S, I).

Let us denote by WK(Cyl, S, I) the class of maps f : X → Y of K such
that for every object T which is ΛK(Cyl, S, I)-injective, the induced set map

K(Y, T )/'
∼=−→ K(X,T )/' is a bijection, where ' means the homotopy

relation associated with the cylinder Cyl(−), i.e., for all maps f, g : X → Y ,
f ' g is equivalent to the existence of a homotopy H : Cyl(X) → Y with
Hγ0 = f and Hγ1 = g.

2.5. Theorem (Olschok). Let K be a locally presentable category. Let I
be a set of maps of K. Let S ⊂ cofK(I) be a set of maps of K. Let Cyl
be a cartesian cylinder for the weak factorization system (cofK(I), injK(I)).
Suppose that the weak factorization system (cofK(I), injK(I)) is cofibrant,
i.e., for any object X of K, the canonical map ∅ → X belongs to cofK(I).
Then there exists a unique combinatorial model category structure with class
of cofibrations cofK(I) such that the fibrant objects are the ΛK(Cyl, S, I)-
injective objects. The class of weak equivalences isWK(Cyl, S, I). All objects
are cofibrant.

Proof. The explanation is already given in [Gau14, Theorem 2.6]. This is a
slight modification of Olschok’s main theorem [Ols09b, Theorem 3.16] using
the characterization of fibrant objects [Ols09b, Lemma 3.30(c)] and the fact
that a model structure is characterized by its class of cofibrations and its
class of fibrant objects: [Hir03, Theorem 7.8.6] works here since all objects
are cofibrant; more generally [Joy, Proposition E.1.10] can be used. �
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If the cylinder is very good in Theorem 2.5, then WK(Cyl, S, I) is the
Grothendieck localizer generated by S (with respect to the class of cofibra-
tions cofK(I)) by [Ols09b, Corollary 4.6]. In this case, K is left determined
in the sense of [RT03] when S = ∅. And the model category we obtain for
S 6= ∅ is the Bousfield localization LS K of the left determined one by the
set of maps S.

2.6. Proposition. Let K be a combinatorial model category such that all
objects are cofibrant. Let I be the set of generating cofibrations. Let

Cyl : K → K
be a cartesian cylinder for the weak factorization system (cofK(I), injK(I)).
Let S ⊂ cofK(I) be a set of maps of K. Then the following conditions are
equivalent:

• An object of K is fibrant if and only if it is ΛK(Cyl, S, I)-injective.
• A map of K is a weak equivalence if and only if it belongs to

WK(Cyl, S, I).

Proof. Let us suppose that the fibrant objects of K are the ΛK(Cyl, S, I)-
injective ones. Then the model structure of K and the one given by The-
orem 2.5 have the same class of cofibrations and the same class of fibrant
objects. Since all objects are cofibrant, the class of weak equivalences is
necessarily WK(Cyl, S, I) by [Hir03, Theorem 7.8.6]. Conversely, let us sup-
pose that a map of K is a weak equivalence if and only if it belongs to
WK(Cyl, S, I). Then the model structure of K and the one given by The-
orem 2.5 have the same class of cofibrations and the same class of weak
equivalences. The class of fibrations is determined by the class of trivial
cofibrations. Therefore the two model structures are equal. So they have
the same class of fibrant objects. �

2.7. Definition. An Olschok model category is a combinatorial model cat-
egory satisfying the conditions of Proposition 2.6 for some cartesian cylinder
Cyl and some set of cofibrations S called the generating anodyne cofibra-
tions.

The terminology “anodyne” comes from [Cis02] where the elements of the
class

cofK(ΛK(Cyl, S, I))

are called, in French, “extensions anodines”. When the class of generating
anodyne cofibrations is not specified, it is supposed to be empty.

3. Restriction to a reflective subcategory

The following theorem gives a sufficient condition for the restriction to a
full reflective subcategory of an Olschok model category to be an Olschok
model category. It implies [Gau14, Theorem 9.3] and [Gau15b, Theorem 5.5]
because in the latter cases the map ηCyl(X) is an isomorphism.
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A
φ

//

f

��

κ(Cyl(X))

κ(σX)

��

sX // Cyl(X)

σX

��

ηCyl(X)
// κ(Cyl(X))

κ(σX)

��

B
ψ

//

`

<<

`′

66

κ(X)
η−1
X // X

ηX
// κ(X),

Figure 1. κCyl is very good.

3.1. Theorem. Let K be an Olschok model category with generating cofibra-
tions I, with generating anodyne cofibrations S and with cartesian cylinder
Cyl. Let A be a full reflective locally presentable subcategory and let κ : K →
A be the reflection. Suppose that I = κ(I) (i.e., the source and targets of all
maps of I belong to A), that Path(A) ⊂ A where Path : A → A is a right ad-
joint of Cyl : A → A, and that the unit map ηCyl(X) : Cyl(X)→ κ(Cyl(X))
has a section sX (i.e., it is split epic) for all objects X of A. Then:

(1) The functor κCyl : A → A is a cartesian cylinder with respect to
κ(I). Moreover if Cyl : K → K is very good, then κCyl : A → A is
very good as well.

(2) There exists a unique Olschok model structure on A with set of gen-
erating cofibrations κ(I) = I, with set of generating anodyne cofi-
brations κ(S), such that an object of A is fibrant in A if and only
if it is fibrant in K. The cartesian cylinder of A is the functor
κCyl : A → A. The reflection κ : K → A is a homotopically surjec-
tive (in the sense of [Dug01, Definition 3.1]) left Quillen adjoint.

Note that the existence of the section is only used to prove the left-
determinedness of the model structure of A.

Proof. By [Ols09b, Lemma 5.2(c)], the functor κCyl : A → A is a cartesian
cylinder with respect to κ(I) = I. An object of A is fibrant in A if and only
if it is fibrant in K by [Ols09b, Lemma 5.2(b)]. The existence of the Olschok
model structure is then a consequence of Theorem 2.5. The proof of the
fact that the reflection κ : K → A is a homotopically surjective left Quillen
functor is mutatis mutandis the argument used for the same fact in [Gau14,
Theorem 9.3].

Suppose now that Cyl is a very good cylinder with respect to I. Consider
the diagram of solid arrows of A of Figure 1 where X is an object of A (this
implies that ηX is invertible), where f : A → B belongs to I, and where
the left-hand square is supposed to be commutative, i.e., κ(σX)φ = ψf .
The right-hand square is commutative by naturality of the unit map of the
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adjunction. One has

σXsX = η−1
X ηXσXsX since ηX is invertible

= η−1
X κ(σX)ηCyl(X)sX by naturality of the unit map

= η−1
X κ(σX) by hypothesis on sX .

This means that the middle square is commutative as well. One deduces that
the composite of the left-hand square and the middle square is a commuta-
tive square, i.e., σXsXφ = η−1

X ψf . Since Cyl is a very good cylinder of K
with respect to I, there exists a lift `′ : B → Cyl(X) such that σX`

′ = η−1
X ψ

and `′f = sXφ. Let ` = ηCyl(X)`
′. One has

κ(σX)` = κ(σX)ηCyl(X)`
′ by definition of `

= ηXσX`
′ since the right-hand square is commutative

= ηXη
−1
X ψ by definition of `′

= ψ by trivial simplification.

And one has

`f = ηCyl(X)`
′f by definition of `

= ηCyl(X)sXφ by definition of `′

= φ by hypothesis on sX .

Therefore ` is a lift for the left-hand square. Hence the cylinder κCyl : A →
A is very good with respect to I. The proof is complete. �

3.2. Corollary. With the notations of Theorem 3.1, there exists a Bousfield
localization of K which is Quillen equivalent to A.

3.3. Corollary. With the notations of Theorem 3.1, the inclusion A ⊂ K
reflects weak equivalences.

Proof. Let f : X → Y be a map of A which is a weak equivalence of K.
Then for any fibrant object F of K, the set map K(Y, F )→ K(X,F ) induced
by composing by f gives rise to a bijection between the homotopy classes.
Since the fibrant objects of A are the fibrant objects of K belonging to A,
this implies that f is a weak equivalence of A. �

4. Restriction to a coreflective subcategory

The following theorem is the general theorem behind the construction of
the homotopy theory of cubical transition systems in [Gau11].

4.1. Theorem. Let K be an Olschok model category with cartesian cylinder
Cyl and with set of generating cofibrations I. Let A be a full coreflective
locally presentable subcategory such that:

• There exists a set of maps J such that cofA(J) = cofK(I)∩Mor(A).
• Cyl(A) ⊂ A.



1100 P. GAUCHER

Then there exists a structure of Olschok model category on A such that the
cofibrations are the cofibrations of K between objects of A and such that
the restriction to A of Cyl is a cartesian cylinder for this model structure.
Moreover, if Cyl is very good in K, then its restriction to A gives rise to a
very good cylinder in A.

Proof. The set J will be the set of generating cofibrations of the Olschok
model category A. Let A be an object of A. Consider the factorization of
the codiagonal of A given by this cylinder:

A tA
γA

// Cyl(A)
σA // A.

By hypothesis, Cyl(A) is an object of A. Therefore γA is a cofibration of A.
So the restriction of Cyl to A gives rise to a good cylinder. Let f : A→ B
be a cofibration of A. Then the maps f ?γε : BtACyl(A) −→ B for ε = 0, 1
and f ? γ : (B tB) tAtA Cyl(A) −→ B tB are cofibrations of K since Cyl
is a cartesian cylinder. The sources and the targets of these maps belong to
A since A is a coreflective subcategory. So the maps f ? γε for ε = 0, 1 and
f ? γ are cofibrations of A. Let A and B be two objects of A. Then

A(Cyl(A), B) = K(Cyl(A), B) since A is a full subcategory

= K(A,Path(B)) where Path is a right adjoint of Cyl

= A(A, ξ(Path(B))) where ξ is the coreflection.

This implies that the restriction of Cyl to A gives rise to a cartesian cylinder.
The proof of the existence of the model structure is complete thanks to
Theorem 2.5.

Let us suppose now that Cyl is very good in K. Then for every object A
of A, the map σA : Cyl(A)→ A is a trivial fibration of K which satisfies the
RLP with respect to any cofibration of K. Since the cofibrations of A are
exactly the cofibrations of K between objects ofA, the map σA : Cyl(A)→ A
is a trivial fibration of A as well. �

4.2. Theorem. With the notations and hypotheses of Theorem 4.1, assume
that the set S of generating anodyne cofibrations of K belongs to A. Let us
equip A with the Olschok model structure having the same set of generating
anodyne cofibrations. Then the inclusion functor A → K is a left Quillen
functor.

Proof. It is mutatis mutandis the proof of [Gau11, Theorem 6.3]. �

Theorem 4.1 has the following corollaries:

4.3. Theorem. Let K be an Olschok model category with cartesian cylinder
Cyl. Let A be a full coreflective subcategory such that:

• A is a small cone-injectivity class with respect to a set of cofibrations
of K.
• Cyl(A) ⊂ A.
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Then there exists a structure of Olschok model category on A such that the
cofibrations are the cofibrations of K between objects of A and such that
the restriction to A of Cyl is a cartesian cylinder for this model structure.
Moreover, if Cyl is very good in K, then its restriction to A gives rise to a
very good cylinder in A.

Note that this is the theorem used in [Gau11].

Proof. Since A is full coreflective, it is cocomplete. And since it is a small
cone-injectivity class, it is accessible by [AR94, Proposition 4.16]. Therefore
A is locally presentable. Let I be the set of generating cofibrations of K.
By [Gau11, Theorem A.5], there exists a set of maps J such that

cofA(J) = cofK(I) ∩Mor(A).

We can then apply Theorem 4.1. �

4.4. Theorem. Let K be an Olschok model category with cartesian cylinder
Cyl with set of generating cofibrations I. Let A be a full coreflective locally
presentable subcategory such that:

• I has a solution set J ⊂ cofK(I) with respect to A, i.e., J is a set
of maps of A such that every map i → w of Mor(K) from i ∈ I to
w ∈ Mor(A) factors as a composite i→ j → w with j ∈ J .
• Cyl(A) ⊂ A.

Then there exists a structure of Olschok model category on A such that the
cofibrations are the cofibrations of K between objects of A and such that
the restriction to A of Cyl is a cartesian cylinder for this model structure.
Moreover, if Cyl is very good in K, then its restriction to A gives rise to a
very good cylinder in A.

Proof. By [Gau11, Lemma A.3], there is the equality

cofA(J) = cofK(I) ∩Mor(A).

We can then apply Theorem 4.1. �

5. Olschok model category and comma category

The following well-known proposition introduces some useful notations:

5.1. Proposition. Let K be a locally presentable category. Let i be an object
of K. The forgetful functor ωi : i↓K → K defined on objects by ωi(i→ X) =
X and on maps by ωi(i → f) = f is a right adjoint. In particular, it is
limit-preserving. A colimit in the comma category i↓K is obtained by taking
the colimit in K of the cone with top the object i and with basis the diagram
of underlying objects of K. The forgetful functor ωi : i↓K → K commutes
with colimits of connected diagrams (and in particular, it is accessible).

Note that the forgetful functor ωi : (i↓K) → K does not preserve binary
coproducts. Indeed, the binary coproduct of i → X and i → Y is the
amalgamated sum i→ X ti Y .
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Proof. The left adjoint ρi : K → i↓K is defined on objects by ρi(X) =
(i → i t X) and on morphisms by ρi(f) = Idi tf . The last assertions are
clear. �

Let K be a locally presentable category. Let i be an object of K. Then
the comma category i↓K is locally presentable by [AR94, Proposition 1.57].
Let (C,W,F) be a cofibrantly generated model structure on K. Then the
triple

((ωi)−1(C), (ωi)−1(W), (ωi)−1(F))

is a cofibrantly generated model structure on i↓K by [Hir15, Theorem 2.7].
If I is the set of generating cofibrations of K, then the set of generating
cofibrations of the comma category i↓K is the set ρi(I) where ρi : K → i↓K
is the left adjoint of the functor ωi above defined.

5.2. Lemma. Let Cyl : K → K be a cylinder functor of a locally presentable
category K. Assume that it has a right adjoint Path : K → K. Let i be an
object of K. Define the functor Cyli : i↓K → i↓K by the natural pushout
diagram

Cyl(i)
σi //

��

i

Cyli(i→X)

��

Cyl(X) // ωi(Cyli(i→ X))

for every object X of K and Pathi : i↓K → i↓K by the natural diagram

Pathi(i→ Y ) := i −→ Path(i) −→ Path(Y )

for every object i→ Y of i↓K where i −→ Path(i) is the map corresponding
to σi : Cyl(i) → i by the adjunction. Then Cyli : i↓K → i↓K is left adjoint
to Pathi : i↓K → i↓K.

Note that it can be easily checked that the functor Pathi : i↓K → i↓K is
accessible and limit-preserving. Therefore, by [AR94, Theorem 1.66], it has
a left adjoint since the category i↓K is locally presentable.

Proof. Let i → X and i → Y be fixed. By definition of Cyli, there is a
bijection between the sets of commutative diagrams

i iy y
ωi(Cyli(i→ X)) −−−−→ Y

 ∼=


Cyl(i) −−−−→ iy y
Cyl(X) −−−−→ Y

 .
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By adjunction, there is a bijection between the sets of commutative diagrams
Cyl(i) −−−−→ iy y

Cyl(X) −−−−→ Y

 ∼=

i −−−−→ Path(i)y y
X −−−−→ Path(Y )

 .

Finally, by the definition of Pathi, there is a bijection between the sets of
commutative diagrams

i −−−−→ Path(i)y y
X −−−−→ Path(Y )

 ∼=

i iy y
X −−−−→ ωi(Pathi(Y ))

 . �

5.3. Lemma. Let K be a locally presentable category. Let i be an object of
K. Let s : A → B be a map of K. Let i → X be an object of the comma
category i↓K. Then i→ X is injective with respect to ρi(s) : i t A→ i t B
if and only if X = ωi(i→ X) is injective with respect to s.

Proof. One has the commutative diagram of sets:

K(B,X)

f 7→fs

��

K(B,ωi(i→ X))

f 7→fs

��

∼= // (i↓K)(ρi(B), X)

g 7→gρi(s)

��

K(A,X) K(A,ωi(i→ X))
∼= // (i↓K)(ρi(A), X).

Therefore the left vertical arrow is onto if and only if the right vertical arrow
is onto as well. �

5.4. Corollary. Let Λ be a set of maps of a locally presentable category K.
Let i be an object of K. Then an object i → X of i↓K is ρi(Λ)-injective if
and only if X is Λ-injective.

5.5. Lemma. With the notations and hypotheses of Lemma 5.2, let A be
an object of K. Then there is the natural isomorphism

Cyli(ρ
i(A)) ∼= ρi(Cyl(A)).

Proof. One has the bijections

(i↓K)(Cyli(ρ
i(A)), i→ B) ∼= (i↓K)(ρi(A),Pathi(i→ B))

∼= K(A,ωi(Pathi(i→ B)))

∼= K(A,Path(B))

∼= K(Cyl(A), B)

∼= K(Cyl(A), ωi(i→ B))

∼= (i↓K)(ρi(Cyl(A)), i→ B).
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Here, the first, second, fourth and sixth bijections are by adjunction, the
third is by definition of Pathi, and the fifth by definition of ωi. The result
now follows by Yoneda. �

5.6. Lemma. Let K be a locally presentable category. Let i → X be an
object of i↓K. Then one has the pushout diagrams

i t i Idi t Idi //

��

i

��

i t i Idi t Idi //

��

i

��

X tX // X ti X, X X.

Proof. Consider the pushout diagrams of K:

i t i Idi t Idi //

��

i

��

i t i Idi t Idi //

��

i

��

X tX // Z, X // T.

Let U be an object of K. One has the pullback diagram of sets

K(Z,U) //

��

K(i, u)

��

K(X,U)×K(X,U) // K(i, U)×K(i, U).

Therefore one obtains the bijections of sets

K(Z,U) ∼= (K(X,U)×K(X,U))×K(i,U)×K(i,U) K(i, U)

∼= K(X,U)×K(i,U) K(X,U) ∼= K(X ti X,U).

By Yoneda, one obtains the isomorphism Z ∼= X ti X. And one has the
pullback of sets

K(T,U) //

��

K(i, U)

��

K(X,U) // K(i, U)×K(i, U).
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i t i Idi t Idi //

eXteX

��

γi

##

i

X tX

γX

��

Cyl(i)

Cyl(eX)

��

σi // i

��

Cyl(X) Cyl(X) // Y.

Figure 2. Isomorphism between two categories of commu-
tative diagrams.

Therefore one obtains the bijections of sets

K(T,U) ∼= K(X,U)×K(i,U)×K(i,U) K(i, U) ∼= K(X,U).

By Yoneda, one obtains the isomorphism T ∼= X. �

5.7. Lemma. Let Cyl : K → K be a cylinder functor of a locally presentable
category K. Assume that it has a right adjoint Path : K → K. Let i be an
object of K such that the map γi : i t i → Cyl(i) is epic. Then there is a
pushout diagram

i t i //

��

i

Cyli(i→X)

��

X tX
γX

��

Cyl(X) // ωi(Cyli(i→ X))

in K for every object i→ X of i↓K.

Proof. Let eX : i→ X be a fixed object of i↓K. Consider a diagram of the
form of Figure 2. We obtain a map F between the set of squares

Cyl(i) −−−−→ iy y
Cyl(X) −−−−→ Y

 F−→


i t i −−−−→ iy y

Cyl(X) −−−−→ Y

 .

If D is a commutative square, then F (D) is a commutative square. Since
the map γi : it i→ Cyl(i) is epic, if F (D) is a commutative square, then D



1106 P. GAUCHER

is a commutative square as well: D is commutative if and only if F (D) is
commutative. We have obtained a bijection between the sets of commutative
diagrams 

Cyl(i) −−−−→ iy y
Cyl(X) −−−−→ Y

 ∼=


i t i −−−−→ iy y
Cyl(X) −−−−→ Y


which gives rise to an isomorphism between the corresponding categories of
commutative diagrams. The initial objects are the pushout diagrams. �

The main theorem of this section is the following one:

5.8. Theorem. Let K be an Olschok model category with the set of gen-
erating cofibrations I, the set of generating anodyne cofibration S, and the
cartesian cylinder Cyl : K → K. Let i be an object of K such that every map
of K with source i is a cofibration and such that the map γi : i t i→ Cyl(i)
is epic. Then the combinatorial model category i↓K is Olschok as well. The
set of generating cofibrations of i↓K is ρi(I). The set of generating an-
odyne cofibrations of i↓K is ρi(S). The cartesian cylinder is the functor
Cyli : i↓K → i↓K defined in Lemma 5.2.

Note that the condition “γi : i t i → Cyl(i) epic” is not satisfied for the
model category of topological spaces: the inclusion map {0, 1} ⊂ [0, 1] is not
an epimorphism. We will see an example of such a situation in Section 6.
Other examples of such a situation can be obtained by using the category
of labelled symmetric precubical sets [Gau14], the category of flows [Gau03]
or the category of multipointed d-spaces [Gau09] with i = {0}. We have
for all these examples Cyl(i) = i. The map γi : i t i → Cyl(i) is then the
epimorphism R : {0, 1} → {0}. Note that the model categories of topo-
logical spaces, of flows and of multipointed d-spaces are not Olschok model
categories since they contain non-cofibrant objects. But it can be proved
that they are left determined. The model category of labelled symmetric
precubical sets of [Gau14] is an Olschok model category. However, it is not
known if the latter is left determined.

Proof. Since every map with source i is a cofibration and since the identity
of i is the initial object of i↓K, all objects of the model category i↓K are
cofibrant. Let i→ X be an object of i↓K. Consider the composite diagram
of K of Figure 3. By Lemma 5.7 and Lemma 5.6, the three squares above are
pushout squares: in particular, they are commutative. The commutativity
of Figure 3 implies that the natural map X ti X → Cyli(X) → X is the
codiagonal of i → X in i↓K. Since the functor Cyl : K → K is a good
cylinder, the map XtiX → ωi(Cyli(i→ X)) is a cofibration of K. Therefore
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i t i //

��

i

��

X tX //� _

��

X ti X� _

��

Cyl(X) //

��

ωi(Cyli(i→ X))

��

X // X.

Figure 3. Composite of three pushout squares (under the
hypothesis γi : i t i→ Cyl(i) epic).

i t i //

��

i

Cyli(i→X)

��

X �
� γεX //� _

��

Cyl(X)� _

��

// ωi(Cyli(i→ X))� _

��
Y �
�

// •� _

ωi(f)?γε

��

// •� _

��

Y �
� γεY // Cyl(Y ) // Z,

Figure 4. Cyli is cartesian.
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the functor Cyli : i↓K → i↓K is a good cylinder for the set of maps ρi(I).2 By
Lemma 5.2, the functor Cyli : i↓K → i↓K has a right adjoint. Let f : X → Y
be a cofibration of the comma category i↓K. Then ωi(f) is a cofibration by
definition of the model category i↓K. One has the commutative diagram
of K of Figure 4, with ε = 0, 1 where Z is defined as the pushout of the
right-bottom square. Since we have the pushout diagram

i t i //

��

i

��

Cyl(Y ) // Z,

one deduces that ωi(Cyli(i→ Y )) = Z and we obtain the pushout diagram

•� _

ωi(f)?γε

��

// •� _

f?γε

��

Cyl(Y ) // ωi(Cyli(i→ Y )).

Therefore the map f ? γε is a cofibration of the comma category i↓K. We
prove in the same way that f ? γ is a cofibration. Hence the functor Cyli :
i↓K → i↓K is a cartesian cylinder for ρi(I). By Theorem 2.5, we deduce
that there exists a unique Olschok model category structure on i↓K with
the set of generating cofibrations ρi(I), with the set of generating anodyne
cofibrations ρi(S), with the cartesian cylinder Cyli : i↓K → i↓K and such
that an object is fibrant if and only if it is Λi↓K(Cyli, ρ

i(S), ρi(I))-injective.
Let f : A→ B be a map of K. Since the functor ρi : K → i↓K preserves

colimits, one has the commutative diagram of solid arrows of i↓K

ρi(A)

ρi(γεA)

��

ρi(f)
// ρi(B)

ρi(γεB)

��

��

ρi(Cyl(A))

ρi(Cyl(f)) 00

// •
ρi(f?γε)

%%

ρi(Cyl(B))

2Note that we do not know yet that the map Cyli(X) → X is a weak equivalence; this
fact will be a consequence of this theorem. So we cannot yet say that Cyli : i↓K → i↓K is
a good cylinder for the model category i↓K.
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for ε = 0, 1. By Lemma 5.5, one deduces that ρi(f) ? γε = ρi(f ? γε) for
ε = 0, 1. For the same reason, one has the commutative diagram of solid
arrows of i↓K

ρi(A) t ρi(A)

ρi(γA)

��

ρi(f)
// ρi(B) t ρi(B)

ρi(γB)

��

��

ρi(Cyl(A))

ρi(Cyl(f)) 00

// •
ρi(f?γ)

''

ρi(Cyl(B)).

By Lemma 5.5, one deduces that ρi(f)?γ = ρi(f ?γ). So by Corollary 5.4, an
object i→ X of the comma category i↓K is Λi↓K(Cyli, ρ

i(S), ρi(I))-injective
if and only if X is ΛK(Cyl, S, I)-injective, i.e., if and only if X is fibrant in
K.

We deduce that the model category constructed in this proof has the same
cofibrations and the same fibrant objects as the model category i↓K. Hence
they are equal by [Hir03, Theorem 7.8.6] since all objects are cofibrant.3 �

It is not clear how to prove without additional hypothesis that if Cyl is
very good, then Cyli is very good as well. In the situations one wants to use
this construction, the map Cyl(X) → Cyli(X) is always split epic. In this
case, one has:

5.9. Corollary. With the same notations and hypotheses as in Theorem 5.8,
if the map pX : Cyl(X)→ ωi(Cyli(X)) is split epic for every X, then if Cyl
is a very good cylinder of K, then Cyli is a very good cylinder of i↓K.

Proof. We start from a commutative diagram of K where f is a map of I:

Cyl(X)

pX

��

σX

||

i tA

k

::

φ
//

ρi(f)

��

ωi(Cyli(X))

σiX

��

i tB
ψ

// X.

3Moreover, we can say now that the map Cyli(X) → X is a weak equivalence of K as
well, which was not possible earlier.
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Let k = sXφ where sX : ωi(Cyli(X)) → Cyl(X) is a section of the split
epic Cyl(X) → ωi(Cyli(X)). Since i is cofibrant, ρi(f) is a cofibration of
K. Since Cyl is very good, there exists a lift ` : i t B → Cyl(X) such that
`ρi(f) = k and σX` = ψ. Then one has (pX`)ρ

i(f) = pXk = pXsXφ = φ
and σiX(pX`) = σX` = ψ. Hence the cylinder Cyli is a very good cylinder
of i↓K. �

6. The homotopy theory of star-shaped weak transition
systems

Weak transition systems are introduced in [Gau10] as a rewording of
Cattani-Sassone’s notion of higher dimensional transition system [CS96].
The purpose of these combinatorial objects is to model the concurrent exe-
cution of n actions by a transition between two states labelled by a multiset
{u1, . . . , un} of actions. The category of weak transition systems is a con-
venient category to study these objects from a categorical and homotopical
point of view [Gau10] [Gau11] [Gau15b].

6.1. Notation. Let Σ be a fixed nonempty set of labels.

6.2. Definition. A weak transition system consists of a triple

X =

(
S, µ : L→ Σ, T =

⋃
n>1

Tn

)
where S is a set of states, where L is a set of actions, where µ : L → Σ is
a set map called the labelling map, and finally where Tn ⊂ S × Ln × S for
n > 1 is a set of n-transitions or n-dimensional transitions such that one
has:

• (Multiset axiom). For every permutation σ of {1, . . . , n} with n > 2,
if the tuple (α, u1, . . . , un, β) is a transition, then the tuple

(α, uσ(1), . . . , uσ(n), β)

is a transition as well.
• (Patching axiom4). For every (n + 2)-tuple (α, u1, . . . , un, β) with
n > 3, for every p, q > 1 with p+ q < n, if the five tuples

(α, u1, . . . , un, β),

(α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β)

are transitions, then the (q + 2)-tuple (ν1, up+1, . . . , up+q, ν2) is a
transition as well.

4This axiom is called the Coherence axiom in [Gau10] and [Gau11], and the composition
axiom in [Gau15b].
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A map of weak transition systems

f : (S, µ : L→ Σ, (Tn)n>1)→ (S′, µ′ : L′ → Σ, (T ′n)n>1)

consists of a set map f0 : S → S′ and a commutative square

L
µ
//

f̃
��

Σ

L′
µ′
// Σ

such that if (α, u1, . . . , un, β) is a transition, then

(f0(α), f̃(u1), . . . , f̃(un), f0(β))

is a transition. The corresponding category is denoted by WTS. The n-
transition (α, u1, . . . , un, β) is also called a transition from α to β. The

maps f0 and f̃ will be also denoted by f .

Every set X may be identified with the weak transition system having
the set of states X, with no actions and no transitions.

It is usual in computer science to work in the comma category {ι}↓WTS
where the image of the state ι represents the initial state of the process
which is modeled. It then makes sense to restrict to the states which are
reachable from this initial state by a path of transitions. Hence we introduce
the following definitions:

6.3. Definition. Let X be a weak transition system and let ι be a state of
X. A state α of X is reachable from ι if it is equal to ι or if there exists
a finite sequence of transitions ti of X from αi to αi+1 for 0 6 i 6 n with
n > 0, α0 = ι and αn+1 = α.

6.4. Definition. A star-shaped weak transition system is an object {ι} →
X of the comma category {ι}↓WTS such that every state of the underly-
ing weak transition system X is reachable from ι. The full subcategory of
{ι}↓WTS of star-shaped weak transition systems is denoted by WTS•.

6.5. Proposition. The category WTS• is a full isomorphism-closed core-
flective subcategory of {ι}↓WTS.

Proof. Let {ι} → X be an object of {ι}↓WTS. Let T ι(X) be the set of
transitions (α, u1, . . . , un, β) of X such that the initial state α is reachable
from ι. Note that this implies that β is reachable from ι as well. The
set T ι(X) satisfies the multiset axiom since permuting the actions does not
change the initial state of a transition. It also satisfies the patching axiom
because, with the notations of the patching axiom in Definition 6.2, ν1 is
reachable from ι. Therefore the triple consisting of the set of states of X
which are reachable from ι, the set of actions of X with the same labelling
map µ, and the set of transitions T ι(X) yields a well-defined weak transition
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system Cι(X). By construction, the map ι→ Cι(X) is a star-shaped weak
transition system. Consider a commutative square

{ι}

��

{ι}

��

Y
f

// X

where {ι} → Y is a star-shaped weak transition system. By construc-
tion, for every state α of Y , f(α) is reachable from ι and every transition
(α, u1, . . . , un, β) of Y is therefore mapped to a transition

(f(α), f(u1), . . . , f(un), f(β))

of T ι(X). Therefore the commutative square above factors uniquely as the
composite of commutative squares

{ι}

��

{ι}

��

{ι}

��

Y //

f

66Cι(X)
⊂

// X.

�

6.6. Proposition. The category WTS• is a small cone-injectivity class of
{ι}↓WTS and all maps of the cone can be chosen to be cofibrations.

Proof. The category WTS• is a small cone-injectivity class with respect to
the small cone formed by the inclusions of the weak transition system {ι, α}
in the weak transition systems

ι
t1−→ • −→ . . . −→ • tn−→ α

for all n > 0 and all transitions t1, . . . , tn with the labelling map IdΣ (note
that we must include in the cone the set map {ι, α} → {ι}). The cone is
small because there is a set of labels Σ. Finally, all maps of the cone are
cofibrations of weak transition systems because on the sets of actions, they
are all of them the inclusion of the empty set in some set. �

6.7. Corollary. The category WTS• is locally presentable.

Proof. The category WTS• is accessible by [AR94, Proposition 4.16]. It is
cocomplete by Proposition 6.5. Therefore it is locally presentable. �

We can now conclude this paper with the following application:



LEFT DETERMINED MODEL CATEGORIES 1113

6.8. Theorem. There exists a left determined model structure on the cate-
gory WTS• of star-shaped weak transition systems with respect to the class
of maps such that the underlying maps of weak transition systems are one-
to-one on actions.

Sketch of proof. The category WTS• is bicomplete by Corollary 6.7. By
[Gau11, Theorem 5.11], there exists an Olschok model structure on the cat-
egory of weak transition systems such that the cofibrations are the maps
which are one-to-one on actions. Let Cyl : WTS → WTS be the cylinder
functor which is described in the proof of [Gau11, Proposition 5.8]. The map
{ι} t {ι} → Cyl({ι}) is epic because by [Gau11, Proposition 5.8], one has
Cyl({ι}) = {ι}. Hence we can apply Theorem 5.8. We obtain an Olschok
model category on the comma category {ι}↓WTS. By Lemma 5.2, the cylin-
der of {ι}↓WTS is obtained by identifying two states in Cyl(X). Since the
set of states of Cyl(X) is equal to the set of states of X by the calculations
made in the proof of [Gau11, Proposition 5.8], the two states identified are
actually equal. This means that the underlying weak transition system of
Cyl{ι}({ι} → X) is Cyl(X). Therefore by Corollary 5.9, and since Cyl is

very good by [Gau11, Proposition 5.7], the cylinder Cyl{ι} is very good and

the Olschok model category {ι}↓WTS is left determined. Let {ι} → X be a
star-shaped weak transition system. By the calculations made in the proof
of [Gau11, Proposition 5.8] again, the set of actions of Cyl(X) is L× {0, 1}
where L is the set of actions of X and a tuple (α, (u1, ε1), . . . , (un, εn), β)
is a transition of Cyl(X) if and only if (α, u1, . . . , un, β) is a transition of
X. Therefore a state of Cyl(X) is reachable from {ι} if and only if it is
reachable from {ι} in X (choose εi = 0 for all intermediate transitions).
One deduces that if {ι} → X is a star-shaped weak transition system,
then Cyl{ι}({ι} → X) is a star-shaped weak transition system as well. Us-
ing Proposition 6.6, we can now apply Theorem 4.3: we have obtained an
Olschok model structure which is left determined. The proof is complete. �
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