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An S3-symmetry of the Jacobi identity for
intertwining operator algebras

Ling Chen

ABSTRACT. We prove an Ss-symmetry of the Jacobi identity for inter-
twining operator algebras. Since this Jacobi identity involves the braid-
ing and fusing isomorphisms satisfying the genus-zero Moore—Seiberg
equations, our proof uses not only the basic properties of intertwining
operators, but also the properties of braiding and fusing isomorphisms
and the genus-zero Moore—Seiberg equations. Our proof depends heav-
ily on the theory of multivalued analytic functions of several variables,
especially the theory of analytic extensions.
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1. Introduction

Intertwining operator algebras were introduced and studied by Huang in
[H1, H2]. In [C], the author studied intertwining operator algebras in a
setting more general than [H2]. In particular, the duality properties, Ja-
cobi identity, Moore—Seiberg equations, locality and some other properties
of intertwining operator algebras were studied. For the background on in-
tertwining operator algebras, we refer the reader to [H1, H2, CJ.

For vertex operator algebras, the Jacobi identity has an Ss-symmetry
which corresponds to the obvious S3-symmetry of the Jacobi identity for Lie
algebras [FHL]. For abelian intertwining operator algebras (see [DL2, DL1]),
Guo [G] proved that the Jacobi identity for these algebras also has an Ss-
symmetry. In this paper, we prove an Ss-symmetry of the Jacobi identity
for intertwining operator algebras introduced by Huang [H2] and studied
by the author [C]. See Theorem 3.1 for the statement of this S3-symmetry.
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The Ss-symmetry in this general case is much more complicated but is also
much more interesting and much deeper. Note that the Jacobi identity for
general intertwining operator algebras in [H2] and [C] involves the braiding
and fusing isomorphisms satisfying the genus-zero Moore—Seiberg equations.
The proof of the S3-symmetry in the present paper uses not only the prop-
erties of the intertwining operators (for example, the skew-symmetry) but
also the properties of braiding and fusing isomorphisms and the genus-zero
Moore—Seiberg equations. In particular, our proof depends heavily on the
theory of multivalued analytic functions of several variables, especially the
theory of analytic extensions.

This paper is organized as follows. In Section 2, we review some pre-
liminaries concerning the theory of intertwining operator algebras which we
need to formulate and prove the main result of this paper. In Section 3,
we prove an Ss-symmetry of the Jacobi identity for intertwining operator
algebras.

Acknowledgments. The author is very grateful to Professor Yi-Zhi Huang
for his support, encouragement, many discussions on the paper and help with
the exposition of the paper.

2. Preliminaries

In this section, we first recall some notations and facts in formal calculus
and complex analysis (see [FLM, FHL, H2] for more details), then we re-
view some definitions and properties in the theory of intertwining operator
algebras in [H2, C]. These are necessary preliminaries for formulating and
proving the main result of this paper.

In this paper, as in [FHL, H2, C|, =, xq,... are independent commuting
formal variables. And for a vector space W and a formal variable z, as in
[FHL, H2, C], we shall use W x|, W[z, x~1], W[[z]], W[[z,2~!]], W((z)) and
W{x} to denote the spaces of all polynomials in z, all Laurent polynomials
in z, all formal power series in x, all formal Laurent series in z, all formal
Laurent series in x with finitely many negative powers and all formal series
with arbitrary powers of x in C, respectively. For series with more than one
formal variables, we shall use similar notations. We shall use Res, f(z) to
denote the coefficient of 271 in f(z) for any f(z) € W{z}. As in [FHL, H2,

Cl, z, 20, ..., are complex numbers, not formal variables.
Let
(2.1) (x) =) a™
nez

It has the following important property: For any f(z) € Clz, 27},
(2.2) f(@)é(z) = f(1)d(x).

Following [FHL, H2, C], we use the convention that negative powers of a
binomial are to be expanded in nonnegative powers of the second summand
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so that, for example,
(2.3)

_ xr1 — T2 (xl - x2)n m( T —n—1_n—-m_m
330 1(5 ( 70 ) = Z T = Z (—1) <m>ﬂf0 1331 Ty .

nez Zo meN, neZ

The following identities are often very useful:

_ + i) _ r1 — Xo
2.4 Ly (22 =z’
(2.4) zy 0 ( o > Ty 0 79 )

9 —1 L1 — T2\ 1 T2 — 1 _ -1 1 — o .
(2.5) x (5( 0 ) — ) -

As in [FHL, H2, C], C[x1, 22]s is the ring of rational functions obtained
by inverting the products of (zero or more) elements of the set S of nonzero
homogenous linear polynomials in x1 and zs. Also, t12 is the operation
of expanding an element of C[x1,x2]g, that is, a polynomial in x; and x9
divided by a product of homogenous linear polynomials in x; and x9, as a
formal series containing at most finitely many negative powers of x5 (using
binomial expansions for negative powers of linear polynomials involving both

x1 and x3); similarly for to1, and so on. We need the following fact from
[FHL].

Proposition 2.1. Consider a rational function of the form

(2.6) (0, 1, 22) = 9(xo, 1, 23)

T nS el ’
Lol1Ty

where g is a polynomial and r,s,t € Z. Then

(2'7) ‘T;lé ( > L20(f|m1=x0+x2) = $515 <

and

(2.8) x5's <

T2 + Xo 1 — Xo

> Llo(f|x2=l“1fxo)

Ty — X2 T2 — X1

) LlQ(f‘x():m—m) - xalé < — > L21(f|330:$1—$2)
= .1’2_1(5 (xll;xo) LlO(f’m:wl—ﬂ?o)'

As in [FHL, H2, C], the graded dual of a Z-graded, or more generally,
C-graded, vector space W =[], W, is denoted by

For any z € C, we use logz to denote the value log|z| + iargz with
0 < argz < 27 of logarithm of z. For two multivalued functions f; and fs
on a region, f; and fo are equal if on any simply connected open subset of
the region, any single-valued branch of f; is equal to a single-valued branch
of fo, and vice versa.



660 LING CHEN

Now we recall some basic notions and results in the theory of intertwining
operator algebras. For the details of the definitions and properties of vertex
operator algebras, their modules and intertwining operators, the reader is
referred to [FHL, FLM, H2]. And for more details of the properties of
intertwining operator algebras, the reader is referred to [H2, C].

Let (V,Y,1,w) be a vertex operator algebra, and let Wy, Wy, W3 be mod-

ules of V. The space of all intertwining operators of type (eri‘%) is denoted

by VVVII,/;’WQ instead of VVV[IE”WQ, for as in [C], the latter shall be used to denote
a subspace of VVVII,?WQ in the definition of intertwining operator algebra. The
dimension of this vector space is denoted by 7V[I/Z3W2' It is the so-called fusion

W3 )

rule of the same type. Let ) be an intertwining operator of type (W1W2

Given any r € Z, as in [HL, H2, C], we define

(2.10) Q (V) : Wo @ Wy — Wa{x}
by
(2.11) Q, (y)(w@), .CC)U)(l) = €xL(71)y(w(1), 6(2”1)”":1:)11)(2)

for w(;) € Wi, wz) € Wa. We have the following result proved in [HL]:

Proposition 2.2. For any Y € ?VV[‘,?’WQ, r € Z, we have Q,.(Y) € VWW//;WI.
Moreover,

(2.12) Q1 (V) = 2 (R (V) = V.
In particular, the correspondence Y — ,.()) defines a linear isomorphism
from VVVII,?WQ to V&,V;’WI, and we have

W W
(2.13) NW13W2 = NW23W1'
Now we recall the first definition of intertwining operator algebras in [H2]:

Definition 2.3 (Intertwining operator algebra). An intertwining operator
algebra of central charge ¢ € C consists of the following data:

(1) a vector space

(2.14) w=[]w"
acA
graded by a finite set A containing a special element e (graded by
color);

(2) a vertex operator algebra structure of central charge ¢ on W€, and
a We¢module structure on W¢ for each a € A;

(3) a subspace Vg3, of the space of all intertwining operators of type
(WZY;;QQ) for each triple a1, as, a3 € A, with its dimension denoted
by N23

aija”’
These data SatiSfy the fOHOWing axioms for any ai,az,as,a4,as,06 € -/47
W(q;) € Wei ¢=1,2,3, and wza4) c (Wa4)/:

a2
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(1) The W¢module structure on W€ is the adjoint module structure.
For any a € A, the space V¢, is the one-dimensional vector space
spanned by the vertex operator for the We¢module W¢. For any
ai,az € A such that a; # ag, V32, = 0.

(2) Weight condition: For any a € A and the corresponding module
W =11,ec W, graded by the action of L(0), there exists h, € R

such that W( )= =0forn & h, + Z.

(3) Convergence properties: For any m € Z,, a;,b; € A, Wiay) € WO,
yz € Vb b 7 = 1,...,m, ] = 1,...,m+1, wzbl) c (Wbl)l and
W(bpy1) € WPmi1 the series

(2. 15)
< (b1) yl(w(al r1)-- ym( xm)w(bm+1)>Wbl‘z?:e"logzi,i:l,...,m,nER

is absolutely convergent when |z;| > -+ > |2p| > 0 and its sum can
be analytically extended to a multivalued analytic function on the
region given by z; # 0,4 =1,...,m, z; # 2, 1 # j, such that for any
set of possible singular points with either z; = 0, z; = oo or 2z; = z;
for ¢ # j, this multivalued analytic function can be expanded near
the singularity as a series having the same form as the expansion near
the singular points of a solution of a system of differential equations
with regular singular points. For any Vy € Vg5, and ) € Vg4, the
series

(2.16)
(W(ay) V2 (V1(W(a1)s T0)W(az)> T2)W(ag) ) Wt | gp _enion(e1—22), g —eniox =2 ner

is absolutely convergent when |2z3| > |21 — 22| > 0.
(4) Associativity: For any Y1 € Vgi,, and Vs € Vg3, there exist V5, €
VCL

oap and Vi, € Vad fori=1,... , Ng ,Nii and a € A, such that

aas airaz’Vaaz
the (multivalued) analytic functlon

(2.17) (Wiaays V1(W(ay)> 1) V2 (W(ay) T2)W(az) ) W |wy =21 23 =2

defined on the region |z1| > |22| > 0 and the (multivalued) analytic
function
(2.18)
Na

aq a2N€la3

Z Z <w y4 z(yB z( xO)w(az) $2)w(a3)>wa4

. To=%21—%22,L2=%22
acA =1 )

defined on the region |z3| > |21 —22| > 0 are equal on the intersection
‘Zl| > |2’2| > |Zl — ZQ| > 0.
(5) Skew-symmetry: The restriction of _; to V43, is an isomorphism

ai1az
as as
from Vg3, to Vg3, .

Remark 2.4. The skew-symmetry isomorphisms

Q_i(ay,ag;a3) for all a1,az,a3 € A
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give an isomorphism
) a: as
(2.19) Qa0 [T ve,— J1 V..
a1,a2,a3€A a1,a2,a3€A

which, as in [H2, C], is still called the skew-symmetry isomorphism. In this
paper, as in [H2, C], we shall omit subscript —1 in Q_; for simplicity and
denote it by .

We denote the intertwining operator algebra just defined by
WA {Valer 5 1, w)
or simply by W.

Next, as in [H2, C], we give the two linear maps corresponding to the
multiplication and iterates of intertwining operators, respectively. Let

(2.20) [T Vi, ©ve, = Hom(W e W @ W, W)){z, 2}
a1,a2,a3,a4,a5€A

Z P(2)

be the linear map defined using products of intertwining operators as follows:
For

(2.21) Ze T Vi, eve,,

a1,a2,a3,a4,a5E€A

the element P(Z) to be defined is a linear map from W @ W @ W to
WH{z1,z2}. We denote the image of w; ® wy ® ws under this map by
(P(2)) (w1, w2, ws; x1,x2) for any wi,ws, w3 € W. Then we define P by
linearity and by

(222) (P(yl ® yQ))(w(a6)7 W(ar)s W(ag); L1, 1:2)
0, otherwise,

_ {yl(w(%-), £1)V2(W(ay), T2)W(ag), @6 = a1,a7 = A2,0a8 = a3,

for ai,...,as € A, Yy € V3., Yo € V5., and w(,) € W, w(,,) € W7,

203’
W(ag) € W*. So we have an isomorphism
(2.23)
[ Vi @V,
o a1,a2,a3,a4,a5 €A
poommmiect w1 wmoenm.

a1,a2,a3,a4,a5€A
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which makes the following diagram commute:
(2.24)

[ vi.evi,—P [ v, eve

aias a2a3 ?
a1,a2,a3,a4,a5€A a1,a2,a3,a4,a5€A

l %
TP
| | a4 as
VQIQS ® Va2a3
a1,a2,a3,a4,a5€A

Ker P

where 7p is the corresponding canonical projective map. As in [C], we also
denote mp(Z) by [Z]p or Z+ Ker P for Z € [ Vit @ V55

ai,a2,a3,a4,a5€A Yaras a2a3
when there is no ambiguity. The second linear map is

(2.25) [T Ve, eove, S HomW oW @ W, W)){zo,z2}
a1,a2,a3,a4,a5E€A

Z=1(2)
defined using iterates of intertwining operators as follows: For

(2.26) Ze 1T Vs @Y

aiaz asas’?
a1,a2,a3,a4,a5 €A

the element I(Z) to be defined is a linear map from W @ W ® W to
W{xzp,x2}. We denote the image of w; ® wy ® ws under this map by
(I(2)) (w1, w2, ws; xg, x2) for any wy,we,ws € W. Then we define I by
linearity and by

(2.27) (I @ 32))(W(ag)s W(ar) W(ag)} T0, T2)

_ } Y2(Vi(Wiag)s T0)W(ar), ¥2)W(ag), 6 = a1, a7 = az,ag = a3,
0, otherwise,

for ay,...,as € A, Y1 € V52, Yo € Vg, and w(gq) € W, w(,,) € W,
W(ag) € W*. Therefore we have an isomorphism
(2.28)

| | as a4
Valag ® Va5a3
a1,a2,a3,a4,a5E€A

Ker I

b=t

— 1 I Ve, eve

ajas asas
a1,a2,a3,a4,a5E€A
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which makes the following diagram commute:
(2.29)

I
as a4 as a4
H V(ZIQZ ® Va5043 I H Va1a2 ® Va50«3 ’

a1,a2,a3,a4,a5€A a1,a2,a3,a4,a5€A

l /
I
| | as ay
Va1a2 ® Va5a3
a1,a2,a3,a4,a5€A

Ker 1

where 77 is the corresponding canonical projective map. As in [C], we also
denote 77(Z) by [Z]r or Z + Ker I for Z € [[,, 1) a5.00.a5e4 Vatas @ Vaia,
when there is no ambiguity.

The two linear maps P and I are called the multiplication of intertwining
operators and the iterates of intertwining operators, respectively.

Moreover, in [H2, C], Huang and the author obtained isomorphisms from
the associativity of intertwining operator algebras and from the skew-symme-
try isomorphism 2. The fusing isomorphism which we obtained from the
associativity of intertwining operator algebras is a map

[ Ve eV, I Ve, eV,
5€A a1,a2,a3,a4,a5€A
2.30) F - a1,02,03,04,a5€ __, 91,02,03,04,
( ) Ker P Ker I
determined by linearity and by
N\ ayNads
(2.31) FOien+KeP)=> Y VeV +Kerl
acA =1
for ai,--- a5 € A, Y1 € V34, and Vo € VI, where
(232) {ygﬂ 6 Vglag’ y:ll,z E vggg ‘ 7’ = 17 o 7N;1(Z2Ng;3’a 6 A}

is a set of intertwining operators satisfying that for any wi, we, w3 € W and
w e W',

NeyagNady
(2.33) > Y W (I @ V5)
acA i=1

w1, W2,W3; Xy, T
( 1 29 3,40, 2)>W xg:enlog(21_22)7x»§1:enlog22

is equal to
(234) (wl’ (P(yl ® yQ))(wl, wQ, wg, xl, $2)>W‘x?:en log z1 ’zg:enlogZQ

on the region
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S ={(z1,22) € C? | Rez; > Rezg > Re(z1 — 22) > 0,
Imz; > Imzy > Im(2; — 22) > 0}.

It was also proved that

F(a1,a2,a3,a4)

(235) 7p | [ Ve, @ V., | = a [ [ Vs, @ Vi,

as €A as€A
V1 @Yo+ Ker Pr— F(V1 ® Vo + Ker P)
is an isomorphism for any ai,---,a4 € A, where }y € V34, ., Vo € Vi2,..

These isomorphisms are also called fusing isomorphisms. The isomorphisms
we obtained from 2 and its inverse are linear isomorphic maps:

(2.36) QW (Q-1HD .

[ v, evis, I Ve, eve,
defined by linearity and by
(2.37) QW (Y @ Vo + Ker I) = Q(V1) @ Vo + Ker 1,
(2.38) Q@YD @Y +Ker I) = Q1) ® Vs + Ker
for ay,...,a5 € A, V1 € Vg5, Yo € Vi .

(2.39) Q@ (Q1H)®@ .

[ Vi@ Vi [ Vi,evia
a1,a2,a3,a4,a5 €A . a1,a2,a3,a4,a5 €A
Ker P Ker I
defined by linearity and by
(2.40) Q@ (V; © Vo + Ker P) = Vo @ Q) + Ker 1,

(2.41) QDD @Iy +Ker P) =V ® QH())) + Ker I
for aq,...,a5 € A, Jh € ng%, Vo € V35

2037

(2.42) QO (1B .

[ Vi eV [ Vi eV
a1,a2,a3,a4,a5 €A _ a1,a2,a3,a4,a5€A
Ker I Ker P
defined by linearity and by
(2.43) QB (V) @Yy + Ker I) = Q%) @ V1 + Ker P,

(2.44) QO @V +Ker I) = Q1) ® V1 + Ker P
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for ai,...,a5 € A, Y1 € V55, Vo € Vi

asas’

(2.45) QW (1)@ .

[T Vi, eV, [ Vi, eV,
a1,a2,a3,a4,a5€A a1,a2,a3,a4,a5€A
Ker P - Ker P

defined by linearity and by
(2.46) QW (Y @ Vo + Ker P) = V1 @ Q(Vs) + Ker P,
(2.47) QD ® Vs + Ker P) =V @ Q1 (Qh) + Ker P
for ay,...,a5 € A, V1 € Vgi,., Vo € Vi5,.. And these isomorphisms have
relations:
(2.48) Q@)= (@), (@ H)P)t =),
(2.49) QW) =@ HD, (W) = (1)@,

The above isomorphisms are not independent, we proved the following
relations in [C]:

Theorem 2.5. The above isomorphisms satisfy the following genus-zero
Moore—Seiberg equations:

(2.50) FoQ®or=00o0Fro0W,

(2.51) Fo(@H)® oF = Q1D oFo (@14,

Using the fusing isomorphism and the isomorphism Q1) we deduced a
braiding isomorphism

(2.52) B=F1loQWs F.
I Vi, ove, I v, eve,

a1,a2,a3,a4,a5€A a1,a2,a3,a4,a5€A
—

Ker P Ker P
Moreover, we get an isomorphism

B(a1,a2,a3,a4)
253)  ap | [] ver, v, | = ap | ] Vi, © Ve,
as€A as€A

V1 @Yo+ Ker Pr— B()) @ Vs + Ker P)

for any ai,---,a4 € A, where Y1 € V3t . Vo € Vg5,.. We also call these
isomorphisms braiding isomorphisms.

Before formulating the Jacobi identity for intertwining operator algebras,
we need to recall the specifics of one more property, which is about certain
special multivalued analytic functions, and were discussed in [H2, C].
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First we consider some simply connected regions in C2. Cutting the re-
gions |z1| > |z2] > 0 and |z2| > |z1] > 0 along the intersections of these
regions with

{(21,20) € C? | 21 € [0,400)} U{(21, 22) € C? | 29 € [0, +00)},

we obtain two simply connected regions, which, as in [H2, C], are denoted
by R; and Ro, respectively. Also, let R3 be the simply connected region
obtained by cutting the region |z2| > |21 — 22| > 0 along the intersection of
this region with

{(21,22) € C? | 23 € [0, +00)} U {(21,22) € C? | 21 — 23 € [0, 4+00)},
and let R4 be the simply connected region obtained by cutting the region
|z1| > |21 — 22| > 0 along the intersection of this region with

{(21,20) € C? | 21 € [0,400)} U {(21,22) € C? | 20 — 2, € [0, +00)}.
Then we consider some special multivalued analytic functions on
(2.54) M2:{(Zl,22) ECQ | 21,2’2750,21 #ZQ}.

For ay,a2,a3,a4 € A, as in [H2, C|, we let G*%2:93:% he the set of multi-
valued analytic functions on M? with a choice of a single-valued branch on
the region R; satisfying the following property: Any branch of

f(Zl, 22) € (*1,92,a3,04

on the regions |z1| > |z2] > 0, |z2] > |z1] > 0 and |22 > |21 — 22| > O,
respectively, can be expanded as

(2.55) z?%_h”_ha zga_haz_h% Fy(z1, 22),
acA

(2.56) Z zga‘*_h” _haz?“_hal_h% Ga(z1, 22)
acA

and

(2.57) z;%_ha_ha?’ (21 — zp) e P —has (21, 29),

acA

respectively, where for a € A,

(2.58) Fu(21,2) € Cl[z2/21)][21, 21 5 22, 25 1,

(2.59) Galz1,22) € Cl[21/22)][21, 27, 22, 25 ]

and

(2.60) Ha(21,22) € Cl[(21 — 22)/22]][22, 25 21 — 22, (21 — 22) ')

The chosen single-valued branch on R; of an element of G%:92:43:% ig called
the preferred branch on R;. Asin [C], we use the nonempty simply connected
regions
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S1 = {(21,22) € C? | Rez; > Rezy > Re(z1 — 22) > 0,
Imz; > Imzo > Im(z; — 22) > 0}

and

Sy ={(z1,22) € C? | Rezo > Rez; > Re(z2 — 21) > 0,
Imzy > Imz; > Im(zy — 21) > 0}

to determine other special branches of an element of G*%2:%3:% on Ry, Rj
and Ry related to the preferred branch on R;. Firstly, the restriction of the
preferred branch on R; of an element of G*1:92:93:%4 tg the region S1 C R1NR3
gives a single-valued branch of the element on Rj3, which is then called the
preferred branch on Rs. Secondly, the restriction of the preferred branch
on R; to the region S; C Ry N Ry also gives a single-valued branch of the
element on R4, which is then called the preferred branch on R4. Moreover,
the restriction of the preferred branch on R4 to the region So C R4 N Ro
then gives a single-valued branch of the element on Ry and we call it the
preferred branch on Ra. It was verified in [H2, C] that G®92:93:%4 ig a vector
space.

For any element of G @4 the preferred branches of this function on
Ry, Ry and Rj3 give formal series in

a2,a3,

hay—ha;—ha ha—hay—ha _ _
(2.61) H zt T 2 B[z /][, 2 1,332»332 1]»
acA
(2.62) [T s " ey = Ty faa] a1, 27 2, 5]
acA
and
hay—ha—ha; ha—ha;—ha _ _
(263) H ) * 31;0 ! QC[[$O/$2]][$07x0171:27$2 1]7
acA
respectively, which induce linear maps
(2.64)
Ga1:a2,a3,04 12, H xilla4—ha1 _haxga_haz_hasc[[x2/$1“[xh 331717 T3, x;l],
acA
(2.65)
Govozasoe 2y H ay e g Tt TS Ol )[4, 27 e, 257,
acA
(2.66)
Ga,az,a3,a4 120, H mgm_ha_hag xga_hoq _hGQ(C[[IEO/$2H[IEO, gjal7 Ta, x2—1]7
acA

generalizing 119, to1 and t9g discussed at the beginning of this section. These
maps are injective because analytic extensions are unique.



S3-SYMMETRY OF THE JACOBI IDENTITY 669

For ai,as,as,aq4 € A, G*92:93:04 ig 3 module over the ring
(C[a:l,ml_l, Z9, x;l, (z1 — z2) 7).
Huang [H2] proved the following lemma:
Lemma 2.6. For any a1, a9, a3, a4 € A, the module G*%2:%3:%4 s free,

Remark 2.7. In the following theorem for Jacobi identity and for the rest
of the paper, we fix a basis {ea" "™} ,ca(a1,02,03,a0) Of the free module

G*122:93,%4 gyer the ring Clzy, 1:1_1, Zo, xz_l, (v1—22) 7] for any a1, as, a3, aq €
A, where A(aq,as,as,ay) is the index set of the basis.

Now we give the Jacobi identity derived in [H2]:

Theorem 2.8 (Jacobi identity). For any a1, az, a3, aq € A, there exist linear
maps

(2.67)  foramsta W @ W2 WS @rp | [ Vit ® Vis,
a5€A

= W([zz/ar]][x1, 27", w2, 257
Wiar) ® Wiaz) @ Wiag) @ [Z]p

— fg17a27a3,a4 (w(al)’ W(az): W(ag)» [Z]PS 1, x2)7

(2.68)  gare2 W RW2@WR @ap | ] Vite ® Vit
a5€.A

— Wa4[[$1/x2“[$17 xl_lv T2, 5132_1]
W(ay) @ W(ag) © Wiay) © [Z]p
> Gal P (W(ay)s Wiag), Wiay)s [ 2] P71, 72)

and

(2.69)  haro2aa W @ W oW @y | [ Ve, © Vi,
as€A
— W [wo/xo])[x0, 25 ", w2, 25 ']
W(ay) ® W(aq) ® W(az) ® [Z]I

= hgl,az,ag,tm (U)(m)a W(ay)s W(as)> [Z]]; xo, 1'2)
for a € A(ai,as,as,a4), such that for any Wiay) € WY, w, € WS,
W(ay) € W, and any
(2.70) ze [[ Vi oV, I Vil ® Vi,

as€A a1,a2,a3,a4,a5€A

only finitely many of

(2.71) Fabt "2 (W (g, ), Wiag), Wiay), [Z] P 71, T2),
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(2.72) gal "M (W), Wiay)s Wiay)> B([Z]P); 71, 72),
and
(2.73) Rt 2838 (W gy, W(ay) s Wiag), F ([Z]P); T, T2),

a € Alay,az,as,aq), are nonzero,
(274) (P([Z]p))(w(al),w(@),w(a3);x1,x2)
= Z oI (W) Wag)s Way)s [Z] P31, T2)

a€l(a1,a2,a3,a4)

119 (63176027@3,&4) ,

(2.75)  (P(B([2]P))) (W(as)s W(ar), W(az); T2, 1)
= Z 9317a27a37a4(w(a1)aw(a2)7w(a3)78([Z]P);$1>x2)

a€h(a1,a2,a3,a4)

‘191 (egl,a2,a3,a4) ,

(2.76)  (L(F([Z]P))(W(ay): W(ap)s Wiag)} To; T2)
= Z hZ1,a2,a3,a4 (w(a1)v w(a2)’w(a3)’ F([Z]P)a X0, x2)

a€h(a1,a2,a3,a4)

- g0 (€81:02:08,04)
o 9
and the following Jacobi identity holds:

(2.77) x5'o (

Ty — X2

) f;17a2’a3’a4<w(a1),w(a2)7w(a3)7 [Z]P;xl’xQ)
_ Tro — T al,a2,a3,a
— x5 16 <2_xol> gal’ 2,93, 4(W(a1);w(a2)7w(a:})?B([Z]P);xl’xQ)

— T1— o ai,a2,a3,a
) '5 <l‘2> hal’ 2 4(w(a1)7w(a2)aw(a3)aF([Z]P);anxZ)

for a € A(ay,az,as,aq).

3. S3z-symmetry of the Jacobi identity

In this section, we formulate and prove a symmetric property of the Jacobi
identity for intertwining operator algebras under the symmetric group Ss,
which is the main result of this paper. Here is the precise statement of the
main result:

Theorem 3.1. In the presence of the axioms for an intertwining operator
algebra except for the associativity property, we assume that there exists an
isomorphism

(3.1)
Vi, @ Vs Vs, ® Vi

F: a1,a2,a3,a4,05€A ¥ aias a2a3 Ha17a2,a3,a4,a5eA aiaz asas

Ker P Ker 1
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satisfying

(3.2) Flap | J] Vit @V | | = | [ Vi ® Vida,

asEA as€A
for any ay,--- ,aq4 € A, and that the Moore—Seiberg equations (2.50) and
(2.51) hold, then the Jacobi identity for the ordered triple

3
(w(m)v w(az) ) u~)(a3)> € H W
=1

implies the Jacobi identity for the triple

3
(@far 1)) Dlar) Vara))) € H W@
i=1

for any T € S3.

Remark 3.2. In the above theorem, since there’s no associativity in the
assumptions, we have no fusing isomorphism. The assumption that the
Moore—Seiberg equations (2.50) and (2.51) hold in fact means that they
hold with the fusing isomorphism replaced by the given isomorphism F in
(3.1). Moreover, from F in (3.1) and the isomorphism Q) we obtain an
isomorphism

(33) B=F loQWoF:
I Vi, eV, I v, eve,

ai,a2,a3,a4,a5E€A N a1,a2,a3,a4,a5€A
Ker P Ker P
And we also assume that the isomorphisms F and B involved in the formu-
lation of the Jacobi identity are replaced by the given isomorphism in (3.1)
and the deduced isomorphism in (3.3), respectively.

The rest of this section is devoted to proving the Ss-symmetry of the
Jacobi identity. We achieve this goal by establishing three results that lead
to Theorem 3.1.

Proposition 3.3. In the presence of the axioms for an intertwining operator
algebra except for the associativity property, we assume that there exists an
1somorphism

(3.4)
F. ar,az,az,a1,056A Yaras @ Vajas . Ha17a2,a3,a4,as€A Vitas ® Vagas
' Ker P Ker I
satisfying
35)  Flap | I Vit @ Vi | | = | 11 Viie @ Vit

as€A as€A
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for any ay,--- ;a4 € A, and that the Jacobi identity for the ordered triple
(W(ay), W(ag)s Wiag)) € H?Zl W% holds, then for any a4 € A, w2a4) € (Wasy
and Z € [],, ca Vatas ® Valas, there exists a multivalued analytic function
(3.6) D(W(a,), Var)> W(az)s W(as): [Z]P; 21, 22) € G232

such that

(37) <w2a4)7 (ﬁ([Z]p))(ﬁ)(al), QI}(GQ), 'lD(a3) L1, 1’2)>Wa4 ’m?:enlogzl ’xg:enlog 29y
(3.8) 3

(W(ay), PBZ]P))) (W(az)s Wiar) Wiag): T2, T1))Wea | gn—enios =1 gn—enios =2

(3.9

(W(ay), MF([Z]P)) (W (a1 Wiaz), Daz)s T05 T2))Wts | g _em1on(z1—22) g — entos =2
and

(3810)  {w],, (O (F((2]r)))

(W(a5), W(ar)> W(az)s L0, T1)) Woa | gp_en1og(z0—21) gn—enion =1
are its preferred branches on Ry, Re, R3 and Ry, respectively. Moreover,
(311) (W), A(F(Z]p))

(w(al) 5 ,LD((IQ) 5 ’LIJ(%), Zo, xQ))W(’A |$8,:en IOg(zl_22>,$g’:6n log z9

= (w(y,), (P([Z]p))
(@(al)v 11)(&2) s ’LZ)(ag); x1, .T2)>Wa4 |x?:8n log 21 xR =en log zo

on the region

S1 = {(21,22) € C* | Rez; > Rezy > Re(z1 — 22) > 0,
Imz; > Imzy > Im(21 — 22) > 0},

and

(3.12)  (w(,,), MQD(F((2]p)))
(w(az) ) ’U~}(a1) ) w(ag)v Zo, xl))W"“l |£E6L:€n10g(22_21>,$7f:en log 27
= (W), (P(B([Z]p))

(QI}(GQ), ﬁ)(al) y 17)((13); s, $1)>Wa4 |x?:8n log 21 xR =en log zo
on the region
Sy ={(z1,22) € C? | Rezo > Rez; > Re(z2 — 21) > 0,
Imzo > Imz; > Im(zg — 21) > 0}.

Remark 3.4. In the above proposition, the formulations involving the iso-
morphisms F and B have the same assumptions as we discussed in Re-
mark 3.2 below Theorem 3.1.
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Remark 3.5. In [C], we proved that for intertwining operator algebras,
the generalized rationality, commutativity and associativity follow from the
Jacobi identity. And its proof involves only one ordered triple

3
(W (ay)> Waz)> W(ag)) € [ W™
=1

for both commutativity, associativity and the Jacobi identity. Minus the
skew-symmetry condition, the above proposition becomes a one-ordered-
triple version of Theorem 3.3 in [C]. However, for the sake of proving Theo-
rem 3.1, we add the extra skew-symmetry condition in the above proposition
to obtain the preferred branch (3.10) on R4 and the analytic extension re-
lation (3.12).

Proof of Proposition 3.3. Since the Jacobi identity holds for the ordered
triple (W(q, ), W(ay)s W(ay)) € ]_[?:1 W then for any a4 € A, there exist linear
maps

(3.13)  forazet Wa @ W Wh @rp | [ Vi, ® Ve

aias azas
as€A

— W [zo/x1]][x1, acl_l, T9, 332_1]
W(ay) @ W(ay) @ W(ag) @ (Z]p

— fgl’az’a?”a‘l (w(al), W(ag)) W(az)s [Z]Pa xy, 352),

(3.14) garazaas o oWe o We ap | [ Vi, @V

azas aijas
as€A

— W [y /a1, 27, 20, 25 ]
W(q) @ W(ay) @ Wgz) @ [Z]p
a1,a2,a3,a4

= Ja (w(al)vw(ag)aw(a3)7 [Z]P;xlva)

and

(3.15)  hgneest W @ W2 @ W @y | [ Vit., ® Vid,
CL5€.A

— W [wo/xo]][x0, 25 ", w2, 25 ']
W(ay) @ W(ag) @ Wiag) © [Z]r
= R0 (w1, Wag)s Way), [Z]15 0, T2)
for a € A(aq, a9, as,ay), such that for any

(3.16) ze [ Vit ® Vi, C I ve. eve,.

as€A a1,a2,a3,a4,a5€A
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only finitely many of

(3.17) Jab 28t (W g, ), Wiay)s W(ag)s [Z]P; T1, T2),
(3.18) o 20 (W(ay), Wiaz)s Wag), BIIZ]P); 21, 22),
and

(3.19) hgé17a2,a3,a4 (w(m)a ID(@) y 'U~)(a3)a f([Z]p)7 X, .’Eg),

a € A(ay,ag,as,ay), are nonzero,
(320) (P([Z]P))(m(al)aw(ag)aw(ag);xhx?)
= > oI (D gy, Way)s Wag), [Z]P; 1, T2)

a€hl(a1,a2,a3,a4)

1192 (6314127&3,(14)

(321) (f)(B([Z]P)))(ﬁ)(aQ)a w((n)? w(ag); T2, 1'1)
= Z 931,a2,a3,a4(w(a1)’w(@)’w(%)’g([zb);wl,m)

ach(a1,a2,a3,a4)

‘191 (egl7a2,a37a4) ,

(3.22)  (I(F([2]P)(@(ay)> Wiaz) W(a): Tos T2)
= > Rt 288 (D gy, Way) s Wag), F ([Z]P); To, T2)

a€h(a1,a2,a3,a4)
- Lgo(€8112:03,04)

and the following Jacobi identity holds:

(3.23) x50 <

)

1 — 22

> fa1,02,3,04 (w(al), W(ay)s Wag)s [Z]p; 21, 22)

— L2 — & a1,a2,a3,a4 [, ~ ~
— g0 (“) 9o I (W (ay), Way)s Wias), B([Z]p); 21, 22)

— 20
— T1 — o a1,a2,a3,a4 (,~ ~ ~
=0 <$2> hat 2 88 (W 4, ), Wiag), W(ag)s F ([Z]P); 0, T2)

for a € A(ay,a9,as,a4).
In analogy with the proof of Theorem 3.3 in [C], we can obtain that, for
any aq € A, o € A(aq,az,as,ay), there exists linear map

(324) Fo: (WY oW oW2eW*erp | [[ Vii, @V

aias aszas
as€A
— C[xlv xfla X2, ZIS‘;I, (Zlfl - $2)_1]
with Fa(wgw), ’Jj(al), ZZJ(CLQ), ~(a3), [Z]P; x1,x2) denoted by the image of

/

Wgy) @ W(a;) ® Way) ® Wiaz) @ [Z]p
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under F, such that

(3'25) <w2a4)7f317a2,a3,a4<w(a1)’w(m),@( )[ ]P7x17x2)>W‘14

= LlZFa(w2a4)7 w(al) ) w(ag) ) w(ag)a [Z]P7 Zy, l’g),

(3:26) (Wlay), ga" """ (@ (1), V(ag): W(as), BIZ]P); 21, 2) ) wes
:L21F( w(al)vw(ag) m(ag)a[Z]P;xlaxQ)

and

(3:27)  (wiy,y, ha! > (W (ay)s Way), Wiaz)s F ([Z]P); X0, ¥2)) wea
= 120 F0(W4,)s Wiay)s W(az)s D(ag): [Z] Ps T2 + T0, 22)

for a € A(ay,as,as,aq). Moreover, since G%-%2:93:% ig a free module over
the ring

(3.28) Clay, a7t w2, 25", (21 — 22) 7Y

with a basis {eg""***

(3.29)
(G01,02,03,04 @(wEM),’LZ)(al), ﬁi(@), lD(a3), [Z]p; 21, ZQ)

= ) Fa(@ay) B(ar) Dan) Dag)s [E]ps 1, w2)eqh >34,

ach(a1,a2,a3,a4)

a4
}QGA(a17a27a3,a4)) we haVe

and

(3:30)  (wy,); (P([Z]P))(D(ay), Diag), D(ag); 1, T2)) wes

= Lqu)(wEa4)v w(a1)7 UNJ(a2), w(ag)v [Z]P; 215 22)7

(3'31) <w£a4)7 (IS(B([Z]P)))(w(tu% w(al) ) w(a?,); 2, $1)>Wa4

= L21<I>(w(a4), (a1)s w(a2) w(a3), [Z]p; 21, ZQ),

(3'32) <w2a4)7(i(}—([Z]P)))(w(m) W(ag)s (as);x07x2)>W“4
= 120P(W4,)> W(ay)s W(az)s D(az): [Z] Ps 21, 22)-

So the preferred branches of <I>(w(a4),lb(al),w(a2), W(ay), [Z]P; 21, 22) on Ry,
Ry and Rj3 are
(3.33)

<’lUEa4), (]?([Z]P))(w(m)? w(az) ) u~)(a3); L1, x2)>WG4 |x{b:e”1°gzl xh=enlog 22,

(3.34)
<’U)Ea4), (P(B([Z]p)))(ﬁ)(@), w(al), 71}(0,3) L, 1131)>W‘14 ’x’ilzen 10g217xg:enlog 29
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and
(3.35)

<wza4)’ (i(]:([Z]P)))(w(aq)? U’}(ag) ) fLD(ag)? Zo, $2)>W"‘4 |£6L:6" 103(21*22)’13:6” log zg 5

respectively. And the multivalued analytic functions

(3'36) <w2a4)a (P([Z]P))(m(al) ) w(ag)a w(ag); Iy, $2)>W“4 |$1=217€E2=Z2’

(337) <w£a4)7 (P(B([Z]P)))(w(@)’ ﬁj(al) ) 7I)(a3); L2, x1)>W“4 |x1:z1 ,L2=22
and
(338) <w2a4)7 (i(F([Z]P)))(w(al) ’ 7“D(‘l2)’ U~J(a3); 05 x2)>Wa4 ‘xozm—zz,xz:zz
are restrictions of the multivalued analytic function

‘I’(wiw W(ar)» W(az)» Waz): [Z]P3 21, 22)

to their domains |z1]| > |22 > 0, |22] > |z1] > 0 and |z2| > |21 — 22| > 0
respectively.

Then by the definition of the preferred branch of an element of G*1:%2:#3,%4
on Rj3, we can deduce that

(3.39)
<w’a4 s (I(f([Z]p)))(ﬂ)(al) N ﬁ)(@), ’LZ)(aS); Zo, $2)>W¢l4 |$n:en log(21722)7l.n:en log zo
(aq) 0 2
= <w2a4)a (P([Z]P))(w(al) ) w(az)v w(a:s); T1,T2))weaa |x7f:e" log 21 gn—enlog 22
on the region
S1={(z1,2) € C? | Rez; > Rezo > Re(z1 — 22) > 0,
Imz; > Imzy > Im(21 — 22) > 0}.

Moreover, by skew-symmetry and (3.39), we see that

—~
2,
S
S
[\)
NS
£,
S
S
8
£,

as sy L0, x1)>W‘l4 |mn:€n log(z90—21) gpn—enlogzy
0 1

(W(ar)s D(az)s Dlag)s € " 20 T2))Wes |y n 080 —21) g emios
= (w(y,, (M(F([2]p)))

(W(ay)s W(az)s Wiaz)s 0, T2) )Wt |gn —entog(z1-22) gn—entog =2
= (w(y,, (P([Z]p))

(D(ay)s Vaz)s W(ag)i L1, T2)) Was |yp _enton =1 gp_enios =2

on the region S7. So by the definition of the preferred branch of an ele-
ment of G*%2:93:%4 on R4, we deduce that the preferred branch on R4 of
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@(w2a4), W(ay)s W(az)> W(ay), [Z]P; 21, 22) is equal to the single-valued analytic
function
(341)  (w(,,), MQW(F(2]r)))
(W(a5), W(ar)> W(az)s L0, T1)) Woa | gp_en1on(z0—21) gn—enion =1
on the region S;. Since the preferred branch on Ry of
q)(wz(m)? w(al)v w(ag) ) ’J)(ag)a [Z]Pa 21, 22)

and the function (3.41) are both single-valued analytic functions on the
domain R4 which contains S7, by the basic properties of analytic func-
tions we conclude that they are equal on Ry; namely, the single-valued
analytic function (3.41) defined on the region Ry is the preferred branch
of @(w2a4),w(al),w(a2),dz(ag), [Z]p; 21, 22) on R4. Furthermore, by the def-
inition of the preferred branch of an element of G%1:92:93:%4 on Ry, we can
conclude that

(342)  (wf,) AQOF(2]p))

(W(ag)s W(ay)> W(az); T0, T1)) Waa \xg:en log(22~21) zn—enlos 21
= (w(y,) (P(B([Z]p)))
(W(az) W(ar)s Wag); 25 T1))Wea |gn_eniog =1 gn_enlos =
on the region
Sy ={(z1,22) € C? | Rezo > Rez; > Re(z2 — 21) > 0,
Imzo > Imz; > Im(z2 — 21) > 0}.
So this proposition holds. O

Theorem 3.6. Assume that the assumptions of Theorem 3.1 hold, then the
Jacobi identity holds for the ordered triple (W(q,), W(a,), W(as))-

Proof. Consider any a4 € A, w2a4) € (W) and Z € [],, cq Vata, @ Visas
Since the assumptions of Theorem 3.1 contain the assumptions of Proposi-
tion 3.3, we obtain a multivalued analytic function

(I)(wthx)’ w(al)’ w(@) ) w(as)’ [Z]p; 21, 22)

(see (3.6)) such that (3.7)-(3.10) are its preferred branches on R;, Ra, R3
and Ry, respectively. Moreover, the preferred branches on Ry, Ro, R3 and
R4 have relations (3.11)—(3.12). Interchanging z; and zp in the multivalued
analytic function @(wgw),ﬁ)(al), W(ay)s W(ay) [Z]P; 21, 22), We obtain another
multivalued analytic function

(3.43) (I)(’LUZM), w(m)a ’IIJ(QQ) N ﬁ)(a3), [Z]p; 292, Zl)



678 LING CHEN

on M? = {(z1,22) € C?| 21,22 # 0,21 # z2}. By interchanging z; and 23 in
(3.8), we see that
(3.44)

/

<w(a4)’ (P(B([Z]P)))(w(ag)a w(aq)? w(a3) 3 L1y x2)>Wa4 ’x?:e" log 21 gn—enlog 22

is a branch of @(w2a4), W(a,), W(as), W(as), [Z]P; 22, 21) on the region Ry.
Moreover, by interchanging z; and 2z in (3.12), we get

(345) (W, AQW(F(2]r))))
(D(az)s W(ar)s Wiaz); 0, T2))Was |gn _entogz1-22) gn—entog =2
= (W(y,y (P(B([Z]p)))
(W(az)s W(ar)s W(ag); T15 T2)) W |gn_eniog =1 gp_enlog =

on the region S;. Since the single-valued analytic function

(346) (], AFB(2]p)))

(Q,U(GQ) 'II}( 1) N(a3); Zo, x2)>W"'4 ‘xg:en 1OE(Z1_Z2)J;3:5” log 29
= (w(yy), MWQW(F([2]p)))
(W(ag)s W(ar)s Wiaz); 0, T2) )Wt |gn —entog(z1-22) gn—eniog =2

on 57 can be naturally analytically extended to the region Rj3, we therefore
get a branch of ®(w/ Wig,)» W(a,), W(as), W(as), [Z]P; 22, 21) on the region Rj.
By (3.45) and skew-symmetry, we have
(3.47)
(wfy, (HQODO(F([2]p)))

(W(a1), W(ag)> W(az)s L0, T1)) Woa | gn_gn1og(zo—21) gn—enion =1
= (W,,), MQW(F((Z]p))))
(W(a)s W(ay)> Wiag); € "' T0, T2)) Wea |op—enton(za-21) gp—enlog =
= (W,,), MQW(F([Z]p))))
(D(az) Wiar) Wiag); T0, T2)) Wts | g _on ton(e1—22) g e 1og =2
= (w{,,), (P(B([2]r)))

(’U](a2) ’lZ)( 1)) w(ag),$1,$2)>wa4| nfenlogzl = en log zo

on the region S;. Moreover, the first line of (3.47) on S; can be naturally
analytically extended to the region R4. So the single-valued analytic func-
tion

(3.48)  (w(y,), QWA (F(2]p)))

(ﬁ)(al), ﬁ)(a2) (as)’ Zo, 131)>W ayg |x n_en log(zzle)yxﬂll:en log z1
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defined on the region Ry is a branch of
(I)(wthx)’ zb(al), ﬂ)(az)vw(as)a [Z]p; 22, 21)

on the region Ry.

Observe that [Z]p € mp([ [, ca Vatas ® Valas) implies
(3.49) BB((2lp) € np | [ Viles ® Vi,
a5€A
And since (3.6)—(3.12) hold for any [Z]p € mp([1,,c4 Vatas ® Valas)s they
should hold with [Z]p replaced by B(B([Z]p)) for any
2l emp | ] Vite, ® Vit
a5€./4
So replacing [Z]p by B(B([Z]p)) in (3.11), we get
(3.50)
(W), PBB(2]P)))) (@(ar), W(a)s W(ag); T1: T2))Wat | gpmenion =1 g —enios =5
= (w(a,), MUF(BB(2]P))))

(D(ay)> W(as) (ag); 0, T2))Wea | g —_en108(z1-22) gn—enon =
on the region S;. Interchanging z; and 29 in (3.50), we obtain
(3.51)
(W) (BOBBUZ]P))) 0> Ban)> Blag)s 82, 71t g oo g oo
= (W), M(F(B(B([Z]p)))))
(D(a1)s W(az)s W(az); €0, T1))Wat | yn _entog(za 1) gn—enios =1
— (W), (@O F((2]p))
(W(a1), Waz)> Waz); T0s T1))Waa | yn n—gnlog(z—21) gn—enlog =1

on the region S3. Moreover, the first line of (3.51) on Sz can be naturally
analytically extended to the region Ry. So the single-valued analytic func-
tion
(3.52)
<w2a4)7 (P(B(B([Z]P))))(w(aq)? QD((IQ) ) /Lb(ag); €2, $1)>W‘14 |I;L:en log z1 ,I;L:e" log z9
defined on the region Rs is a branch of
@(wza4), w(m)) w(az) ) w(ag)a [Z]P; 22, Zl)

on Ro.
From the above discussion (3.44)—(3.52), we see that the multivalued an-
alytic functions

(3'53) <wEa4)7(13(B([Z]P)))( W(az)> (a1) w(ad) $17$2)>W“4’11 =2z1,22=22)
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(3'54) <wEa4)a(P(B(B([Z]P))))(m(al) W(ag), (a3)ax2a$1)>W“4|x1 =21,L2=22

and
(3.55)

(Wayys MFBAZIP))) (W(az)s War)s Waz): €05 £2)) Wi lag=z1 — 20,0022

are restrictions of the multivalued analytic function
(I)(wza4), ZD(al)’ w(@)’w(ag)a [Z]p; 22, 21)

to their domains |z1]| > |22| > 0, |z2| > |21] > 0 and |z2| > |21 — 22| > 0 re-
spectively. So with the branch (3.44) chosen as the preferred branch on Ry,
q)(wgm),w(al),w(@),w(ag), [Z]p; 22, 21) becomes an element of G#2:%1:3:04,
Moreover, by (3.45), (3.46), (3.47), (3.48), (3.51), (3.52), and by the defini-
tion of the preferred branches of an element of G%2-91:%3:% on Ry and R3, we
see that

(3.56)  (w(,,) (P(B(B(Z]p))))
(D(ar)> Wiag), Wag); 2, T1))Wea [ g —enion =1 gp—enios =
and
(3:57)  (wl,,), A(F(B(Z]p))))
(ﬁ}(@), U~)(a1) s ﬂ)(as); Zo, $2)>W“4 |x8:e" log(z17z2>7x;l:en log zo

are the preferred branches of @(wgu),w(al),w(@),w(%), [Z]p; z2,21) on Ry
and Rjs respectively. Therefore, we have

awll

(3.58) (w1, (

(aa)’

(B([Z]P)))(w((m)? w(al)aw((zg); Z1, x2)>W‘14

= 112P (W), W(ay)s W(az)s D(ag): [Z] Ps 22, 21),

(3'59) <w£a4)7 (IS(B(B([Z]P)>))<w(a1)7 7j}(az% w(as L2, x1)>Wa4

= L21¢(wEa4)7 w(a1)7 w(a2)7 7I)(ag)v [Z]p; 22, 21),

(3.60) (W, A(F(BZ]1P)))) (@ (ag)s B(ar)s B(as); €0, T2))Wea

= 1,20(1)<’U)Ea4), W(ay)s W(ag)> W(ay), [Z]P; 22 21)-
Let {ea” """} e h(az,01,a5,a0) D€ @ basis of G*2%1:3:%4 over the ring
(3.61) Clry, 27t 29, 25t (21 — 22) 7.
Then there exists unique
(3.62) Ga(w2a4),w(a2),w(al),w(%),lﬁ([Z]p);xl,xg)

€ (C[xl,xfl, T, xgl, (1 — 332)_1]
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for a € A(ag,a1,as,a4), such that only finitely many of them are nonzero
and

(3.63)
(I)(wé%) ) w(al)’ ZZ}(CL2)7 lD(as)v (Z]p; 22, 21)

- Z Go‘(wéazx)’w(az)’w(al)vﬁj(aa’)vB([Z]P);5'317$2)€g[2’a1’a3’a4.

achl(az,a1,a3,a4)

By (2.36) and (3.2), we see that B = F~'Q( F is an isomorphism and that

(3.64)  B(7p | [ Vite, @ Viay | | =7p | T Viday ® Vika,
as€A as€A
for any aq,- - ,a4 € A. So we can define linear maps

(3'65) fgg,al,ag,m (’LZ)(@), w(a1)7 w(a3)) :

wp | ] Vit ® Vs, | = W1, a7 22, 25 ' [[22/21]),
as€A

(3'66) 9327(117(137&4 (w(az)’ w((u)’ w(ag,)) :

wp | ] Vit ® VS | = W1, a7 22, 25 ' ][[21 /23],
as€A

(367) hgf’al?ag?azi (ﬁ)(az)a w(a1)7 QIJ(a3)) :

mr | [ Visa, @ Vedey | = Wm0, 25", w2, 25 ][0/ 22]]
as€A

(3.68)  (W(ay)s faZ ™ ™M (Way), W(ay)s D(az)> BIZ]P)s 21, 22)) wea

= L12Ga(wga4) ) u~)(a2)7 w(a1)7 w(ag) ’ B([Z]P)a Z1, 562)7

(369) <w2a4)7 ggQﬂha&M (w(a2)7 w(m)’ w(%)? B(B([Z]P))7 L1, x2)>W“4

= L21Ga(wza4)7w(a2)v w(a1)7 w(a3)78([Z]P)a Zy, 1‘2),

(3.70)  (w(g,), he> ™ (D(az), W(ay)> W(ag): F (B([Z]P)); 20, 72)) wras
= LQOGa('UJE(M), w(ag)? w(al)a w(a;:,)v B([Z]P)7 T2 + Zo, ZEQ)
for wl,,, € (WY, 2 € [, e Ve

1as

by (3.58)—(3.60) and (3.63), we have

®@ Vg5, and o € A(az,ay,as,aq). Then
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(3.71)  (P(B(Z]P)))(@(as): W(ar)» W(az); T1, T2)
= Z fg%al’ag’aél(lb(ag)a12)((11)’w(ag)’B([Z]P);xth)

ach(az,a1,a3,a4)

-ng(eZQ’al’a3’a4),

(3.72)  (P(B(B([2]p)))(W(ay)> W(as): W(az); T2, T1)
= > Go2 MM (W g0), W(ay)s W(ay)> BIB([Z]P)); 1, 22)

ach(az,a1,a3,a4)

. L21(632,a1,a3,a4)

(3.73)  (L(F(B(Z]P)))) (W(as): W(ay) W(ay): To, T2)
= Z he2 38 (W g0y, Way)s Wiag)s F (B([Z]P)); T0, 72)

a€hl(az,a1,a3,a4)

. Lgo(eaz’al’%’a‘l)
a :
Moreover, by (3.62) and Proposition 2.1, we have
(3.74)

_ 1 — ~ ~ ~
Ty 15( 13;0 2) leGa(wEM),w(a2),w(al),w(a3),B([Z]p);xl,:ng)

i [T L
) < 2 1) 121G (Wg,)s W(az)s Wiay)> W(az)s B Z]pP); 21, 22)

_J;O

— 1 — Zo - . -~
=Ty 15 < ) LgoGa(wEM),w(aQ), w(al), w(as), B([Z]p), x9 + X0, 1‘2)

x2
for a € A(ag,a1,as,ay). Since wE(M) € (W) is arbitrary, by (3.68)—(3.70),
(3.74), the Jacobi identity holds for the ordered triple (W(q,); W(a,)s W(ay)):
(3.75)

. - a2,a1,a3,a4 (,~, ~ -
Ty ls (1:502) fo2,01,03, 4(w(‘l2)’w(a1)’w(ag,)aB([Z]P);a:l,xQ)

— L2 — T as,a1,a3,a4 (,~ ~ ~
— 2516 (21> Go2 MM (Wa0), Wiay)s W(ay)> BIB([Z]P)); 1, 2)

—Zp

— L1 — To a2,a1,a3,a4 [, ~ ~
=56 (m) he2 V884 (W 40y, Wiay ), W(ag)s F (B([Z]P)); T, T2)

for Z € [[,.caVitas ® ViS,, and a € A(ag,a1,a3,a4). Since B is isomor-

phic, by (3.64) we see that B([Z]p) in (3.71)—(3.75) can be any element in
TP ([ Lasen Vadas ® Vala,)- So the Jacobi identity holds for the ordered triple

(w(az)a w(al) > w(ag))' U
Theorem 3.7. Assume that the assumptions of Theorem 3.1 hold, then the
Jacobi identity holds for the ordered triple (W(q,), W(ay), W(as))-
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Proof. Consider any a4 € A, w2a4) e (W) and Z €[]
Observe that

Ve, @ Vs

as€A Ya as azaz”

e

“r bWy, € (W) [2].

Then it can be easily derived that Proposition 3.3 holds with wEM) replaced
by efng(l)
get a multivalued analytic function

(3.76) (I)(B_IQL(I)wEazL)’ W(ay)s W(az)> W(as) [Z]p; 21, 20) € GH12:03:04,

w2a4)' In particular, replacing wzm) by e*sz(l)wE ) in (3.6), we

a4

Moreover, replacing the complex variables (z1, z2) by (21 — 22, —22) in (3.76),
we get a multivalued analytic function on

M2 = {(Zl)ZQ) S (C2 | 21, 22 7é O) Z1 7é 22}7
which shall simply be denoted by
(377) (I)(e_IQL(l)wEazl) ) ’U~J(a1), w(az)a U~1(a3), [Z]Pa 21 — 22, _22)'

Consider the simply connected region in C? obtained by cutting the region
|z1 — 22| > |22] > 0 along the intersection of this region with
{(21,22) € C?* | 23 € (—00,0)} U {(21,22) € C? | 21 — 23 € [0, +00)}.
We denote it by Rs. Replacing wEM) by e~ *2L(1)
(21 — z2,—22) in (3.7), we see that

B.78) (e Ou,, (B(2]r)

wEM), and then (21, 22) by

(711( 1) w(a2) (a3) $0,$2)>Wa4’ nfenlog(zl #2) g —enlog(—22)

is a branch of @(e—wL(l)wgm),w(al),w(@),w(aa), [Z]p; 21 — 22, —22) on the
region R5. Moreover, the skew-symmetry isomorphism implies

(W(agys QD (Z]P))) (@(ar)s Blaz)s Blag)s T1, T2)) Wt |y —gntos =1 _gn_enios =

= < mQL(l)wEa4)7

( ([ ] ))( al)’ ), QD(%);?L‘O, 6_F1$2)>Wa4 |I6L:€nlog(zl722)’zg:€n10g22
= <€—x2L(1)wEa4)’

(P([2]P)) (W(ay)s B(az)> W(az); T0, T2)) W | afi—en 08(1~22) g1 —nlog(—22)

on the region {(21,22) € C? | Rez; > —Rezz > 0,Imz; > —Imzy > 0}. And
observing that the single-valued analytic function
(3.79)

<w2a4)7 (13(9(4) ([Z]P)))(w(a1)7 ﬁj(a3) ) w(ag); L1, x2)>Wa4 |x?:e”1°gzl xh=enlog 22
on the region

{(#1,22) € C? | Rez; > —Rezg > 0,Imz; > —Imzy > 0}
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can be naturally analytically extended to the region R;, we can conclude
that the single-valued analytic function (3.79) on R; is a branch of

(I)(eme(l)wEM)ﬂLT)(al), w(a2)7 w(as)? [Z]P§ 21 — 22, —22)
on Ry.

Let (ag,bo), (a1,b1), (a2,b2) and (as,bs) be four pairs of fixed positive
real numbers satisfying

(3.80) ag >bg >ag—byp >0, ay>a, —b; >b; >0,
by > by —ag >as >0, by >asz>by—az>0.
Then we shall obtain branches of
q)(e_:mL(l)wEM) s ’LZ)(al), ﬁ}(aQ), @(a?)), [Z]p; 21 — %92, —22)

by analytical continuations along curves.
First of all, we consider the simply connected region

& = (C2\({(z1,22) € C? | z1 € [0,400)} U{(21,22) € C? | z2 € [0, +00)}
U{(z1,22) € C? | z1 — 22 € [0, +oo)}).
Define a path vy : [0,1] — &' by
(3.81) (1) = (21(2), 22(t))
((a0<1 — Tt) + Tagt)ei™

(bo(1 — Tt) + Thit)ei™ ) telo, ],
aleim, ble4’”+ (7t—1)mi le (% %]7
(a1(3 — Tt) + as(Tt — 2))ei™,

(b1(3 = 70) + ba(Tt — 2))ei™) te (%2,

] (agea™HTITE el ) te (37,
baei™ + (by — ag)ed ™ (T4 b26%m) te (73],
(252—(12)64 = (T=B)mi e (T 5)7”) te (5,9,

(7(2by — az)(1 — t) + ag(Tt — 6))e1™,
(Tha(1 — t) + bo (Tt — 6))e 17”) te(81).

\
See Figure 1 for an illustration. Then ~(¢t) C &'. We choose a simply
connected region

(3.82) Dy = {(21,22) € C* | max(|z1 — 21(t)], |22 — Z2(t)|) < &}

for each t € [0,1], where &; is a sufficiently small positive real number for
each ¢ € [0,1] such that
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Dy Cc &' N{(21,22) € C? | Rez1 > Rezs > Re(z1 — 29) > 0,
Imz; > Imzy > Im(z; — 22) > 0},

2
D; C & N{(z1,2) € C?||z1]| > |22| >0} forte (0, 7> )

Dy C & N{(z1,22) € C? | Rez; > —Rezg > 0, Imz; > —Imzy > 0},
7

D; € &' N{(z1,2) € C?* | Rez; > 0> Rezy, Imz; >0 > Imzy}

fort e 23
r i
)

D% C &' N{(z1,2) € C? | —Rezz > Rez; > 0, —Imzy > Imz; > 0},

3 4
D; C & N{(z1,2) € C*||z| > |z1| >0} fortec (7,7> ,

D% C &' N{(z1,22) € C* | Rezy < Re(zz — 21) < Rez; <0,

Imzo < Im(za — 21) < Imz; < 0},

4
D; C &' N {(Zl,ZQ) S (C2 | |22| > |21 — 22| > O} for t € (7,1> R

D = Dy.
With some straightforward calculations, the existence of €; can be easily
verified. We omit the details here except that we shall write more about
e, for t € (2,2). Note that |71 ()| = ag and |Z(t)| = b for t € (2,2). So
for each ¢ € (%, %), to ensure that D; C &', we must have &; < ao, which
further implies g; < %bz by (3.80). Thus Rezo < 0 and Imzy < 0 for any
(21,22) € Dy with t € (2,2). With these simply connected regions, we can
see that
(3:83)  fir = (W), (POQW([Z]p)))
w

(W(ar)s W(ag)s W(az); T15 T2))Wea |gn_eniog =1 gn_enlos =
is a single-valued analytic function on the region D, for each t € [0, %],
(3.84)
fo= (e Wl ), (B((2]p))
(W(ay)s W(az)> W(az); T0, T2)) Waa \xg:en log(21-22) g7 —enlog(~22)
2 3).

is a single-valued analytic function on the region D, for each t € (=, Z];

(3.85)  fr = (e ™ D, ) (L(F([Z]p)))

(aa)

(ﬂ)(al), w(a2)7 iz)(ag) L1, .732)>Wa4 |x?:€n log 21 ,xg:en log(—z2)
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is a single-valued analytic function on the region D; for each t € (%, %]; and

(3.86) fi = (w(y,), AFQW([2]p))))

(’U)(al), w(ag), w(a2) s L0, .TU2)>W'14 ’acg:e” 10g(z1—22)7m'g:en log zg

is a single-valued analytic function on the region Dy for each t € (%, 1]. Next,
we shall show that {(f:, Dy) : 0 < ¢ < 1} is an analytic continuation along

~.

Firstly, it can be derived from the skew-symmetry property that on the
region D2,
7

(3.87)

(’U)(al), w(a?’), TZ)(GQ) L1, $2)>W¢14 |:z:’11:e" log 21 ’xg:en log zo
L(1 »
= (e Wuf,,), (P([2]p))
(’lI) ~ ~ . -7
(a1)> 'Z,U(aQ), w(a3) Lo, € x2)>W‘l4 |x(7)L:en 10%(51*22)@3:@" log zo

= (e Wl ), (P((Z]p))
('[Z)(al), ’lI](a2), {[}((13) s L0, 1‘2)>W‘14 |m8:€n log(zlfzg)’mg:en log(—z9) -
—CCQL(l)

’U]l

(ag)? 21 — z9,—z2) in (3.11),

Secondly, replacing (wé z1,22) by (e

we can derive that
(3.88)
J = (e Wl (P(2]p))
(W(ay)s W(az)s Wiaz)s L0, T2) )Wt |gp_entog(z1-22) gp—enlos(~22)

= (e Wufy,), ((F([2]p))

(w(al) y w(aQ), w(a3); T, 332)>Wa4 ‘x?:en log 21 ’zgzen log(—z9)

a4)’

on the region D 8- Thirdly, we shall prove that on the region D%,
(389) fo = (e D, ((F((2]p))

(D(a1), W(ag)> Wiag)s L1, T2)) Wea | gn_eniog 21 gn—enios(-z2)
= (W), AFEQD(Z]p))))
(D(ar)s (az)> W(az); 0, T2)) Was |yp_entog(z1—22) g —entos = -
By skew-symmetry, we have
(3.90) (e=2EWuf,  (I((Q
(W(az) D(ar):

= (2 ufy,). ((F

WF((2]p))

(05)7 1, $O)>Wa4 ‘x’f:e” log(—zl)’xgzen log(z1—29)
[Z]p)))

. T
(a3)> e Iy, $2)>Wa4 ‘x?:en log(—zl),xg:en log(—29)

~—

a4)’

—~ gx

=

(D(ay)s Was),
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= (e Wl ), (H(F((2]p)))
(’IIJ(al), '(IJ(GQ), ﬁ}(%), 1, 1‘2)>Wa4 ‘z?:e" log z1 ,a;g,:en log(—z9)

on the region D%. Moreover, note that [Z]p € mp([[,.cq Vatas © Vasas)
implies

BB (2p) € 7p ( [T ves, © vg;ag) -

as €A
So replacing [Z]p by B~1(B~1([Z]p)), (wEM),zl, z2) by
(e—IZL(l)wEaA)’ Zl — 22’ _ZQ)
in (3.12), we obtain that
(3.91)

(efsz(l)w@), (PB([Z]P)) (W(ap): (ay) W(ag); T2, To))Waa afi—en o8(:1—2)
zP=e" log(—=z2)

= (e =2ty (1@ D F((2]p))
(t(a), w(a1>>@<a3>;9«“17$0)>wa4’ zp=eno8(=2)
zn=en log(z1—22)

on the region Ds. Furthermore, by the Moore—Seiberg equations (2.50) and
7
(2.51), we have

(3.92) FOW — Q@ F1LFOQ 1B FQW — @ F-1(Q- 1)) F(Q- 1) DX
= Q@B

So this together with the skew-symmetry isomorphism implies
(3.93)

(Wiay)s AFOQDZ]P)))) (D (ar): D ag)s D(az)i T, T2))wea

xg:en log(z1—22)
xg,:en log 29

= (W(g,)» (D BZ]p))) (W(ay)> W(ag)s W(ar): 0, T2))Wes

zp=en log(z1 —22)
x;:en log zo

= (e W, (P(B([2]p)))

(W(ag)> B(ar)» Wiag); € " T2, T0))waa

ap=enlog(z1-22)
xg:en log z9

= (e D, ), (P(B'([2]p)))

(W(ag), W(ay), W(az); T25 T0)) Waa

zp=enloa(z1-22)
ap=enlog(—22)

on the region D%. Therefore, (3.89) holds by (3.90), (3.91) and (3.93).
So to sum up, {(ft, D¢) : 0 <t <1} is an analytic continuation along ~y.
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Since &' is simply connected, v C & and v(0) = v(1), we can derive that
fo = f1 on the region Dy N Dy = Dy. Moreover, since fy and fi; are both
single-valued analytic functions on the domain S; which contains Dy, we
deduce that fo = f1 on S;. Namely,

(3.94)
(W), (PO ([2]2))) (5 (a1, 02)) s |y o1 g ontos
= (g, AF QW ([2]p ))))
(D(ay)s W(az)> W(as); L0, T2))Waa |, n—gnlog(z1 ~22) g1 —en log 22
on the region S;. Furthermore, since the first line of (3.94) defined on R;

is a branch of (3.77), and the second line of (3.94) on S; can be naturally
analytically extended to the region Rj3, we conclude that

(3.95)  (w(g,), AFQD([2]p))))
(ﬁ}(al)v U~)(Q3) s "Z)(az); Zo, $2)>Wa4 |acg:e" log(zlsz)’x’éL:en log z9
(})%n R3 is a branch of @(e*“L(l)wEM), W(ay)s W(ag)> W(ay)s [Z]P; 21 — 22, —22) on
3.

Then, by skew-symmetry isomorphism and by (3.94), we can deduce that
on the region Sy,

(3.96)
(Wayy, (MQVF QD ((2]p))))

3),15(a1) @(QQ),xD,SU1)>Wa4| n_e’nlog(ZQ zl) ?_enlogzl

—
X
~
Q

~ ~ ~ . —T
(w(al), w(a3) y w(@), e Zo, 1?2)>Wa4 |x8:e" log(227zl)’x'é1:en log zo

(a2)7x07x2)>W°‘4| nfenlog(zl ZQ)ZE nlog22

= (uf,,), <P<fz<4><[ ]p )

—~
S
S
s
8
=
=
S
S
w
S
@z

(w(al)) w(ag) ) w((ZZ); X1, $2)>Wa4 |x111:en log 21 ah=en log 29 «

Since the last line of (3.96) defined on R; is a branch of (3.77), and the first
line of (3.96) on S; can be naturally analytically extended to the region Ry,
we conclude that

(397)  (w(,,, MQWFQW([2]p))))
(QD(CL?,)? ﬁ)(al) ) w(ag)’ Zo, zl)>VVCL4 |x61:en log(227z1)7x711:en log 21

on Ry is a branch of @(e*“L(l)wEM), W(ay)s W(ag)> W(ay)s [Z]P; 21 — 22, —22) on
Ry.
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Next, we consider the simply connected region
&" = C*\({(21,22) € C* | 21 € [0,+00)} U {(21,22) € C*| 2 € [0, 400)}
U{(z1,22) € C? | 29 — 21 € [0,—|—oo)}).
Define a path o : [0,1] — &" by
o(t) = (Z1(t), 2(1))

(

asei™ agei™ + (b3 — a3)€im+7tm) telo 7],
(a3(2 = Tt) + ag(7t — 1))ea™,
(205 — by)(2 = 78) + bo (Tt — 1))ei™) e (L, 2)
((ao(3 = 78) + ar (7t = 2))e i,
(bo(3 = 7t) + b (7 — 2))ei™) te (23],
= (weim, peimtrom) te (33,
(a1(5 — Tt) + as(7t — 4))ed™,

(b1(5 = Tt) + b (7t — 4))e ™) te(3 3
agei™. bze%”*(”*‘r’)“) te (2,98,
(Tag(1 — t) + as(7t — 6))ei™,

(Tha(1 = ) + ba(Tt = 6))e™) te 1)

See Figure 2 for an illustration. Then o(t) C &”. We also choose a simply
connected region

(398) Et = {(2172’2) S C2 ’ max(|z1 — 51(t)|, ’22 — fg(t)‘) < Gt},

for each t € [0, 1], where ¢ is a sufficiently small positive real number for
each t € [0,1] such that

Ey C &N {(21,22) e C? ’
Rezo > Rez; > Re(z2 — z1) > 0, Imzy > Imz; > Im(29 — 21) > 0},

2
By Cc &' N{(z1,2) €C?||z1]| > |21 — 22| >0} forte (0, 7> ,
E% C @lIﬂSh
" 2 2 4
E, Cc " N{(z1,22) € C° | |z1] > |22| > 0} forte —z )
E% C 8" N{(z1,2) € C*| Rez; > —Rezy >0, Imz; > —Imzy > 0},

E; Cc 8" N{(z1,2) € C?|Rez; > 0> Rezy, Imz; > 0> Imzy}

fort € 40
r =2
)
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o(t), te[0,1/7]

,
s

,
/—\/
J/_
,
\,/

o(t), te[1/7,2/7]

0

S(t), te [2/7,3/7]

S(t), te [3/7,4/7]

S(t), te[4/7,5/7]

S(t), te[6/7,1]

FIGURE 2. o(t)
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E; C 8" N{(z1,2) € C*| —Rezz > Rez; >0, —Imzy > Imz; > 0},

)
By C 8" N {(21,22) € C?| |22| > |21] > 0} forte (7,1> :

E, = E.
Thus
(3.99) gt = (W{,y, AQWFQD((2]p))))
(D(ag), War)> Daz); €0, 1)) we| rp=en ostea =1
nlog z1
is a single-valued analytic function on the region E; for each t € [0, %],

(3100)  gr = (w(,,,, (PQD([2]p)))
(W(ar)s Wag)s W(az)3 T1, 2)) Wi |gp—enios =1 g —en1os =2

2 é].

is a single-valued analytic function on the region E; for each t € (=, =];

(3.101)
g = (e Dy, (B(2]p))
(D(a1), W(ag)> Wiag)s L0, T2)) W | gp_eniog(z1-22) gn—enlog(~22)
is a single-valued analytic function on the region E; for each t € (% %] and
(3102) g1 = (uf,, (PBOD(2]p)
(W(ag)> W(ay)» W(az); 25 1)) Was | gn_eniog =1 gn_enlos =

is a single-valued analytic function on the region E; for each t € (%, 1]. Next,
we shall show that {(g;, F¢) : 0 < ¢ < 1} is an analytic continuation along ~.
Firstly, by (3.96) we have

(3.103) g2 = (wl,), HQVFQD([2]p)))
(a5), B(ar)> Baz); P05 T1))Wet Ly —entontzz —21) p—enion =
= (s, PQW(2]p)))
(w(al),w( 3) ﬁ)(ag); $1,$2)>W‘l4 |x?:e”10gz1 xh=en1og 22

on the region F2. Secondly, it can be derived from the skew-symmetry
isomorphism that on the region Fa,
7

(3.104)
91 = (W), (BEOD((2]p)))
(~( 1) Wa
= ("D, o (P([2]p))

U

3) w(az) 1, $2)>W¢14‘ Zn=en log 21 ah=en log z9

. —7
('U}(al)v (CLQ)) w(ag)ﬂ xo, € $2)>W04 ’xgzen log(zl—zg)7$'g:en log z9
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= (e Wufy,), (P(Z]p))
(711((11) 5 '(I}(az), ﬁ/(%), o, 1‘2)>Wa4 |Z6L:€n log(zl—zg)’xg,:en log(—z9) -

Thirdly, we shall prove that on the region E% ,

(3.105)
gz = (w{,,), PBEQW((Z]p)))
((as) Dar)s B(az)s 72 T1)) W |ag emion =1 g —entos =2
= <ei$2L(1)wEa4)a (P([2]p))
(B(ay)s W(az)s W(ag); L0, T2))Waa |g;g:e" log(21~22) g7 —en los(—22) -

Replacing (wzm),zl,zg) by (e‘“L(l)wEM),zl — 29,—29) in (3.11), we can
derive that

(3.106) (e~ M, | (P([2]p))

(W(ar) W(az)s

)
= (e Duf, ), A(F((2]p))

(ag)’ Zo, x2)>W‘7’4| n_enlog(zl z9) xn_enlog( z9)

(W(ay)> W(ay),

(GB) .%'1,.%2))[/[/"’4‘ n,enlogzl x2 en log(—=23)

on the region E% Moreover, by the Moore-Seiberg equations (2.50) and
(2.51), we have

(3.107) BOW = 7100 FO@W = OB F.

So by skew-symmetry we have

(3.108)  (w,,), (P(BQW([2]p))))
(@(as)
= (w(,,): PQOF((2]p)))
(W(ag)> W(ar) W(as); T2, 1)) Was | gn_eniog =1 gn_enlos =
= (" W, ), A(F([2]p)))
(W(a1), (a), @
= (e W, ((F((2]r)))

(W(ay)s W(as)s

U}(al) U)( 2)) $2,$1)>Wa4|x111:en10gz17xg:enlogz2

7ri
( ) x17 2)>Wa4|$’f:enlogzl7$g:enlog22

(a3)> L1, L2))Wat | gn_enlog =1 gn_enlog(—22)

on the region E% Therefore, (3.105) holds by (3.106) and (3.108).

So to sum up, {(g¢, F¢) : 0 <t <1} is an analytic continuation along o.

Since &” is simply connected, o C &” and ¢(0) = o(1), we can derive
that go = g1 on the region Fy N E; = Ey. Moreover, since gg and g; are
both single-valued analytic functions on the domain Sy which contains Fy,
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we deduce that gg = g1 on So. Namely,
(3.109)  (w(,,), AQVFQW(2]p)))

a4

(w(ag) 9 w(a1)7 w(a2); o, -'1:]_)>Wl14 ‘xg:en log(227z1)7x?:en log z1

= (w(,,), (PBOQW(2]r))))
(’J}(ag)v w(a1)7 w(ag)) x2, $1)>Wa4 ‘x?:en log z1 ’zgzen log z9

on the region Sy. Furthermore, since the first line of (3.109) defined on Ry
is a branch of (3.77), and the second line of (3.109) on S can be naturally
analytically extended to the region Ry, we conclude that

(3.110) (w(,,), (PBQW([2]p))))

(1])((13) ) w(a1)7 71}(0,2); €2, xl)>W“4 ‘x’fzen log 1 gh—en log 29
on Ry is a branch of (I)(G_ML(DU)E(M)’ w(m)v m(ag)vﬁ)(as)a [Z]p; 21— 22, —22) on
Rs.

In conclusion of (3.77)-(3.110), we see that the multivalued analytic func-
tions

(Wlayy, (MFQDZ]P)))) (a1, Blas)s Wiag) T0, T2))Wat o=z —2 2=z

are restrictions of @(e*”L(l)w’((m),ﬁ)(al),w(@),1]}(%), [Z]p;21 — 22,—22) to
their domains |z1] > |22] > 0, |22] > |z1] > 0 and |22 > |21 — 22| > 0
respectively.

So choosing (3.79) as the preferred branch of
q)(e_:mL(l)wEaél)’tZ)(al), ﬁ}(aQ), @(a?)), [Z]p; 21 — %92, —2’2)

on Ry, we see that @(e“”L(l)wEM),w(al), W(ay)s W(ay), [Z]P; 21— 22, —22) is an
element of G*%3:92:%4 Moreover, by (3.94), (3.95), (3.96), (3.97), (3.109),
(3.110), and by the definition of the preferred branches of an element of
G9193,92,04 on Ry and R3, we see that

(3.114) (w4,

(P(BOQW([Z]P)))) (@(az)s Dlar)s Dlan)s T2, 1)) Wos |y —onios 21 g _enios

and

(i(]:(QM) ([Z]P))))(’J)(al)a w(ag)? w(ag) 320, $2)>W‘14 ’a:g:e" log(21 —22) gn—enlog zg
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are the preferred branches of
(I)(e_:vQL(l)wEaél)’lZ)(al), ID(GQ), u~1(a3), [Z]p; 21 — 22, —22)

on R and Rjs respectively.
Therefore, we have

(3.116) (w(y,), (P(QV([Z]P))(@(a1)s D(ag)s D(az); 21, 22)) wes

= [,12‘1>(e_$c2L(1)w2a4)’ ﬂ)(al),d)(@), ﬁ}(ag), [Z]p; 21 — 292, —22),

(B117) (W, PBEOQW([2]p)))) (@(as) B(ay)s Dag); T2, 1)) weas

= Lglq)(e_zzL(l)wEM), ’(IJ(al), QD(aQ),’LD(%), [Z]p; 21 — 29, —Zg),

(3118)  (w(y,ys AFQW(Z]P)))) (B(ar)s B(ag)s Dlaz); T, T2)hwes

= LQO@(e*sz(l)wE(M), W(ay)s W(ag)s W(az)s [Z]p; 21 — 22, —22).
Let {ea" """} sch(a1,a3,a2,a0) D€ & basis of G*13:92:%4 gver the ring
(3.119) C[xl,xfl,xg,xgl,(xl —z9)7 1.

Then there exist unique

(3.120)  Ha(wy,), @ay)s D(ag)s D(az)s LY (2] p); 21, 22)
€ (C[:cl,xl_l, T2, xz_l, (x1 — 332)*1]

for a € A(aq,as,az,a4), such that only finitely many of them are nonzero
and
(3.121)

(I)(e—sz(l)wEM), @(al),w(@), w(ag), [Z]p; 21 — %2, —zz)

= D Ha(We,) e Das) Daz) QY ([E]p)s 21, ma)elhome2:es,

ach(ar,a3,a2,a4)

Recall that Q®) is an isomorphism and that

(3.122) QW [ 7p( J] Vit @ Vizey) | = 7e( [ Vites ® ViZa,)
as€A as€A

for any aq,- - ,a4 € A. So we can define linear maps

(3123) fgl,a3,a2,a4 (m(al)aw(a;;)v w(az)) :

ap | ] Vet ® Vs, | = W1, a7 22, 25 [[22/21]),
as€A
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(3124) ggf (48,02, (m(al) ) /II)(ag)a w(az)) :
mp | T1 Vit © Vs | = Wilor, a7 22,25 [l )
a5€A
(3125) hil’a37a27a4 ('UN}(al) ) UN)(ag)a w(az)) :

I ( II ve., @ V3§a2) — Wlxo, 25", w2, 25 [[20/22]]

as cA

(3.126) <wéa4), fab BB (Wq, ), Wiay), Wiay)s QW ((2]p); 21, 72))wes
= t12Ha (W4, W(ay)s W(az)s D(as)» QW ((2]p); 21, 22),

(3:127) (W, ga1** "™ (W(ay)s W(az)s D(as), BOW([2]p)); 21, 22)) wes

= 191 Ha (W{a,) W(ar)s Dlas) Daz)> QY ([E]p)s 21, 2),

(3128)  (w(g,, hE S (D), D(ag) s Wan)s F (A ([2]P)); 20, 22)) wea
= 120 Ha (g, D(ay)s Dag)s Wa)s XV ([Z]p); w2 + 0, 22)
for wEM) € (W), Z € [ e Vitas ® Vale, and a € A(ar, a3, az,a4). Then
by (3.116), (3.117), (3.118) and (3.121), we have
(E

(3.129) (PO (Z]P)(1(ar), Fan), Tany; 21, 2)

= Z Foa32 (G D), Wag)s LD (2] p); 21, 22)

a€hl(a1,a3,a2,a4)

. L12(egl,a3,a2,a4)’

(3.130)
(PBQY([2]p))) (D(ag)> D(ay)» Dag); T2, 1)
= Z GaTIBAR (4 D), W(a)s BIQW([2]p)); 21, 22)

a€hM(a1,a3,a2,a4)

191 (eghasyaz,azx)?
(3.131)
T(FOQD(Z]1P)))) (W(ay)s B(ag)> D(an)i 0, T2)
= > hL392:94 (G ) ), B(ay) F (AP ([2]p)); 20, 72)

a€h(a1,a3,a2,a4)

. L20(€g17a3,a27a4).
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Moreover, by (3.120) and Proposition 2.1, we have
(3.132)

g T —x 5 B 3 .
Lo 's <1$02> Ll?Ha(wzaél)? W(ay)> W(az)s W(az)> 9(4)([2]13)7 T1,T2)

_ T2 — I - ~ -
—x 15 (—.’L‘o) L21Ha(’w2a4), W(ay)» W(as)> W(as)s Q(4)<[Z]p);$1,$2)

_ I1 — Xo ~ - ~ A
= Ty K (1‘2> LQOHa(wEazx)v W(a1)s W(az)r W(az)> Q(4)([Z]P); T2 + Zo, $2)

for a € A(ai,as,a2,a4). Since wE ) € (W) is arbitrary, by (3.126),

aq

(3.127), (3.128) and (3.132), the Jacobi identity holds for the ordered triple

(W(ar)s W(ag)s W(as)):

(3.133)

_ 1 — . ) i )
Lo ls (1$02> fgl,as,a2,a4 (w(al)vw(ai‘s)’ W(ay), 9(4)([Z]P), 71, $2)

— T2 — % a1,a3,a2,a4 (7, ~ ~ 0
s (x) GRS (G o Dy BEOD((Z]p))s 21, 72)

— 1 — % a1,a3,a2,a4 (= ~ ~ e
=10 (I . . ) F O] )02

for Z € [, ca Vita; ®Vasa, and a € A(ar, a3, a2, as). By (3.122) we see that

QW ([2]p) in (3.129)-(3.133) can be any element in ([ asen Vatas ®Veas

aias a3a2)'

So the Jacobi identity holds for the ordered triple (W(q,), W(ay)s Waz)): O

Proof of Theorem 3.1. Since the permutations (1 2) and (2 3) generate
the symmetric group S3, in summary of Theorems 3.6 and 3.7, we can con-
clude that the Jacobi identity holds for the triple (’UNJ(aT(l)); QI)(GT(Q)),ID(QT<3>))
for any 7 € S3. Thus Theorem 3.1 holds.
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