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Weak-L∞ inequalities for BMO functions

Adam Osȩkowski

Abstract. Let I be an interval contained in R and let ϕ : I → R be a
given function. The paper contains the proof of the sharp estimate∣∣∣∣∣∣∣∣ϕ− 1

|I|

∫
I

ϕ

∣∣∣∣∣∣∣∣
W (I)

≤ 2||ϕ||BMO(I),

where W (I) is the weak-L∞ space introduced by Bennett, DeVore and
Sharpley. The proof exploits Bellman function method: the above in-
equality is deduced from the existence of a special function possessing
certain majorization and concavity properties.

Contents

1. Introduction 699

2. A locally concave function and the proof of (1.5) 702

3. Sharpness 708

4. On the size of the weak-type constant and the search of
appropriate Bellman function 708

Acknowledgment 711

References 711

1. Introduction

A locally integrable function ϕ : Rn → R is said to belong to BMO, the
space of functions of bounded mean oscillation, if

(1.1) sup
Q

〈
|ϕ− 〈ϕ〉Q|

〉
Q
<∞.

Here the supremum is taken over all cubes Q in Rn with edges parallel to
the coordinate axes and

〈ϕ〉Q =
1

|Q|

∫
Q
ϕ(x)dx

stands for the average of ϕ over Q. The space BMO is equipped with a
quasinorm, given by the left-hand side of (1.1), and denoted by || · ||BMO1 .
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One can consider a slightly less restrictive setting in which only the cubes Q
within a given Q0 are considered; then the corresponding class of functions
is denoted by BMO(Q0).

The space BMO, introduced by John and Nirenberg in [7], plays a promi-
nent role in analysis and probability and turns up in numerous contexts
in various analytic branches of mathematics (properties of Hardy spaces;
boundedness of singular integral operators; interpolation theory; etc.). It
is well-known that the functions of bounded mean oscillation enjoy strong
integrability properties; this was actually observed by John and Nirenberg
in their pioneering paper [7]. In particular, one can show that for any
0 < p <∞, the p-oscillation

||ϕ||BMOp := sup
Q

〈
|ϕ− 〈ϕ〉Q|p

〉1/p
Q

is finite for any ϕ ∈ BMO. It is not difficult to see that for p ≥ 1, || · ||BMOp

forms an equivalent seminorm on BMO(Rn) (with the equivalence constants
depending only on p). In the sequel, we will work with || · ||BMO2 and denote
it simply by || · ||BMO. One of the reasons for this choice is the identity

(1.2) ||ϕ||BMO2 = sup
Q

{
〈ϕ2〉Q − 〈ϕ〉2Q

}1/2
,

which enables a very careful and efficient control of the seminorm; see below.
From now on, we will restrict our considerations to dimension one. Then

the cubes are simply intervals, and we will switch the notation from Q to I to
stress that we consider the case n = 1. Our primary goal is to study some
sharp estimates for the BMO class. In the recent years, there has been
considerable interest in obtaining inequalities of this type. Probably the
first result in this direction was that of Slavin [15] and Slavin and Vasyunin
[16], which introduced the efficient setup for the study of various results of
this type, and identified the optimal constants in the so-called integral form
of John–Nirenberg inequality. More precisely, it was shown there that if
ϕ : I → R satisfies ||ϕ||BMO(I) < 1, then

〈eϕ〉I ≤
exp(−||ϕ||BMO(I))

1− ||ϕ||BMO(I)
e〈ϕ〉I .

This result is sharp: for each ε < 1 there is a function ϕ which satisfies
||ϕ||BMO(I) = ε and 〈eϕ〉I = e−εe〈ϕ〉I/(1 − ε). As a by-product, this proves
that there is no exponential estimate of the above type when ||ϕ||BMO(I) ≥ 1.

The following sharp version of the related classical weak form of John–
Nirenberg inequality was obtained by Vasyunin [19] and Vasyunin and Vol-
berg [21]: if ε := ||ϕ||BMO(I) <∞, then

1

|I|
∣∣{s ∈ I : |ϕ(s)− 〈ϕ〉I | ≥ λ}

∣∣ ≤


1 if 0 ≤ λ ≤ ε,
ε2/λ2 if ε ≤ λ ≤ 2ε,

e2−λ/ε/4 if λ ≥ 2ε,
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and for each value of ε and λ, equality can be attained. This easily yields
the following weak type bounds, by optimizing over λ:

(1.3) ||ϕ− 〈ϕ〉I ||Lp,∞(I) ≤ Cp||ϕ||BMO(I),

where

(1.4) Cp =

1 if 0 < p < 2,

pe2/p−1

22/p
if p ≥ 2,

and

||ϕ||Lp,∞(I) = sup
λ>0

λ

[
1

|I|
∣∣{s ∈ I : |ϕ(s)| ≥ λ}

∣∣]1/p
is the usual weak p-th quasinorm. See also Korenovskii [8], Slavin and
Vasyunin [17], Slavin and Volberg [18] and Osȩkowski [14] for related sharp
estimates for BMO functions. We would also like to mention here the recent
work of Ivanishvili et. al. [6], which is devoted to the unified treatment of
the above problems. More precisely, it introduces the machinery which can
be applied to prove a general estimate in the BMO setting (under some
regularity conditions on the boundary value function). Consult also [5] for
the short communication on the subject.

Except for Korenovskii’s result, all the estimates formulated above were
established with the use of a powerful technique, the so-called Bellman func-
tion method. This approach, roughly speaking, translates the problem of
proving a given estimate for BMO class into that of constructing a certain
special function, which possesses appropriate majorization and concavity.
The method has its origins in certain extremal problems in the dynamic
programming. As observed by Burkholder [3], [4] in the eighties, this type
of approach can be modified appropriately to work in a martingale context:
Burkholder applied it successfully to provide a sharp Lp estimate for mar-
tingale transforms. In the nineties, in the sequence of works [10], [11] and
[12], Nazarov, Treil and Volberg noticed that the technique can be used to
study a wide range of problems arising in harmonic analysis, and formulated
the general, modern framework of the method. Since then, the approach has
been efficiently applied in numerous papers, both in harmonic analysis and
probability. We refer the reader to the works [9], [13], [20], the papers men-
tioned above and references therein.

We turn our attention to the main results of this paper. Our main objec-
tive is to provide the extension of (1.3) to the case p =∞. To achieve this,
we need an appropriate definition of weak L∞ spaces. For this, we need
some more notation. For a given measurable function ϕ : I → R, we define
ϕ∗, the decreasing rearrangement of ϕ, by the formula

ϕ∗(t) = inf{λ ≥ 0 : |{x ∈ I : |ϕ(x)| > λ}| ≤ t}.
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Then ϕ∗∗ : (0, |I|]→ [0,∞), the maximal function of ϕ∗, is given by

ϕ∗∗(t) =
1

t

∫ t

0
ϕ∗(s)ds, t ∈ (0, |I|].

It is not difficult to check that ϕ∗∗ can be alternatively defined by

ϕ∗∗(t) =
1

t
sup

{∫
E
|ϕ(x)|dx : E ⊂ I, |E| = t

}
.

We are ready to introduce the weak-L∞ space. Following Bennett, DeVore
and Sharpley [1], we let

||ϕ||W (I) = sup
t∈(0,|I|]

(
ϕ∗∗(t)− ϕ∗(t)

)
and define W (I) = {ϕ : ||ϕ||W (I) < ∞}. Let us describe the motivation
behind the definition of this class. Note that for each 1 ≤ p < ∞, the
usual weak space Lp,∞ properly contains Lp, but for p =∞, the two spaces
coincide. Thus, there is no Marcinkiewicz interpolation theorem between
L1 and L∞ for operators which are unbounded on L∞. The space W was
invented to fill this gap. It contains L∞, can be understood as an appropriate
limit of Lp,∞ as p → ∞, and possesses appropriate interpolation property:
if an operator T is bounded from L1 to L1,∞ and from L∞ to W , then it can
be extended to a bounded operator on all Lp spaces, 1 < p <∞. For further
evidence that the space W can be understood as a weak-L∞, we refer the
reader to the paper [1] and the monograph [2] by Bennett and Sharpley.

Our main result can be stated as follows.

Theorem 1.1. For any ϕ ∈ BMO(I) we have the estimate

(1.5) ||ϕ− 〈ϕ〉I ||W (I) ≤ 2||ϕ||BMO

and the constant 2 is the best possible.

Our proof rests on the Bellman function method. We would like to point
out here that the desired estimate does not fall into the scope of the (gen-
eral) bounds covered by [5] and [6], since the corresponding boundary value
function is not sufficiently regular.

We have organized this paper as follows. The next section is devoted to
the proof of (1.5). In Section 3, we will exhibit an example which shows that
equality can hold in (1.5); thus the constant 2 appearing in this estimate
cannot be replaced by a smaller number. In the final part of the paper we
describe some informal steps which have led us to the appropriate Bellman
function.

2. A locally concave function and the proof of (1.5)

The proof of (1.5) depends heavily on the following intermediate result.
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Theorem 2.1. Suppose that λ ≥ 0 is a fixed parameter. Then for any
function ϕ : I → R satisfying 〈ϕ〉I = 0 and ||ϕ||BMO ≤ 1 we have

(2.1)

∫
I
(|ϕ(s)| − λ− 2)χ(λ,∞)(|ϕ(s)|)ds ≤ 0.

Remark 2.2. The above inequality is sharp, in the sense that the constant
2 cannot be replaced by any smaller number. Otherwise, as we will see
below, the improvement of the constant 2 in (1.5) would be possible; but
this is not true, as we will show later.

To study this estimate, we will need some auxiliary objects. Suppose that
λ > 0 is a fixed parameter and consider the parabolic strip

Ω = {(x, y) ∈ R2 : x2 ≤ y ≤ x2 + 1}.

Let us split Ω into the union of the following three sets (see Figure 1 below):

D1 =
{

(x, y) ∈ Ω : |x| ≤ λ+ 1, y ≥ 2(λ+ 1)|x| − λ2 − 2λ
}
,

D2 =
{

(x, y) ∈ Ω : y < 2(λ+ 1)|x| − λ2 − 2λ
}
,

D3 =
{

(x, y) ∈ Ω : |x| > λ+ 1, y ≥ 2(λ+ 1)|x| − λ2 − 2λ
}
.

Next, consider the function Bλ : Ω→ [0,∞) given by

Figure 1. The regions D1 −D3. The points P , Q, R have
coordinates (λ, λ2), (λ+ 1, (λ+ 1)2 + 1) and (λ+ 2, (λ+ 2)2),
respectively.
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Bλ(x, y) =



0 on D1,

|x| − λ− 2(|x| − λ)2

y − 2λ|x|+ λ2
on D2,

|x| − λ− 2

+
(
1−

√
x2 + 1− y

)
exp
[
− x+

√
x2 + 1− y + λ+ 1

]
on D3.

One easily checks that Bλ is continuous on Ω \ {(±λ, λ2)} and upper semi-
continuous on Ω. The key property of Bλ is studied in a separate lemma
below.

Lemma 2.3. The function Bλ is locally concave, i.e., it is concave along
any line segment contained in Ω.

Proof. Let us first verify the local concavity in the interior of each set Di.
For D1 there is nothing to prove, so we may assume that i ∈ {2, 3}. By the
symmetry condition Bλ(x, y) = Bλ(−x, y), we may restrict ourselves to the
sets D+

i = Di ∩{(x, y) : x ≥ 0}. To show the concavity of Bλ in the interior

of D+
2 , it suffices to prove that the Hessian matrix of Bλ is nonpositive-

definite. To accomplish this, observe first that for each (x, y) ∈ D+
2 , there is

a line segment passing through (x, y) along which Bλ is linear. Indeed, we
have

Bλ
(
x+ h(x− λ), y + h(y − λ2)

)
=

[
x− λ− 2(x− λ)2

y − 2λx+ λ2

]
(1 + h)

for all h sufficiently close to 0. This implies that the Hessian has determinant
zero; so, to obtain the concavity in the interior of D+

2 , it is enough to check

that ∂2Bλ
∂y2

(x, y) ≤ 0 on this set. But this is evident: we have

− 4(|x| − λ)2

(y − 2λ|x|+ λ2)3
≤ 0.

Next, let us verify the concavity on D+
3 . As previously, we take a look at

the Hessian matrix. Again, note that for each (x, y) lying in the interior of
D+

3 , the function Bλ is linear along some line segment containing (x, y). To
be more precise, we easily check that

Bλ
(
x+ h, y + 2

(
x−

√
x2 + 1− y

)
h
)

= x+ h− λ− 2 +
(
1−

√
x2 + 1− y − h

)
exp
[
− x+

√
x2 + 1− y + λ+ 1

]
,

provided h is sufficiently close to 0. Thus, the Hessian has determinant zero

and it suffices to show that ∂2Bλ
∂y2

(x, y) ≤ 0 in the interior of D+
3 . A little

calculation shows that this partial derivative equals

−1

2
(x2 + 1− y)−1/2 exp

(
− x+

√
x2 + 1− y + λ+ 1

)
,

which is nonpositive. This yields the local concavity of Bλ in the interiors
of D1, D2 and D3. To get this property in the interior of Ω, we need to
check what happens at the common boundaries of the sets Di. Again, we
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may restrict our analysis to the subdomain Ω+ = Ω ∩ {(x, y) : x > 0}. Let
us look at the boundary ∂D+

1 ∩ ∂D
+
2 . If (x, y) ∈ D+

1 , then Bλ(x, y) = 0; on
the other hand, if (x, y) lies in the interior of D+

2 , then

∂Bλ(x, y)

∂y
=

2(x− λ)2

(y − 2λx+ λ2)2
> 0

and hence, in particular, Bλ ≤ 0 on D+
2 . Thus the local concavity of Bλ

propagates to the whole D1 ∪D2. Finally, note that the partial derivatives
of Bλ match at the common boundary of D+

2 and D+
3 (i.e., Bλ is of class

C1 in the interior of D+
2 ∪D

+
3 ).

It remains to show the local concavity on the whole Ω (i.e., extend the
concavity to the boundary of Ω), and to accomplish this, we will show that
Bλ is continuous along line segments contained in Ω. This is simple: first,
note that Bλ is continuous on Ω \ {(−λ, λ2)}. Furthermore, if we take any
line segment J ⊂ Ω, with one of its endpoints equal to (λ, λ2), then

lim
X→(λ,λ2), X∈J

Bλ(X) = Bλ(λ, λ2).

A similar statement is valid for the point (−λ, λ2). This completes the
proof. �

In what follows, we will require the following auxiliary statement, which
can be found in [16] (it appears as Lemma 4c there).

Lemma 2.4. Fix ε < 1. Then for every interval I and every ϕ : I → R
with ||ϕ||BMO(I) ≤ ε, there exists a splitting I = I− ∪ I+ such that the whole

straight-line segment with the endpoints (〈ϕ〉I± , 〈ϕ2〉I±) is contained within
Ω. Moreover, the splitting parameter α = |I+|/|I| can be chosen uniformly
(with respect to ϕ and I) separated from 0 and 1.

Proof of (2.1). We may assume that λ > 0, by a straightforward limiting
argument. The reasoning splits naturally into three parts.

Step 1. Some auxiliary objects. Pick an arbitrary (x, y) ∈ Ω and let
ϕ : I → R be an arbitrary function as in the statement. Next, let ε ∈ (0, 1)
be a fixed parameter and put ϕ̃ = εϕ; then, clearly, ||ϕ̃||BMO(I) ≤ ε. We
will require the following family {In}n≥0 of partitions of I, constructed by
the inductive use of Lemma 2.4. We start with I0 = {I}; then, given In =
{In,1, In,2, . . . , In,2n}, we split each In,k according to Lemma 2.4, applied to
the function ϕ̃, and define

In+1 =
{
In,1− , In,1+ , In,2− , In,2+ , . . . , In,2

n

− , In,2
n

+

}
.

Since the splitting parameter is uniformly separated from 0 and 1, the di-
ameter of the partitions converges to 0: sup1≤k≤2n |In,k| → 0 as n → ∞.
The next step is to define functional sequences (ϕn)n≥0 and (ψn)n≥0 by the
formulas

ϕn(x) = 〈ϕ̃〉In(x) and ψn(x) = 〈ϕ̃2〉In(x).
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Here In(x) ∈ In denotes an interval containing x; if there are two such
intervals, we pick the one which has x as its right endpoint. A crucial
observation is that for each n the pair (ϕn, ψn) takes values in Ω. Indeed,
for any J ∈ In we have

0 ≤ 〈ϕ̃2〉J − 〈ϕ̃〉2J ≤ 1,

where the left estimate follows from Schwarz inequality, and the right is due
to (1.2) and the assumption ||ϕ̃||BMO(I) = ε||ϕ||BMO(I) ≤ 1.

Step 2. Bellman induction. Now we will show that for any n ≥ 0 and any
1 ≤ k ≤ 2n we have

(2.2)

∫
In,k

Bλ(ϕn(s), ψn(s))ds ≥
∫
In,k

Bλ(ϕn+1(s), ψn+1(s))ds.

To do this, observe that ϕn, ψn are constant on In,k, while ϕn+1, ψn+1 are

constant on the intervals In,k± into which In,k splits. Hence, if we divide both

sides by |In,k|, we see that the above bound reads

Bλ
(
〈ϕ̃〉In,k , 〈ϕ̃2〉In,k

)
≥
|In,k− |
|In,k|

Bλ

(
〈ϕ̃〉

In,k−
, 〈ϕ̃2〉|

In,k−

)
+
|In,k+ |
|In,k|

Bλ

(
〈ϕ̃〉

In,k+
, 〈ϕ̃2〉

In,k+

)
.

This is a consequence of the local concavity of Bλ and the fact that the whole
line segment with endpoints

(
〈ϕ̃〉

In,k±
, 〈ϕ̃2〉

In,k±

)
is contained in Ω (which is

guaranteed by Lemma 2.4). Summing (2.2) over all k = 1, 2, . . . , 2n, we
obtain ∫

I
Bλ(ϕn(s), ψn(s))ds ≥

∫
I
Bλ(ϕn+1(s), ψn+1(s))ds

and hence, by induction,∫
I
Bλ(ϕ0(s), ψ0(s))ds ≥

∫
I
Bλ(ϕn(s), ψn(s))ds

for any n = 0, 1, 2, . . .. Observe that∫
I
Bλ(ϕ0(s), ψ0(s))ds = |I| ·Bλ(〈ϕ̃〉I , 〈ϕ̃2〉I) = |I| ·Bλ(0, 〈ϕ̃2〉I) = 0

and therefore the previous estimate implies

(2.3)

∫
I
Bλ(ϕn(s), ψn(s))ds ≤ 0.

Step 3. A limiting argument. To deal with the left-hand side of (2.3), let
n go to infinity. As we have already mentioned above, the diameter of the
partition In tends to 0. Consequently, by Lebesgue’s differentiation theo-
rem, we have ϕn → ϕ̃ and ψn → ϕ̃2 almost everywhere on I. Unfortunately,
this does not say anything about the limit behavior of Bλ(ϕn, ψn), since the
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function Bλ is not continuous on the whole Ω. To overcome this difficulty,
note that Bλ majorizes the lower semi-continuous function

B̃λ(x, y) =

{
B(x, y) if (x, y) 6= (±λ, λ2),
−2 if (x, y) = (±λ, λ2),

which, in turn, is bounded from below by −2. Consequently, by Fatou’s
lemma applied to B̃λ, we get

lim inf
n→∞

∫
I
Bλ(ϕn(s), ψn(s))ds ≥ lim inf

n→∞

∫
I
B̃λ(ϕn(s), ψn(s))ds

≥
∫
I
B̃λ(ϕ̃(s), ϕ̃2(s))ds

=

∫
I
(|εϕ(s)| − λ− 2)χ[λ,∞)(|εϕ(s)|)ds.

Hence, by (2.3), we have proved that∫
I
(|εϕ(s)| − λ− 2)χ[λ,∞)(|εϕ(s)|)ds ≤ 0.

It remains to let ε → 0 and apply Fatou’s lemma again to get the desired
assertion. �

We turn our attention to the inequality of Theorem 1.1.

Proof of (1.5). With no loss of generality, we may assume that 〈ϕ〉I = 0,
replacing ϕ by ϕ − 〈ϕ〉I , if necessary. Furthermore, by homogeneity of
(1.5), we may assume that ||ϕ||BMO(I) ≤ 1. Pick t ∈ (0, |I|] and recall the
alternative definition of ϕ∗∗:

ϕ∗∗(t) = sup

{
1

|E|

∫
E
|ϕ(s)|ds : E ⊂ I, |E| = t

}
.

This identity yields

ϕ∗∗(t)− ϕ∗(t) = sup

{
1

|E|

∫
E

(
|ϕ(s)| − ϕ∗(t)

)
ds : E ⊂ I, |E| = t

}
.

By the very definition of ϕ∗, we have |{s : |ϕ(s)| > ϕ∗(t)}| ≤ t. Conse-
quently, the above formula implies

ϕ∗∗(t)− ϕ∗(t) ≤ 1

|{s : |ϕ(s)| > ϕ∗(t)}|

∫
I

(
|ϕ(s)| − ϕ∗(t)

)
+

ds ≤ 2,

where the latter bound follows from (2.1), with λ = ϕ∗(t). Since the number
t ∈ (0, |I|] was arbitrary, the proof is complete. �
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3. Sharpness

Now we will prove that equality in (1.5) can be attained. Consider the
following example: let ϕ : [0, 1]→ R by given by

ϕ(s) = −2χ[0,1/8](s) + 2χ[7/8,1](s).

Clearly, we have 〈ϕ〉[0,1] = 0. Furthermore, we easily check that ϕ∗(s) =
2χ[0,1/4](s) and

ϕ∗∗(t) =
1

t

∫ t

0
ϕ∗(s)ds =

{
2 if t ≤ 1/4,

(2t)−1 if t > 1/4.

Consequently, we see that ||ϕ||W ([0,1]) = supt∈(0,1](ϕ
∗∗(t)−ϕ∗(t)) = 2. Next,

we will show that ||ϕ||BMO([0,1]) ≤ 1; this will yield the claim. To this end,
we need to verify that for all a, b ∈ [0, 1] with a < b, we have

(3.1) ∆[a,b] := 〈ϕ2〉[a,b] − 〈ϕ〉2[a,b] ≤ 1.

Set J = [a, b] and put α1 = |J ∩ [0, 1/8]|/|J |, α2 = |J ∩ (1/8, 7/8)|/|J | and
α3 = |J ∩ [7/8, 1]|/|J |. Then α1 + α2 + α3 = 1 and

∆J = 4(α1 + α3 − (α3 − α1))
2.

If one of α1 and α3 vanishes - say, α3 = 0 - then ∆J = 4α1(1− α1) ≤ 1. If
α1 6= 0 and α3 6= 0, then α2 ≥ 3/4 and so α1 + α3 ≤ 1/4. Consequently,
∆J ≤ 4(α1 + α3) ≤ 1. This establishes (3.1) and hence completes the proof
of Theorem 1.1.

4. On the size of the weak-type constant and the search of
appropriate Bellman function

We conclude the paper by giving some reasoning which has led us to the
discovery of the best constant 2 and the function Bλ. We would like to
stress that the arguments will be informal and should be rather treated as
an intuitive search for these objects. Actually, as we will see, we will guess
the formula for Bellman function basing on several auxiliary assumptions.

So, suppose that we want to show the validity of (1.5) with some constant
c. A reasoning similar to that used in Section 2 shows that it is enough to
establish the bound

(4.1)

∫
I
(|ϕ(s)| − λ− c)χ(λ,∞)(|ϕ(s)|)ds ≤ 0

for all λ ≥ 0 and all ϕ : I → R satisfying 〈ϕ〉I = 0 and ||ϕ||BMO ≤ 1. As we
have seen above, the key to the study of this estimate is a locally concave
function Bλ : Ω → R, which satisfies Bλ(x, x2) = (|x| − λ − c)χ(λ,∞)(|x|)
for all x ∈ R and Bλ(0, y) ≤ 0 for all y ∈ [0, 1]. A beautiful feature of
the Bellman function approach is that this implication can be reversed: the
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validity of (4.1) implies the existence of a function Bλ which enjoys the above
properties. For instance, one can take

(4.2) Bλ(x, y) = sup

{∫
I
(|ϕ(s)| − λ− c)χ(λ,∞)(|ϕ(s)|)ds

}
,

where the supremum is taken over all functions ϕ on I satisfying 〈ϕ〉I =
x, 〈ϕ2〉I = y and ||ϕ||BMO ≤ 1. See e.g. [6], [16] or [17] for a detailed
explanation of this phenomenon. In particular, the formula (4.2) shows
that we may search for Bλ in the class of functions satisfying the symmetry
condition

(4.3) Bλ(x, y) = Bλ(−x, y), (x, y) ∈ Ω.

From now on, we assume that this property holds.
So, we have translated the problems of finding the best c and showing

(4.1) into the new setting: for which c is there a family (Bλ)λ≥0 of functions
satisfying the above conditions? To shed some light at this question, let
us fix c, λ > 0 and try to construct an appropriate Bλ. Let P = (λ, λ2),
P ′ = (−λ, λ2), O = (0, 1) and suppose that A consists of all points from Ω
which lie below the lines OP and OP ′. The function Bλ vanishes at the set
{(x, x2) : |x| ≤ λ} and is nonpositive at the vertical segment {0} × [0, 1].
By (4.3) and the local concavity of Bλ, we see that this function must be
nonpositive on A. Next, take points P1 = (x, x2), P2 ∈ OP lying close to P
(with x < λ), and draw the line passing through P1, P2; this line intersects
the lower boundary of Ω at P1 and some other point, say, P3. From the
above discussion, we know that Bλ(P1) = 0, Bλ(P2) ≤ 0; hence, by the local
concavity of Bλ, we see that Bλ(P3) ≤ 0. However, if we let P1, P2 → P ,
then P3 → (λ+ 2, (λ+ 2)2) and therefore,

2− c = Bλ(λ+ 2, (λ+ 2)2) = lim
P1,P2→P

Bλ(P3) ≤ 0.

This shows that c ≥ 2. We assume that c = 2 and take a look at the
line segment with endpoints P and R = (λ + 2, (λ + 2)2). The function
Bλ vanishes at both endpoints; if it took a positive value at some point
from the segment, then for any S lying in the interior of PR we would
have Bλ(S) > 0. This would give a contradiction, by taking S sufficiently
close to P and exploiting the concavity of Bλ along the segment joining S
with the point P ′ (which has coordinates (−λ, λ2)). Indeed, Bλ would be
nonnegative at the endpoints of the segment, and, on the other hand, for
any X ∈ P ′S ∩A we have Bλ(X) ≤ 0, as shown above.

Hence, we have proved that Bλ vanishes along the segment PR. Similar
arguments to those used above show that this enforces Bλ to vanish on the
whole region D1 (defined in Section 2; see Figure 1). To find the formula
for Bλ on the sets D2 and D3, we will use the following fact which is true
for any Bellman function in the BMO setting. Namely, each of the sets
D2, D3 can be foliated, i.e., there exists a family of pairwise disjoint line
segments whose union is D2 ∪D3, such that Bλ is linear along each segment
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(see [6], [16], [17] for details). In what follows, we will guess the appropriate
foliation, basing on foliations presented in the aforementioned papers. As
we will see, this will almost immediately lead us to the desired function Bλ.
By symmetry, we may restrict our analysis to D+

2 and D+
3 (where, as in

Section 2, A+ = A ∩ {(x, y) : x ≥ 0}).

Figure 2. The foliations of D+
2 and D+

3

We start with D+
2 . Keeping the papers [6], [16] and [17] in mind, it

seems plausible to conjecture that the appropriate split of this region is the
family (Jx)x∈(λ,λ+2), where Jx is a line segment joining (λ, λ2) and the point

(x, x2) (see Figure 2). This immediately leads us to the formula for Bλ on
D+

2 . Indeed, given (x, y) ∈ D+
2 , we easily check that (x, y) ∈ J(y−λx)/(x−λ),

and by the linearity of Bλ along this segment (and the fact that we know
the values of Bλ at its endpoints), we compute the value of Bλ at (x, y):

Bλ(x, y) = x− λ− 2(x− λ)2

y − 2λx+ λ2
.

We turn our attention to the set D+
3 . As previously, a little thought and

a careful examination of examples appearing in the literature suggest to
consider the foliation (Kx)x∈(λ+1,∞), where for any x > λ + 1, Kx is the

line segment with endpoints (x, x2 + 1) and (x+ 1, (x+ 1)2), tangent to the
upper boundary of Ω. See Figure 2. To compute the formula for Bλ on D+

3 ,
let us first take the point (x, x2 + 1) (where x > λ + 1), belonging to the
upper boundary of D+

3 . By our choice of foliation, Bλ is linear along the line
segment with endpoints (x, x2 + 1) and (x + 1, (x + 1)2). Let us lengthen
this segment a little “to the left”, i.e., consider the segment with endpoints
(x− δ, x2 + 1− 2xδ), (x+ 1, (x+ 1)2) for some small positive δ. Assuming
that Bλ is regular (say, of class C1), it follows that the difference

Bλ(x, x2 + 1)− 1

1 + δ
· Bλ(x− δ, x2 + 1− 2xδ)− δ

1 + δ
Bλ(x+ 1, (x+ 1)2)
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is of order o(δ). Furthermore, by our choice of foliation, we have

Bλ(x− δ, x2 + 1− 2xδ)

= (1− δ)Bλ(x− 2δ, (x− 2δ)2 + 1) + δBλ(x− 2δ + 1, (x− 2δ + 1)2).

However,

Bλ(x+1, (x+1)2) = x−λ−1, Bλ(x−2δ+1, (x−2δ+1)2) = x−2δ−λ−1,

so if we substitute F (x) = Bλ(x, x2) and combine the above observations,
we get

F (x)− F (x− 2δ)

2δ
= −F (x− 2δ)

1 + δ
+
x− λ− 1

1 + δ
+

δ

1 + δ
+O(δ).

So, F satisfies the differential equation F ′(x) = −F (x)+x−λ−1 and hence
F (x) = x − λ − 2 + κe−x for some constant κ. Since F (λ + 1) = 0, as we
have computed above, this implies κ = e−λ−1 and hence

Bλ(x, x2 + 1) = x− λ− 2 + exp(−x+ λ+ 1).

To compute the formula on the whole D+
3 , pick a point (x, y) belonging to

this set. We easily compute that (x, y) belongs to the segment K
x−
√
x2+1−y

from our foliation. Since we know the values of Bλ at the endpoints of this
segment, we easily compute that

Bλ(x, y) = x− λ− 2 +
(
1−

√
x2 + 1− y

)
exp

(
− x+

√
x2 + 1− y+ λ+ 1

)
.

Thus we have arrived at the function introduced in Section 2. We would
like to stress that at this point of the analysis, the function Bλ is only a
candidate for the Bellman function: its discovery was based on a series of
conjectures. To complete the reasoning, one needs to verify rigorously that
this function indeed enjoys all the required properties. This was carried out
successfully in Section 2.
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[4] Burkholder, Donald L. Explorations in martingale theory and its applica-
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