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Knot cabling and the degree of the
colored Jones polynomial

Efstratia Kalfagianni and Anh T. Tran

Abstract. We study the behavior of the degree of the colored Jones
polynomial and the boundary slopes of knots under the operation of
cabling. We show that, under certain hypothesis on this degree, if a
knot K satisfies the Slope Conjecture then a (p, q)-cable of K satisfies
the conjecture, provided that p/q is not a Jones slope of K. As an ap-
plication we prove the Slope Conjecture for iterated cables of adequate
knots and for iterated torus knots. Furthermore we show that, for these
knots, the degree of the colored Jones polynomial also determines the
topology of a surface that satisfies the Slope Conjecture. We also state
a conjecture suggesting a topological interpretation of the linear terms
of the degree of the colored Jones polynomial (Conjecture 5.1), and we
prove it for the following classes of knots: iterated torus knots and iter-
ated cables of adequate knots, iterated cables of several nonalternating
knots with up to nine crossings, pretzel knots of type (−2, 3, p) and their
cables, and two-fusion knots.
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1. Introduction

1.1. The Slope Conjecture. For a knot K ⊂ S3, let n(K) denote a
tubular neighborhood of K and let

MK := S3 \ n(K)

denote the exterior of K. Let 〈µ, λ〉 be the canonical meridian-longitude
basis of H1(∂n(K)). An element a/b ∈ Q∪{1/0} is called a boundary slope of
K if there is a properly embedded essential surface (S, ∂S) ⊂ (MK , ∂n(K)),
such that ∂S represents aµ+ bλ ∈ H1(∂n(K)). Hatcher showed that every
knot K ⊂ S3 has finitely many boundary slopes [15]. We will use bsK to
denote the set of boundary slopes of K.

For a positive integer n, let JK(n) ∈ Z[v±1/2] be the n-th colored Jones
polynomial of K with framing 0 [18, 27], normalized so that

Junknot(n) =
vn/2 − v−n/2

v1/2 − v−1/2
.

Here v = A−4, where A is the variable in the Kauffman bracket [20].
For a sequence {xn}, let {xn}′ denote the set of its cluster points. Let

d+[JK(n)] denote the highest degree of JK(n) in v, and let d−[JK(n)] denote
the lowest degree. Elements of the sets

jsK :=
{

4n−2d+[JK(n)]
}′

and js∗K :=
{

4n−2d−[JK(n)]
}′

are called Jones slopes of K. Garoufalidis [9] showed that every knot has
finitely many Jones slopes. Furthermore, he formulated the following con-
jecture and he verified it for alternating knots, nonalternating knots with
up to nine crossings, torus knots, and for the family (−2, 3, p) of 3-string
pretzel knots [10].

Conjecture 1.1 (Slope Conjecture). For every knot K ⊂ S3 we have

(jsK ∪ js∗K) ⊂ bsK .
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Futer, Kalfagianni and Purcell [4] verified the conjecture for adequate
knots (see Definition 3.5 for terminology). The works of Garoufalidis and
Dunfield [3] and Garoufalidis and van der Veen [11] verified the conjecture
for a certain 2-parameter family of closed 3-braids, called 2-fusion knots.
More recently, Lee and van der Veen [23] have proved the conjecture for
several more 3-string pretzel knots.

In this paper we study the behavior of the boundary slopes and the Jones
slopes of knots under the operation of cabling and prove the Slope Conjec-
ture for cables of several classes of knots. We also formulate, and verify
for several classes of knots, conjectures providing topological interpretations
of the linear terms of the degree of the colored Jones polynomial (Conjec-
tures 1.6 and 5.1). To state our results we need some preparation.

1.2. Cable knots. Suppose K is a knot with framing 0, and p, q are co-
prime integers. The (p, q)-cable Kp,q of K is the 0-framed satellite of K with
pattern (p, q)-torus knot (see Section 2 for more details). In the statements
of results below, and throughout the paper, we will assume that our cables
are nontrivial in the sense that |q| > 1.

Theorem 1.2. For every knot K ⊂ S3 and (p, q) coprime integers we have(
q2bsK ∪ {pq}

)
⊂ bsKp,q .

To continue, we recall that for any knot K ⊂ S3 the degrees d+[JK(n)]
and d−[JK(n)] are quadratic quasi-polynomials in n [9]. This implies that
their coefficients are periodic functions N→ Q. The least common multiple
of the periods of d+[JK(n)] and d−[JK(n)] is called the period of K, denoted
by π(K).

In this paper we are concerned with the Jones slopes for knots with
π(K) ≤ 2 and for knots where the leading coefficient of d+[JK(n)] becomes
constant for n large enough. We show that the Jones slopes of these knots be-
have similarly to boundary slopes under cabling operations (Propositions 3.2
and 4.4). In particular, for knots with period at most two, combining our
results about Jones slopes with Theorem 1.2 we obtain the following.

Theorem 1.3. Let K be a knot such that, for n� 0,

d+[JK(n)] = a(n)n2 + b(n)n+ d(n)

and

d−[JK(n)] = a∗(n)n2 + b∗(n)n+ d∗(n)

are quadratic quasi-polynomials of period ≤ 2, with b(n) ≤ 0 and b∗(n) ≥ 0.
Suppose p

q /∈ jsK . Then, we have

jsKp,q ⊂
(
q2jsK ∪ {pq/4}

)
and js∗Kp,q

⊂
(
q2js∗K ∪ {pq/4}

)
.

Furthermore, if (jsK ∪ js∗K) ⊂ bsK we have (jsKp,q ∪ js∗Kp,q
) ⊂ bsKp,q .
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The proof of Theorem 1.3 reveals that the properties that b(n) ≤ 0 and
b∗(n) ≥ 0 are preserved under cabling. We conjecture that these properties
hold for all nontrivial knots, and that b(n) and b∗(n) detect the presence of
essential annuli in the knot complement. This is stated in Conjecture 5.1,
which we have verified for all the knots for which the degrees d+[JK(n)] and
d−[JK(n)] are known.

Note that since we take |q| > 1, the hypothesis that p/q is not a Jones
slope of K will automatically be satisfied for knots that have all of their
Jones slopes integers. A large class of knots with integer Jones slopes is
the class of adequate knots, which includes alternating knots, Montesinos
knots of length at least four, pretzel knots with at least four strings and
Conway sums of strongly alternating tangles. The class of semi-adequate
knots (knots that are A– or B-adequate) is much broader including all but
a handful of prime knots up to 12 crossings, all Montesinos and pretzel knots,
positive knots, torus knots, and closed 3-braids. The reader is referred to
Section 3 below for the precise definition (Definition 3.5) and to [7, 5, 6, 12]
and references therein for more details and examples of semi-adequate knots.

Theorem 1.4. Let K be a knot and let K ′ be an iterated cable knot of K.

(1) If K is a B-adequate knot, then jsK′ ⊂ bsK′.
(2) If K is an A-adequate knot, then js∗K′ ⊂ bsK′.

Hence, if K is an adequate knot then K ′ satisfies the Slope Conjecture.

An iterated torus knot is an iterated cable of the trivial knot. As a
corollary of Theorem 1.4 we have the following.

Corollary 1.5. Iterated torus knots satisfy the Slope Conjecture.

Theorem 1.3 also applies to several nonalternating prime knots with up to
nine crossings (see Corollary 3.10). We should mention that Motegi–Takata
[26] used Theorem 1.3 to generalize Corollary 1.5 to all knots of zero Gromov
norm (graph knots).

The proofs of Theorems 1.2 and 1.3 reveal that there is a remarkable sim-
ilarity in the behaviors, under cabling, of the linear terms of d+[JK(n)] and
d−[JK(n)] and the Euler characteristic of the essential surfaces “selected”
by the Slope Conjecture. We conjecture that the cluster points of the sets
{2bK(n)} and {2b∗K(n)} contain information about the topology of essential
surfaces that satisfy the Slope Conjecture for K. To state the conjecture,
let `d+[JK(n)] denote the linear term of d+[JK(n)] and let

jxK :=
{

2n−1`d+[JK(n)]
}′

= {2bK(n)}′.
Conjecture 1.6 (Strong Slope Conjecture). Let K be a knot and let a/b ∈
jsK , with b > 0 and gcd(a, b) = 1, be a Jones slope of K. Then there is an
essential surface S ⊂ MK , with |∂S| boundary components, and such that
each component of ∂S has slope a/b and

χ(S)

|∂S|b
∈ jxK .
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Conjecture 1.6 implies a similar statement for {2b∗K(n)}′ since it is known
that d−[JK(n)] = −d+[JK∗(n)], where K∗ denotes the mirror image of K.
An immediate corollary of Theorem 3.9 is the following:

Corollary 1.7. Iterated cables of adequate knots satisfy the Strong Slope
Conjecture. In particular, iterated torus knots satisfy the Strong Slope Con-
jecture.

We also prove Conjecture 1.6 for pretzel knots of type (−2, 3, p) and all
Montesinos knots with up to nine crossings (see Section 5).

1.3. Organization. The paper is organized as follows. In Section 2 we
study boundary slopes of cable knots and we prove Theorem 1.2. In Sec-
tions 3 and 4 we study the behavior of the degree of the colored Jones
polynomial under knot cabling. In particular, we discuss cables of knots of
period at most two and we prove Theorem 1.3. In fact, the proof of this
theorem allows us to describe explicitly how the Jones slopes of the cable
knot Kp,q are related to those of the original knot K. We apply our results
on knots of period at most two to adequate knots to prove Theorem 1.4. In
Section 5 we state, and partially verify, some conjectures about the degree of
the colored Jones polynomial. Finally in Section 6 we verify Conjecture 5.1
for two-fusion knots.

2. Boundary slopes of cable knots

In this section we study how the boundary slopes of knots in S3 affect
the boundary slopes of their cables. The main result is Theorem 2.2 that
implies in particular Theorem 1.2 stated in the Introduction. Theorem 2.2
and Corollary 2.8 are key ingredients in the proofs of the results of the paper
concerning relations of the colored Jones polynomial to essential surfaces.

2.1. Preliminaries and statement of main result. Let V be a stan-
dardly embedded solid torus in S3 and let V ′ ⊂ V be a second standard
solid torus that is concentric to V . On ∂V ′ we choose a pair of meridian
and canonical longitude (which also determines such a pair on ∂V ). For
coprime integers p, q, let Tp,q ⊂ ∂V ′ be a simple closed curve of slope p/q;
that is a (p, q)-torus knot.

Recall that for a knot K, n(K) denotes a neighborhood of K. Embed V
in S3 by a homeomorphism f : V −→ n(K) that preserves the homology
classes of the canonical longitudes. The (p, q)-cable of K is the image Kp,q :=
f(Tp,q). The space

Cp,q := f(V \ n(Tp,q))

is called a (p, q)-cable space. The complement of Kp,q, denoted by MKp,q , is
obtained from the complement of K by attaching Cp,q. The space Cp,q has
two boundary components; the inner one T− = f(∂n(Tp,q)) = ∂MKp,q and
the outer one T+ = f(∂V ) = ∂MK .
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Definition 2.1. For a knot K ⊂ S3, let 〈µ, λ〉 be the canonical meridian-
longitude basis of H1(∂n(K)). For a pair of integers (a, b), the ratio a/b ∈
Q ∪ {1/0} is called a boundary slope of K if there is a properly embedded
essential surface (S, ∂S) ⊂ (MK , ∂n(K)), such that ∂S represents aµ+ bλ ∈
H1(∂n(K)).

In Definition 2.1, a, b do not need to be coprime. In fact if d = gcd(a, b)
then we have a surface S as above with d boundary components. To stress
this point sometimes we will say that the total slope of ∂S is a/b. Recall
that every knot K has finitely many boundary slopes and that bsK denotes
the set of boundary slopes of K. The rest of the section is devoted to the
proof of the following theorem.

Theorem 2.2.

(a) Let K ⊂ S3 be a nontrivial knot and (p, q) coprime integers. If a/b
is a boundary slope of K, then q2a/b is a boundary slope of Kp,q.

(b) For every knot K ⊂ S3 and (p, q) coprime integers, we have(
q2bsK ∪ {pq}

)
⊂ bsKp,q .

The reader is referred to [14, 16] for basic definitions and terminology. Let
(p, q) be coprime integers. The cable space Cp,q is a Seifert fibered manifold
over an annulus B, with one singular fiber of multiplicity q. In Cp,q there
is an essential annulus A, that is vertical with respect to the fibration, with
∂A ⊂ T− and with boundary slope equal to pq; this annulus is the cabling
annulus. There are two additional essential annuli in Cp,q. One with both
boundary components on T−, each with slope p/q. The other annulus A′

has one component of ∂A′ on T− with slope pq, and the second component
of ∂A′ on T+ with slope p/q. See [13]. In particular, we have the following.

Lemma 2.3. For any cable knot Kp,q, s = pq is a boundary slope in MKp,q .

Recall that a properly embedded surface S in a 3-manifold M with bound-
ary, is essential if the map on π1 induced by inclusion is injective. If S
is orientable this is equivalent to saying that S is incompressible and ∂-
incompressible in M . If S is nonorientable, then S being essential is equiv-

alent to saying that the surface S̃ := ∂(S × I) \ ∂M is incompressible and
∂-incompressible in M .

We need the following lemma, a proof of which is given, for example, in
[21, Proposition 1.1].

Lemma 2.4. Let M be a knot complement in S3 and let Σ be a properly
embedded essential surface in M . Suppose that a path α ⊂ Σ that has its
endpoints on ∂Σ is homotopic relative endpoints in M to a path in ∂M .
Then α is homotopic relative endpoints in Σ to a path in ∂Σ.

The complement MKp,q of the cable knot Kp,q is obtained by gluing Cp,q
and the complement of K along the torus T+. If K is a nontrivial knot,
then the torus T+ is essential in MKp,q ; that is a companion of Kp,q.
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We will use MKp,q\\T+ to denote the 3-manifold obtained by splitting
MKp,q along T+. Also given a properly embedded surface S in MKp,q we will
use S\\T+ to denote the image of S in MKp,q\\T+.

Lemma 2.5. Let K ⊂ S3 be a nontrivial knot and (p, q) coprime integers.
Let S be a properly embedded surface in MKp,q . Suppose that each component
of S\\T+ is essential in the component of MKp,q\\T+ it lies in. Then S is
essential in MKp,q .

Proof. Since S may be nonorientable we will work with the orientable dou-

ble S̃. By way of contradiction, suppose that S̃ is not π1-injective. This

means that S̃ is either compressible or ∂-compressible. Since ∂MKp,q con-
sists of tori, incompressibility implies ∂-incompressibility [14]. Thus we may

assume that there is a compression disk (E, ∂E) ⊂ (MKp,q , S̃). Since each

component of S̃\\T+ is incompressible, the intersection E ∩ T+ must be
nonempty. Since T+ is essential (and thus incompressible in MKp,q) we may
eliminate the closed components of E ∩T+. Thus we may assume that each
component of E ∩T+ is an arc properly embedded in E. By further isotopy

of E, during which ∂E moves on S̃, we may assume that the intersection
E∩T+ is minimal. Now let α be a component of E∩T+ that is outermost on
E: It cuts off a disc E′ ⊂ E whose interior contains no further intersections
with T+. Now ∂E′ consists of α and an arc β that is properly embedded

on a component, say Σ, of S̃\\T+. We can use E′ to isotope β, relatively
∂β, on T+; this isotopy takes place in MKp,q\\T+. Since Σ is essential in
the component of MKp,q\\T+ it lies in, we conclude that the arc β may be
isotopied on Σ, relatively ∂β, to an arc on ∂Σ. This follows from Lemma 2.4.
But this isotopy will reduce the components of the intersection E∩T+, con-

tradicting our assumption of minimality. Thus S̃ must be incompressible
and therefore, by above discussion, essential in MKp,q . �

2.2. Boundary slopes and homology of cable spaces. A slope s on a
torus T is the isotopy class of a simple closed curve on T . Let S(T ) denote
the set of slopes of T . The elements in S(T ) are represented by elements of
Q∪{1/0}. With this in mind we will often refer to a slope by its correspond-
ing numerical value. A homology class in H1(T,Z) is called primitive if it
is not a nontrivial integer multiple of another element in H1(T,Z). There is
a 2-1 correspondence between primitive classes in H1(T,Z) and elements in
S(T ), where α, β ∈ H1(T,Z) give the same slope if and only if α = ±β.

Next we need the following lemma.

Lemma 2.6. Consider a cable knot complement MKp,q = Cp,q ∪ MK as
above. Let s ∈ S(T−) be a slope on T− of Cp,q, corresponding to a/b ∈
Q ∪ {1/0}. Suppose that in Cp,q we have a properly embedded, connected,
essential surface F such that:

(1) The boundary ∂F intersects both of T− and T+.
(2) Each component of ∂F on T− has slope s.
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(3) The total slope of ∂F ∩ T+ is a boundary slope in MK .

Then a/b is a boundary slope in MKp,q .

Proof. Suppose that the total slope of ∂F ∩ T+ corresponds to c/d ∈ Q ∪
{1/0}. Let E be a essential surface in MK with ∂E having total slope c/d.
By passing to the doubles if necessary, we may assume that E and F are
orientable. Let x and y denote the number of components of ∂F and ∂E on
T+, respectively. In Cp,q consider a surface F ′ that is y copies of F and in
MK consider a surface E′ that is x copies of E. Each of ∂E′ and ∂F ′ has xy
components on T+. After isotopy on T+ we may assume that ∂E′ = ∂F ′.
Now S = E′ ∪ F ′ is a properly embedded surface in MKp,q . By assumption,
each component of S\\T+ is essential in the component of MKp,q\\T+ it lies
in. Thus by Lemma 2.5, S is essential in MKp,q . �

The following lemma should be compared with [21, Lemma 2.3].

Lemma 2.7. Let Cp,q be a cable space with ∂C = T− ∪ T+ as above. Let
S− and S+ denote the set of slopes on T− and T+ respectively. There is a
bijection

φ : S− −→ S+,
such that for every s ∈ S− there is a connected, essential properly embedded
surface F ⊂ Cp,q, intersecting both components of ∂Cp,q, and such that each
component ∂F ∩ T− has slope s while each component of ∂F ∩ T+ has slope
φ(s).

Proof. To simplify our notation, throughout this proof, we will use X :=
Cp,q. Identify H1(∂X;Q) with H1(T−;Q)⊕H1(T+;Q).

We claim that the maps i± : H1(T±;Q) −→ H1(X;Q), induced by the
inclusions of T± in X are isomorphisms. To see that i− is an isomorphism
consider the solid torus X∪n(Tp,q), and apply the Mayer–Vietoris long exact
sequence to this decomposition. To see that i+ is an isomorphism decompose
X into a fibered solid torus and an I-bundle T+× I along a vertical annulus
and again apply the Mayer–Vietoris long exact sequence.

The fact that i± are isomorphisms implies the following: Given a primitive
class α− ∈ H1(T−;Z) ⊂ H1(T−;Q) there is a unique primitive class α+ ∈
H1(T+;Z) ⊂ H1(T+;Q) so that

(2.1) α+ = r i−1+ ◦ i−(α−), for some r ∈ Q.

As discussed above, a slope s ∈ S± determines a primitive class α± ∈
H1(T±;Z) up to sign. Given s ∈ S−, determining a primitive element α− ∈
H1(T−,Z) up to sign, define φ(s) to be the slope in S+ that describes the
class α+ ∈ H1(T+,Z) defined in Equation (2.1). This clearly defines a
bijection.

By above discussion, there are relatively prime integers m,n such that

mi−(α−) + ni+(α+) = 0.
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Thus the element mα− + nα+ is in the kernel of the map

i− ⊕ i+ : H1(∂X;Z) −→ H1(X;Z).

Looking at the homology long exact sequence for the pair (X, ∂X), we con-
clude that there is a class A ∈ H1(X, ∂X;Z) such that ∂(A) = mα− + nα+

under the boundary map ∂ : H1(X, ∂X;Z) −→ H1(∂X;Z). Now 3-manifold
theory assures that there is a 2-sided, embedded, essential surface S that
represents A [16, Lemma 6.6]. That is [S] = A. By construction, each com-
ponent of ∂S ∩ T− has slope s while each component of ∂S ∩ T+ has slope
φ(s).

Now S may not be connected. However since S represents A, we have
∂(A) = mα− + nα+ 6= 0. There must be a component F ⊂ S such that
∂([F ]) 6= 0. We claim that F must intersect both components of ∂X. For,
suppose that it doesn’t intersect one component of ∂X; say F ∩ T+ = ∅.
Then the class ∂([F ]) 6= 0 would be a nonzero multiple of α− ∈ H1(∂X;Z).
But this is impossible, since i−(α−) has infinite order in H1(X;Z). Thus
F ∩ T± 6= ∅. To finish the proof of the lemma, note that since F ⊂ S and S
is essential, each component ∂F ∩ T− has slope s while each component of
∂F ∩ T+ has slope φ(s). �

2.3. The proof of Theorem 2.2. We are now ready to prove Theo-
rem 2.2. For part (a) let K be a nontrivial knot and let (p, q) coprime
integers. Suppose that a/b is a boundary slope of K. Let Kp,q be the cable
knot of K. As above we will consider the complement MKp,q obtained by
gluing a cable space Cp,q to the complement MK . We must show that there
is an essential surface S in MKp,q such that the total slope of S ∩ ∂MKp,q is

q2a/b.
On the boundary component T− = ∂MKp,q consider a pair (µ, λ) of merid-

ian and canonical longitude whose homology classes generate H1(T−;Z). Let
r := gcd(aq2, b) and let x = aq2/r and y = b/r. Consider a simple closed
curve γ whose numerical slope is x/y. That is in H1(T−;Z) we have

[γ] = xµ+ yλ.

By Lemma 2.7, applied for s = x/y we have a slope φ(s) on the other
component T+ of Cp,q such that the following is true: There is an essential,
connected, properly embedded surface F ⊂ Cp,q, with ∂F intersecting both
components of ∂Cp,q, and such that each component ∂F ∩ T− has slope s
while each component of ∂F ∩ T+ has slope φ(s).

Since Cp,q is a Seifert fibered space, up to isotopy, essential surfaces are
either vertical or horizontal with respect to the Seifert fibration [14]. Since
the base space of Cp,q is an annulus, the only vertical surfaces in Cp,q are
annuli. In fact, essential surfaces in cable spaces are classified by Gordon
and Litherland in [13, Lemma 3.1]. From that lemma and its proof, it follows
that if F is a vertical annulus in Cp,q, then every component of ∂F ∩T− has
slope pq, while every component of ∂F ∩T+ has slope p/q. In particular, we
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have a/b = p/q and our hypothesis implies that for this to happen p/q must
be a boundary slope of K. On the other hand x/y = pq which, by Lem-
ma 2.3, is always a boundary slope of MKp,q . Thus the desired conclusion
holds in this case.

Now suppose that the surface F is horizontal with respect to the Seifert
fibration of Cp,q. On T− a regular fiber of the fibration can be identified
with the knot H := Kp,q. The only singular fiber of the fibration (that
has multiplicity |q|) may be identified with the knot K on T+. If N is the
number of times that F intersects the regular fibers of Cp,q, then since the
base of the fibration is an annulus we have

0− χ(F )/N = 1− 1/|q|.

It follows that χ(F ) = n′(1 − |q|), where N = n′q. Since the intersection
number of µ and H is 1 we conclude that on ∂T−, the meridian curve µ is a
cross section of the fibration and in H1(∂MKp,q) we have [γ] = nqµ + mH,
where n = n′/r,m ∈ Z and we have (nq,m) = 1. On the other hand we
must have H = pqµ+ λ. Hence we obtain

[∂F ] = r(nq +mq)µ+ rmλ, thus s = x/y = (nq +mpq)/m.

In Cp,q we have a horizontal planar surface that intersects T+ in a single
meridian, call it µ′, and it intersects T− in q copies of µ. This surface may be
taken to be the image of a meridian disk of a neighborhood of K in Cp,q. By
choosing appropriate orientations of µ, µ′, and by the proof of Lemma 2.7,
we may assume that φ(µ) = µ′ and that in H1(Cp,q;Z) we have µ′ = qm.

In H1(T+;Z), the fiber H corresponds to the slope p/q and each compo-
nent of T+∩∂F has the form nµ′+mH. Thus, as also stated in [13, Lemma
3.1], T+ ∩ ∂F has total slope (n + mp)/(mq). The number of components
T+ ∩ ∂F is t = gcd(n+mp,mq). Since in Q we have that (n+mp)/(mq) =
a/b we may take a′ := a/w = n + mp/t and b′ := b/w = mq/t, where
w = gcd(a, b). Thus we may assume that φ(s) = a′/b′. By assumption
a/b is a boundary slope in MK . Thus, Lemma 2.6 applies to conclude that
s = q2a/b is a boundary slope in MKp,q . This finishes the proof of part (a)
of Theorem 2.2.

For a nontrivial knot K, part (b) follows at once from part (a). To
finish the proof of part (b) assume that K is the trivial knot and let (p, q)
coprime integers. Now Kp,q is the (p, q) torus knot. The only boundary
slope of K is a/b = 0/1 and the boundary slopes of Kp,q are 0 and pq. Thus
q2bsK ∪ {pq} = {0, pq} = bsKp,q . �

We close the section with the following corollary that will be useful to us
in subsequent sections.

Corollary 2.8. Let MKp,q = Cp,q ∪MK be the complement of a cable knot,
where |q| > 1. Let F ⊂ Cp,q be a properly embedded essential surface, that
is not an annulus, and such that each component of ∂F ∩ T+ has integral
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slope a. Suppose that there is a connected essential surface S′ ⊂ MK such
that each component of ∂S′ has slope a. Then the following hold:

(1) ∂F ∩ T+ has |q| components and ∂F ∩ T− has a single component of
slope q2a ∈ Z.

(2) There is a connected essential surface S ⊂ MKp,q , such that each

component of ∂S has slope q2a and

χ(S) = |q|χ(S′) +
∣∣∂S′∣∣(1− |q|)|p− aq|,

where |∂S′| denotes the number of boundary components of S′. Fur-
thermore, we have |∂S| = |∂S′|.

Proof. Let F be as in the statement above. By the proof of Theorem 2.2,
since F is not an annulus, F may be isotopied to be horizontal with respect
to the Seifert fibration of Cp,q. Furthermore, ∂F ∩ T+ has total slope

(n+mp)/(mq),

while ∂F ∩ T− has total slope (nq + mpq)/m, for some coprime integers
m,n. The number of components of ∂F ∩ T+ is t = gcd(n + mp,mq), and
each has slope b/c where b = (n+mp)/t and c = mq/t. Since b/c ∈ Z and
gcd(m,n) = 1, it follows that m = ±1 and t = |q|. Hence n = m(qa − p),
where we will have m = 1 or m = −1 according to whether qa ≥ p or qa ≤ p.
Furthermore n > 0, χ(F ) = n(1 − |q|). The rest of the claims in part (1)
follow.

Now we prove part (2). By the proof of Theorem 2.2, an essential surface
S realizing the boundary slope q2a for Kp,q is as in the proof of Lemma 2.6.
Since ∂F ∩ T+ has |q| components, S is constructed by gluing |q| copies of
S′ with |∂S′| copies of F . Hence we have

χ(S) = χ(MK ∩ S) + χ(Cp,q ∩ S) = |q|χ(S′) +
∣∣∂S′∣∣ |aq − p|(1− |q|).

The last equation follows from the fact that χ(Cp,q ∩ S) = |∂S′|χ(F ) and
the above discussion on χ(F ). �

3. Cables of knots with period at most two

In this section we study the behavior of the Jones slopes of knots under
the operation of cabling. The main result is Theorem 3.4 that relates the
Jones slopes of knots of period at most two to the Jones slopes of their
cables. We apply this theorem to prove the Strong Slope Conjecture for
iterated cables of adequate knots and iterated torus knots and the Slope
Conjecture for cables of all the nonalternating knots up to nine crossings
that have period two.

3.1. The colored Jones polynomial. To define the colored Jones poly-
nomial, we first recall the definition of the Chebyshev polynomials of the
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second kind. For n ≥ 0, the polynomial Sn(x) is defined recursively as
follows:

(3.1) Sn+2(x) = xSn+1(x)− Sn(x), S1(x) = x, S0(x) = 1.

Let D be a diagram of a knot K. For an integer m > 0, let Dm denote the
diagram obtained from D by taking m parallels copies of K. This is the m-
cable of D using the blackboard framing; if m = 1 then D1 = D. Let 〈Dm〉
denote the Kauffman bracket of Dm: this is a Laurent polynomial over the
integers in a variable v−1/4 normalized so that 〈unknot〉 = −(v1/2 + v−1/2).
Let c = c(D) = c++c− denote the crossing number and w = w(D) = c+−c−
denote the writhe of D.

For n > 0, we define

JK(n) := ((−1)n−1v(n
2−1)/4)w(−1)n−1〈Sn−1(D)〉

where Sn−1(D) is a linear combination of blackboard cablings of D, obtained
via Equation (3.1), and the notation 〈Sn−1(D)〉 means extend the Kauffman
bracket linearly. That is, for diagrams D1 and D2 and scalars a1 and a2,
〈a1D1 + a2D2〉 = a1〈D1〉+ a2〈D2〉.

For a Laurent polynomial f(v) ∈ C[v±1/4], let d+[f ] and d−[f ] be respec-
tively the maximal and minimal degree of f in v.

Definition 3.1. A quasi-polynomial is a function

f : N→ C, f(n) =

d∑
i=0

ci(n)ni

for some d ∈ N, where ci(n) is a periodic function with integral period for
i = 1, · · · , d. If cd(n) is not identically zero, then the degree of f(n) is d.

The period π of a quasi-polynomial f(n) as above is the least common
multiple of the periods of the ci(n).

Garoufalidis [9] showed that for any knot K ⊂ S3 the degrees d+[JK(n)]
and d−[JK(n)] are quadratic quasi-polynomials. The least common multiple
of the periods of d+[JK(n)] and d−[JK(n)] is called the period of K, denoted
by π(K).

3.2. Cables of knots of period at most 2. In this subsection we will
study knots with period at most two. Examples of such knots include all the
adequate knots and the torus knots. We show that, under a mild hypothesis
satisfied by all the known examples, the property of having period at most
two is preserved under cabling (Proposition 3.2). As a result, if a knot
K ⊂ S3 satisfies the Slope Conjecture and π(K) ≤ 2, then all but at most
two cables of K also satisfy the conjecture.

Proposition 3.2. Let K be a knot such that for n� 0 we have

d+[JK(n)] = a(n)n2 + b(n)n+ d(n)

is a quadratic quasi-polynomial of period ≤ 2, with b(n) ≤ 0.
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Suppose p
q /∈ {4a(n)}. Then for n� 0 we have

d+[JKp,q(n)] = A(n)n2 +B(n)n+D(n)

is a quadratic quasi-polynomial of period ≤ 2, with

{A(n)} ⊂
(
{q2a(n)} ∪ {pq/4}

)
and B(n) ≤ 0.

Proof. Since d+[JK(n)] is a quadratic quasi-polynomial of period ≤ 2, for
n� 0 we can write

d+[JK(n)] =

{
a0n

2 + b0n+ d0 if n is even,

a1n
2 + b1n+ d1 if n is odd.

Recall that Kp,q is the (p, q)-cable of a knot K, where p, q are coprime
integers and |q| > 1. It is known that K−p,−q = rKp,q, where rKp,q denotes
Kp,q with the opposite orientation, and that the colored Jones polynomial
of a knot is independent of the orientation of the knot. Hence, without loss
of generality, we will assume that q > 1.

For n > 0, let Sn be the set of all k such that

|k| ≤ (n− 1)/2 and k ∈

{
Z if n is odd,

Z + 1
2 if n is even.

By [33], for n > 0 we have

(3.2) JKp,q(n) = vpq(n
2−1)/4

∑
k∈Sn

v−pk(qk+1)JK(2qk + 1),

where it is understood that JK(−m) = −JK(m).
In the above formula, there is a sum. Under the assumption of the propo-

sition, we will show that there is a unique term of the sum whose highest
degree is strictly greater than those of the other terms. This implies that
the highest degree of the sum is exactly equal to the highest degree of that
unique term.

Let S+n = {k ∈ Sn | k ≥ 0} and S−n = {k ∈ Sn | k ≤ −1
2}. For k ∈ Sn let

f(k) = d+[v−pk(qk+1)JK(2qk + 1)].

Let g±i (x), for i ∈ {0, 1}, be the quadratic real polynomials defined by

g±i (x) = (−pq + 4q2ai)x
2 + (−p+ 4qai ± 2qbi)x+ ai ± bi + di.

For k ∈ Sn we have f(k) = −pk(qk + 1) + d+[JK(|2qk + 1|)], which gives

f(k) =


g+0 (k) if k ∈ S+n and 2qk + 1 is even,

g−0 (k) if k ∈ S−n and 2qk + 1 is even,

g+1 (k) if k ∈ S+n and 2qk + 1 is odd,

g−1 (k) if k ∈ S−n and 2qk + 1 is odd.
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Case 1. Suppose that q is even. For k ∈ Sn, since 2qk + 1 is odd we have

f(k) =

{
g+1 (k) if k ∈ S+n ,
g−1 (k) if k ∈ S−n .

Subcase 1.1. Assume that p/q < 4a1.
Since −pq + 4q2a1 > 0, the quadratic polynomial g+1 (x) is concave up.

Hence, for n � 0, g+1 (k) is maximized on S+n at k = (n − 1)/2. Similarly,
g−1 (k) is maximized on S−n at k = (1− n)/2. Note that

g+1
(
(n− 1)/2

)
− g−1

(
(1− n)/2

)
= (−p+ 4qa1)(n− 1) + 2b1 > 0

for n � 0. Hence f(k) is maximized on the set Sn at k = (n− 1)/2. Since
f
(
(n− 1)/2

)
= g+1

(
(n− 1)/2

)
, Equation (3.2) then implies that

d+[JKp,q(n)] = pq(n2 − 1)/4 + g+1
(
(n− 1)/2

)
= q2a1n

2 +
(
qb1 + (q − 1)(p− 4qa1)/2

)
n

+ a1(q − 1)2 − (b1 + p/2)(q − 1) + d1

for n� 0. Since we assumed that q > 1, we have that

B(n) = qb1 + (q − 1)(p− 4qa1)/2 < 0,

and the conclusion follows in this case.

Subcase 1.2. Assume that p/q > 4a1.
Since −pq + 4q2a1 < 0, the quadratic polynomial g+1 (x) is concave down

and attains its maximum at

x = x0 := −
(

1

2q
+

b1
−p+ 4qa1

)
.

Since b1 ≤ 0, we have x0 < 0. This implies that g+1 (x) is a strictly decreasing
function on [0,∞). Similarly, g−1 (x) is a strictly increasing function on
(−∞,−1

2 ].

First suppose n is even. Then k ∈ Z + 1
2 . In this subcase, g+1 (k) is

maximized on S+n at k = 1
2 and g−1 (k) is maximized on S−n at k = −1

2 . Note

that g+1 (12)− g−1 (−1
2) = (−p+ 4qa1) + 2b1 < 0. Hence f(k) is maximized on

Sn at k = −1/2. Since f(−1
2) = g−1 (−1

2), Equation (3.2) then implies that

d+[JKp,q(n)] = pq(n2 − 1)/4 + g−1 (−1/2)

for even n� 0. Similarly, for odd n� 0 we obtain

d+[JKp,q(n)] = pq(n2 − 1)/4 + g+1 (0).

Note that B(n) = 0 in this case.

Case 2. Suppose that q is odd. As in Case 1 we have the following.
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Subcase 2.1. Suppose that n is even.
For k ∈ Sn, we have k ∈ Z + 1

2 and 2qk + 1 is even. Hence

f(k) =

{
g+0 (k) if k ∈ S+n ,
g−0 (k) if k ∈ S−n .

If p/q < 4a0 then f(k) is maximized on Sn at k = (n− 1)/2. Hence

d+[JKp,q(n)] = pq(n2 − 1)/4 + g+0
(
(n− 1)/2

)
= q2a0n

2 +
(
qb0 + (q − 1)(p− 4qa0)/2

)
n

+ a0(q − 1)2 − (b0 + p/2)(q − 1) + d0.

In this case we have B(n) = qb0 + (q − 1)(p− 4qa0)/2 < 0.
If p/q > 4a0 then f(k) is maximized on Sn at k = −1/2. Hence

d+[JKp,q(n)] = pq(n2 − 1)/4 + g−0 (−1/2).

Note that B(n) = 0 in this case.

Subcase 2.2. Suppose that n is odd.
For k ∈ Sn, we have k ∈ Z and 2qk + 1 is odd. Hence

f(k) =

{
g+1 (k) if k ∈ S+n ,
g−1 (k) if k ∈ S−n .

If p/q < 4a1 then f(k) is maximized on Sn at k = (n− 1)/2. Hence

d+[JKp,q(n)] = pq(n2 − 1)/4 + g+1
(
(n− 1)/2

)
= q2a1n

2 +
(
qb1 + (q − 1)(p− 4qa1)/2

)
n

+ a1(q − 1)2 − (b1 + p/2)(q − 1) + d1.

In this case we have B(n) = qb1 + (q − 1)(p− 4qa1)/2 < 0.
If p/q > 4a1 then f(k) is maximized on Sn at k = 0. Hence

d+[JKp,q(n)] = pq(n2 − 1)/4 + g+1 (0).

Note that B(n) = 0 in this case.

This completes the proof of Proposition 3.2. �

Remark 3.3.

(1) Proposition 3.2 generalizes [29, Lemma 2.2], [28, Lemma 2.2], [31,
Lemma 3.1] and [32, Lemma 3.2].

(2) When π(K) is greater than 2 then determining the highest degree of
JKp,q(n) in Equation (3.2) becomes harder as there might be more
opportunities for cancellation between terms. This case will be dis-
cussed in Section 4.

Proposition 3.2 and Theorem 2.2 imply the following.
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Theorem 3.4. Let K be a knot such that for n� 0 we have

d+[JK(n)] = a(n)n2 + b(n)n+ d(n)

is a quadratic quasi-polynomial of period ≤ 2, with b(n) ≤ 0.
Suppose p

q /∈ jsK . Then for n� 0 we have

d+[JKp,q(n)] = A(n)n2 +B(n)n+D(n)

is a quadratic quasi-polynomial of period ≤ 2, with B(n) ≤ 0. Moreover, if
jsK ⊂ bsK we have jsKp,q ⊂ bsKp,q .

Similarly, let K be a knot such that for n� 0 we have

d−[JK(n)] = a∗(n)n2 + b∗(n)n+ d∗(n)

is a quadratic quasi-polynomial of period ≤ 2, with b∗(n) ≥ 0. Suppose
p
q /∈ js

∗
K . Then for n� 0 we have

d−[JKp,q(n)] = A∗(n)n2 +B∗(n)n+D∗(n)

is a quadratic quasi-polynomial of period ≤ 2, with B∗(n) ≥ 0. Moreover, if
js∗K ⊂ bsK we have js∗Kp,q

⊂ bsKp,q .

Proof. The first part of the theorem follows immediately by Proposition 3.2
and Theorem 2.2. To obtain the second part recall that if K∗ denotes the
mirror image of K then JK∗(n) is obtained from JK(n) by replacing the
variable v with v−1. Now the result will follow by applying Proposition 3.2
and Theorem 2.2 to K∗. �

3.3. Strong Slope Conjecture for cables of adequate knots. Let D
be a link diagram, and x a crossing of D. Associated to D and x are two
link diagrams, each with one fewer crossing than D, called the A-resolution
and B-resolution of the crossing. See Figure 1.

A Kauffman state σ is a choice of A-resolution or B-resolution at each
crossing of D. Corresponding to every state σ is a crossing–free diagram
sσ: this is a collection of circles in the projection plane. We can encode the
choices that lead to the state σ in a graph Gσ, as follows. The vertices of
Gσ are in 1−1 correspondence with the state circles of sσ. Every crossing x
of D corresponds to a pair of arcs that belong to circles of sσ; this crossing
gives rise to an edge in Gσ whose endpoints are the state circles containing
those arcs.

Every Kauffman state σ also gives rise to a surface Sσ, as follows. Each
state circle of σ bounds a disk in S3. This collection of disks can be disjointly
embedded in the ball below the projection plane. At each crossing of D, we
connect the pair of neighboring disks by a half-twisted band to construct a
surface Sσ ⊂ S3 whose boundary is K. See Figure 2 for an example where
σ is the all-B state.

Definition 3.5. A link diagram D is called A-adequate if the state graph
GA corresponding to the all-A state contains no 1-edge loops. Similarly, D
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Figure 1. From left to right: A crossing, the A-resolution
and the the B-resolution.

Figure 2. From left to right: An example link diagram, the
graph Gσ corresponding to state surface Sσ. Figure borrowed
from [8].

is called B-adequate if the all-B graph GB contains no 1-edge loops. A link
diagram is adequate if it is both A- and B-adequate. A link that admits an
adequate diagram is also called adequate.

The number of negative crossings c− of an A-adequate knot diagram is
a knot invariant. Similarly, the number of positive crossings c+ of a B-
adequate knot diagram is a knot invariant. Let vA (resp. vB) be the number
of state circles in the all-A (resp. all-B) state of the knot diagram D.

The following summarizes [24, Lemma 5.4], [22, Proposition 2.1] and [19,
Theorem 3.1].

Lemma 3.6. Let D be a diagram of a knot K.

(1) We have

2 d−[JK(n)] ≥ −c−n2 + (c− vA)n+ vA − c+.

Equality holds for all n ≥ 1 if D is A-adequate. Moreover, if equality
holds for some n ≥ 3 then D is A-adequate.

(2) We have

2 d+[JK(n)] ≤ c+n2 + (vB − c)n+ c− − vB.

Equality holds for all n ≥ 1 if D is B-adequate. Moreover, if equality
holds for some n ≥ 3 then D is B-adequate.

The following theorem, which implies that the Slope Conjecture is true
for adequate knots, summarizes results proved in [4, 5].
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Theorem 3.7. Let D be an A-adequate diagram of a knot K. Then the state
surface SA is essential in the knot complement MK , and it has boundary
slope −2c−. Furthermore, we have

−2c− = lim
n→∞

4n−2d−[JK(n)].

Similarly, if D is a B-adequate diagram of a knot K, then SB is essential
in the knot complement MK , and it has boundary slope −2c+. Furthermore,
we have

2c+ = lim
n→∞

4n−2d+[JK(n)].

By Lemma 3.6, the highest degree of the colored Jones polynomial of a
B-adequate knot is an actual quadratic polynomial in n. That is the period
is one. The following lemma shows that the term b ≤ 0 and thus nontrivial
B-adequate knots satisfy the hypothesis of Proposition 3.2.

Lemma 3.8. Suppose D is a diagram of a nontrivial knot K. Then vB ≤ c.
Furthermore, if vB = c then K is a torus knot.

Proof. Let D be a diagram of a nontrivial knot and let SB be the all-B
state surface obtained from D. Recall that SB is a surface with a single
boundary component obtained by starting with vB disks and attaching a
half-twisted band for each crossing of D. Thus the Euler characteristic
of SB is χ(SB) = vB − c. Since D represents a nontrivial knot, we have
χ(SB) ≤ 0 and thus vB ≤ c.

If χ(SB) = vB − c = 0, then (since ∂SB has one component) SB must be
a Mobius band. This implies that D is the standard closed 2-braid diagram
of a (2, q)-torus knot. �

The above discussion shows that the first part of Theorem 3.4 applies
to nontrivial B-adequate knots. Similarly the second part of the theorem
applies to nontrivial A-adequate knots. We are now ready to prove the
following theorem that implies Theorem 1.4 stated in the introduction.

Theorem 3.9. Let K be a B-adequate knot and K ′ := K(p1,q1),(p2,q2),··· ,(pr,qr)
an iterated cable knot of K. Then we have jsK′ ⊂ bsK′. Furthermore, for
n� 0,

d+[JK′(n)] = An2 +Bn+D(n),

is a quadratic quasi-polynomial of period ≤ 2, with 4A ∈ Z, 2B ∈ Z and
B ≤ 0, and there is an essential surface S′ in the complement of K ′ with
boundary slope 4A and such that χ(S′) = 2B. In particular K ′ satisfies the
Strong Slope Conjecture.

Proof. SupposeK is a B-adequate knot. First, we prove that the conclusion
of Theorem 3.9 holds true for the cable knot Kp1,q1 . We will distinguish two
cases according to whether K is a nontrivial knot or not.
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Case 1. Suppose that K is nontrivial. Then, by Lemmas 3.6 and 3.8 we
have

d+[JK(n)] = an2 + bn+ d

for n > 0, where a = c+/2, b = (vB − c)/2 ≤ 0 and d = (c− − vB)/2. By
Theorem 3.7, 4a = 2c+ is a boundary slope of K. Furthermore, an essential
surface that realizes this boundary slope is the state surface SB. Since SB
is constructed by joining vB disks with c bands we have |∂SB| = 1 and
χ(SB) = vB − c = 2b. Thus the conclusion is true in this case.

Now we consider a cable Kp1,q1 of K. Since |q1| > 1, and the Jones
slopes of K are integers, we have p1

q1
/∈ jsK . Theorem 3.4 and the proof of

Proposition 3.2 then imply that

d+[JKp1,q1
(n)] = A1n

2 +B1n+D1(n)

is a quadratic quasi-polynomial of period ≤ 2, with 4A1 ∈ Z, 2B1 ∈ Z
and B1 ≤ 0. Moreover, since jsK ⊂ bsK we have jsKp1,q1

⊂ bsKp1,q1
.

Furthermore, the proof of Proposition 3.2 shows that one of the following is
true:

(1) We have 4A1 = pq and B1 = 0.
(2) We have 4A1 = 4q2a and 2B1 = 2|q|b+ (1− |q|)|4aq − p|.

In case (1), the surface S with boundary slope pq is the cabling annulus; thus
χ(S) = 0 = 2B1. In case (2), an essential surface S realizing the boundary
slope 4A1 = 4q2a = 2q2c+ is obtained by Theorem 2.2. By Corollary 2.8
we have |∂S| = |∂SB| = 1 and χ(S) = |q|χ(SB) + (1 − |q|)|4aq − p| = 2B1.
Thus the conclusion follows for Kp1,q1 .

Case 2. Suppose that K is the trivial knot. Then Kp1,q1 is the (p1, q1)-torus
knot. Note that 0 and p1q1 are boundary slopes of Kp1,q1 ; realized by a
Seifert surface and an annulus respectively.

For n > 0, by [25] (or by Equation (3.2)) we have

JKp1,q1
(n) = vp1q1(n

2−1)/4
∑
k∈Sn

v−p1k(q1k+1) v
(2qk+1)/2 − v−(2qk+1)/2

v1/2 − v−1/2
.

By [10, Section 4.8], [30, Lemma 1.4] and [29, Lemma 2.1], we have the
following. If p1 > 0 and q1 > 0 then

d+[JKp1,q1
(n)] =

(
p1q1n

2 + d(n)
)
/4

where d(n) = −p1q1 − 1
2

(
1 + (−1)n

)
(p1 − 2)(q1 − 2) is a periodic sequence

of period ≤ 2. In this case we have A1(n) = p1q1/4 and B1(n) = 0.
If p1 < 0 < q1 then

d+[JKp1,q1
(n)] =

(
(p1q1 − p1 + q1)n− (p1q1 − p1 + q1)

)
/2.

In this case we have A1(n) = 0 and B1(n) = (p1q1 − p1 + q1)/2. Note that
p1q1 − p1 + q1 = 1 + (p1 + 1)(q1 − 1) ≤ 0.
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K jsK ∪ js∗K b(n) b∗(n)
819 {12, 0} 0 5/2
821 {1,−12} −1 3/2
942 {6,−8} −1/2 5/2
945 {1,−14} −1 2
946 {2,−12} −1/2 5/2
947 {9,−6} −1 2
948 {11,−4} −3/2 3/2
949 {15, 0} −3/2 3/2

Table 1. The knots up to nine crossings of period two.

In both cases we have that

d+[JKp1,q1
(n)] = A1n

2 +B1n+D1(n)

is a quadratic quasi-polynomial of period ≤ 2, with 4A1 ∈ Z, 2B1 ∈ Z and
B1 ≤ 0. Moreover, we have

jsKp1,q1
⊂ bsKp1,q1

.

For p1 > 0 and q1 > 0, an essential surface with slope p1q1 for Kp1,q1 is
the cabling annulus A; thus χ(A1) = 0 = 2B1. For p1 < 0 < q1, the genus
of Kp1,q1 is g = −(q1 − 1)(p1 + 1)/2. A Seifert surface S of minimal genus
for Kp1,q1 has boundary slope 0 and χ(S) = 1− 2g = p1q1 − p1 + q1 = 2B1.
This proves the desired conclusion for the torus knot Kp1,q1 .

We have proved that the conclusion of Theorem 3.9 holds true for the
cable knot Kp1,q1 . Now, applying the arguments in Case 1 repeatedly will
finish the proof of the theorem for iterated cables. �

3.4. Proof of Theorem 1.4. Part (1) is immediate from Theorem 3.9.
Suppose now that K is A-adequate. Then the mirror image K∗ is B-
adequate. Furthermore, JK∗(n) is obtained from JK(n) by replacing v with
v−1. Thus in this case the result will follow by applying Theorem 3.9 to K∗.

3.5. Low crossing knots with period two. Theorem 3.4 applies to sev-
eral nonalternating knots with 8 and 9 crossings. The Jones slopes of all
nonalternating prime knots with up to nine crossings were calculated by
Garoufalidis in Section 4 of [10]. According to [10] the knots of period two
are the ones shown in Table 1. The remaining knots, which are 820, 943, 944,
have periods 3 and they will be treated in Section 4.

Corollary 3.10. Let K be any knot of Table 1 and let K ′ be an iterated
cable of K. Then K ′ satisfies the Slope Conjecture.

Proof. Due to different conventions and normalizations of the colored Jones
polynomial, d+[JK(n)] (resp. d−[JK(n)]) in our paper is different from δK(n)
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(resp. δ∗K(n)) in [10]. For n > 0 we have

d+[JK(n)] = δK(n− 1) + (n− 1)/2,

d−[JK(n)] = δ∗K(n− 1) + (1− n)/2.

Consider the nonalternating knot K = 819. By [10, Section 4] we have

d+[JK(n)] = 3n2 −
(
13 + (−1)n

)
/4,

d−[JK(n)] = 5(n− 1)/2.

Moreover, jsK = {12} ⊂ bsK and js∗K = {0} ⊂ bsK . In particular, the
Jones slopes are integers and we have b(n) ≤ 0 and b∗(n) ≥ 0. Similar
analysis applies to the knots of Table 1.

Now given a cable Kp,q of K, since |q| > 1, p/q is not a Jones slope
of K. Theorem 3.4 implies that jsKp,q ⊂ bsKp,q and that js∗Kp,q

⊂ bsKp,q .

In particular, Kp,q satisfies the Slope Conjecture. Applying this argument
repeatedly we obtain the result for iterated cables. �

4. Cabling knots with constant a(n)

In Section 3 we studied the behavior of d+[JK(n)] under knot cabling for
knots of period at most two. In this section we study knots with period
greater than two under the additional hypothesis that, for n � 0 we have
a(n) = a, where a is a constant. In this case, by abusing the terminology,
we will say that a(n) is constant. The main result in this section is the
following.

Theorem 4.1. Let K be a knot such that for n� 0 we have

d+[JK(n)] = an2 + b(n)n+ d(n)

where a is a constant, b(n) and d(n) are periodic functions with b(n) ≤ 0.
Let

M1 = max{|b(i)− b(j)| : i ≡ j (mod 2)},
M2 = max{2b(i) + |b(i)− b(j)|+ |d(i)− d(j)| : i ≡ j (mod 2)}.

Suppose p− (4a−M1)q < 0 or p− (4a+M1)q > max{0,M2}. Then for
n� 0 we have

d+[JKp,q(n)] = An2 +B(n)n+D(n)

where A is a constant, and B(n), D(n) are periodic functions with B(n) ≤ 0.
Moreover, if jsK ⊂ bsK then jsKp,q ⊂ bsKp,q .

As a corollary of Theorem 4.1 and Theorem 2.2 we obtain the following
result which implies, in particular, that for knots with constant a(n) the
Slope Conjecture is closed under cabling for infinitely many pairs (p, q).

Corollary 4.2. Let K be a knot such that for n� 0 we have

d+[JK(n)] = an2 + b(n)n+ d(n)
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where a is a constant, b(n) and d(n) are periodic functions with b(n) ≤ 0.
Let M1,M2 be as in the statement of Theorem 4.1. If K satisfies the Slope
Conjecture, then Kp,q satisfies the conjecture provided that p−(4a−M1)q < 0
or p− (4a+M1)q > max{0,M2}.
Example 4.3. As an illustration we apply Theorem 4.1 and Corollary 4.2
to the knots 820, 943, 944. By [10, Section 4], these are the only knots, with at
most nine crossings, that have Jones period larger than 2. Indeed, the period
of these knots is 3. Another application of Theorem 4.1 will be illustrated
in Example 6.3.

For K = 820 we have

d+[JK(n)] =

{
2n2/3− n/2− 1/6 if n 6≡ 0 (mod 3)

2n2/3− 5n/6− 1/2 if n ≡ 0 (mod 3).

Hence Kp,q satisfies the Slope Conjecture if p− 7
3q < 0 or p− 3q > 0.

For K = 943 we have

d+[JK(n)] =

{
8n2/3− n/2− 13/6 if n 6≡ 0 (mod 3)

8n2/3− 5n/6− 7/2 if n ≡ 0 (mod 3).

Hence Kp,q satisfies the Slope Conjecture if p− 31
3 q < 0 or p− 11q > 2

3 .
For K = 944 we have

d+[JK(n)] =

{
7n2/6− n− 1/6 if n 6≡ 0 (mod 3)

7n2/6− 4n/3− 1/2 if n ≡ 0 (mod 3).

Hence Kp,q satisfies the Slope Conjecture if p− 13
3 q < 0 or p− 5q > 0.

Theorem 4.1 follows from Theorem 1.2 and the following proposition.

Proposition 4.4. Let K be a knot such that for n� 0 we have

d+[JK(n)] = an2 + b(n)n+ d(n)

where a is a constant, b(n) and d(n) are periodic functions with b(n) ≤ 0.
Let

M1 = max{|b(i)− b(j)| : i ≡ j (mod 2)},
M2 = max{2b(i) + |b(i)− b(j)|+ |d(i)− d(j)| : i ≡ j (mod 2)}.

Suppose p− (4a−M1)q < 0 or p− (4a+M1)q > max{0,M2}. Then for
n� 0 we have

d+[JKp,q(n)] = An2 +B(n)n+D(n)

where A is a constant with A ∈ {q2a, pq/4}, and B(n), D(n) are periodic
functions with B(n) ≤ 0.

Proof. Fix n � 0. Recall the cabling formula (3.2) of the colored Jones
polynomial

JKp,q(n) = vpq(n
2−1)/4

∑
k∈Sn

v−pk(qk+1)JK(2qk + 1).
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In the above formula, there is a sum. As in the proof of Proposition 3.2 we
will show that, under the assumption of the proposition, there is a unique
term of the sum whose highest degree is strictly greater than those of the
other terms. This implies that the highest degree of the sum is exactly equal
to the highest degree of that unique term.

For k ∈ Sn let

f(k) := d+[v−pk(qk+1)JK(2qk + 1)] = −pk(qk + 1) + d+[JK(|2qk + 1|)].
The goal is to show that f(k) attains its maximum on Sn at a unique k.

Since d+[JK(n)] is a quadratic quasi-polynomial, f(k) is a piece-wise qua-
dratic polynomial. The above goal will be achieved in 2 steps. In the first
step we show that f(k) attains its maximum on each piece at a unique k.
Then in the second step we show that the maximums of f(k) on all the
pieces are distinct.

Step 1. Let π be the period of d+[JK(n)]. For ε ∈ {±1} and 0 ≤ i < π, let
hεi (x) be the quadratic real polynomial defined by

hεi (x) := (−pq + 4q2a)x2 + (−p+ 4qa+ 2qb(i)ε)x+ a+ b(i)ε+ d(i).

For each k ∈ Sn, we have f(k) = hεkik (k) for a unique pair (εk, ik). Let

In := {(εk, ik) | k ∈ Sn}.
Then f(k) is a piece-wise quadratic polynomial of exactly |In| pieces, each
of which is associated with a unique pair (ε, i) in In.

For each (ε, i) ∈ In, let

Sn,ε,i := {k ∈ Sn | (εk, ik) = (ε, i)}
which is the set of all k on the piece associated with (ε, i).

The quadratic polynomial hεi (x) is concave up if p−4qa < 0, and concave
down if p− 4qa > 0. Hence, for n� 0, hεi (k) is maximized on the set Sn,ε,i
at a unique k = kn,ε,i, where

kn,ε,i :=

{
maxSn,ε,i if (p− 4qa)ε < 0,

minSn,ε,i if (p− 4qa)ε > 0.

Note that, as in the proof of Proposition 3.2, we use the assumption that
b(i) ≤ 0 when (p− 4qa)ε > 0. Moreover we have{

|kn,ε,i| → ∞ as n→∞, if p− 4qa < 0

|kn,ε,i| ≤ π, if p− 4qa > 0.

Step 2. Let
Maxn := max{f(k) | k ∈ Sn}.

From Step 1 we have Maxn = max{hεi (kn,ε,i) | (ε, i) ∈ In}. We claim that

hε1i1 (kn,ε1,i1) 6= hε2i2 (kn,ε2,i2)

for (ε1, i1) 6= (ε2, i2).
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Indeed, let k1 := kn,ε1,i1 and k2 := kn,ε2,i2 . Note that k1 6= k2. Moreover,
k1 and k2 are both in Z or 1

2 + Z. As a result we have k1 ± k2 ∈ Z, and
i1 − i2 ≡ 2q(k1 − k2) ≡ 0 (mod 2). Let

σ := hε1i1 (k1)− hε2i2 (k2).

Without loss of generality, we can assume that |k1| ≥ |k2|. Then we write
σ = σ′ + d(i1)− d(i2) where

σ′ :=


(k1 − k2)

(
(−p+ 4qa)

(
q(k1 + k2) + 1

)
+ 2qb(i1)ε1

)
+
(
b(i1)− b(i2)

)
ε1(2qk2 + 1) if ε1 = ε2,(

(−p+ 4qa)(k1 − k2) + 2b(i1)ε1

)(
q(k1 + k2) + 1

)
−
(
b(i1)− b(i2)

)
ε1(2qk2 + 1) if ε1 6= ε2.

We consider the following 2 cases.

Case 1. Suppose that p−(4a−M1)q < 0. In particular, we have p−4qa < 0.
There are 2 subcases.

Subcase 1.1. We have ε1 = ε2. Since k1 and k2 have the same sign, we have

|q(k1 + k2) + 1| − |2qk2 + 1| = 2q(|k1| − |k2|) ≥ 0.

Hence

|σ′| ≥
∣∣(−p+ 4qa)

(
q(k1 + k2) + 1

)
+ 2qb(i1)ε1

∣∣
−
∣∣(b(i1)− b(i2))(q(k1 + k2) + 1

)∣∣
≥
(
− p+ 4qa− |b(i1)− b(i2)|

)
|q(k1 + k2) + 1|+ 2qb(i1).

Since |q(k1 + k2) + 1| → ∞ as n→∞, and

−p+ 4qa− |b(i1)− b(i2)| ≥ −p+ 4qa−M1 > 0

we get |σ′| → ∞ as n→∞.

Subcase 1.2. We have ε1 6= ε2. Since k1 and k2 have opposite signs, we have

(q|k1 − k2|+ 1)− |2qk2 + 1| ≥ 2q(|k1| − |k2|) ≥ 0.

Hence

|σ′| ≥
∣∣(−p+ 4qa)(k1 − k2) + 2b(i1)ε1

∣∣− |b(i1)− b(i2)| (q|k1 − k2|+ 1)

≥
(
− p+ 4qa− q|b(i1)− b(i2)|

)
|k1 − k2| − |b(i1)− b(i2)|+ 2b(i1).

Since |k1 − k2| → ∞ as n→∞, and

−p+ 4qa− q|b(i1)− b(i2)| ≥ −p+ 4qa− qM1 > 0,

we get |σ′| → ∞ as n→∞.

Case 2. Suppose that p− (4a+M1)q > max{0,M2}. There are 2 subcases.
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Subcase 2.1. We have ε1 = ε2. Note that q(k1 + k2) + 1 and ε1 have the
same sign. Moreover, both −p + 4qa and 2qb(i1) are nonpositive. As in
Subcase 1.1 we have

|σ′| ≥
∣∣(−p+ 4qa)

(
q(k1 + k2) + 1

)
+ 2qb(i1)ε1

∣∣
−
∣∣(b(i1)− b(i2))(q(k1 + k2) + 1

)∣∣
=
(
p− 4qa− |b(i1)− b(i2)|

)
|q(k1 + k2) + 1| − 2qb(i1).

Since p− 4qa− |b(i1)− b(i2)| ≥ p− 4qa−M1 > max{0,M2}, we get

|σ′| > M2 − 2qb(i1) ≥ |d(i1)− d(i2)|.

Subcase 2.2. We have ε1 6= ε2. Note that k1−k2 and ε1 have the same sign.
Moreover, both −p+ 4qa and 2qb(i1) are nonpositive. As in Subcase 1.2 we
have

|σ′| ≥
∣∣(−p+ 4qa)(k1 − k2) + 2b(i1)ε1

∣∣− |b(i1)− b(i2)| (q|k1 − k2|+ 1)

=
(
p− 4qa− q|b(i1)− b(i2)|

)
|k1 − k2| − |b(i1)− b(i2)| − 2b(i1).

Since p− 4qa− q|b(i1)− b(i2)| ≥ p− 4qa− qM1 > max{0,M2}, we get

|σ′| > M2 − |b(i1)− b(i2)| − 2b(i1) ≥ |d(i1)− d(i2)|.

In all cases, for n� 0 we have |σ′| > |d(i1)− d(i2)|. Hence

σ = σ′ + d(i1)− d(i2) 6= 0.

We have proved that f(k) attains its maximum on Sn at a unique k. More
precisely, there exists a unique (εn, in) ∈ In such that hεin(kn,εn,in) = Maxn.

Equation (3.2) then implies that

d+[JKp,q(n)] = pq(n2 − 1)/4 + hεni (kn,εn,in).

If p−4qa < 0 then kn,εn,in = εn(n/2+sn), where sn is a periodic sequence
and sn ≤ −1/2. We have

d+[JKp,q(n)] = q2an2 +
(
(−p+ 4qa)(qsn + εn/2) + qb(in)

)
n− pq/4

+ (−p+ 4qa)sn(qsn + εn) + 2qb(in)sn + a+ b(in)εn + d(in).

In this case we have

B(n) = (−p+ 4qa)(qsn + εn/2) + qb(in) < 0,

since qsn + εn/2 ≤ −q/2 + 1/2 < 0 and b(in) ≤ 0.
If p−4qa > 0 then kn,εn,in = sn, where sn is a periodic function. We have

d+[JKp,q(n)] = pq(n2 − 1)/4 + (−p+ 4qa)sn(qsn + 1) + 2qb(in)εnsn

+ a+ b(in)εn + d(in).

In this case we have B(n) = 0.

This completes the proof of Proposition 4.4. �
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5. Conjectures

Recall that for every nontrivial knot K ⊂ S3, there is an integer NK > 0
and periodic functions aK(n), bK(n), cK(n) such that

d+[JK(n)] = aK(n)n2 + bK(n)n+ cK(n)

for n ≥ NK . In Propositions 3.2 and 4.4 we made the assumption that
b(n) ≤ 0. Then we concluded that, under the appropriate hypotheses, this
property is preserved under cabling. As we will discuss below, the property
that b(n) ≤ 0 is known to hold for all nontrivial knots, of any period, for
which bK(n) has been calculated.

We propose the following conjecture.

Conjecture 5.1. For every nontrivial knot K ⊂ S3, we have

bK(n) ≤ 0.

Moreover, if bK(n) = 0 then K is a composite knot or a cable knot or a
torus knot.

Note that bU (n) = 1/2 for the trivial knot U .

Remark 5.2. It is known that a knot K is composite or cable or a torus
knot if and only if its complement MK contains embedded essential annuli
[17, Lemma V.1.3.4]. Thus the last part of Conjecture 5.1 can alternatively
be stated as follows: If bK(n) = 0, then MK contains an embedded essential
annulus.

By Theorem 3.9, for B-adequate knots and their iterated cables we have
bK(n) ≤ 0. Moreover, if K is a B-adequate knot and

2b = vB − c = 0,

then by Lemma 3.8 K is a torus knot. Thus Conjecture 5.1 holds for B-
adequate knots and their cables. Notice that, as shown in the proof of The-
orem 3.9, the case bK(n) = 0 occurs quite often for cables of B-adequate
knots. Conjecture 5.1 holds for the knots of Table 1. In the next section we
will check that Conjecture 5.1 holds true for 2-fusion knots. Thus the con-
jecture holds for all the classes of knots for which d+[JK(n)] and d−[JK(n)]
have been calculated to date.

We now turn our attention to the Strong Slope Conjecture (Conjec-
ture 1.6) stated in the Introduction. By Theorem 3.9, Conjecture 1.6 is
true for iterated cables of B-adequate knots (and in particular iterated
torus knots). Furthermore, the arguments in the proofs of Corollary 2.8
and Theorem 3.9 generalize easily to show that, under the hypothesis of
Proposition 3.2 or Proposition 4.4, the Strong Slope Conjecture is closed
under knot cabling. For instance we have the following:

Corollary 5.3. Let K be a knot such that for n � 0 we have d+[JK(n)]
is a quadratic quasi-polynomial of period ≤ 2. Suppose p/q is not a Jones
slope of K. Then if K satisfies Conjecture 1.6 so does Kp/q.
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K jsK jxK χ(S) |∂S| js∗K jx∗K(n) χ(S∗) |∂S∗|
819 {12} {0} 0 2 {0} {5} −5 1
820 {8/3} {−1,−5/3} −3 1 {−10} {4} −4 1
821 {1} {−2} −4 2 {−12} {3} −3 1
942 {6} {−1} −2 2 {−8} {5} −5 1
943 {32/3} {−1,−5/3} −3 1 {−4} {5} −5 1
944 {14/3} {−2,−8/3} −6 1 {−10} {4} −4 1
945 {1} {−2} −4 2 {−14} {4} −4 1
946 {2} {−1} −2 2 {−12} {5} −5 1
948 {11} {−3} −6 2 {−4} {3} −3 1

Table 2. Nonalternating Montesinos knots up to nine crossings.

Remark 5.4. Similar ones to Conjectures 5.1 and 1.6 can also be formu-
lated for the lowest degree of the colored Jones polynomial by noting that
JK(n, v) = JK∗(n, v

−1), where K∗ is the mirror image of K. To illus-
trate this point we discuss the example of the knot 949. This knot has
genus two and is not B-adequate since the leading coefficient of its col-
ored Jones polynomial is 2 [10] and not ±1. By Table 1, js∗K = {0} and
2b∗K(n) = 3. A genus two Seifert surface S, has boundary slope 0 = a∗K(n)
and χ(S) = −3 = −2b∗K(n). Thus Conjectures 5.1 and 1.6 hold for the
mirror image 9∗49. We also mention that the same is true for 949 since it is
known to be A-adequate.

Next we discuss more families of knots, not covered by Theorem 3.9, for
which the above conjectures are true.

5.1. Nonalternating Montesinos knots up to nine crossings. Table 2
summarizes the relevant information about these knots. The Jones slopes
and the sets of cluster points {2bK(n)}′, {2b∗K(n)}′ were obtained from Garo-
ufalidis’ paper [10]. The corresponding boundary slopes together with the
values χ(S) and |∂S| were obtained using Dunfield’s program for calculat-
ing boundary slopes of Montesinos knots [2]. In all cases, Conjectures 5.1
and 1.6 are easily verified for the knots and their mirror images. Note that,
for example, for 944 we have a/b = 14/3 ∈ jsK , {2bK(n)}′ = {−2,−8/3},
and χ(S)

|∂S|b = −6
3 = −2 as predicted by Conjecture 1.6. However, this asser-

tion alone doesn’t guarantee that bK(n) ≤ 0. Thus, in general, Conjecture
1.6 does not imply Conjecture 5.1.

Corollary 5.5. Suppose that K ∈ {819, 821, 942, 945, 946, 948, 949} and let K ′

be an iterated cable of K. Then, Conjectures 5.1 and 1.6 hold true for K ′.

Proof. We first note that d+[JK(n)] = an2 +bn+d(n) is a quadratic quasi-
polynomial of period ≤ 2, with 4a ∈ Z, 2b ∈ Z and b ≤ 0. Suppose Kp,q is a
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cable of K. Theorem 3.4 and the proof of Proposition 3.2 then imply that

d+[JKp,q(n)] = An2 +Bn+D(n)

is a quadratic quasi-polynomial of period ≤ 2, with 4A ∈ Z, 2B ∈ Z and B ≤
0. Moreover, the proof of Proposition 3.2 shows that one of the following is
true:

(1) We have 4A = pq and B = 0.
(2) We have 4A = 4q2a and 2B = 2|q|b+ (1− |q|)|4aq − p|.

In case (1), a surface S with boundary slope pq is the cabling annulus; thus
χ(S) = 0 = 2B and Conjectures 5.1 and 1.6 are satisfied. In case (2), let
S be a surface that satisfies Conjecture 1.6 for K. We view MKp,q as the
union of MK and a cable space Cp,q. An essential surface S′ realizing the
boundary slope 4A = 4q2a for Kp,q is obtained by Theorem 2.2. This surface
is constructed as in the proof of Lemma 2.6. By Corollary 2.8 we see that
|∂S′| = |∂S|, |S′ ∩ T+| = |q| |∂S| and

χ(S′) = χ(MK ∩ S′) + χ(Cp,q ∩ S′) = |q|χ(S) + |∂S| |4aq − p|(1− |q|).

By assumption, χ(S) = |∂S|(2b). Combining the last two equations with
the formula in (2) above, we have

χ(S′) = |∂S| (2|q|b+ (1− |q|)|4aq − p|) =
∣∣∂S′∣∣(2B),

which shows that S′ satisfies Conjecture 1.6.
Applying the above argument repeatedly we obtain the result for iterated

cables. �

5.2. A family of pretzel knots. Let p be an odd integer and consider
the pretzel knot Kp = (−2, 3, p). It is known that Kp is A-adequate if p > 0,
and B-adequate if p < 0. Moreover, Kp is a torus knot if p ∈ {1, 3, 5}.

Suppose now that p ≥ 5. Then Kp is A-adequate and by above discussion
Conjecture 1.6 holds for the mirror image K∗p .

By [10, Section 4.7] and Example 6.3 below we have

4aKp(n) = 2(p2 − p− 5)/(p− 3) and 2bKp(n) = −(p− 5)/(p− 3).

Since 4aKp(n) is not an integer, in fact it is easily checked that

gcd(2(p2 − p− 5), p− 3) = 1,

Kp is not B-adequate. Thus we can’t apply Theorem 3.9. Note moreover
that gcd(p− 5, p− 3) = 2. By [1, Theorem 3.3], Kp has an essential surface
with boundary slope 2(p2− p− 5)/(p− 3), with two boundary components,
and Euler characteristic −(p− 5), which is equal to (p− 3)(2bKp(n)). Note
that for p = 5 we get bKp(n) = 0. The knot K = (2,−3, 5) is known to be
a torus knot, which is in agreement with Conjecture 5.1.
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Suppose now that p ≤ −1. Then K is B-adequate. By [10, Section 4.7]
and Example 6.3 we have 4a∗Kp

(n) = 2(p+ 1)2/p and

2b∗Kp
(n) =

{
1 if n 6≡ 0 (mod p)

1− 2/p if n ≡ 0 (mod p).

Again since 4a∗Kp
(n) is not an integer, Kp is not A-adequate and The-

orem 3.9 doesn’t apply to K∗p . According to [1, Theorem 3.3], Kp has an

essential surface with boundary slope 2(p + 1)2/p and Euler characteristic
p, which is equal to p(2bKp(n)) when n 6≡ 0 (mod p). Thus we have:

Corollary 5.6. For an odd integer p, the pretzel knots Kp = (−2, 3, p) and
K∗p satisfy Conjectures 5.1 and 1.6.

6. Two-fusion knots

The family of 2-fusion knots is a two-parameter family of closed 3-braids
denoted by

{K(m1,m2) | m1,m2 ∈ Z}.
For the precise definition and description see [11, 3]. The purpose of this
section is to prove the following.

Theorem 6.1. Conjecture 5.1 holds for 2-fusion knots.

Note that K(m1,m2) is a torus knot if m2 ∈ {−1, 0}. In fact,

K(m1, 0) = T (2, 2m1 + 1) and K(m1,−1) = T (2, 2m1 − 3).

It is known that K(m1,m2) is hyperbolic if m1 /∈ {0, 1}, m2 /∈ {−1, 0} and
(m1,m2) 6= (−1, 1). See [11]. Note that K(−1, 1) = T (2, 5).

From now on we consider m2 /∈ {−1, 0} only. For n ∈ N and k1, k2 ∈ Z
such that 0 ≤ k1 ≤ n and |n− 2k1| ≤ n+ 2k2 ≤ n+ 2k1, let

Q(n, k1, k2) =
k1
2
− 3k21

2
− 3k1k2 − k22 − k1m1 − k21m1 − k2m2

− k22m2 − 6k1n− 3k2n+ 2m1n+ 4m2n

− k2m2n− 2n2 +m1n
2 + 2m2n

2

+
1

2

(
(1 + 8k1 + 4k2 + 8n) min{l1, l2, l3} − 3 min{l1, l2, l3}2

)
where

l1 = 2k1 + n, l2 = 2k1 + k2 + n, l3 = k2 + 2n.

6.1. The highest degree. The quantity Q(n, k1, k2) is closely related to
the degree δK(n). According to [11] for the 2-fusion knot K = K(m1,m2),
with m2 /∈ {−1, 0}, we have the following possibilities:
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Case A. Suppose that m1,m2 ≥ 1. Then

δK(n) = Q(n, k1,−k1),

where

c1 =
1−m1 +m2 +m2n

2(−1 +m1 +m2)
,

and k1 is of the integers closest to c1 satisfying k1 ≤ n/2.

Case B. Suppose that m1 ≤ 0,m2 ≥ 1. There are 2 subcases.

Subcase B.1. We have (1 +m1 +m2 ≤ 0) or

(1 +m1 +m2 > 0 and 1 + 2m1 +m2 < 0).

Then

δK(n) = Q(n, n, 0).

Subcase B.2. We have 1 +m1 +m2 > 0 and 1 + 2m1 +m2 ≥ 0. Then

δK(n) = Q(n, k1, k1 − n),

where

c2 =
1−m1 −m2 + (1 +m2)n

2(1 +m1 +m2)
.

and k1 is one of the integers closest to c2.

Case C. Suppose that m2 ≤ −2. There are 2 subcases.

Subcase C.1. We have m1 ≤ −3m2/2. Then

δK(n) = Q(n, n, n).

Subcase C.2. We have m1 > −3m2/2. Let

c3 =
−3/2 +m1 +m2 + (1 +m2)n

1− 2m1 − 2m2

and let k1 be one of the integers closest to c3. Then

δK(n) =

{
Q(n, k1, k1) if c3 /∈ 1

2 + Z,
Q(n, k1, k1)− (c3 + 1/2) if c3 ∈ 1

2 + Z.

6.2. Calculating the linear term. In this subsection we will prove the
following.
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Theorem 6.2. For the 2-fusion knot K = K(m1,m2), with m2 /∈ {−1, 0},
we have

bK(n) =



m2(1−m1)
2(−1+m1+m2)

if (m1,m2) ∈ I1 ∪ I2,

1 +m1 if (m1,m2) ∈ I3,
m1(m2−1)

2(1+m1+m2)
if (m1,m2) ∈ I4,

5/2 +m1 + 3m2 if (m1,m2) ∈ I5,
(−5+2m1)(1+m2)
2(−1+2m1+2m2)

if (m1,m2) ∈ I6 and −1+(1+m2)(n−1)
−1+2m1+2m2

/∈ Z,
(−3+2m1)(1+m2)
2(−1+2m1+2m2)

if (m1,m2) ∈ I6 and −1+(1+m2)(n−1)
−1+2m1+2m2

∈ Z.

In particular we have bK(n) ≤ 0. Moreover bK(n) = 0 if and only if m1 ∈
{0, 1} and m2 ≥ 1, or (m1,m2) = (−1, 1).

Proof. As in the previous subsection, there are 3 cases.

Case A. m1,m2 ≥ 1. Recall that

c1 =
1−m1 +m2 +m2n

2(−1 +m1 +m2)

and k1 is one of the integers closest to c1 satisfying k1 ≤ n
2 . We have

δK(n) = Q(n, k1,−k1) = (1−m1 −m2)k
2
1 + (1−m1 +m2 +m2n)k1

+ 2m1n+ 4m2n+m1n
2 + 2m2n

2 +
n

2
+
n2

2
.

Write k1 = c1 + rn where rn is a periodic sequence with{
|rn| ≤ 1/2 if m1 ≥ 2,

rn ∈ {−1/2,−1} if m1 = 1.

We have

δK(n) = Q(n, c1 + rn,−c1 − rn) = Q(n, c1,−c1) + (1−m1 −m2)r
2
n

and

Q(n, c1,−c1) = 2m1n+ 4m2n+m1n
2 + 2m2n

2 +
n

2
+
n2

2

− (1−m1 +m2 +m2n)2

4(1−m1 −m2)

=

(
m1 + 2m2 +

1

2
+

m2
2

4(−1 +m1 +m2)

)
n2

+

(
2m1 + 4m2 +

1

2
+
m2(1−m1 +m2)

2(−1 +m1 +m2)

)
n

− (1−m1 +m2)
2

4(1−m1 −m2)
.
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Since d+[JK(n)] = δK(n− 1) + (n− 1)/2 we obtain

d+[JK(n)] =

(
m1 + 2m2 +

1

2
+

m2
2

4(−1 +m1 +m2)

)
n2

+
m2(1−m1)

2(−1 +m1 +m2)
n

−
(
m1 + 2m2 +

1

2
− (1−m1)

2

4(−1 +m1 +m2)

)
+ (1−m1 −m2)r

2
n−1.

Case B. m1 ≤ 0,m2 ≥ 1. There are 2 subcases.

Subcase B.1. (1+m1 +m2 ≤ 0) or (1+m1 +m2 > 0 and 1+2m1 +m2 < 0).
Then

δK(n) = Q(n, n, 0) =

(
1

2
+ 2m2

)
n2 +

(
3

2
+m1 + 4m2

)
n.

Hence

d+[JK(n)] =

(
1

2
+ 2m2

)
n2 + (1 +m1)n−

(
3

2
+m1 + 2m2

)
.

Subcase B.2. 1 +m1 +m2 > 0 and 1 + 2m1 +m2 ≥ 0. Recall that

c2 =
1−m1 −m2 + (1 +m2)n

2(1 +m1 +m2)

and k1 is one of the integers closest to c2. We have

δK(n) = Q(n, k1, k1 − n)

= (−1−m1 −m2)k
2
1 + (1−m1 −m2 + (1 +m2)n)k1

+ 2m1n+ 5m2n+m1n
2 + 2m2n

2 +
n

2
+
n2

2
.

Write k1 = c2 + rn where rn is a periodic sequence with |rn| ≤ 1/2. As in
Case A we have

δK(n) = Q(n, c2, c2 − n) + (−1−m1 −m2)r
2
n
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and

Q(n, c2, c2 − n) = 2m1n+ 5m2n+m1n
2 + 2m2n

2 +
n

2
+
n2

2

− (1−m1 −m2 + (1 +m2)n)2

4(−1−m1 −m2)

=

(
3

4
+

3m1

4
+

9m2

4
+

m2
1

4(1 +m1 +m2)

)
n2

+

(
1 + 2m1 +

9m2

2
− m1

1 +m1 +m2

)
n

− (1−m1 −m2)
2

4(−1−m1 −m2)
.

Hence

d+[JK(n)] =

(
3

4
+

3m1

4
+

9m2

4
+

m2
1

4(1 +m1 +m2)

)
n2

+
m1(m2 − 1)

2(1 +m1 +m2)
n−

(
3

4
+

3m1

4
+

9m2

4
− (m2 − 1)2

4(1 +m1 +m2)

)
+ (−1−m1 −m2)r

2
n.

Case C. m2 ≤ −2. There are 2 subcases.

Subcase C.1. m1 ≤ −3m2/2. Then

δK(n) = Q(n, n, n) = (2 +m1 + 3m2)n.

Hence

d+[JK(n)] = (5/2 +m1 + 3m2)(n− 1).

Subcase C.2. m1 > −3m2/2. Recall that

c3 =
−3/2 +m1 +m2 + (1 +m2)n

1− 2m1 − 2m2

and let k1 be one of the integers closest to c3. We have

δK(n) =

{
Q(n, k1, k1) if c3 /∈ 1

2 + Z
Q(n, k1, k1)− (c3 + 1/2) if c3 ∈ 1

2 + Z

and

Q(n, k1, k1) = (1/2−m1 −m2) k
2
1 − (−3/2 +m1 +m2 + (1 +m2)n) k1

+ 2m1n+ 4m2n+m1n
2 + 2m2n

2 +
n

2
+
n2

2
.

Write k1 = c3 + rn where rn is a periodic sequence with |rn| ≤ 1/2. As in
Case A we have

Q(n, k1, k1) = Q(n, c3, c3) + (1/2−m1 −m2) r
2
n
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and

Q(n, c3, c3) = 2m1n+ 4m2n+m1n
2 + 2m2n

2 +
n

2
+
n2

2

− (−3/2 +m1 +m2 + (1 +m2)n)2

4(1/2−m1 −m2)

=
(2m1 + 3m2)

2

2(−1 + 2m1 + 2m2)
n2

+

(
1

2
+ 2m1 +

9m2

2
+

−3 + 2m1

2(−1 + 2m1 + 2m2)

)
n

− (−3/2 +m1 +m2)
2

4(1/2−m1 −m2)
.

Hence

d+[JK(n)] =
(2m1 + 3m2)

2

2(−1 + 2m1 + 2m2)
n2

+


(−5+2m1)(1+m2)
2(−1+2m1+2m2)

n if −1+(1+m2)(n−1)
−1+2m1+2m2

/∈ Z
(−3+2m1)(1+m2)
2(−1+2m1+2m2)

n if −1+(1+m2)(n−1)
−1+2m1+2m2

∈ Z

−

(
1

2
+m1 + 2m2 −

(2m1 − 5)2

8(2m1 + 2m2 − 1)

)
+ (1/2−m1 −m2) r

2
n−1.

This completes the proof of Theorem 6.2. �

6.3. Proof of Theorem 6.1. Theorem 6.2 implies that Conjecture 5.1
holds true for 2-fusion knots: The fact that bK(n) ≤ 0 is clear by the
statement of Theorem 6.2. Moreover, bK(n) = 0 if and only if m1 ∈ {0, 1}
and m2 ≥ 1, or (m1,m2) = (−1, 1). As noted in [11] we have

K(1,m2) = K∗(0,−m2 − 1).

On the other hand, by definition the knot K(0,m2) is a torus knot. Finally
K(−1, 1) is the torus knot T (2, 5). Thus if bK(n) = 0, and K = K(m1,m2),
then K is a torus knot. �

Example 6.3. Consider the 2-fusion knot K(m, 1), also known as the
(−2, 3, 2m + 3)-pretzel knot. It is known that K(m, 1) is B-adequate if
m ≤ −2 and is A-adequate if m ≥ −1. Moreover K(m, 1) is a torus knot
if |m| ≤ 1, and K(−2, 1) is the twist knot 52 which is an adequate knot.
Hence we consider the two cases m ≥ 2 and m ≤ −3 only.

Note that K(m1,m2) is the mirror image of K(1 − m1,−1 − m2). In
particular, K(m, 1) is the mirror image of K(1−m,−2).
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Case 1. m ≥ 2. From the proof of Theorem 6.2 we have

d+[JK(m,1)(n)]

=

(
5

2
+m+

1

4m

)
n2 +

(
1

2m
− 1

2

)
n−

(
3 +

3m

4
− 1

4m

)
−mr2n−1

where rn is a periodic sequence with |rn| ≤ 1/2.
Hence, by Theorem 4.1, the (p, q)-cable of K(m, 1) satisfies Conjecture 5.1

and the Slope Conjecture if

p−
(

10 + 4m+
1

m

)
q < 0 or p−

(
10 + 4m+

1

m

)
q >

m

4
+

1

m
− 1.

Case 2. m ≤ −3. From the proof of Theorem 6.2 we have

d+[JK(1−m,−2)(n)]

= −2(m+ 2)2

2m+ 3
n2 + b(n)n+ (6m+ 17)/8 + (m+ 3/2)r2n−1

where rn is a periodic sequence with |rn| ≤ 1/2, and

b(n) =

−
1
2 if (2m+ 3) - n,

− 2m+1
2(2m+3) if (2m+ 3) | n.

Hence, by Theorem 4.1, the (p, q)-cable of K(1 − m,−2) = (K(m, 1))∗

satisfies Conjecture 5.1 and the Slope Conjecture if

p+

(
10 + 4m+

1

2m+ 3

)
q < 0

or

p+

(
10 + 4m+

3

2m+ 3

)
q > −

(
m

4
+

1

2m+ 3
+

11

8

)
.
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