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Special Legendrian submanifolds in toric
Sasaki–Einstein manifolds

Takayuki Moriyama

Abstract. We show every toric Sasaki–Einstein manifold S admits a
special Legendrian submanifold L which arises as the link fix(τ) ∩ S
of the fixed point set fix(τ) of an anti-holomorphic involution τ on the
cone C(S). In particular, we obtain a special Legendrian torus S1 × S1

in an irregular toric Sasaki–Einstein manifold which is diffeomorphic to
S2 × S3. Moreover, there exists a special Legendrian submanifold in
]m(S2 × S3) for each m ≥ 1.
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1. Introduction

A Sasaki–Einstein manifold is a (2n+ 1)-dimensional Riemannian mani-
fold (S, g) whose metric cone (C(S), g) = (R>0×S, dr2 + r2g) is a Ricci-flat
Kähler manifold where r is the coordinate of R>0. Assuming that S is simply
connected, then the cone C(S) is a complex (n+1)-dimensional Calabi–Yau
manifold which admits a holomorphic (n+ 1)-form Ω and a Kähler form ω
on C(S) satisfying the Monge–Ampère equation

Ω ∧ Ω = cn+1ω
n+1

for a constant cn+1. The real part ΩRe of Ω is a calibration whose cali-
brated submanifolds are called special Lagrangian submanifolds [11]. An n-
dimensional submanifold L in a Sasaki–Einstein manifold (S, g) is a special
Legendrian submanifold if the cone C(L) is a special Lagrangian subman-
ifold in C(S). We identify S with the hypersurface {r = 1} in C(S), and
then L is regarded as the link C(L) ∩ S of C(L).

Recently, toric Sasaki–Einstein manifolds have been constructed [3, 8, 9,
16]. The purpose of this paper is to construct a special Legendrian subman-
ifold in every toric Sasaki–Einstein manifold. For a toric Sasaki manifold
(S, g), the metric cone (C(S), g) is a toric Kähler variety. Then there exists
an anti-holomorphic involution τ on C(S).

Theorem 1.1. Let (S, g) be a compact simply connected toric Sasaki–Ein-
stein manifold. Then the link fix(τ)∩S is a special Legendrian submanifold.

The fixed point set of an isometric and anti-holomorphic involution is
called the real form. It is well known that a real form of a Calabi–Yau
manifold is a special Lagrangian submanifold. The point of Theorem 1.1 is
to show that the real form fix(τ) arises as the cone of the link fix(τ) ∩ S.
We have a generalization of Theorem 1.1 as follows:

Theorem 1.2. Let (S, g) be a compact toric Sasaki manifold. Then the link
fix(τ) ∩ S is a totally geodesic Legendrian submanifold.

A typical example of Sasaki–Einstein manifolds is the odd-dimensional
unit sphere S2n+1 with the standard metric, then the cone is the complex
space Cn+1\{0}. Special Lagrangian cones in Cn+1\{0} are regarded as
special Lagrangian subvarieties in Cn+1 with an isolated singularity at the
origin. Joyce had provided the theory of special Lagrangian submanifolds in
Cn+1 with conical singularities [15]. Many examples of special Lagrangian
submanifolds in Cn+1 with the isolated singularity at the origin had been
constructed [5, 12, 14, 19]. These special Lagrangian cones induce spe-
cial Legendrian submanifolds in the sphere S2n+1. Recently, Haskins and
Kapouleas gave a construction of special Legendrian immersions into the
sphere S2n+1 [13]. Special Legendrian submanifolds have also the aspect
of minimal Legendrian submanifolds. On the sphere S2n+1, the standard
Sasaki–Einstein structure is regular and induced from the Hopf fibration
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S2n+1 → CPn. Some special Legendrian submanifolds in S2n+1 arise as lifts
of minimal Lagrangian submanifolds in CPn [5, 19].

There exist two interesting points of our theorems. One is that we can
construct a special Legendrian submanifold in every toric Sasaki–Einstein
manifold which is not necessarily the sphere S2n+1. The other is that some of
these special Legendrian submanifolds are totally geodesic Legendrian sub-
manifolds in irregular Sasaki–Einstein manifolds. A Sasaki–Einstein mani-
fold of dimension 3 is finitely covered by the standard 3-sphere S3. Hence
we will consider the case of Sasaki–Einstein manifolds whose dimension are
greater than or equal to 5. Gauntlett, Martelli, Sparks and Wardram pro-
vided a family of explicit Sasaki–Einstein metrics gp,q on S2 × S3 [9]. Let
Yp,q denote the Sasaki–Einstein manifold (S2 × S3, gp,q).

Theorem 1.3. There exists a special Legendrian torus S1×S1 in the toric
Sasaki–Einstein manifold Yp,q.

Any simply connected toric Sasaki–Einstein 5-manifold is diffeomorphic to
the m-fold connected sum ]m(S2×S3) of S2×S3 for an integer m ≥ 0 where
]m(S2×S3) for m = 0 means the 5-sphere S5. Boyer, Galicki, Nakamaye and
Kollár showed that there exist many Sasaki–Einstein metrics on ]m(S2×S3)
for each m ≥ 1 [3, 16]. Van Covering provided a toric Sasaki–Einstein metric
on ]m(S2 × S3) for each odd m > 1 [24]. For any m ≥ 1, Cho, Futaki
and Ono showed that there exists an infinite inequivalent family of toric
Sasaki–Einstein metrics on ]m(S2 × S3) [6]. We fix a toric Sasaki–Einstein
metric on ]m(S2 × S3) and denote S by the toric Sasaki–Einstein manifold
]m(S2 × S3) with the metric. Let τ be the anti-holomorphic involution on
the toric Kähler cone C(S) constructed in §3.3. Then Theorem 1.1 implies
the following corollary:

Corollary 1.4. For any m ≥ 1, the link fix(τ) ∩ S is a special Legendrian
submanifold in ]m(S2 × S3).

The paper is organized as follows. In Section 2, we recall basic facts
about Sasakian geometry. We introduce weighted Calabi–Yau structures
on the Kähler cones of Sasaki manifolds which characterize Sasaki–Einstein
structures on Sasaki manifolds. In Section 3, we define special Legendrian
submanifolds in Sasaki–Einstein manifolds and provide a method to find
special Legendrian submanifolds by considering the fixed point set of an
anti-holomorphic involution. We apply the method to toric Sasaki–Einstein
manifolds, and prove Theorem 1.1. We also provide Theorem 1.2 as a gen-
eralization of Theorem 1.1. We show Theorem 1.3 and give examples of
special Legendrian submanifolds.

2. Sasakian geometry

In this section, we will give a brief review of some elementary results in
Sasakian geometry. For much of this material, we refer to [2] and [21]. We
assume that S is a smooth manifold of dimension (2n+ 1).
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2.1. Sasaki structures.

Definition 2.1. A Riemannian manifold (S, g) is a Sasaki manifold if and
only if the metric cone (C(S), g) = (R>0 × S, dr2 + r2g) is Kähler for a
complex structure.

We identify the manifold S with the hypersurface {r = 1} of C(S). Let
J and ω denote the complex structure and the Kähler form on the Kähler
manifold (C(S), g), respectively. The vector field r ∂∂r is called the Euler
vector field on C(S). We define a vector field ξ and a 1-form η on C(S) by

ξ = J

(
r
∂

∂r

)
, η(X) =

1

r2
g(ξ,X),

for any vector field X on C(S). The vector field ξ is a Killing vector field,
i.e., Lξg = 0, and ξ +

√
−1 Jξ = ξ −

√
−1 r ∂∂r is a holomorphic vector field

on C(S). It follows from Lξη = JLr ∂
∂r
η = 0 that

(1) η(ξ) = 1, iξdη = 0,

where iξ means the interior product. The form η is expressed as

η = dc log r =
√
−1 (∂ − ∂) log r

where dc is the composition −J ◦d of the exterior derivative d and the action
of the complex structure −J on differential forms. We define an action λ of
R>0 on C(S) by

λa(r, x) = (ar, x)

for a ∈ R>0 and (r, x) ∈ R>0 × S = C(S). If we put a = et for t ∈ R,
then it follows from Lr ∂

∂r
= d

dtλ
∗
et |t=0 that {λet}t∈R is one parameter group

of transformations such that r ∂∂r is the infinitesimal transformation. The

Kähler form ω satisfies λ∗aω = a2ω for a ∈ R>0 and

Lr ∂
∂r
ω = 2ω.

It implies that

ω =
1

2
d(r2η) =

√
−1

2
∂∂r2.

Hence 1
2r

2 is a Kähler potential on C(S).
The 1-form η induces the restriction η|S on S ⊂ C(S). Since Lr ∂

∂r
η = 0,

the form η is the extension of η|S to C(S). The vector field ξ is tangent
to the hypersurface {r = c} for each positive constant c. In particular, ξ
is considered as the vector field on S and satisfies g(ξ, ξ) = 1 and Lξg = 0.
Hence we shall not distinguish between (η, ξ) on C(S) and the restriction
(η|S , ξ|S) on S. Then the form η is a contact 1-form on S:

η ∧ (dη)n 6= 0

since ω is nondegenerate. Equation (1) implies that

(2) η(ξ) = 1, iξdη = 0,
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on S. For a contact form η, a vector field ξ on S satisfying Equation (2) is
unique, and called the Reeb vector field. We define the contact subbundle
D ⊂ TS by D = ker η. Then the tangent bundle TS has the orthogonal
decomposition

TS = D ⊕ 〈ξ〉
where 〈ξ〉 is the line bundle generated by ξ. We define a section Φ of
End(TS) by setting Φ|D = J |D and Φ|〈ξ〉 = 0. One can see that

Φ2 = −id + ξ ⊗ η,(3)

dη(ΦX,ΦY ) = dη(X,Y ),(4)

for any X,Y ∈ TS. The Riemannian metric g satisfies

(5) g(X,ΦY ) = dη(X,Y )

for any X,Y ∈ TS.
A contact metric structure (ξ, η,Φ, g) on S consists of a contact form η,

Reeb vector field ξ, a section Φ of End(TS) and a Riemannian metric g
that satisfy Equations (3), (4) and (5). Moreover, a contact metric struc-
ture (ξ, η,Φ, g) is called a K-contact structure on S if ξ is a Killing vector
field with respect to g. The section Φ of a K-contact structure (ξ, η,Φ, g)
defines an almost CR structure (D,Φ|D) on S. As we saw above, any Sasaki
manifold (S, g) has a K-contact structure (ξ, η,Φ, g) with the integrable CR
structure (D,Φ|D = J |D) on S. Conversely, if we have such a structure
(ξ, η,Φ, g) on S, then (g, 12d(r2η)) is a Kähler structure on the cone C(S),
hence (S, g) is a Sasaki manifold. We call a K-contact structure (ξ, η,Φ, g)
with the integrable CR structure (D,Φ|D) a Sasaki structure on S.

2.2. The Reeb foliation. Let (ξ, η,Φ, g) be a Sasaki structure on S. Then
the Reeb vector field ξ generates a foliation Fξ of codimension 2n on S. The
foliation Fξ is called a Reeb foliation. A Reeb foliation Fξ is quasi-regular
if any orbit of the Reeb vector field ξ is compact. Each orbit is associated
with a locally free S1-action. If the S1-action is free, Fξ is called regular. If
Fξ is not quasi-regular, it is called irregular.

A differential form φ on S is called basic if

ivφ = 0, Lvφ = 0,

for any v ∈ Γ(〈ξ〉). Let ∧kB be the sheaf of basic k-forms on the foliated
manifold (S,Fξ). It is easy to see that for a basic form φ the derivative dφ
is also basic. Thus the exterior derivative d induces the operator

dB = d|∧kB : ∧kB → ∧k+1
B

by the restriction. The corresponding complex (∧∗B, dB) associates the coho-
mology group H∗B(S) which is called the basic de Rham cohomology group. If
Fξ is a transversely holomorphic foliation, the associate transverse complex
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structure I on (S,Fξ) gives rise to the decomposition ∧kB ⊗C = ⊕r+s=k∧r,sB
in the same manner as complex geometry, and we have operators

∂B : ∧p,qB → ∧
p+1,q
B

∂B : ∧p,qB → ∧
p,q+1
B .

We denote by Hp,∗
B (S) the cohomology of the complex (∧p,∗B , ∂B) which is

called the basic Dolbeault cohomology group.
On the cone C(S), a foliation F〈ξ,r ∂

∂r
〉 is induced by the vector bundle

〈ξ, r ∂∂r 〉 generated by ξ and r ∂∂r . Let φ̃ be a basic form on (C(S),F〈ξ,r ∂
∂r
〉),

that is, ivφ̃ = 0 and Lvφ̃ = 0 for any v ∈ Γ(〈ξ, r ∂∂r 〉). Then the restriction

φ̃|S of φ̃ to S is also basic on (S,Fξ). Conversely, for any basic form φ on

(S,Fξ), the trivial extension φ̃ of φ to C(S) = R>0 × S is a basic form on
(C(S),F〈ξ,r ∂

∂r
〉). In this paper, we identify a basic form φ on (S,Fξ) with

the extension φ̃ on (C(S),F〈ξ,r ∂
∂r
〉).

2.3. Transverse Kähler structures. Let F be a foliation of codimension
2n on S. In order to characterize transverse structures on (S,F), we consider
the quotient bundle Q = TS/F where F is the line bundle associated by the
foliation F . We define an action of Γ(F ) to any section I ∈ Γ(End(Q)) as
follows:

(LvI)(u) = Lv(I(u))− I(Lvu)

for v ∈ Γ(F ) and u ∈ Γ(Q). If I is a complex structure of Q, i.e., I2 = −idQ,
and satisfies that LvI = 0 for any v ∈ Γ(F ), then a tensor NI ∈ Γ(⊗2Q∗⊗Q)
can be defined by

NI(u,w) = [Iu, Iw]Q − [u,w]Q − I[u, Iw]Q − I[Iu, w]Q

for u,w ∈ Γ(Q), where [u,w]Q denotes the bracket π[ũ, w̃] for each lift ũ
and w̃ by the quotient map π : TS → Q. A section I ∈ Γ(End(Q)) is a
transverse complex structure on (S,F) if I is a complex structure of Q such
that LvI = 0 for any v ∈ Γ(F ) and NI = 0. If a basic 2-form ωT satisfies
dωT = 0 and (ωT )n 6= 0, then we call the form ωT a transverse symplectic
structure on (S,F). We can consider the basic form ωT as a tensor of ∧2Q∗.
The pair (ωT , I) is called a transverse Kähler structure on (S,F) if the
2-tensor ωT (·, I·) is positive on Q and ωT (I·, I·) = ωT (·, ·) holds.

Let (ξ, η,Φ, g) be a Sasaki structure and Fξ the Reeb foliation on S.
We can consider Φ as a section of End(Q) since Φ|〈ξ〉 = 0. Then Φ is
a transverse complex structure on (S,Fξ) by the integrability of the CR

structure Φ|D. Moreover, the pair (Φ, 12dη) is a transverse Kähler structure

with the transverse Kähler metric gT (·, ·) = 1
2dη(·,Φ·) on (S,Fξ). The

transverse Ricci form ρT is a basic d-closed (1, 1)-form on (S,Fξ) and defines

a (1, 1)-basic Dolbeault cohomology class [ρT ] ∈ H1,1
B (S) as in the Kähler

case. The basic class [ 1
2πρ

T ] in H1,1
B (S) is called the basic first Chern class



SPECIAL LEGENDRIAN SUBMANIFOLDS 471

on (S,Fξ) and is denoted by cB1 (S) (for short, we write it cB1 ). We say the

basic first Chern class is positive if cB1 is represented by a transverse Kähler
form.

We provide a new Sasaki structure fixing the Reeb vector field ξ and
varying η as follows. We define η̃ by

η̃ = η + 2dcBφ

for a basic function φ on (S,Fξ), where dcB =
√
−1 (∂B − ∂B). It implies

that
dη̃ = dη + 2dBd

c
Bφ = dη + 2

√
−1 ∂B∂Bφ.

If we choose a small φ such that η̃ ∧ (dη̃)n 6= 0, then 1
2dη̃ is a transverse

Kähler form for the same transverse complex structure Φ. Putting

r̃ = r expφ,

then we obtain

r̃
∂

∂r̃
= r

∂

∂r
on the cone C(S). It implies that the holomorphic structure J on C(S) is
unchanged. The function 1

2 r̃
2 on C(S) is a new Kähler potential, that is

1
2d(r̃2η̃) =

√
−1
2 ddcr̃2, since

η̃ = η + 2dcBφ = 2dc log r̃.

Thus the deformation

(6) η → η̃ = η + 2dcBφ

gives a new Sasaki structure with the same Reeb vector field, the same
transverse complex structure and the same holomorphic structure of C(S).
Conversely, such a Sasaki structure is given by the deformation (6), by using
the transverse ∂∂-lemma proved in [7]. The deformations (6) are called
transverse Kähler deformations.

2.4. Sasaki–Einstein structures and weighted Calabi–Yau struc-
tures. In this section, we assume that S is a compact manifold. We provide
the definition of Sasaki–Einstein manifolds.

Definition 2.2. A Sasaki manifold (S, g) is Sasaki–Einstein if the metric g
is Einstein.

Let (ξ, η,Φ, g) be a Sasaki structure on S. Then the Ricci tensor Ric of g
has following relations:

Ric(u, ξ) = 2nη(u), u ∈ TS,
Ric(u, v) = RicT (u, v)− 2g(u, v), u, v ∈ D,

where RicT is the Ricci tensor of gT . Thus the Einstein constant of a Sasaki–
Einstein metric g has to be 2n, that is, Ric = 2ng. It follows from the above
equations that the Einstein condition Ric = 2ng is equal to the transverse
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Einstein condition RicT = 2(n+ 1)gT . Moreover, the cone metric g is Ricci-
flat on C(S) if and only if g is Einstein with the Einstein constant 2n on S
(we refer to Lemma 11.1.5 in [2]). Hence we can characterize the Sasaki–
Einstein condition as follows:

Proposition 2.3. Let (S, g) be a Sasaki manifold of dimension 2n+1. Then
the following conditions are equivalent.

(a) (S, g) is a Sasaki–Einstein manifold.
(b) (C(S), g) is Ricci-flat, that is, Ricg = 0.

(c) gT is transverse Kähler–Einstein with RicT = 2(n+ 1)gT .

We remark that Sasaki–Einstein manifolds have finite fundamental groups
from Mayer’s theorem. From now on, we assume that S is simply connected.
Any Sasaki–Einstein manifold associates a transverse Kähler–Einstein struc-
ture with positive basic first Chern class cB1 = n+1

2π [dη] ∈ H1,1
B (S). Thus

cB1 > 0 and c1(D) = 0 are necessary conditions for a Sasaki metric to admit
a deformation of transverse Kähler structures to a Sasaki–Einstein metric.
The following lemma is formalized in [8]:

Lemma 2.4 ([8]). A Sasaki manifold (S, g) satisfies cB1 > 0 and c1(D) = 0
if and only if there exists a holomorphic section Ω of KC(S) with

Lr ∂
∂r

Ω = (n+ 1)Ω and Ω ∧ Ω = ehcn+1ω
n+1

for a basic function h on C(S), where ω = 1
2d(r2η) and

cn+1 =
1

(n+ 1)!
(−1)

n(n+1)
2

(
2√
−1

)n+1

.

Definition 2.5. A pair (Ω, ω) ∈ ∧n+1⊗C⊕∧2 is called a weighted Calabi–
Yau structure on C(S) if Ω is a holomorphic section of KC(S) and ω is a
Kähler form satisfying the equation

Ω ∧ Ω = cn+1ω
n+1

where cn+1 = 1
(n+1)!(−1)

n(n+1)
2 ( 2√

−1)n+1 and

Lr ∂
∂r

Ω = (n+ 1)Ω,

Lr ∂
∂r
ω = 2ω.

If there exists a weighted Calabi–Yau structure (Ω, ω) on C(S), then it

is unique up to change Ω→ e
√
−1 θΩ of a phase θ ∈ R. Proposition 2.3 and

Lemma 2.4 imply the following:

Proposition 2.6. A Riemannian metric g on S is Sasaki–Einstein if and
only if there exists a weighted Calabi–Yau structure (Ω, ω) on C(S) such
that g is the Kähler metric.
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3. Special Legendrian submanifolds

We assume that (S, g) is a smooth compact Riemannian manifold of di-
mension (2n+1) which is greater than or equal to five. Let (C(S), g) be the
metric cone of (S, g).

3.1. Special Legendrian submanifolds and special Lagrangian
cones. We assume that (S, g) is a simply connected Sasaki–Einstein man-
ifold and fix a weighted Calabi–Yau structure (Ω, ω) on C(S) such that g

is the Kähler metric. The real part (e
√
−1 θΩ)Re of e

√
−1 θΩ is a calibration

whose calibrated submanifolds are called θ-special Lagrangian submanifolds.
We consider such submanifolds of cone type. For any submanifold L in S,
the cone

C(L) = R>0 × L
is a submanifold in C(S). We identify L with the hypersurface {1} × L in
C(L). Then L is considered as the link C(L) ∩ S.

Definition 3.1. A submanifold L in S is special Legendrian if and only if
the cone C(L) is a θ-special Lagrangian submanifold in C(S) for a phase θ.

A θ-special Lagrangian cone C(L) is a minimal submanifold in C(S), that

is, the mean curvature vector field H̃ of C(L) vanishes. The mean curvature
vector field H of the link L in S satisfies that

H̃(r,x) =
1

r2
Hx

at (r, x) ∈ R>0×S = C(S). Hence any special Legendrian submanifold L is
also minimal. Conversely, we assume that L is a connected oriented minimal
Legendrian submanifold in S. Then the cone C(L) is minimal Lagrangian.

There exists a function θ on C(L) such that ∗(Ω|C(L)) = e
√
−1 θ where ∗ is

the Hodge operator with respect to the metric g|L on L induced by g. We
have

X(θ) = −ω(H̃,X)

for any vector filed X on C(S) tangent to C(L) (Lemma 2.1 [22]). It yields
that θ is constant. Thus, the cone C(L) is special Lagrangian with respect

to a weighted Calabi–Yau structure (e
√
−1 θΩ, ω) for a phase θ. Hence C(L)

is θ-special Lagrangian, and the link L = C(L) ∩ S is a special Legendrian
submanifold. We obtain the following (for the case of the sphere S2n+1, we
refer to Proposition 26 [12]):

Proposition 3.2. A connected oriented Legendrian submanifold in S is
minimal if and only if it is special Legendrian.

Let (ξ, η,Φ, g) be the corresponding Sasaki structure on S. We also de-
note by η the extension to C(S). We provide a characterization of special
Lagrangian cones in C(S).
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Proposition 3.3. An (n+ 1)-dimensional closed submanifold L̃ in C(S) is
a special Lagrangian cone if and only if ΩIm|

L̃
= 0 and η|

L̃
= 0.

Proof. It suffices to show that L̃ is a Lagrangian cone if and only if η|
L̃

= 0
since a special Lagrangian submanifold is characterized by a Lagrangian

submanifold where ΩIm vanishes. If L̃ is a Lagrangian cone, then the vector

field r ∂∂r is tangent to L̃. The vector fields ξ and r ∂∂r span a symplectic
subspace of TpC(S) with respect to ωp at each point p ∈ C(S). We can
obtain η|

L̃
= 0 since η = ir ∂

∂r
ω and ω|

L̃
= 0.

Conversely, if L̃ satisfies η|
L̃

= 0, then L̃ is a Lagrangian submanifold

since ω|
L̃

= 1
2d(r2η|

L̃
) = 0. In order to see that L̃ is a cone, we consider the

set

Ip = {a ∈ R>0 | λap ∈ L̃}
for each p ∈ L̃. The set Ip is a closed subset of R>0 since L̃ is closed. On the

other hand, the vector field r ∂∂r has to be tangent to L̃ since L̃ is Lagrangian

and η|
L̃

= 0. The vector field r ∂∂r is the infinitesimal transformation of the

action λ. Therefore Ip is open, and so Ip = R>0 for each point p ∈ L̃. Hence

L̃ is a cone, and it completes the proof. �

Many compact special Lagrangian submanifolds are obtained as the fixed
point sets of anti-holomorphic involutions of compact Calabi–Yau mani-
folds. Bryant constructs special Lagrangian tori in Calabi–Yau 3-folds by
the method [4]. We apply the method to find special Legendrian subman-
ifolds in Sasaki–Einstein manifolds. An anti-holomorphic involution τ of
C(S) is a diffeomorphism τ : C(S)→ C(S) with τ2 = id and τ∗◦J = −J ◦τ∗
where J is the complex structure on C(S) induced by the Sasaki structure.

Proposition 3.4. We assume there exists an anti-holomorphic involution
τ of C(S) such that τ∗r = r. If the set fix(τ) is not empty, then the link
fix(τ) ∩ S is a special Legendrian submanifold in S.

Proof. Let (Ω, ω) be a weighted Calabi–Yau structure on C(S) such that
ω = 1

2d(r2η). Then we have

τ∗η = τ∗ ◦ dc log r = −dc ◦ τ∗ log r = −dc log r = −η
since τ∗ ◦ dc = −dc ◦ τ∗ and τ∗r = r. It yields that τ∗ω = −ω and τ is an
isometry. There exists a holomorphic function f on C(S) such that

(7) τ∗Ω = fΩ.

The Lie derivative Lr ∂
∂r

satisfies

Lr ∂
∂r
◦ τ∗ = τ∗ ◦ Lr ∂

∂r
and Lr ∂

∂r
Ω = (n+ 1)Ω.

We also have LξΩ =
√
−1 (n + 1)Ω. Taking the Lie derivative Lr ∂

∂r
on

Equation (7), then we obtain that Lr ∂
∂r
f = 0 and Lξf = 0. Thus f is
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the pull-back of a basic and transversely holomorphic function on S. Hence

f is constant. Moreover, Equation (7) implies that f = e2
√
−1 θ for a real

constant θ since the map τ is an isometry. We denote by Ωθ the holomorphic

(n + 1)-form e
√
−1 θΩ. Then (Ωθ, ω) is a weighted Calabi–Yau structure on

C(S) such that
τ∗Ωθ = Ωθ.

The set fix(τ) is an (n + 1)-dimensional closed submanifold, if it is not
empty, since τ is an isometric and anti-holomorphic involution. We denote

the manifold fix(τ) by L̃. Since τ is the identity map on L̃, we have

Ωθ|L̃ = τ∗Ωθ|L̃ = Ωθ|L̃.

It yields that ΩIm
θ |L̃ = 0. Therefore, Proposition 3.3 implies that L̃ is a θ-

special Lagrangian cone in C(S), and the link L̃∩ S is a special Legendrian
submanifold. �

A real form of a Kähler manifold is a totally geodesic Lagrangian sub-
manifold [20]. We can generalize Proposition 3.4 to Sasaki manifolds which
are not necessarily Einstein and simply connected as follows:

Proposition 3.5. Let (S, g) be a Sasaki manifold. We assume there exists
an anti-holomorphic involution τ of C(S) such that τ∗r = r. If the set
fix(τ) is not empty, then the link fix(τ) ∩ S is a totally geodesic Legendrian
submanifold in S.

Proof. We remark that τ satisfies τ∗η = −η and τ∗ω = −ω. The fixed point
set fix(τ) of the anti-symplectic involution τ is a Lagrangian submanifold
in C(S) if it is not empty. Moreover, any closed Lagrangian submanifold
where η vanishes is a cone as in the proof of Proposition 3.3. It follows from
η|
L̃

= 0 that fix(τ) is a Lagrangian cone in C(S). Thus the link fix(τ) ∩ S
is a Legendrian submanifold. The restriction τ |S of τ to S induces a map
from S to itself since τ preserves a level set of r, and so fix(τ) ∩ S is the
fixed point set fix(τ |S) of τ |S . The set fix(τ |S) is totally geodesic since the
map τ |S is an isometric involution on (S, g). Hence fix(τ) ∩ S is a totally
geodesic Legendrian submanifold. �

Remark 3.6. Tomassini and Vezzoni introduced special Legendrian sub-
manifolds in contact Calabi–Yau manifolds which are contact manifolds with
transversely Calabi–Yau foliations [23]. A contact Calabi–Yau manifold is a
Sasaki manifold with a transversely null Kähler–Einstein structure. Hence
it is not Sasaki–Einstein.

3.2. Toric Sasaki manifolds. In this section, we consider the toric Sasaki
manifolds. We refer to [6], [10] and [17] for some facts of toric Sasaki mani-
folds. We provide the definition of toric Sasaki manifolds.

Definition 3.7. A Sasaki manifold (S, g) is toric if there exists an effective
action of an (n+1)-torus Tn+1 = G preserving the Sasaki structure such that
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the Reeb vector field ξ is an element of the Lie algebra g of G. Equivalently, a
toric Sasaki manifold (S, g) is a Sasaki manifold whose metric cone (C(S), g)
is a toric Kähler cone.

We define the moment map

µ̃ : C(S)→ g∗

of the action G on C(S) by

(8) 〈µ̃, ζ〉 =
1

2
r2η(Xζ)

for any ζ ∈ g, where Xζ is the vector field on C(S) induced by ζ ∈ g. Let
GC = (C∗)n+1 denote the complexification of G. The action GC on the
cone C(S) is holomorphic and has an open dense orbit. The restriction of
µ̃ to S is a moment map of the action G on S. Equation (8) implies that
µ̃(S) = {y ∈ g∗ | 〈y, ξ〉 = 1

2}. The hyperplane {y ∈ g∗ | 〈y, ξ〉 = 1
2} is called

the characteristic hyperplane [1]. We define C(µ̃) by

C(µ̃) = µ̃(C(S)) ∪ {0}.

Then we obtain

C(µ̃) = {tξ ∈ g∗ | ξ ∈ µ̃(S), t ∈ [0,∞)}.

The cone C(µ̃) is called the moment cone of the toric Sasaki manifold.
We provide the definition of a good rational polyhedral cone which is due

to Lerman [17]:

Definition 3.8. Let Zg be the integral lattice of g, which is the kernel of
the exponential map exp : g→ G. A subset C of g∗ is a rational polyhedral
cone if there exist an integer d ≥ n + 1 and vectors λi ∈ Zg, i = 1, . . . , d,
such that

C = {y ∈ g∗ | 〈y, λi〉 ≥ 0 for i = 1, . . . , d}.
The set {λi} is minimal if

C 6= {y ∈ g∗ | 〈y, λi〉 ≥ 0 for i 6= j}

for any j, and is primitive if there does not exist an integer ni(≥ 2) and
λ′i ∈ Zg such that λi = niλ

′
i for each i. A rational polyhedral cone C such

that {λi} is minimal and primitive is called good if C has nonempty interior
and satisfies the following condition: if

{y ∈ C | 〈y, λij 〉 = 0 for j = 1, . . . , k}

is nonempty face of C for some {i1, . . . , ik} ⊂ {1, . . . , d}, then {λi1 , . . . , λik}
is linearly independent over Z and

k∑
j=1

ajλij

∣∣∣∣∣ aj ∈ R

 ∩ Zg =


k∑
j=1

mjλij

∣∣∣∣∣ mj ∈ Z

 .



SPECIAL LEGENDRIAN SUBMANIFOLDS 477

Any moment cone of compact toric Sasaki manifolds of dim ≥ 5 is a good
rational polyhedral cone which is strongly convex, that is, the cone does
not contain nonzero linear subspace (cf. Proposition 4.38. [2]). Conversely,
given a strongly convex good rational polyhedral cone we can obtain a toric
Sasaki manifold by Delzant construction.

Proposition 3.9 (cf. [6], [17], [18]). If C is a strongly convex good rational
polyhedral cone and ξ is an element of

C∗0 = {ξ ∈ g | 〈v, ξ〉 > 0, ∀v ∈ C},
then there exists a connected toric Sasaki manifold S with the Reeb vector
field ξ such that the moment cone is C.

Outline of the proof. Let {e1, . . . , ed} be the canonical basis of Rd. The
basis generates the lattice Zd. Let β : Rd → g be the linear map defined by

β(ei) = λi

for i = 1, . . . , d. Since the polyhedral cone C has nonempty interior, there
exists a basis {λi1 , · · · , λin+1} of g over R. Thus the map β is surjective.

The map β induces the map β̃ from Td ∼= Rd/Zd to G ∼= g/Zg. Let K denote

the kernel of β̃. Then we have

0→ K
ι̃−→ Td β̃−→ G→ 0

where ι̃ is the natural monomorphism. The group K is a compact abelian

subgroup of Td and represented by K =
{

[a] ∈ Td |
∑d

i=1 aiλi ∈ Zg

}
where

[a] denotes the equivalent class of a ∈ Rd. Let k denote the Lie algebra of
K. Then k is equal to kerβ. Thus we obtain the exact sequence

(9) 0→ k
ι−→ Rd β−→ g→ 0

where ι is the natural inclusion. The action of Td on Cd is given by

[a] ◦ (z1, . . . , zd) = (e2π
√
−1 a1z1, . . . , e

2π
√
−1 adzd)

for [a] = [a1, . . . , ad] ∈ Td ∼= Rd/Zd and (z1, . . . , zd) ∈ Cd. This action
preserves the standard Kähler form on Cd. The corresponding moment map

µ0 : Cd → (Rd)∗

is given by

µ0(z) =

d∑
j=1

|zj |2e∗j

for z ∈ Cd where {e∗1, . . . , e∗d} is the dual basis to {e1, . . . , ed}. Choose a
basis {v1, . . . , vk} of k where k = dim k = d−n− 1, and then there exists an

integer k × d-matrix (aij) such that ι(vi) =
∑d

j=1 aijej for i = 1, . . . , k. We
also consider the following exact sequence

(10) 0→ g∗
β∗
−→ (Rd)∗ ι∗−→ k∗ → 0
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which is the dual sequence to (9). We define a map

µ : Cd → k∗

by µ = ι∗ ◦ µ0. This map µ is a moment map of the action of K on Cd and
given by

µ(z) =
k∑
i=1

 d∑
j=1

aij |zj |2
 v∗i

for z ∈ Cd where {v∗1, . . . , v∗k} is the dual basis to {v1, . . . , vk}. It follows
from the exact sequence (10) that µ0(µ

−1(0)) ⊂ β∗g∗ ' g∗. Hence we have
the map µ0|µ−1(0) : µ−1(0) → g∗. Moreover, it induces a map µ̃ from the

quotient space (µ−1(0)\{0})/K to g∗:

(11) µ̃ : (µ−1(0)\{0})/K → g∗.

The map µ̃ is a moment map of the action G = Td/K on (µ−1(0)\{0})/K.
The image of µ̃ is equal to C since the image µ0(µ

−1(0)) is precisely β∗(C) '
C.

We define ξ0 by the element

(12) ξ0 =
n+1∑
i=1

λi

of g. We provide a Kähler metric on (µ−1(0)\{0})/K by the Kähler reduc-
tion. Then the function

F0(z) = 〈µ̃(z), ξ0〉
is a Kähler potential on (µ−1(0)\{0})/K. We define r0 by the function

r0 =
√

2F0

on (µ−1(0)\{0})/K. It yields that the Kähler potential is 1
2r

2
0 = F0 and the

manifold
S = (µ−1(0) ∩ S2d−1)/K

is the hypersurface {r0 = 1} in (µ−1(0)\{0})/K. The cone C(S) of S is
obtained as (µ−1(0)\{0})/K:

C(S) = (µ−1(0)\{0})/K.
The manifold S admits a Sasaki structure with the Reeb vector filed ξ0 such
that the following embedding from S into C(S) is isometric:

S = {r0 = 1} ⊂ C(S).

Given an element ξ ∈ C∗0 , we can obtain a Kähler potential Fξ defined by

Fξ(z) = 〈µ̃(z), ξ〉
for z ∈ C(S) (see (61) in [8]). We denote by Hξ the hypersurface

Hξ = µ−10

({
y ∈ g∗

∣∣∣∣ 〈y, ξ〉 =
1

2

})
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in Cd, which is the inverse image of the characteristic hyperplane by µ0. We
define a nonnegative function r on C(S) by

r =
√

2Fξ.

Then the manifold
Sξ = (µ−1(0) ∩Hξ)/K

is the hypersurface {r = 1} in C(S). We remark that Sξ is also the inverse
image of the characteristic hyperplane by µ̃:

Sξ = µ̃−1
({

y ∈ g∗
∣∣∣∣ 〈y, ξ〉 =

1

2

})
.

Thus it follows from S = Sξ0 that there exists a diffeomorphism S ' Sξ.
By the diffeomorphism, S has a Sasaki structure such that ξ is the Reeb
vector field and can be isometrically embedded into C(S) as the hypersurface
{r = 1}. �

Toric Sasaki manifolds are constructed by a strongly convex good rational
polyhedral cone C and a Reeb vector field ξ ∈ C∗0 , and then the Kähler
potential can be taken by Fξ as in the proof of Proposition 3.9. Any toric
Sasaki structure with the same Reeb vector field ξ and the same holomorphic
structure on C(S) is given by deformations of transverse Kähler structures
(See Section 2.3). Martelli, Sparks and Yau proved the following:

Lemma 3.10 ([18]). The moduli space of toric Kähler cone metrics on C(S)
is

C∗0 ×H1(C)

where ξ ∈ C∗0 is the Reeb vector field and H1(C) denotes the space of homo-
geneous degree one functions on C such that each element φ is smooth up
to the boundary and

√
−1 ∂∂(Fξ exp 2µ̃∗φ) is positive definite on C(S).

We identify an element φ of H1(C) with the pull-back µ̃∗φ by the moment
map µ̃ as in (11). Then, for any element (ξ, φ) ∈ C∗0 ×H1(C) we can define
the function r on C(S) by

r =
√

2Fξ expφ.

Let Sξ,φ denote the hypersurface {r = 1} in C(S):

Sξ,φ = {r = 1}.
It is easy to see that S = Sξ0,0 where ξ0 is given by (12). There exists a
diffeomorphism S ' Sξ,φ for any (ξ, φ) ∈ C∗0 × H1(C). By the diffeomor-
phism, S admits a Sasaki structure with the Reeb vector field ξ and the
Kähler potential 1

2r
2 on C(S) and can be isometrically embedded into C(S)

as {r = 1}. Thus the deformation

(ξ, φ)→ (ξ′, φ′)

of C∗0 × H1(C) induces a deformation of Sasaki structures on S. These
deformations are called deformations of toric Sasaki structures on S.
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3.3. Main theorems. Let (S, g) be a toric Sasaki manifold. The metric
cone C(S) is given by the Kähler quotient C(S) = (µ−1(0)\{0})/K for the
moment map µ : Cd → k∗ as in the proof of Proposition 3.9. Then there
exists an anti-holomorphic involution τ on C(S) as follows. We consider the
anti-holomorphic involution τ̃ : Cd → Cd defined by

τ̃(z) = z

for z ∈ Cd. The inverse image µ−1(0) is invariant under the map τ̃ . Thus τ̃
induces a diffeomorphism of µ−1(0). Moreover, τ̃ maps a K-orbit to another
K-orbit. Hence we can define a map τ : C(S)→ C(S) by

τ [z] = [τ̃(z)] = [z]

for [z] ∈ (µ−1(0)\{0})/K = C(S). The map τ is an anti-holomorphic involu-
tion of C(S). We recall that the group GC acts holomorphically on the cone
C(S) with an open dense orbit. We denote by X0 the open dense orbit of
GC. Since the orbit X0 is identified with (C∗)n+1, we can give a coordinate
w = (w1, . . . , wn+1) on X0 as ui = ewi for any

u = (u1, . . . , un+1) ∈ X0 ⊂ (C∗)n+1.

Then the map τ is given by

τ(w) = w

on the coordinate (X0, w) on C(S). Hence the set fix(τ) is nonempty.

Theorem 3.11. Let (S, g) be a compact simply connected toric Sasaki–
Einstein manifold. Then the link fix(τ)∩S is a special Legendrian subman-
ifold.

Proof. Let S be a toric Sasaki–Einstein manifold with the Sasaki structure
induced by the element (ξ, φ) ∈ C∗0 ×H1(C). Then the Kähler potential on
C(S) is

1

2
r2 = Fξ exp 2φ.

It follows from τ∗µ̃ = µ̃ that Fξ and φ are also τ -invariant. It gives rise to

τ∗r = r.

Hence, Proposition 3.4 implies that the link fix(τ)∩S is a special Legendrian
submanifold in S. It completes the proof. �

Remark 3.12. In the case that S is not simply connected, the canonical
line bundle KC(S) is not necessarily trivial. However, the l-th power K l

C(S) of

KC(S) is trivial for some integer l. Hence, we can remove the condition that
S is simply connected in Theorem 3.11 by considering nowhere vanishing
holomorphic sections of K l

C(S) instead of KC(S). Then we need to define

a special Lagrangian submanifold in C(S) as a Lagrangian submanifolds
whose l-th covering is a special Lagrangian submanifold in the l-th covering
of C(S).
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In the proof of Theorem 3.11, we only need the Einstein condition of
(S, g) to use Proposition 3.4. By applying Proposition 3.5 instead of Propo-
sition 3.4, we obtain the following:

Theorem 3.13. Let S be a compact toric Sasaki manifold. Then the link
fix(τ) ∩ S is a totally geodesic Legendrian submanifold in S.

3.4. Covering spaces over the link fix(τ ) ∩ S. In this section, we will
see that the special Legendrian submanifold in Theorem 3.11 is given by a
base space of a finite covering map (we also refer to [10]).

We recall the exact sequence

0→ K
ι̃−→ Td β̃−→ Tn+1 → 0

is associated with a strongly convex good rational polyhedral cone C as in
Section 3.2. This sequence equips the following sequence

0→ k
ι−→ Rd β−→ Rn+1 → 0.

We consider each element λi of the set {λ1, . . . , λd} as a vector of Rn+1.
Then the map β is represented by

(λ1 · · ·λd) : Rd → Rn+1.

where (λ1 · · ·λd) is the integer (n+ 1)× d matrix. By choosing a basis of k,
the map ι is represented by the d× k matrix

A = t(aij) : Rk → Rd

where each component aij is an integer and tB means the transpose of a
matrix B.

In order to analyse fix(τ) ∩ S, we define a map

µR : Rd → k∗

by the restriction of the moment map µ : Cd → k∗ to Rd = fix(τ̃) ∩Cd. The
map µR is represented by

µR(x) =

k∑
i=1

 d∑
j=1

aijx
2
j

 v∗i

for x ∈ Rd since µ(z) =
∑

i(
∑d

j=1 aij |zj |2)v∗i for z ∈ Cd. The inverse image

µ−1R (0) is precisely fix(τ̃) ∩ µ−1(0):

µ−1R (0) = fix(τ̃) ∩ µ−1(0).

The set fix(τ) is the image of fix(τ̃) ∩ µ−1(0) by the quotient map

(13) π′ : µ−1(0)\{0} → (µ−1(0)\{0})/K.

Hence we have the 2k-fold map

π′ : µ−1R (0)\{0} → fix(τ)
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with the deck transformation {a ∈ K | a2 = 1}. We also consider the
quotient map

π : µ−1(0) ∩Hξ → (µ−1(0) ∩Hξ)/K = Sξ.

which is the restriction of (13) to µ−1(0) ∩Hξ. Then fix(τ) ∩ Sξ is the base

space of the 2k-fold map

π : µ−1R (0) ∩Hξ → fix(τ) ∩ Sξ.

If we take an element ξ =
∑d

j=1 bjλj of C∗0 , then fix(τ) ∩ Sξ is the quotient
space of

µ−1R (0) ∩Hξ =

{
x ∈ Rd

∣∣∣∣ ∑d
j=1 aijx

2
j = 0, j = 1, . . . , k∑d

j=1 bjx
2
j = 1

}
by the action of the deck transformation.

3.5. The Sasaki–Einstein manifold Yp,q. In this section, we provide an
example of special Legendrian submanifolds in Yp,q. Gauntlett, Martelli,
Sparks and Waldram provided an explicit toric Sasaki–Einstein metric gp,q
on S2×S3 [9]. For relatively prime nonnegative integers p and q with p > q,
the inward pointing normals to the polyhedral cone C can be taken to be

λ1 = t(1, 0, 0), λ2 = t(1, p− q − 1, p− q), λ3 = t(1, p, p), λ4 = t(1, 1, 0).

Then we obtain the representation matrix A = t(aij) as

A = t(−p− q, p, −p+ q, p).

By the calculation in [18], the Reeb vector field ξmin of the toric Sasaki–
Einstein metric is given by

ξmin = (3,
1

2
(3p− 3q + l−1),

1

2
(3p− 3q + l−1))

where l−1 = 1
q (3q2 − 2p2 + p

√
4p2 − 3q2). Thus we can obtain

µ−1R (0)∩Hξmin
=

{
x ∈ R4

∣∣∣∣ px22 + px24 = (p+ q)x21 + (p− q)x23
(3p+ 3q − l−1)x21 + (3p− 3q + l−1)x23 = 2p

}
,

which is diffeomorphic to S1 × S1 = {x ∈ R4 | x21 + x23 = x22 + x24 = 1}. The
deck transformations induces an action on S1 × S1 given by
{id× id× id× id, (−id)× id× (−id)× id}, p: even, q: odd,

{id× id× id× id, id× (−id)× id× (−id)}, p: odd, q: odd,

{id× id× id× id, (−id)× (−id)× (−id)× (−id)}, p: odd, q: even.

The quotient space of S1 × S1 by the action is also S1 × S1 for each (p, q).
Therefore the link fix(τ) ∩ Yp,q is also diffeomorphic to S1 × S1. Hence we
obtain:

Theorem 3.14. There exists a special Legendrian torus S1 × S1 in Yp,q.
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