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The length spectra of arithmetic
hyperbolic 3-manifolds and their totally

geodesic surfaces

Benjamin Linowitz, Jeffrey S. Meyer
and Paul Pollack

Abstract. We examine the relationship between the length spectrum
and the geometric genus spectrum of an arithmetic hyperbolic 3-orbifold
M . In particular we analyze the extent to which the geometry of M is
determined by the closed geodesics coming from finite area totally ge-
odesic surfaces. Using techniques from analytic number theory, we ad-
dress the following problems: Is the commensurability class of an arith-
metic hyperbolic 3-orbifold determined by the lengths of closed geodesics
lying on totally geodesic surfaces?, Do there exist arithmetic hyperbolic
3-orbifolds whose “short” geodesics do not lie on any totally geodesic
surfaces?, and Do there exist arithmetic hyperbolic 3-orbifolds whose
“short” geodesics come from distinct totally geodesic surfaces?
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1. Introduction

Over the past several years there have been a number of papers analyzing
the extent to which the geometry of a finite volume orientable hyperbolic
3-manifold M is determined by its collections of proper totally geodesic sub-
spaces. Two collections which have proven particularly important are the
length spectrum L(M) of M , which is the set of lengths of closed geodesics on
M considered with multiplicity, and the geometric genus spectrum GS(M)
of M (see [McRR14]), which is the set of isometry classes of finite area,
properly immersed, totally geodesic surfaces of M considered up to free
homotopy. Neither of these sets determine the isometry class of M (see
[Vig80, McRR14]). It is known however that both sets determine the com-
mensurability class of M whenever M is arithmetic [CHLR08, McRR14].
Recently there have been attempts to understand these phenomena in a
more quantitative manner.

How many lengths does one need to determine commensurability? For
any x ∈ R>0 we refer to the set {` ∈ L(M) : ` < x} as the level x initial
length spectrum of M . In [LMPT] it was shown that the commensurability
class of a compact arithmetic hyperbolic 3-manifold of volume V ≥ 1 is

determined by its level x initial length spectrum for any x > celog(V )log(V )

for some absolute constant c > 0. Conversely, Millichap [Mil] has shown
that for any n ∈ Z>0 there exist infinitely many pairwise incommensurable
hyperbolic 3-manifolds whose length spectra begin with the same n lengths.

How many surfaces of bounded area does one need to determine commen-
surability? It was shown in [LMPT] that there is a constant c > 0 such that
the commensurability class of a compact arithmetic hyperbolic 3-orbifold M
having volume V is determined by the surfaces in GS(M) which have area
less than ecV , provided of course that GS(M) 6= ∅.

Up to this point, there has been no analysis of the interplay between the
initial length spectra and geometric genus spectra. It is the goal of this
paper to initiate a broader project of carrying out such an analysis.

Every compact totally geodesic surface S ∈ GS(M) contributes closed
geodesics to L(M). We define the totally geodesic length spectrum LTG(M)
of M to be the set of lengths of closed geodesics of M coming from finite area,
totally geodesic surfaces. A natural question therefore suggests itself: Does
the totally geodesic length spectrum of M determine its commensurability
class?

Theorem A. Let M be an arithmetic hyperbolic 3-manifold with GS(M) 6=
∅. The commensurability class of M is determined by LTG(M) along with
any geodesic length in L(M) associated to an element of π1(M) which is
loxodromic but not hyperbolic.

One might similarly ask for the distribution of the set LTG(M) within
L(M). As a first step we consider the following question: Do there exist
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arithmetic hyperbolic 3-orbifolds with many “short” geodesics not lying on
totally geodesic surfaces?

Theorem B. For every integer n ≥ 1 there is a positive real number x0

such that the number of pairwise incommensurable arithmetic hyperbolic 3-
orbifolds M of volume less than V satisfying

(i) M has infinitely many totally geodesic surfaces, and
(ii) there are at least n primitive geodesics on M of length less than x0,

none of which lie on a totally geodesic surface,

is � V 1/2/(log V )1− 1
22n+1 as V → ∞, where the implied constant depends

on n. In fact, for any ε > 0 there is a constant cε > 0 such that one may
take x0 = cεn

16+ε, hence for sufficiently large n one may take x0 = n17.

Suppose that M is an arithmetic hyperbolic 3-orbifold with geodesics of
lengths `1, . . . , `n. Theorems 4.9 and 4.10 of [LMPT] provide lower bounds
for the number of incommensurable arithmetic hyperbolic 3-orbifolds with
volume less than V and which all contain geodesics of lengths `1, . . . , `n. One
might therefore expect to be able to deduce Theorem B from these results.
There is a nuance however; none of the arithmetic hyperbolic 3-orbifolds
counted by Theorems 4.9 and 4.10 of [LMPT] are guaranteed to contain
any totally geodesic surfaces. Indeed, a “random” arithmetic hyperbolic
3-manifold is likely not to contain any totally geodesic surfaces. In order
to circumvent these difficulties we use the well-known construction of arith-
metic hyperbolic 3-manifolds from quaternion algebras defined over number
fields to reduce the proof of Theorem B to a series of problems which can
be handled using techniques from analytic number theory. Among the tech-
niques that we employ are mean value estimates for multiplicative functions
and the linear sieve.

Our final result concerns a question dual to the one addressed in Theo-
rem B: Do there exist arithmetic hyperbolic 3-orbifolds whose “short” geo-
desics come primarily from distinct totally geodesic surfaces?

Theorem C. For every integer n ≥ 1 there are positive real numbers x0, x1

such that the number of pairwise incommensurable arithmetic hyperbolic 3-
orbifolds of volume less than V with at least n geodesics of length at most
x0 lying on pairwise incommensurable totally geodesic surfaces of area at

most x1 is � n−cnV
2
3 as V → ∞, for some constant c > 0. In fact, there

are constants c1, c2, c3 > 0 such that we may take x0 = c1(n log(2n))2 and
x1 = c2n

c3n.

The proof of Theorem C requires us to understand how often a given
finite set of primes splits in a prescribed way, across the family of quadratic
number fields. While this particular problem could be treated by ad hoc
methods, recent work has shown that such problems are best understood
in the broader context of the field of arithmetic statistics. In our work, we
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appeal to powerful recent results of Wood [Wood10], which address such
statistical prime splitting questions in great generality.

2. Notation

Throughout this paper k will denote a number field with ring of integers
Ok, degree nk and discriminant ∆k. We will denote by r1(k) the number of
real places of k and by r2(k) the number of complex places of k. We will
denote by Pk the set of prime ideals of k and, given p ∈ Pk, by |p| the
norm of p. The Dedekind zeta function of k will be denoted by ζk(s) and
the regulator of k by Regk. If L/k is a finite extension of number fields we
will denote by ∆L/k the relative discriminant.

Given a number field k and quaternion algebra B over k, we denote by
Ram(B) the set of primes (possibly infinite) of k which ramify in B and by
Ramf (B) (respectively Ram∞(B)) the subset of Ram(B) consisting of those
finite (respectively infinite) primes of k ramifying in B. The discriminant
disc(B) of B is defined to be the product of all primes (possibly infinite) in
Ram(B). We define discf (B) similarly.

We denote by H2 and H3 real hyperbolic space of dimension 2 and 3.
Throughout this paper M will denote an arithmetic hyperbolic 3-manifold
and Γ = π1(M) the associated arithmetic lattice in PSL2(C). We will refer
to lattices in PSL2(C) as Kleinian and lattices in PSL2(R) as Fuchsian.

We will make use of standard analytic number theory notation. We will
interchangeably use the Landau “Big Oh” notation, f = O(g), and the
Vinogradov notation, f � g, to indicate that there exists a constant C > 0

such that |f | ≤ C|g|. We write f ∼ g if limx→∞
f(x)
g(x) = 1 and f = o(g)

if limx→∞
f(x)
g(x) = 0. Finally, throughout this paper we denote the natural

logarithm by log x.

3. Constructing arithmetic hyperbolic 2- and 3-manifolds

Here, we review the construction of arithmetic lattices in PSL2(R) and
PSL2(C). For a more detailed treatment we refer the reader to Maclachlan
and Reid [MR03].

We begin by describing the construction of arithmetic hyperbolic surfaces.
Let k be a totally real field and B a quaternion algebra defined over k which
is unramified at a unique real place v of k. Let O be a maximal order of
B, O1 be the multiplicative subgroup consisting of those elements of O∗
having reduced norm 1 and Γ1

O be the image in PSL2(R) of O1 under the
identification Bv = B ⊗k kv ∼= M2(R). The group Γ1

O is a discrete finite
coarea subgroup of PSL2(R) which is cocompact whenever B is a division
algebra.

Recall that two subgroups Γ1,Γ2 of PSL2(R) or PSL2(C) are said to be
directly commensurable if Γ1∩Γ2 has finite index in both Γ1 and Γ2. Further,
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we say that Γ1 and Γ2 are commensurable in the wide sense if Γ1 is directly
commensurable to a conjugate of Γ2.

If Γ is a lattice in PSL2(R) then we say that Γ is an arithmetic Fuchsian
group if there exist k,B,O such that Γ is commensurable in the wide sense
with Γ1

O.
The construction of arithmetic Kleinian groups is extremely similar. Let k

be a number field which has a unique complex place v and B be a quaternion
algebra over k in which all real places of k ramify. Let O be a maximal
order of B and Γ1

O be the image in PSL2(C) of O1 under the identification
Bv = B⊗kkv ∼= M2(C). The group Γ1

O is a discrete finite covolume subgroup
of PSL2(C) which is cocompact whenever B is a division algebra. If Γ is
a lattice in PSL2(C) then we say that Γ is an arithmetic Kleinian group if
there exist k,B,O such that Γ is commensurable in the wide sense with Γ1

O.
An arithmetic Fuchsian (respectively Kleinian) group Γ is said to be de-

rived from a quaternion algebra if it is contained in an arithmetic Fuchsian
(respectively Kleinian) group of the form Γ1

O.
Given arithmetic lattices Γ1,Γ2 arising from quaternion algebras B1, B2

defined over k1, k2, we note that Γ1 and Γ2 are commensurable in the wide
sense if and only if k1

∼= k2 and B1
∼= B2 (see [MR03, Theorem 8.4.1]). We

will make crucial use of this fact many times in this paper.

4. Geometry background

An element γ ∈ PSL2(C) is loxodromic if tr γ ∈ C\[−2, 2] and is hyperbolic
if tr γ ∈ R \ [−2, 2]. Geometrically, a loxodromic element γ acts on H3 by
translating along, and possibly rotating around, an axis that we denote Aγ .

We now give a characterization of a hyperbolic element in terms of its
action on the totally geodesic hyperplanes containing its axis.

Lemma 4.1. If γ ∈ PSL2(C) is a loxodromic element, then the following
are all equivalent:

(i) γ is hyperbolic.
(ii) γ has only real eigenvalues.
(iii) γ stabilizes and preserves the orientation of a totally geodesic hy-

perplane containing Aγ.
(iv) γ stabilizes and preserves the orientation of all totally geodesic hy-

perplanes containing Aγ.

Proof. Let λ1 and λ2 denote the eigenvalues of γ. It is an immediate
consequence of the equations λ1λ2 = 1 and λ1 + λ2 = tr γ that (i)⇔(ii).
Assuming (i), γ parallel transports tangent vectors along Aγ . Since a totally

geodesic hyperplane S̃ ⊂ H3 containing Aγ is completely determined by Aγ
and a normal direction, it follows that (i)⇒(iv)⇒(iii). Lastly, assuming (iii),
it follows that as γ translates along Aγ , it has no rotation, and hence must
be hyperbolic, implying (i). �
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Lemma 4.2. Let Γ be an arithmetic Kleinian group and γ ∈ Γ be a loxo-
dromic element. If Aγ is an axis of a hyperbolic element in Γ, then there
exists an integer n ≥ 1 such that γn hyperbolic.

Proof. Suppose that Aγ is also the axis of a hyperbolic element δ ∈ Γ. Since
Γ acts discretely, it must be the case that the translation lengths of γ and
δ are rational multiples of one another. In particular, there exist positive
integers a and b and an elliptic element ε ∈ Γ such that γb = εδa. Again
by the discreteness of Γ, elliptic elements in Γ are torsion, hence ε has finite
order c. Therefore γbc = δac, which is hyperbolic. �

The following result will play a crucial role in the proofs of Theorems B
and C.

Proposition 4.3. Let Γ be an arithmetic Kleinian group and γ ∈ Γ be a
loxodromic element. If there does not exist an integer n ≥ 1 such that γn

is hyperbolic, then the geodesic associated to γ lies in no finite area, totally
geodesic surface of H3/Γ.

Proof. We prove the contrapositive. Let cγ be the closed geodesic associ-
ated to γ and suppose that cγ lies in a finite area, totally geodesic surface

S ⊂ H3/Γ. Then the axis Aγ lies in a totally geodesic hyperplane S̃ ⊂ H3

that covers S. Since S is finite area and hyperbolic, Λ := StabΓ(S̃) is an
arithmetic Fuchsian subgroup of Γ, and hence there exists some hyperbolic
element δ ∈ Λ with axis Aγ . By Lemma 4.2, the result then follows. �

We note that it is a result of Long and Reid [LR10] that the fundamental
group of any finite volume orientable hyperbolic 3-manifold has infinitely
many loxodromic elements, no power of which is hyperbolic.

5. Counting quaternion algebras over quadratic fields

Let k be a number field with a unique complex place and L1, . . . , Ln be
quadratic extensions of k with images under complex conjugation L′1, . . . , L

′
n.

Suppose that [L1 · · ·LnL′1 · · ·L′n : k] = 22n. In this section we will consider
the case in which k is an imaginary quadratic field and will count the num-
ber of quaternion algebras B over k which admit embeddings of all of the
fields Li and are also of the form B0 ⊗Q k for infinitely many indefinite
rational quaternion algebras B0. While the latter condition may seem arbi-
trary, it ensures that the Kleinian groups arising from B contain Fuchsian
subgroups arising from B0 and hence will allow us to construct arithmetic
hyperbolic 3-manifolds containing infinitely many totally geodesic surfaces
[MR03, Theorem 9.5.4].

Theorem 5.1. Let k be a number field with a unique complex place and
suppose that the maximal totally real subfield k+ of k satisfies [k : k+] = 2.
Suppose B+ is a quaternion algebra over k+ ramified at all real places of k+
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except at the place under the complex place of k. Then B ∼= B+⊗k+ k if and
only if Ramf (B) consists of 2r places {Pi,j}1≤i≤r, 1≤j≤2 satisfying

P1,j ∩ Ok+ = P2,i ∩ Ok+ = pi,

{p1, . . . , pr} ⊂ Ramf (B+) with Ramf (B+)\{p1, . . . , pr} consisting of primes
in Ok+ which are inert or ramified in k/k+.

Remark. Recall that two quaternion algebras defined over a number field k
are isomorphic precisely when they ramify at the same set of primes (possibly
infinite) of k. The proof of Theorem 5.1 follows from a careful analysis of
the Hasse invariant identity invP(B+ ⊗k+ k) = [kP : k+

p ] · invp(B
+), where

P is a prime of k lying above the prime p of k+.

When the above conditions on Ram(B) are satisfied, there are infinitely
many algebras B+/k+ such that B ∼= B+ ⊗k+ k. In particular, any arith-
metic hyperbolic 3–orbifold constructed from B will contain infinitely many
primitive, totally geodesic, incommensurable surfaces.

Theorem 5.2. Let k be an imaginary quadratic field. Let L1, . . . , Ln be
quadratic extensions of k, and let L′1, . . . , L

′
n be their images under complex

conjugation. Suppose that [L1 · · ·LnL′1 · · ·L′n : Q] = 22n. The number of
quaternion algebras B over k which admit embeddings of all of the Li, have
discriminants of the form disc(B) = p1 · · · prOk where the pi are rational
primes split in k, and have |discf (B)| < x, is asymptotically

C(k, L1, . . . , Ln)x1/2/(log x)1− 1
22n+1 ,

as x→∞. Here C(k, L1, . . . , Ln) is a positive constant.

We need a lemma on mean values of multiplicative functions. The next
result appears in more precise form in work of Spearman and Williams
[SW06, Proposition 5.5].

Proposition 5.3. Let f be a multiplicative function satisfying 0 ≤ f(n) ≤ 1
for all positive integers n. Suppose that there are positive constants τ and β
with ∑

p≤x
f(p) = τ

x

log x
+O

(
x

(log x)1+β

)
.

As x→∞, ∑
n≤x

f(n) ∼ Cfx(log x)τ−1

for a certain positive constant Cf .

This has the following immediate consequence.
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Corollary 5.4. Let P be a set of primes. Suppose that there are positive
constants τ and β with∑

p≤x
p∈P

1 = τ
x

log x
+O

(
x

(log x)1+β

)
.

Then as x→∞, the number of squarefree integers d ≤ x composed entirely
of primes from P is asymptotic to CPx(log x)τ−1 for a certain positive
constant CP .

Proof. Apply Proposition 5.3 to the characteristic function of these d. �

Proof of Theorem 5.2. If the pi are distinct primes split in k and

disc(B) = p1 · · · prOk,
then B admits embeddings of all of the Li if and only if each pi ∈P, where

P = {p : p splits in k, every p | p is nonsplit in every Li}.
Thus, we can count the number of possibilities for B by counting the number
of squarefree d composed entirely of primes from P.

Observe that if p splits in k as pp′, then p splits in one of the fields Li if
and only if p′ splits in the corresponding L′i. Thus, p belongs to P precisely
when p splits as a product of two primes neither of which split in any of the
Li or L′i. Let

Q = {p : p prime of k not split in any Li or L′i}.
Let L be the compositum of the Li and L′i. Since [L : k] = 22n, the Galois
group of L/k is canonically isomorphic to the direct sum of the groups
Gal(Li/k) and Gal(L′i/k). The Chebotarev density theorem now implies
that the set Q has density 2−2n, and the quantitative form of the theorem
appearing in [Sch75] shows that as X →∞,

(1) #{p ∈ Q : Normk/Q(p) ≤ X} =
1

22n

X

logX
+O

(
X

(logX)2

)
.

(We allow the implied constant to depend on k and the Li.) Let

Q′ = {p ∈ Q : p absolute degree 1, p - ∆k}.
The number of elements of Q \Q′ with norm not exceeding X is O(X1/2).
Thus, the estimate (1) continues to hold if Q is replaced by Q′. The norm
from K down to Q induces a 2-to-1 map from Q′ onto P. Thus, as X →∞,∑

p≤X
p∈P

1 =
1

22n+1

X

logX
+O

(
X

(logX)2

)
.

By Corollary 5.4, the number of squarefree d ≤ X composed of primes

from P is asymptotically CX/(logX)1− 1
22n+1 , for a certain constant C.

Since |dOk| = d2, we obtain the theorem upon taking X = x1/2. �
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6. Proof of Theorem A

Let Γ denote the fundamental group of M . As in Reid’s proof [Reid92]
that the commensurability class of an arithmetic hyperbolic surface is de-
termined by its length spectrum, it suffices to show that the invariant trace
field k and invariant quaternion algebra B from which Γ arises are deter-
mined by LTG(M) and any geodesic length `(γ) associated to an element
γ ∈ Γ which is loxodromic but not hyperbolic.

Let γ ∈ Γ be as above and Γ(2) be the subgroup of Γ generated by squares.
We will show that k is determined by `(γ2) = 2`(γ). It follows from the
formula

cosh(`(γ2)/2) = ± tr(γ2)/2

that `(γ) determines tr(γ2) (up to a sign). As Γ(2) is derived from B in the
sense that there is a maximal order O of B such that Γ ⊂ Γ1

O (see [MR03,
Chapter 3]), Lemma 2.3 of [CHLR08] shows that k = Q(tr(γ2)).

It remains to show that LTG(M) determines the isomorphism class over
k of the quaternion algebra B. Let `(γ′) ∈ LTG(M). The argument above
shows that `(γ′) determines tr(γ′2) (up to a sign), and another application
of Lemma 2.3 of [CHLR08] allows us to deduce that the maximal totally
real subfield k+ of k satisfies k+ = Q(tr(γ′2)) and [k : k+] = 2.

Recall now that Theorem 5.1 shows that there are primes p1, . . . , pr of k+,
all of which split in k/k+, such that discf (B) = p1 · · · prOk. The algebra B

is ramified at all real primes of k, hence it suffices to show that LTG(M)
determines p1, . . . , pr.

Consider the set

S = {k+(λ(γ′2)) : `(γ′) ∈ LTG(M)}
of quadratic extensions of k+. This is precisely the set of maximal subfields
of quaternion algebras B+ over k+ such that B+ ⊗k+ k ∼= B. Given a field
L ∈ S, denote by Spl(L/k+) the set of primes in k+ which split in the
extension L/k+. We claim that⋂

L∈S

[
Pk+ \ Spl(L/k+)

]
= {p1, . . . , pr}.

We begin by observing that none of the primes pi split in any of the exten-
sions L/k+ where L ∈ S. Indeed, this follows from Theorem 5.1 along with
the Albert-Brauer-Hasse-Noether theorem, which in this context states that
the field L embeds into B+ if and only if no prime of k+ which ramifies
in B+ splits in L/k+. Suppose now that p ∈ Pk+ \ {p1, . . . , pr}. We will
show that there exists a field L ∈ S such that p ∈ Spl(L/k+). Let p′ be a
finite prime of k+ which is inert in k/k+ and B+ be the quaternion algebra
over k+ which is ramified at all real places of k+ except for the one lying
below the complex place of k along with {p1, . . . , pr} if r + r1(k+) − 1 is
even and {p1, . . . , pr} ∪ {p′} if r + r1(k+) − 1 is odd. Theorem 5.1 shows
that B+ ⊗k+ k ∼= B, hence every maximal subfield of B+ lies in S. That
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there exists a maximal subfield of B+ in which p splits now follows from
the Grunwald-Wang theorem [Rein75, Theorem 32.18], which implies the
existence of quadratic field extensions of k+ satisfying prescribed local split-
ting behavior at any finite number of primes. This completes the proof of
Theorem A.

7. Proof of Theorem B

Proposition 7.1. Let k be an imaginary quadratic field of discriminant ∆k,
and let n be a positive integer. Let ε > 0. There exist quadratic extensions
L1, . . . , Ln of k such that:

(i) None of the quartic extensions Li/Q are Galois.
(ii) The compositum of the fields Li and L′i has degree 22n over k, where

L′i is the image in C of Li under complex conjugation.
(iii) The absolute value of the discriminants of the Li satisfy

|∆Li | ≤ c(k, ε)n8+ε,

where c(k, ε) is a constant depending on k and ε.

Proof of Proposition 7.1. Let p1, p2, . . . , pn denote the first n odd primes
that split in k. The splitting condition amounts to restricting the pi to a
certain half of the coprime residue classes modulo ∆k, and so the prime
number theorem for progressions (see, for instance, [MV07, Chapter 11])
shows that

pn < c1n log (2n),

where c1 is a constant depending only on k.
Now ∆k is a square modulo each pi, and by Hensel’s lemma, ∆k + pi is a

square modulo p2
i . For each i = 1, 2, . . . , n, we will choose xi such that

(2) x2
i ≡ ∆k + pi (mod p2

i ),

while for all 1 ≤ j 6= i ≤ n, x2
i 6≡ ∆k (mod pj).

To this end, let ri be the smallest nonnegative integer with r2
i ≡ ∆k + pi

(mod p2
i ), so that 0 ≤ ri < p2

i . We will take xi = ri + p2
i ti for a nonnegative

integer ti. To choose ti as small as possible, we apply a lower bound sieve
method. The second half of (2) will hold as long as ti avoids a certain two
residue classes modulo each pj , with j 6= i. Since the pj are restricted to the
set of primes splitting in k — which form a set of density 1

2 — we have a sieve

problem of dimension 2 · 1
2 = 1. The linear sieve (see, e.g., [DH08, Theorem

7.1, p. 81]) implies that we may take each ti < c2p
2+ε
n , for a constant c2

depending on k and ε. Thus,

xi = ri + p2
i ti ≤ p2

i + p2
i · c2p

2+ε
n ≤ c3p

4+ε
n

for a certain c3 = c3(k, ε).
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We now define

Li = k

(√
xi +

√
∆k

)
,

so that the image of Li under complex conjugation is

L′i = k

(√
xi −

√
∆k

)
.

By our choice of xi, the norm from k to Q of xi +
√

∆k is divisible by pi
but not p2

i . Hence, xi +
√

∆k is not a square in k, and so Li is indeed a
quadratic extension of k.

We now check that (i), (ii), and (iii) hold.
In fact, (i) is a consequence of (ii), since (ii) implies that Li and its

conjugate field L′i are distinct. To prove (ii), we appeal to elementary results
about the splitting of primes in relative quadratic extensions. Let

pi = (pi, xi +
√

∆k) ⊂ Ok.

Then pi is a prime of k lying above the rational prime pi, and Normk/Q(pi) =

pi. Moreover, since pi | xi +
√

∆k and p2
i - xi +

√
∆k, the prime pi ramifies

in Li (see, e.g., [Hec81, Theorem 118, pp. 134–135]). We claim that Li is
the only field among L1, . . . , Ln, L′1, . . . , L

′
n in which pi ramifies. For this,

it is enough to show (by the same theorem from [Hec81]) that for all j 6= i,
pi - xj ±

√
∆k and that pi - xi −

√
∆k. The first half of this is clear, since

pi = Normk/Q(pi) - x2
j − ∆k. Turning to the second half, observe that if

pi | xi −
√

∆k, then

pi | (xi +
√

∆k)− (xi −
√

∆k) = 2
√

∆k,

contradicting that pi lies above an odd prime not dividing ∆k. We deduce
that Li is not contained in the compositum of the 2n − 1 other fields. Ap-
plying complex conjugation, we see that the same holds for L′i. Now (ii)
follows immediately.

Turning to (iii), notice that Li = Q(θi), where θi =
√
xi +

√
∆k. The

minimal polynomial of θi over Q is

fi(T ) = (T 2 − xi)2 −∆k = T 4 − 2xiT
2 + (x2

i −∆k),

and

disc(fi(T )) = 256(x2
i −∆k)∆

2
k.

Since ∆Li | disc(fi(T )),

|∆Li | ≤ 256(|xi|2 + |∆k|)|∆k|2 ≤ 256(c2
3p

8+2ε
n + |∆k|)|∆k|2

≤ 256(c2
3(c1n log(2n))8+2ε + |∆k|)|∆k|2

≤ c4n
8+3ε,

for a certain c4 = c4(k, ε). Replacing ε with ε/3, we obtain (iii). �
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We now prove Theorem B.
Fix an imaginary quadratic field k of discriminant ∆k and let L1, . . . , Ln

be quadratic extensions of k satisfying the conditions of Proposition 7.1.
Let B be a quaternion division algebra over k into which all of the Li

embed and whose discriminant is of the form p1 · · · prOk where p1, . . . , pr
are rational primes splitting in k/Q. Finally, let O be a maximal order of
B. We will construct, for each field Li, a loxodromic element γi ∈ Γ1

O such
that Li = k(λ(γi)) and whose associated geodesic has length which we can
bound.

It follows from Dirichlet’s unit theorem that there exists a fundamental
unit u0 ∈ O∗Li

such that um0 6∈ O∗k for any m ≥ 1. Let σ ∈ Gal(Li/k) denote
the nontrivial Galois automorphism of Li/k and define u = u0/σ(u0). It
is then clear that NormLi/k(u) = 1 and un 6∈ O∗k for any n ≥ 1. Work of
Brindza [Bri91] and Hajdu [Haj93] shows that u0 maybe chosen so that the
absolute logarithmic Weil height h(u) of u satisfies

h(u) ≤ 2h(u0) ≤ 6nLin
5nLi
Li

RegLi
= 24434 RegLi

≤ 24434 |∆Li |
2 ,

where the last inequality follows from [LMPT, Lemma 4.4]. Because the
algebra B/k must be ramified at at least two finite primes of k, Theorem 3.3
of [CF99] implies that every maximal order of B (so in particular O) admits
an embedding of the quadratic Ok-order Ok[u]. Let γi denote the image of
u in Γ1

O. The logarithm of the Mahler measure of the minimal polynomial
of u is equal to 4h(u), hence Lemma 12.3.3 of [MR03] and Proposition 7.1
imply that for any ε > 0,

`(γi) ≤ 24734 |∆Li |
2 ≤ c′(k, ε)n16+2ε,

where the constant c′(k, ε) depends only on k and ε. By construction the
extension Li/Q is not Galois for any i. Lemma 2.3 of [CHLR08] therefore
implies that λ(γi)

m is not real for any m ≥ 1. This allows us to deduce from
Proposition 4.3 that the geodesic associated to γi lies on no totally geodesic
surface of H3/Γ1

O.
Because the discriminant of B is of the form p1 · · · prOk for rational primes

p1, . . . , pr which split in k/Q, Theorems 9.5.4 and 9.5.5 of [MR03] imply
that H3/Γ1

O contains infinitely many primitive, totally geodesic, pairwise
incommensurable surfaces.

Borel’s volume formula [Bor81] shows that

covol(Γ1
O) =

|∆k|
3
2 ζk(2)

4π2

∏
p|discf (B)

(|p| − 1)

≤ ck |discf (B)| ,

where ck is a positive constant depending only on k. Theorem B now follows
from Theorem 5.2 and the accompanying discussion upon fixing a choice of
k and replacing ε by ε/2.
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8. Proof of Theorem C

The proof uses the following form of Linnik’s theorem on primes in arith-
metic progressions.

Proposition 8.1. There is an absolute constant L for which the following
holds: For every pair of coprime integers a and q with q ≥ 2, the nth prime
p ≡ a (mod q) satisfies

p ≤ qL · n log (2n).

Proof. From [IK04, Corollary 18.8, p. 442], there are constants c > 0 and
L > 0 with the property that

(3) #{p ≤ x : p ≡ a (mod q)} ≥ c

q1/2φ(q)

x

log x

whenever x ≥ qL. Of course, this remains true if we increase the value of L,
so we can assume that L ≥ 3.

Let A be a large constant, to be specified more precisely momentarily. To
start with, assume A ≥ 2. We apply (3) with x = AqL · n log(2n), noting
that this choice certainly satisfies x ≥ qL. Now

log x ≤ 2 max{log(A · qL), log(n log(2n))}

≤ 2 max{A1/2qL/2, 2 log n}.

(We use here that log t <
√
t for all t > 0, and that n log(2n) < n2 for all

natural numbers n.) If this maximum is given by the first term, then the
right-hand side of (3) is bounded below by

c

q1/2φ(q)
· Aq

L · n log(2n)

2A1/2qL/2
=
c ·A1/2

2

qL/2

q1/2φ(q)
· n log(2n)

≥ c ·A1/2 log 2

2
· n.

On the other hand, if the maximum is given by the second term, we obtain
a lower bound of

c

q1/2φ(q)
· Aq

L · n log(2n)

4 log n
≥ cA

4
· qL

q1/2φ(q)
n ≥ cA

4
n.

Choosing A = max{2, 4/c, (2/(c log 2))2}, we see that in either case the
right-hand side of (3) is at least n. This proves the proposition except with
an upper bound on p of AqL · n log(2n). Finally, we increase the value of L
in order to absorb the factor of A into qL. �

Lemma 8.2. One can choose positive constants A and B so that the fol-
lowing holds. Let n be a positive integer, and let p1, p2, . . . , pn be the first
n primes congruent to 1 modulo 4. One can choose n + 1 distinct primes
q1, q2, . . . , qn+1 such that:

(i) For all 1 ≤ i ≤ n, the prime qi is inert in Q(
√
pi) but split in

Q(
√
pj) for 1 ≤ j 6= i ≤ n.
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(ii) qn+1 is inert in all of the fields Q(
√
p1), . . . ,Q(

√
pn).

(iii) Each qi belongs to the interval [2, A · nBn].

Proof. We choose the qi inductively. Assume qj has already been chosen
for j < i. The splitting condition on qi can be enforced by placing qi in a
suitable residue class modulo p1 · · · pn. Among the first n+ 1 primes in this
residue class, there must be some choice of qi not equal to qj for any j < i.
From Proposition 8.1,

qi ≤ (p1 · · · pn)L · (n+ 1) log(2n+ 2).

By the prime number theorem for arithmetic progressions (or Proposition
8.1), pn < Cn log(2n) for some absolute constant C. Thus,

(p1 · · · pn)L · (n+ 1) log(2n+ 2) ≤ pnLn · (n+ 1) log(2n+ 2)

≤ (Cn log(2n))nL · (n+ 1) log(2n+ 2).

It is straightforward to check that the final expression here is bounded by
A · nBn for certain absolute positive constants A and B. �

Lemma 8.3. Let q1, . . . , qn+1 be distinct primes. The number of imaginary
quadratic fields k in which q1, . . . , qn are inert, qn+1 splits, and which satisfy
|∆k| < x, is asymptotic to cx as x→∞, where c > 0. In fact, c ≥ 3

π2 · 1
3n+1 .

Proof. Let P be a property of quadratic fields. We define the probability of
P , taken over the class of quadratic fields, as the limit

lim
x→∞

#{quadratic fields k possessing P , having |∆k| ≤ x}
#{quadratic fields k with |∆k| ≤ x}

,

provided that the limit exists. It is well-known that the denominator here
is asymptotic to 6

π2x, as x→∞. Results of Wood [Wood10], as collected in
[LMPT, Proposition 3.3], imply that

Prob(k imaginary quadratic, qn+1 splits, and q1, . . . , qn inert) =

Prob(k imaginary quadratic) ·Prob(qn+1 splits) ·
n∏
i=1

Prob(qi inert),

that

Prob(k imaginary quadratic) =
1

2
,

and that

Prob(qn+1 splits) =
1

2
(1−Prob(qn+1 ramifies)),

Prob(qi inert) =
1

2
(1−Prob(qi ramifies)) (1 ≤ i ≤ n).

Now for each prime `, the probability that ` ramifies is 1
`+1 . This last fact

may be proved directly by obtaining an asymptotic formula for the count
of fundamental discriminants divisible by `; this amounts to a problem on
squarefree numbers in arithmetic progressions, whose solution is classical.
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In fact, this exact probability calculation is implicit in the proof of [Pol12,
Theorem 1.5]. Thus,

1

2
(1−Prob(` ramifies)) =

`

2`+ 2
≥ 1

3
.

Piecing everything together, we find that

Prob(k imaginary quadratic, qn+1 splits, q1, . . . , qn inert) ≥ 1

2
· (1/3)n+1.

The lemma follows. �

We now prove Theorem C.
Let L1, . . . , Ln be real quadratic fields of prime discriminants p1, . . . , pn,

where the pi are the first n primes satisfying pi ≡ 1 (mod 4). For every
i ≤ n, let qi be a prime which is inert in Li/Q and which splits in Lj/Q
for any i 6= j. Let q be a prime which is inert in all of the extensions
Li/Q. We assume that the n + 1 primes q, q1, . . . , qn are distinct. Finally,
let B1, . . . , Bn be quaternion algebras over Q such that Ram(Bi) = {q, qi}.
The Albert-Brauer-Hasse-Noether theorem implies that if k is a number
field, L/k a quadratic extension of fields and B a quaternion algebra defined
over k, then B admits an embedding of L if and only if no prime of k which
ramified in B splits in L/k. In particular this shows that each quaternion
algebra Bi admits an embedding of the field Li and does not admit an
embedding of Lj for any 1 ≤ j 6= i ≤ n.

For each i ≤ n, let OBi be a maximal order in Bi and Γ1
OBi

the asso-

ciated arithmetic Fuchsian group. Theorem 12.2.6 of [MR03, Chapter 12],
which is stated for arithmetic Kleinian groups but holds mutatis mutan-
dis for arithmetic Fuchsian groups, shows that we may select a hyperbolic
element γi ∈ Γ1

OBi
whose eigenvalue λ(γi) of largest absolute value satis-

fies Li = Q(λ(γi)). Note that the Fuchsian groups {Γ1
OBi
} are pairwise

incommensurable as they are derived from quaternion algebras which are
not isomorphic over Q. Borel’s volume formula [Bor81] (see also [MR03,
Chapter 11.1]) and Lemma 8.2 show that

coarea(Γ1
OBi

) ≤ π

3
(q − 1)(qi − 1) ≤ c1n

c2n

for absolute constants c1, c2 > 0. We may bound `(γi) using the same
argument employed in the proof of Theorem B. This argument, along with
the bound pi < Cn log(2n) for some absolute constant C > 0 which follows
from the prime number theorem for arithmetic progressions, shows that we
may take `(γi) < c3 (n log(2n))2 for some positive constant c3.

Suppose now that k is an imaginary quadratic field in which q splits and
in which all of the qi are inert. This implies that each of the k-quaternion
algebras B1 ⊗Q k, . . . , Bn ⊗Q k are division algebras. In fact, we may con-
clude from Theorem 5.1 that these algebras are all isomorphic to the same
quaternion division algebra B over k. Note that B is the algebra over k for
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which disc(B) = qOk. Conjugating the orders OB1 , . . . ,OBn if necessary,
we may assume that the maximal orders OB1 ⊗ZOk, . . . ,OBn ⊗ZOk are all
equal. Here we have used the fact that all maximal orders in an indefinite
quaternion algebra over Q are conjugate. Denote by O the resulting maxi-
mal order of B. This discussion shows that the Kleinian group Γ1

O contains

all of the Fuchsian groups Γ1
OBi

and hence H3/Γ1
O contains n geodesics lying

on pairwise incommensurable totally geodesic surfaces, all of whose lengths
and areas have been bounded above. Using the trivial estimate ζk(2) < ζ(2)2

and Lemma 8.2, we conclude from Borel’s volume formula [Bor81] that there
are constants c4, c5 > 0 such that

covol(Γ1
O) =

|∆k|
3
2 ζk(2)

4π2

∏
q|qOk

(|q| − 1) ≤ c4n
c5n |∆k|

3
2 .

Theorem C now follows from Lemma 8.3.

Acknowledgments. We thank mathoverflow user ‘GH from MO’ for a
post calling attention to the form of Linnik’s theorem appearing as Propo-
sition 8.1.
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