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Semistable symmetric spectra in
Al-homotopy theory

Stephan Hahne and Jens Hornbostel

ABSTRACT. We study semistable symmetric spectra based on quite gen-
eral monoidal model categories, including motivic examples. In partic-
ular, we establish a generalization of Schwede’s list of equivalent char-
acterizations of semistability in the case of motivic symmetric spectra.
We also show that the motivic Eilenberg—MacLane spectrum and the
algebraic cobordism spectrum are semistable. Finally, we show that
semistability is preserved under localization if some reasonable condi-
tions — which often hold in practice — are satisfied.
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2 STEPHAN HAHNE AND JENS HORNBOSTEL

1. Introduction

A map between CW-spectra (or Bousfield-Friedlander-spectra) is a stable
weak equivalence if and only if it induces an isomorphism on stable homo-
topy groups. This is not true if we replace spectra by symmetric spectra
in general. However, there is a large class of symmetric spectra for which
the stable homotopy groups (sometimes called the “naive stable homotopy
groups” as they ignore the action of the symmetric groups) do coincide with
the stable weak equivalences. This leads to the notion of semistable sym-
metric spectra, and these have been studied notably by Schwede [Sch07],
[Sch08], [Sch12]. There are many equivalent ways to recognize them, and
there are indeed many examples of symmetric spectra which are semistable
(e.g., suspension spectra, Eilenberg-MacLane spectra, K-theory and vari-
ous cobordism spectra). Any symmetric spectrum is weakly equivalent to a
semistable one, and semistable spectra are very suitable both under theo-
retical and computational aspects.

The goal of this article is to study semistability for symmetric spectra
based on other model categories than simplicial sets or topological spaces.
Our main interest here are symmetric spectra based on motivic spaces as
studied in [Hov2], [Ja2], which model the motivic stable homotopy category
[Vo]. However, we state most results in greater generality so that they may
be applied to other settings as well.

The results of this article may be divided in three families. First, we
establish a long list of equivalent characterizations of semistability. Second,
using one of these characterizations, we prove that important examples of
motivic spectra, namely Eilenberg—Mac Lane spectra and algebraic cobor-
dism, are indeed semistable motivic symmetric ring spectra. Third, we show
that semistable ring spectra are particularly well-behaved under localization.
Most of our results are generalizations of known results for symmetric spec-
tra bases on simplicial sets, but at least some proofs considerably differ.

One of our motivations to study semistability for motivic symmetric ring
spectra was our expectation that a motivic version of a theorem of Snaith
[GS], [SQ] should lead to a motivic symmetric commutative ring spectrum
representing algebraic K-theory, which then would fit in the framework of
[Hor2]. Indeed, while the first author was writing [H], Rondigs, Spitzweck
and Dstveer were able to deduce this result carrying out a small part of the
general theory established here, see Remark 2.48.

We now briefly recall the notion of semistability. For any symmetric
spectrum X, the actions of ¥, on X, induce an action of the injection
monoid M (that is the monoid of injective self-maps on N) on 7, X. We say
that X is semistable if this action is trivial. In general, the M-action encodes
additional information of the symmetric spectrum. See [Sch08, Example
3.4] for an example of symmetric spectra with isomorphic stable homotopy
groups but having different M-action.
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The following theorem of Schwede provides a list of equivalent ways of
describing semistable symmetric spectra based on simplicial sets. This is es-
sentially [Sch07, Theorem I1.4.44], see also [Sch08, Theorem 4.1] and [Sch12].

Theorem 1.1. For any symmetric spectrum X in simplicial sets, the foll-
wing conditions (1)—(v) are equivalent. If X is levelwise fibrant, then these
are also equivalent to conditions (vi)—(viii).

(i) There is a Tx-isomorphism from X to an Q-spectrum, that is an
isomorphism of naive stable homotopy groups.

(ii) The tautological map c : T X — X from naive to “true” homo-
topy groups is an isomorphism for all k € Z.

(iii) The action of M is trivial on all homotopy groups of X.

(iv) The cycle operator d acts trivially on all homotopy groups of X.
(v) The morphism \x : S* A X — sh X is a #r,-isomorphism.

(vi) The morphism Ax : X — Q(sh X) is a #t,-isomorphism.

(vii) The morphism A¥ : X — R™X is a 7t4-isomorphism.

(viii) The symmetric spectrum R>*X is an Q-spectrum.

In order to generalize this theorem to other model categories D, it seems
natural to generalize the M-action to appropriate stable homotopy groups
in D. However, in our first partial generalization Theorem 2.10 homotopy
groups do not appear. They only do appear later in the full generalization,
namely in Theorem 2.43. To state and prove the latter, we need to axioma-
tize the properties of the sign (—1)g1 on S* (see Definition 2.16). That is, we
require that our circle object 7" has an automorphism (—1)7 in Ho(D) satis-
fying the conditions of that definition. For our applications, it is thus crucial
that the pointed motivic space T = P! has a sign (see Proposition 2.24).
We are then able to prove the full generalization of Schwede’s theorem. The
precise statement of this Main Theorem 2.43 looks rather technical at first
glance and can be appreciated only after having read Section 2, so we don’t
reproduce it here.

In Section 3, we prove the following using the results of Section 2 (see
Corollaries 3.5 and 3.9).

Theorem 1.2. The symmetric motivic Filenberg—Mac Lane spectrum H is
semistable. The symmetric algebraic cobordism spectrum MGIL of Voevodsky
is semistable.

The key to both proofs here, relating the rather abstract considerations of
Section 2 to the algebraic geometry of these spectra, is that the >,-actions
that occur extend to GL,,-actions.

Section 4 generalizes [Sch07, Corollary 1.4.69] about the localization of
semistable symmetric ring spectra with respect to central elements. The
following is a special case of our Theorem 4.11:

Theorem 1.3. Let R be a level fibrant semistable motivic symmetric ring
spectrum and x : T' — R,, a central map. Then we can define a motivic
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symmetric ring spectrum R[1/x] which is semistable, and the ring homo-
morphism w* (R) Iz T (R[1/x]) is a localization with respect to x.

This article is based on the diploma thesis of the first author [H| written
under the direction of the second author. We thank Stefan Schwede for
providing us with updates [Sch12] of his book project [Sch07] on symmetric
spectra. As the structure and in particular the numbering are still subject
to change, we only provide precise references to the version [Sch07]. We
provide details rather than refering to [Sch12] when relying on arguments
not contained in the version [Sch07] or in [Sch08].

We assume that the reader is familiar with model categories in general
[Hi], [Hovl]. For symmetric spectra, we refer to [HSS|, [Hov2] and [Sch07],
[Sch12]. References for motivic spaces (that is simplicial presheaves on
Sm/S for a noetherian base scheme S of finite Krull dimension) and motivic
symmetric spectra include [MV], [Ja2] and [DLORV]. It will be useful for
the reader to have a copy of [Hov2] and [Sch07] at hand.

2. Semistability

In this section, we will generalize Theorem 1.1 in two ways. The first
generalization (Theorem 2.10) applies to symmetric spectra based on a very
general monoidal model category, but covers only part of the list of equiva-
lent properties of Theorem 1.1. The second generalization (Theorem 2.43)
applies to a slightly more restricted class of examples (in particular the mo-
tivic ones we are mainly interested in) and provides the “full” analog of
Theorem 1.1. We will always assume that D is a monoidal model category,
and that T is a cofibrant object of D. If moreover D is cellular and left
proper, then by [Hov2] (see also [Ja2]), we have both a level and a stable
projective model structure on Sp(D, T'), and similarly on Sp* (D, T). We re-
fer to [Hov2, Definition 4.1] for the definition of “almost finitely generated”.

As usual, for a spectrum X we define sX by (sX), = X,11, Q =
Hom(T,—), © := Qo s and O™ := colim ©F. We write 5;X for the adjoints
of the structure maps ;X of X, and J for a fibrant replacement functor in
Sp(D, T). By definition, an Q-spectrum is level-wise fibrant.

For some almost finitely generalized model categories stable weak equiv-
alences may be characterized as follows [Hov2, Section 4]:

Theorem 2.1. Assume that D is almost finitely generated, and that se-
quential colimits commute with finite products and with Q. Then for any
A € Sp(D,T), the map A — O>JA is a stable equivalence into an -
spectrum. Moreover, for an f in Sp(D,T) the following are equivalent:

e f is a stable equivalence.

e For any levelwise fibrant replacement f' of f the map O®f is a
level equivalence.

e There is a levelwise fibrant replacement f' of f such that the map
O f" is a level equivalence.
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Proof. This is a special case of [Hov2, Theorem 4.12] with U = Q. O

2.1. The first generalization. We refer to [HSS| and [Sch07] for stan-
dard definitions and properties of symmetric spectra. We consider a closed
symmetric monoidal model category (D, A, S?) with internal Hom-objects
Hom. As above, let T' be a cofibrant object in D and Q = Hom(7T, —). We
will consider the category of symmetric T-spectra Sp* (D, T) with the pro-
jective stable model structure of [Hov2]. As usual, we define an endofunctor
sh on Sp*(D,T) by sh X,, = X1, where (following Schwede) the notation
1 + n emphasizes which action of >, on X, 11 we consider. We further set
R := Qosh and R® := colim R*. Recall also that there is a natural map
Ax : X AT — sh X, which has an adjoint :\X : X > RX =QoshX.

Lemma-Definition 2.2.
(i) Let X be any object of D. We inductively define
evy t "X ANT" - X
by evy, = ev and ev’y = ev-(evi ' AT). Then the adjoint
Op,x : "X — Hom(T", X)

of ev’y is a natural isomorphism. Using this, we define for any
T € Xy a natural transformation Q7 : Q" — Q"

— Hom(7T™, —)

5n,X
JQT JHom(T_l,)

— Hom(7T", —)
5n,X

(i) If (11, 72) € 8y X Sy, (n,m € Ny), then QP = Qf,. - Q"QF
Proof. (i) Obvious.
(ii) Setting
= Onpmx - 6, gmx - Hom(T", 6, 1) : Hom(T", Hom(T™, X))
— Hom(T""™, X)
we may identify D(A, f) using the following commutative diagram:

D(A0n4m,x)

i ot N
D(A, QM X) —— S D(AAT"™, X) — = D(A, Hom(T"+™, X))

o

D(A,f)

D(A A Tn, QmX) i) D((A A Tn) A Tm’ X) é 'D(A A j“n7 HOIH(T"L, X))
-_—
D(A,8,,0m ) D(AAT™ 8. x) [

o o

D(A, Hom(T", 0" X))

D(A, Hom(T™, Hom(T™, X)))
D(AHom(T" 6., x))
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Hence f is compatible with 7, Lo 5 7m and Ty L.pm 5 7™ By natu-
rality dpnm,x -0, %zm x is then compatible with 7~ ! and similarly (because
f="0ntmx - Q"é;L’lX . 5;}h0m(Tm’X)) the map dpm, x - Q’”é;:X is compatibe

with 75 1. The first compatibility imples Q%™ = Q7. . and the second
QY™ = QrQ%, whence the claim. O

Lemma 2.3. Let X be a symmetric T-spectrum and xim € Xjrm permuting
the blocks of the first | and the last m elements. Then for the structure maps

of X, we have the equality &QZX = Q?g;ﬂ SQlEX.

For R®X, we have 587X = incl - colim 5ka, with incl being the map
colim(QUR¥X)pi1) = QR®X) i1
X _ X111
- QXn+1

ev}(nH -(JQX ANT) = oX . (ev&n AT) - (X, Atrr)

n n

Proof. For | = 1, we have 5 -QG;X, as by definition we have

and thus

v [(ba.x,,, - 60%) AT

=evk, . (evhx, , AT) - (63X NT?)

= evﬁ(w1 (AT

=0, - (evk, AT) - (X, Atrr)

=evk (G AT) - (evi, AT) - (X Atrr)
o (evax,  AT) - (95, Atrr)
=ev-(d2,x,,, ANT?) - Q65 ANtrr)
= ev-(Hom(T?, Xp1) Atrr) - [(02,%,,, Q65 ) AT?
= ev-(Hom(trr, Xnt1) A T2) . [(527)(”“955() A T2]
= ev-[(do, Xn“Q;%;lHQ&,)f YA T?.

Induction over [ then yields

=evk

~ Q-1 _ 1~
0,7? QX :QXZ 1,1 -Ql 10,753)(

QX?’H—I
_ oXi-11  ol-1/oX11 =X
= Qgxol - QTN - 6))
_ X1 =X
—QXn+1-Qan,

by Lemma 2.2 and x;1 = (xi—1,1 +1) - (= 1) + x1,1)-
The second claim follows as the adjoints of the maps already coincide on
(R'X), AT, where they are aflx =ev -(&EZX NT). O

In Sections 2.3 and 2.4 below (compare also [Sch07, Example 1.4.17]),
we will study in detail the action of the injection monoid M on X (w) =
(0°°X)g. In this section, we only need to know how the action of the cycle
operator d relates to the map A (generalizing a result of [Sch12]).
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Lemma 2.4. For any symmetric T-spectrum X, the following triangle com-
mutes:

(O® X)) —L— (6%X),

(m J

(@OOQ sh X)Q

Proof. The isomorphism on the right hand side is induced by

Xll

Q1+1X1 X141 QlHXl N
In the diagram

141 Qs 1441
X S QX

OX1,14+1
OX1,1 QX110

Qltls QlOX1,1
+1 1+2 I+1+1
VRS SRR Th 5 ML Y o L B S R

the lower composition equals Ql01+l by Lemma 2.3. As QX1.1Q) = QX1+ and
Qi = O (Lemma 2.2) and x1441 = (I+x1.1) - (X1, + 1) everything
commutes, hence the above maps are compatible with the structure maps.
Finally, the diagram of the lemma is induced by the following commutative
diagram:

Xll

Qx; —2 Ql+1Xl+1 QX
l...
Q'c QXL
Xl 1
1 1
Qi+ Xl+1 Ol X1+l

0

Lemma 2.5. For any symmetric T-spectrum X, there is an isomorphism

symy , : (0%°X), = (R*X).

Proof. The isomorphism is induced by a sequence of compatible isomor-
phisms

5 06 025 0ls
Xp —2 OXn1 —0 2 X0 20— QX

JlZQO,n J{Qal,n J{QQQQW Jﬂlalm

QX Q2 QX
X, —— QX —— 92X2+n — ... — QZXHH >
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where oy, is a permutation which is inductively defined by the following
commutative diagram:

Q' X ity ni41

J Qo ,
Qlafl n
Ql+1(al +1)

! 141 141
QX —— @ X1 —— O Xy
Qls QA Xin1

Here we use the ¥, -equivariance of & and set a1 = Xi4n,1 - (Q1n + 1).
Then by induction, it follows that oy, = xn - (n+ F;), where §; € ¥ is the
reflection §;(i) =1+ 1 —i:
Xn,0 - (n+ Bo) =
Xi4n,1 - (n +1) = Xign1 - ([Xng - (0 + B)] + 1)
= Xn+1 - (n+ Bipa).- 0

Corollary 2.6. Assume that £ commutes with sequential colimits. Then
for any X in SpE(D,T), the following diagram commutes:

Symx p

O@®sh" X)) = (0%X), : (R®X)n

Qsymy 41

(@ sh™ X)g (0°X), QO®X )py1 — QR®X ) g1

1R

Proof. Using Lemma 2.3 it suffices to show that the following diagram
commutes:

QL (ntxa,1)
141 141
QU Xpr — 2% QX gy QX

lﬂlal n JQZ(O‘Z n+1) lgqual n+1

I+1 XU o141
Q' Xy 27, gt Xipmp1 5 QX

This is the case as we have

Qi1 (M +X01) = Xnp1g - (R+1+6) - (n+x11)
= Xnt11-(n+x11) - (n+ G +1)
=[Xns-(n+B)]+ 1=, + 1. O

Lemma 2.7. Let X € SpE(D, T). Then the maps Aeh x and sh\x are equal
in Sp> (D,T) up to a canonical isomorphism of the targets.

Proof. We use the isomorphism 2 sh(sh X) = sh(2sh X') which is levelwise

Qlx1 1+
given by the X,,-equivariant map QX14+14n bar, 1) QX1414n. This really
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is a map in Sp(D,T), as

05 o Qa1
QX140 — L Xip14n41 —— QX4 14041
JQ(XLH-H) JQQ(Xl,lJrnH) l92(><1,1+(n+1))
QXl,l

05
QX140 —— P X1 p14n+1 —— P X1 p14041

commutes by Lemma 2.3. This yields a commutative diagram

sh X 2% Qsh(sh X)

T

sh(Q2sh X)
as we have levelwise
o Q(1+Xn,1)
Xipn —7= QX141 — QX 14140
JQ(XLH-”)
5 QX14n,1

Xign —2= QX1 4nt1 —— QX1 4140
O

Lemma 2.8. Let X € Sp™(D,T). Then we have a natural isomorphism
(O®RX), = (06*°X),.
Proof. The isomorphismus is induces by the following chain of compatible

isomorphisms:

Q&XH QQ&XH Ql‘}XH l+15x+z+1
n 2 n l n +1 n
OXpp1 —— QX0 e VX —— QM X
1 0Xi1,1 QX1,0-1 OX1,l
5RX Q5RX Ql_l&fj»(l—l Qla.RXl

n 2 n+1 1 n+
QX1+n — 0 X1+n+1 e QlX1+n+l_1 — QH_ X1+n+l —_—

This diagram commutes as the following does and we have
Ql—1+X1,1 — Ql—lngm

(see Lemma-Definition 2.2):

Qlex,
n
QX QX

X1,1—1 X1,1
Jo s |

1 1
QlX1+n+l—1 —— QlF Xitnyt — Qi Xitnti-
Qe Q7
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Proposition 2.9. Let (D, A, S°) be as in Theorem 2.1. Then the endofunc-
tor R preserves stable weak equivalences in Sp(D,T) between level fibrant
objects in Sp= (D, T).

Proof. Let f: X — Y be a map in Sp”(D, T) between level fibrant objects
which is a stable weak equivalence in Sp(D,T"). Then by assumption O f
is a level equivalence. By Lemma 2.8, we have (O®Rf); = (©>f), for all
I € Ng. Hence ©°Rf is a level equivalence and RX, RY are level fibrant
objects (€2 preserves fibrant objects), and consequently Rf is a stable weak
equivalence again by assumption. ([

We now establish a first incomplete generalization of Schwede’s Theo-
rem 1.1. Then we provide an example for D which satisfies the hypotheses.

Theorem 2.10. Let (D, A, S°) be a symmetric monoidal model category and
T a cofibrant object. Assume that for Sp(D,T) the projective level model
structure (see, e.g., [Hov2, Theorem 1.13]) exists. Assume further that:
(a) For any map f in Sp(D,T) the following are equivalent (compare
also Theorem 2.1):
o f is a stable equivalence.
e For any level fibrant replacement f' of f, we have that ©> f'
is a level equivalence.
e There is a level fibrant replacement [’ of f such that O f' is
a level equivalence.
(b) Countable compositions of stable equivalences in Sp(D,T) between
level fibrant objects are stable equivalences in Sp(D,T).
(¢) Q commutes with sequential colimits in D (see also Theorem 2.1).
(d) Sequential colimits of fibrant objects in D are fibrant.

Let X be a symmetric spectrum in SpZ(D,T) which is levelwise fibrant.
Then (i) to (iv) below are equivalent, and (v) follows from these.

(i) There is a map in Sp™(D,T) from X to an Q-spectrum which is a
stable equivalence in Sp(D,T).
(i) The morphism Ax : X — RX s a stable equivalence in Sp(D,T).
(iii) For all n € Ny, the cycle operator

dspr x - (@OO sh™ X)O — (@oo sh™ X)()

is a weak equivalence.

(iv) The symmetric spectrum R*°X is an Q-spectrum.

(v) The morphism ¥ : X — R®X in Sp”(D, K) is a stable equiva-
lence in Sp(D,T).

Proof. (i)=(ii) Let f : X — Y be a map in Sp*(D,T) with Y being an
Q-spectrum, and such that f is a stable equivalence in Sp(D,T). Then
by Proposition 2.9, Rf is also a stable equivalence in Sp(D,T'). This im-
plies that Ay ((A\y); = Xl}jl -5)) is a level equivalence, and hence a stable
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equivalence in Sp(D,T), follows by naturality of A that

x— .y

b, b
Rf

RX —— RY

commutes, hence by the 2-out-of-3 axiom Ax is a stable equivalence in
Sp(D,T).

(i) (iii) We have dgn x = (©%°Agn x)o by Lemma 2.4 and Agyn x
sh™ Ax by Lemma 2.7, and furthermore (©°° sh™)y = (0°),,, hence dg,» x =
(©°Xx)n. As Q is a right Quillen functor on D, both X (by assumption)
and RX are level fibrant. Using (a) and the above isomorphism, we deduce

I

that Ay is a stable equivalence in Sp(D,T) if for every n € Ny the map
dsnr x 1s a weak equivalence in D. .

(iii)<(iv) By Proposition 2.9, the maps R*A\x are stable equivalences in
Sp(D,T) for all s € Ny between level fibrant objects (€ is right Quillen).
By (b), the inclusion A§ is then a stable equivalence in Sp(D,T).

(i1)=(i) This follows from (ii)=(iv),(v). O

An important class of examples is given by almost finitely generated model
categories:

Proposition 2.11. Let D be a symmetric monoidal model category which
is almost finitely generated, and let T be a cofibrant object of D. Assume
that sequential colimits commute with finite products, weak equivalences and
Q, and that the projective level model structure on (D,T) exists. Then the
couple (D, T) satisfies the hypotheses of Theorem 2.10.

Proof. (a) holds by 2.1.

(b) We show more generally that stable equivalences in Sp(D, T') are closed
under sequential colimits. Using a standard reduction, it suffices to show
that sequential colimits of stable equivalences between stably fibrant objects
in Sp(D,T') are stable equivalences. But the stable model structure is a left
Bousfield localization of the projective level model structure, hence stable
equivalences between stably fibrant objects are level equivalences [Hi, The-
orem 3.2.13, Prop. 3.4.1]. By assumption, those are preserved by sequential
colimits (as these are defined level-wise), hence are stable equivalences again.

(c) holds by assumption.

(d) holds by [Hov2, Lemma 4.3]. O

We now consider the category M.(S) of pointed simplicial presheaves on
Sm/S for a given noetherian base scheme S (sometimes called the category
of motivic spaces). Besides the injective [MV] and the projective motivic
model structure, there is a third model structure introduced in [PPR1, Sec-
tion A.3] and denoted by M.“™(S) which is convenient for our purposes.
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(Recall also [MV], [Ja2] that there is a model structures on pointed sim-
plicial sheaves s Shv(,S). which is — via the sheafification a as a left Quillen
functor — Quillen equivalent to the injective model structure on M.(S).)

Corollary 2.12. The assumptions of Theorem 2.10 are satisfied for the
model category D = M.“™(S) and for all cofibrant objects T for which
Hom(T, —) commutes with sequential colimits (in particular for T = P').

Proof. The projective level model structure exists by [Hov2, Theorem 1.13].
The model category M.“™(S) is symmetric monoidal by [PPR1, Theorem
A.17] and weak equivalences are stable under sequential colimits by [PPRI,
Lemma A.18]. The claims about T and P! follow from [PPR1, Lemma A.10]
and [DRO, Lemma 2.5]. To show that M.“"(S) is almost finitely generated,
one shows that the model category M.°(S) (see [PPR1, Section A.3]) is
almost fintely generated, left proper and cellular. From this, one deduces
that the left Bousfield-Hirschhorn localization M.“"(S) exists and is still
almost finitely generated. See [NS| or [H, Propositions 2.20, 2.44 and 2.49]
for further details. O

The model category sSet, together with T = S also satisfies the as-
sumptions of Theorem 2.10. By Lemma 2.13 below, the map dy,» x is a
weak equivalence for all n > 0 if and only if the cycle operator d induces
bijections on all stable homotopy groups 7x(X),k € Z. Moreover, the sta-
ble equivalences in Sp(sSet,, S') are precisely the #.-equivalences. Hence
Theorem 2.10 really is a partial generalization of Theorem 1.1.

Lemma 2.13. Let X € Sp™(sSet,, S'). Then
dspr x - (@OO sh™ X)() — (@oo sh™ X)()

is a weak equivalence if and only if the cycle operator d induces bijections
on all stable homotopy groups 7y_n(X), k € Np.

Proof. Lemma 2.4 shows that dg,» x is a weak equivalence if and only if
7 (dsur x) is a bijection for all k& > 0. Using [Sch07, Construction 1.4.12]
and Section 2.2.1, we see that 7y (dgy» x) is isomorphic to the action of d on
7 (sh”™ X'). We also have isomorphisms of M-modules

F(sh™ X) 2 75 (X)(n)

(see Propostion 2.35, Remark 2.32 and Example 2.27). By tameness, d
acts as an automorphism on 7x_,(X)(n) if and only if the M-action on
Tg—n(X)(n) is trivial. Again by tameness, this in turn holds if and only if the
Me-action on 7t;_,(X) is trivial, because then the filtration is bounded (see
Lemma 2.39). This is also equivalent to d acting trivially on 7;_,,(X). O

We now state a first version of our definition of semistability (see also
Definition 2.31 and Remark 2.32):
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Definition 2.14. Assume that the assumptions of Theorem 2.10 are sat-
isfied and the projective level structure on SpZ(’D,T) exists, in particular
the functorial fibrant approximation J>. Then in this section, a symetric
spectrum X € Sp™ (D, T) is called semistable if J>X satisfies one (and hence
all) of the above properties (i)—(iv).

Using this definition, we have (compare also [HSS, Proposition 5.6.5]):

Proposition 2.15. Assume that the assumptions of Theorem 2.10 are satis-
fied and the projective level structure on Sp™ (D, T) exists. Let f : X — Y be
a morphism in SpE(D, T') between semistable symmetric spectra, and assume
that the forgetful functor U : Sp™(D,T) — Sp(D,T) reflects stable equiva-
lences. Then if f is a stable equivalence in Sp™(D,T), then so is U(f) in
Sp(D,T).

Proof. It is enough to show the claim for J*f. Namely, Z — J>Z is a
natural level equivalence, hence we may replace f by J>f and assume that
X and Y are level fibrant and the hypotheses of Theorem 2.10 hold for X
and Y. In the commutative diagram in Sp*(D,T)

2%
X X ReXx

by e
AV

Y —— R*Y
R>* X and R*Y are ()-spectra by assumption, and hence fibrant objects for
the stable model structure on Sp™ (D, T). Also, U(XF) and U(A$?) are stable
equivalences. Using the assumptions on U, we see that X? and ;\§,° are stable
equivalences in Sp*(D, T). But f is a stable equivalence in Sp* (D, T'), hence
by [Hi, Theorem 3.2.13] R* f is a level equivalence. Therefore U(R™ f) (and
thus U(f)) is a stable equivalence. O

The condition that U reflects stable equivalences is satisfied for D =
Me™(S), because by [PPR1, Theorem A.5.6 and Theorem A.6.4] the stable
equivalences for Sp(D, T) and Sp¥(D, T) in [Ja2] resp. [PPR1] coincide and
for the stable equivalences in [Ja2] the condition is satisfied by [Ja2, Prop.
4.8].

Comparing Theorem 2.10 with Theorem 1.1, one notices that several
things are missing. We will provide what is missing below (see Theo-
rem 2.43).

2.2. The sign (—1)r and the action of the symmetric group. We
now axiomatize some properties of the topological circle, in a way which
is convenient for studying the M-action on generalized stable homotopy
groups. The following two subsections then discuss the two key examples,
namely 7' = S' in pointed simplicial sets and 7" = P! in pointed motivic
spaces.
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Let (D, A, SY) be a symmetric monoidal model category. Fix a cofibrant
object T in D and set T := T"",

Definition 2.16. A sign of T in D is an automorphism (—1)7 of 7" in Ho(D)
of order 2 with the following properties:

(i) For any 7 € %, the permutation of factors T ©+ T™ coincides with
|7|7 A T™! in Ho(D) (the latter map is defined as T is cofibrant),
where we set |7|p = (—1)p if 7 is an odd permutation and |7|p = 1
otherwise. We call |7|p the sign of the permutation T.

Gi) 72 ST 2 oincides with 72 222D 12 4 Ho(D).

2.2.1. The sign of the simplicial circle. Let D = sSet, with the usual
smash product.

Definition 2.17. Fix a homeomorphism h : |S!| = S'. This yields a

weak equivalence v : S' = Sing(|S!|) LN Sing(R*) in sSet.. The map
(=1)r : R — R, t — —t then induces the automorphism

(~1)gr =" Sing((~1)5) - v

of S in Ho(sSet,), which we call the sign of S, and which is obviously of
order 2.

In particular (—1)g+ has degree —1.
Lemma 2.18. The above automorphism (—1)g1 is a sign of S*.

Proof. It is enough to check the properties of Definition 2.16 in Ho(Top, ),
that is after geometric realization. It also suffices to check the equalities
after conjugation with the canonical isomorphism

(81— ST A (RN R
(here we used that —* is strictly monoidal) Conjugation of
7 (SHA S (§1yAn
then yields the map R™" 'y R because
(S = (S @M = ReE

b

|(Sl)/\n| |Sl|/\n ™ (R-l-)/\n ) Rn-i—

R
R

R
R

commutes (—T is symmetric monoidal).
After conjugation, the map |(—1)g1 A (S1)"71| yields

gt dag(-L1.., 1)+ R+
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because the following diagram commutes (here we use relations between
units and counit):

o o

|Sl A (Sl)/\n—1| = |Sl| A |Sl|/\n—1 (R+)/\TL = R+

[vAl] lv|Al
| Sing(R™) A (81| —— | Sing(RT)[ A |1~ Z—s (RF)™
| Sing((—1))A1] [Sing((—1)1)IA1 (i A1 (—1)rx1gn-1)*
| Sing(R*) A (S1)"71] —=— | Sing(R*)| A [T\~ s (RF)N

[vAL] lv|Al

o o

|Sl A (51)/\1171| |Sl| A |Sl|/\n71 (R+)/\n = RnJr

diag(1,—1)*+
and R2+ 228077, pat 5o the conjugated map of |ST A (—1)g1].

Now let 7 € ¥, and P; € GL,(R) the permutation matrix corresponding
to 7. If 7 is odd, then det P, = —1 = det diag(—1,1,...,1). Lemma 2.19 then
implies that the maps 7 : R"* — R"" and diag(—1,1,...,1)* : R"* — R"*
are equal in Ho(Top,), hence 7 : (SH""* — (SHN and (—1)g1 A (S1) "L
are also equal in Ho(sSet,). If 7 is even , then det P, = 1 = det E,,, and
the maps 7 : (1) — (S1)"" equals the identity on (S1)"™ in Ho(sSet.).
For the second condition, note that the diagonal matrices diag(—1,1) and
diag(1, —1) have the same determinant, so by Lemma 2.19 the maps

diag(1,—1)*
2+ gll, 2+
R2+ STV, R+

R2+ diag(—l,l)Jr R2+

i

are equal in Ho(Top,) and therefore also (—1)g1 A St and S* A (=1)g1. O
We have just used the following;:

Lemma 2.19. The topological group GL,,(R) has two path components (cor-
responding to the sign of the determinant). If A, B € GLy(R) have deter-
minants with the same sign, then the two pointed maps

Rt ALY gt
are equal in Ho(Top,).
Proof. Well-known. g
2.2.2. The sign (—1)p: of the projective line. We have a pushout
diagram (both in Sm/S and in s Shv(S).)

Gms = Dy(TyT1) x S —— AL = D, (T1) x §

; :

AL=D,(T))x §—2>—pL
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The base point of P}, is the closed immersion Spec(Z) N AL 5 Pl and its
base change S — IP’IS is the base point of ]P’}g. The latter map induces a base
point map IP}g: k=5 — P}g which is closed for the em-model structure
above (see Corollary 2.12). For that model structure, (P}, o0) is a cofibrant
pointed motivic space which we denote by P! from now on. Similarly, we
write Gy, for the cm-cofibrant pointed motivic space (G, g,1).

Now we define the sign of P!. (See also [Mo, 6.1 The element €] for the
sign of P! and its behaviour with respect to P' 22 S' A G,,.)

Definition 2.20. The automorphism ]P’% — P% given by the graded isomor-
phiSHl Z[To,Tl] — Z[To,Tl],Tg — *To,Tl — T1 is denoted by (*1)19%, and
similarly (—1)1% = (—1)% x S for the base change of that automorphism to
Sm/S. The following lemma shows that (—1)P1S induces an automorphism
(—1)19119 on P!, which we denote by (—1)p1, and call it the sign of P*.

Lemma 2.21. The automorphism (—1)% is the morphism induced by (the
push-outs of ) the following diagram:

D (To) +—— D4 (ToTh) — D4 (Th)
[ I e R
D, (Ty) +—— D (ToTy) —— D (Th).
Consequently, the diagram

1 1 1
AgUg,, s Ag — Pg

J(l)u(l)(l) J(_l)u}%

1 1 1
AgUg,, s Ag — Py

commutes where (—1) on coordinates is given by T +— —T. Hence (_1)111’};
respects the base point oco.

Proof. Straightforward. For the last claim, use the first one and that
Spec(Z[T]) — Spec(Z[T]), T — —T maps the point T = 0 to itself. O

From now on, we replace the motivic space (P*)"" by the weakly equiva-
lent A%/((A% —0) x S). On the latter, we consider the usual GL,, g-action
and relate it to the sign of P!

Lemma 2.22.

(i) There is a zig-zag of weak equivalences in M.(S) between the pointed
spaces Pt and A}g/% Gms.
(ii) Via this zig-zag, the pointed map (—I)Pls corresponds to the map

(~Dur /(g s-
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Proof. (i) We have a commutative diagram

7:/
AL +— G5 —— AL

Lok

0

The map G,, 5 ‘o, Ag is a monomorphism, and the vertical maps are weak
equivalences. As the injective model structure is left proper, the induces
map f : A}g g, s A}q — A}q g, ¢+ = A}q/iéGmg is a weak equivalence, too.

The motivic space A}QHGm SAIS is pointed by S 9, A}g inchi, A}g Ig,, SA}g, and

with this choice f is a pointed map. The induced map A}gHGm SA}; M ]P’}g
is a motivic weak equivalence, as it is an isomorphism after sheafification
[Mo, Lemma 2.1.13]. It is pointed as (ig,?;) - incly - 0 =iy - 0.

(ii) The squares

1 1 1
Agllg, s Ag — Aglg,, 5 *
(_1)A‘15.'H(71>Gm5 (_1)‘&‘15‘\[ J((_l)AéH(1>GmS 1*

Ag g, s Ay — AgTlg,, o *

and
AgTlg, s Ay —— Py
(Dl (—1)% J(—n]ﬂs
h(Ag) g, s Ay — Py
commute by Lemma 2.21. O

For any S — Spec(Z), we consider the usual actions
p: GLy g xgAy — AG
(on the open subscheme (A™ — 0) x S as well) and homomorphisms
GL,(Z) — Autgeng (AY),
GLn(Z) — Autyy (s)(Ag/(A" —0) x S).

Above, as usual, we have identified smooth varieties and the associated
simplicially constant (pre-)sheaf given by the Yoneda embedding. However,
to avoid confusion when it comes to base points, we will write

h.: Sm/S — M.(S)

for the composition of the Yoneda embedding with adding a disjoint base
point.
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The above induces a map
h.(GLy s) A [AS/((A™ = 0) x S)] — [Ag/((A™ = 0) x S)],
and for any A € GL,,(Z) the diagram
[AS/((A" = 0) x 5]

h.(S) A TAZ/((A" — 0) x §)]

h.(A)AL

h.(GLys) A [AG/((A" = 0) x )] —— [Ag/((A™ - 0) x 5)]

commutes. Precomposition with the monomorphism ¥,, — GL,(Z) yields
the above ¥,-actions on A% and on A%/((A™ —0) x S).

Lemma 2.23.

(i) There is a ¥y, -equivariant map
i [AS/Gms]™ — A%/ (A% —0) x S)

in M.(S) which is a motivic equivalence.
(ii) The diagram

Ag/Gms A [AG/Gms] "™ —— A/ (A% — 0) x S)
J(—I)Ag/@,ms/\l ldiag(—l,l,...,l)
Ag/Gms A [AG/Gms]" ™ —— A/ (A — 0) x S)
commutes, and similarly for diag(1,...,1,—1).

Proof. (i) We have a commutative diagram

170 (AL X G x (AL)*n= (4D o (AL)x»

B E

n—1 4 1Xxgi 1 xgn—(i+1) 1 Xgn
Hi:OAS o XsGm,gXSAS %AS

| :

(A" —0) x S A

in which the vertical maps are ¥,,-equivariant. The horizontal maps induce
the desired map f on the quotients. To see that f is a weak equivalence, it
suffices to show [Jal, Lemma 2.6] that its sheafification is an isomorphism.
Using the adjunction a : M.(S) == sShv.(S) : 4, this reduces to show
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that for all F € sShv.(S) the induced map M.(S)(f,i(F)) is a bijection.
The familiy of open immersions

(AL % g G xg AL oy (A" —0) x §);0< i <n—1}

is a Zariski covering, hence a Nisnevich covering. Therefore, in the diagram

F(AS) F((A" = 0) x 5) F(5)

: | !

FAL™) —— [T FALS X Gpg x5 Ay 5" D) F(9)

the middle vertical map is injective. It follows that the induced map on
pull-backs is bijective, and that one coincides with M.(S)(f,i(F)).

(ii) The first diagram above is compatible with the corresponding maps
for diag(—1,1,...,1). (Apply the monomorphism ((A"™ —0) x §) — A% to
see this for the lower left map.) g

The above together with Lemma 2.19 below leads to the main result of
this subsection:

Proposition 2.24. The automorphism (—1)p is a sign of P* in M™(S).

Proof. By Definition 2.20, the automorphism (—1)p1 has order 2. Using
that the smash product of weak equivalences in M.(S) is again a weak
equivalence, as well as Lemmas 2.22 and 2.23, the required properties of
Definition 2.16 follow from the following:

(i) Let 7 € ¥,, be a permutation. Then, in Ho(M“™(S)) the automor-
phism induced by 7 on A%/((A7 —0) x S) equals diag(—1,1,...,1)
if 7 is an odd permutation, and the identity if 7 is even.

(ii) The automorphisms diag(—1,1) and diag(1, —1) of A%/(AZ —0) x S
are equal in Ho(M™(S)).

Using Lemma 2.25(ii) these in turn follow from
det diag(—1,1,...,1) T is odd

det diag(1,...,1) T is even.
(ii) detdiag(—1,1) = detdiag(1, —1). O

(i) det P, =

Lemma 2.25. Let Ay, A1 € GL,(Z) two matrices with AlAal € SL,(Z).
Via the inclusion GLy(Z) — GL,(Os(S)) = Schg (S, GLy,s), these matrices
induce morphisms Ag, A1 : S — GL, g in Sm/S.
(i) There is a map f : Ay — GL, g in Sm/S with f i, = A for
1=0,1, wherei; : S — A}q are the morphisms represented by 0 and
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1 in Og(95):
(Ao,A1)
SIS —— GLn,S
f \(
(io,il)J(

Ag

(ii) For any pointed motivic space E and p : h.(GL,s) N E — E a map
in M.(S), the endomorphisms on E induced by Ay and Ay are equal
in Ho(M™(9)).

Proof. (i) By adjunction, a map f : Ay — GL, s in Sm/S corresponds
uniquely to a matrix A = A(f) € GL,(Og(S)[T]). On global sections, i; is
given by Og(S)[T] — Og(S),T + I. Therefore, the condition that a lift f
exists corresponds to the equalities A(I) = A; for | = 0,1, where A(l) is the
image of A under GL,(Os(S)[T]) — GL,(Og(S)), T — I. We may assume
that Ag = E is the unit matrix and A; € SL,(Z). (If the couple (E, A;-Ay*')
allows for a lift A € GL,(Os(S)[T]), then A - Ay € GL,(Os(S)[T]) is a lift
for (Ag, A1) with Ag constant with respect to T.) We may further assume
that A; is an elementary matrix, as T+ [ is multiplicative. Namely, if A is a
lift of (Ap, A1) and B is a lift of (B, By), then AB is a lift of (AoBo, A1By).
Finally, for Ay = E and A; = Ej (a) an elementary matrix with a € Z, we
may choose A := Ej,(aT) € GL,(Os(S)[T]) as a lift.
(ii) If pr: Al — S is the projection, we have

h.(pr) - h.(i) = h.(pr-i;) = h.(1s) = 14 (s), 1=0,1.

As h.(pr) is a motivic weak equivalence, h.(ip) and h.(i1) are isomorphic
in the motivic homotopy category and hence [MV, Lemma 3.2.13] so are
h.(i;) N E,1 =0,1. Now the claim follows by A; = f - ;. O

2.3. Definition of the M-action on stable homotopy groups. From
now on, we will make the following standard assumptions: Let (D, A, S°)
be a pointed symmetric monoidal model category. There is a monoidal left
Quillen functor [Hovl, Def. 4.2.16] i : sSet, < D with right adjoint j : D —
sSet,. We choose a cofibrant object T in D such that — AT preserves weak
equivalences. Moreover, we assume that T is a cogroup object in Ho(D).
(This is the case if, e.g., T ~ S A B for some object B of D.) Finally, we
fix a class B of cofibrant objects in D.

For the category M.(S), we will take i to be the functor mapping a simpli-
cial set to a constant simplicial presheaf, and j the evaluation on the terminal
object S € Sm/S. The condition that is T cofibrant is equivalent to require
that the functor — AT preserves cofibrations, as then i(S°)AT = SOAT = T
is also cofibrant. The functor — A T" induces a functor on Ho(D).
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Definition 2.26. Let E be a T-spectrum in D. Then for all ¢ € Z,V € B,

the abelian groups (see also Lemma 2.28)
o« (=NT)

colim (--- = [VATT™ E,]

o VAT Ep] — )

are called the stable homotopy groups of E, and will be denoted by WC‘I/(E).
They are functors Sp(D,T) — Ab.

Example 2.27.

(i) For D = sSet,, T = S and B = {S°}, one recovers the definition of
the usual (naive, that is forgetting the 3,-action) stable homotopy

groups (denoted by 7, in [Sch12]): Wgo (E) = 7q(E).
(ii) For D = M™(S),T = P! and
B={S"Ah(U)ANG)|r,s € No,U € Sm/S},
the groups W;/(E) are the motivic stable homotopy groups of F. In
particular,

STAGLS () o
Ty Em (E) = ng—i?:-i—s,q—i-s(E)(U)
(note that B consists of em-cofibrant objects).

Lemma 2.28. Consider two objects A and X in D with A cofibrant, and
V € B. Then VANT? A A has an abelian cogroup structure, and the corre-
sponding group structure on [V.AT? A A, X| is compatible with — N T.

Proof. As T is a cogroup object by assumption, 72 and more generally
A" :=V AT? A A is an abelian cogroup object with comultiplication

VAT2AA YTy A (TVTYAT A A

Z[VATATNAINV AT AT AA]

As the comultiplication on A’ AT is given by
ANT 2T (A AYAT = (A ATV (A AT),
the compatibility with — A T follows. O

Definition 2.29. Let f : £ — F be a map of T-spectra in D. Then f is
called a 78-stable equivalence if the induced maps

7Y (f) s 7l (B) > x (F)
are isomorphisms for all ¢ € Z,V € B.

We now turn to the M-action. Let Z be the category of finite sets and
injective maps, and M the “injection monoid” (see [Sch07], [Sch08] and
Definition 2.34 below). Recall (see [Sch07, Section 4.2], [Sch08, Section 1.2])
that there are functors from symmetric spectra to Ab-valued Z-functors and
from Z-functors to (tame) M-modules, mapping X to X and further to
X(w).
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We still make the above assumptions, and also assume that T" has a sign.
The following definition generalizes [Sch08, 1.2 Construction, Step 1].

Proposition-Definition 2.30. Let ¢ € Z and V € B. For any symmetric
spectrum X in D, we define a functor X : T — Ab for any symmetric T -
spectrum X in D and then obtain (see above) an M-action on its evaluation
at w, W;/(X), which is precisely the group W;/(X) of Definition 2.26. In
more detail, any m in T is mapped to [V ANTIT™ X,| (see Lemma 2.28) if
g+ m > 2, and to 0 otherwise. For f :m — n a morphism in T (hence
n > m) we choose a permutation v € ¥y, with f = ~,,. Then X(f) is the
composition

oM (AT

[V ATH™ X, [V AT X))

{(VAIVITAT‘””U*%

[V AT X,]

if g+ m > 2, and 0 otherwise.

Proof. The map V A |y|r A T97"~! is defined as V and T are cofibrant.
The above composition is a group homomorphism as the group structure is
compatible with — AT (Lemma 2.28), and we have

VAN AT L =V AT A |y|p ATTT2

by Definition 2.16.

The functor X is well-defined on morphisms: Consider v,7 € X, with
Vim = 7"m. Then there is a 7 € ¥,,_,, with ¥ ~'v = m + 7 and the claim
X(v) = X(v) is equivalent to showing that the two compositions

o T (=ATT™)

[V ATH™, X,] [V AT, X,]
(V/\|m+T|T/\Tq+”_1)*J((1m><‘r)*
[V AT, X,

are equal. Let n > m (otherwise there is nothing to prove). By Defini-
tion 2.16, we have

|m + 7|7 AT = T A |7|p AT = T A 7
in Ho(D). Applying V' A — and using the equivariance of

(m+71)- 0" M=0""" (X AT),
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the equality follows from the equality of the following two compositions:

v aTem X, S g patm g prem A )

(Xm/\T)*JV[(V/\TqJFM/\T)*]
[V ATIT™ ATV™ X, AT ™.
A straighforward computation involving that

sgn(d - (v + (n' —n))) = sgn(d) - sgn(v)

shows that X is indeed a functor. Finally, as the inclusion m — m + 1
corresponds to o.(— AT), X(w) is indeed 71';/ (X) as claimed. O

For D = sSet,,T = S!, this coincides with the definition of [Sch0§],
because |(—1)g1] is isomorphic to a self-map on S* of degree —1. For D =
Me™(S) and T = P!, note that being semistable does not depend on the A'-
local model structure (projective, injective, cm...), but only on the motivic
homotopy category Ho(D).

We are now able to state our key definition.

Definition 2.31 (Compare [Sch08, Theorem 4.1]). Let D be as above and
fix a class B of cofibrant objects. A symmetric T-spectrum X is called
semistable, if the M-action (see Definition 2.30) is trivial on all homotopy
groups of X appearing in Definition 2.29.

Remark 2.32. Note that this definition heavily depends on the choice of
B. If the wB-stable equivalences coincide with the stable equivalences in
Sp(D, T), then under the assumptions of Theorem 2.43 the two definitions
of semistability coincide. This holds in particular for D = M“"(S) (see
above and Proposition 2.45 below), and B as in the example above.

Lemma 2.33. Let f : X — Y be a nB-stable equivalence in Sp™(D,T).
Then ﬂ';/(f) is an isomorphism of M-objects. In particular: X is semistable
if and only if Y is semistable.

Proof. By Definition, the map W;/( f) commutes with the M-action and by
assumption the map is an isomorphism. O

2.4. Some M-isomorphisms between stable homotopy groups. We
keep the assumptions of the previous section, and assume that 7" has a sign.
Recall [Sch07], [Sch08] the definition of the cycle operator and of tameness:

Definition 2.34. e Let M be the set of all self injections of N. This
is a monoid under composition, the so-called injection monoid.
e The injective map d : N — N given by x — x + 1 is called the cycle
operator.



24 STEPHAN HAHNE AND JENS HORNBOSTEL

e As usual, we sometimes consider M as a category with a single
object. A M-object W in D is a functor W : M — D, and we have
the category Func(M, D) of M-objetcs in D. If D is the category
of sets resp- abelian groups, we call these objects M-modules resp.
M-sets.

e Let n € Ng. The injective map M — M, given by mapping f to
the map

r<n

Ll
v flx—n) z>n,

is denoted by n + — or —(n). For W any M-object, note that
W (n) is the M-object with underlying object W and the M-action
restricted along n + — .

e Now assume further that D has a forgetful functor to the category
of sets. Let ¢ be an M-action on an object W in D. Then we
sometimes write fz for [¢(f)](x) if the M-action is understood.
For any f € M let |f| :=min{i > 0; f(: + 1) # i+ 1}. An element
x € W has filtration n if for all f € M with |f| > n we have fzr = x.
We write W™ for the subset of all elements of filtration n. The
Me-action on W is tame if W = J,5o W™. If D fas a forgetful

functor to abelian groups, then W n > 0 are abelian groups as
well.

The stable homotopy groups of sh X, T'A X and 2X may be expressed
through the stable homotopy groups of X. The following generalizes [Sch08,
Examples 3.10 and 3.11].

Proposition 2.35. Let X be a T-spectrum in D and q € Z,V € B. Then
we have the following isomorphisms of groups. They are compatible with the
sign of T, and if X is a symmetric spectrum they also respect the M-action:

(i) 7y (sh X) = m)/(X)(1).
(i) m) (QX) = 7r(§/+1(X), if X is level-fibrant and T is cofibrant.

(iil) 7Y (X) 225 7l (T A X).

Proof. We first establish the isomorphisms.
(i) Easy.
(i) As X, is fibrant and V' A T9t™ is cofibrant, we have isomorphisms:

[V ATI™ QX,,] VAT X 1y7  atm g, x, ] WXty op s patm )

compatible with the structure maps, that is the diagram

Xy aTa+™m X0,
—_—

|4 m)*
[V AT QX Wro.atm)

[V AT AT, X,,] VAT ATIT™ X,

kaf}x(—/\T) Mrf((—/\T)
AvaratmEl x,, g (VAX1,q+m+1)*

[V AT QX 4] —— [V AT AT, X —— [V AT AT X, ]
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commutes. Now for any f: V AT — QX,, in Ho(D), we have
ayararmit x,, (00 - (FAT)) =ev-([0*% - (f AT)AT)
=0 (evx AT) - (LA x11) - (fAT?)
=oX (evx AT) - (f A X1,1)-
Thus under the lower left composition, f maps to
o (evx AT) - (f Axin) - (VA Xigrme1)
=0 (evx AT) - (f AT - (VA X1490m AT),
and to

UX : ([O‘V/\T‘Hm,Xm(f) : (V A Xl,q-‘rm)] A T)
=0 - ([ev-(f AT) - (V AX1gtm)] AT)

under the upper right composition. This yields the claimed bijection. Using
Lemma 2.28 (respectively Definition 2.16), we see that oy ppa+m x,, (respec-
tively (V' A X1,g+m)") is a group homomorphism.

(iii) As T'A — preserves weak equivalences in D, it induces maps

[V AT, X)) 225 [T AV AT T A X,]
J(tV,TAT‘Hm)*
[VATANTI™ T A X,
which are obviously compatible with the structure maps. For any
f VAT 5 X,
in Ho(D), the diagram

ty pANTIT™ T
VAT AT YT p sy aqarm N x

¢ TtVAT‘H'm,T T, X,
T,79t+m FAT
VAT AT ——— X, AT

commutes, therefore the map above equals the composition
[V ATIH™ X, A [V AT AT, X, AT
l(V/\XLTFm)*tT,Xm*
(VAT AT T A X

Arguing as in (ii), we see this is a group homomorphism. Passing to the
colimit yields the desired map T'A (=) = (T' A (—))x. By naturality, any
level equivalence X¢ — X in Sp(D,T') induces an isomorphism between the
maps (T'A —)x and (T' A —) xe. Choosing X¢ to be level cofibrant, we may
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assume that X is level cofibrant itself when showing that (7" A —)x is an
isomorphism.

To see injectivity, assume that there is some f in the kernel, and that f
is represented by some element in [V AT9T™ X,,]. Then contemplating the
commutative diagram

[V AT X, ———— [VATH™ AT, X, —— [VATI™ AT, Xy 11]

| /Xm \ g

[TAVATH™ TAXy] —— [VATATH™ T A Xy —— VAT AT, X, AT

(tVT/\Tq“”)* (VAXg+m, 1) "t X x

we see that it has to be zero in the upper right corner, showing injectivity
as claimed.
To obtain inverse images, consider the composition

(VAXq+m,1)" 1, X+

[V AT+ X AT

Ja*

[V ATHmHL, X ],

[V AT T A X

It remains to show ol"X(— A T) is the result of composing this with the
map above. This will rely on the existence of the sign on T'. Let
f:VATH™ ST A X,
be a map in Ho(D). Then we have
[(tve AL (T A )] [0 - 13- (V A Xgrma)](F)
= v A" (T A=)|(o - trx,, - [+ (VA Xgrma))
=T A(0-trx, - [ (VAXgrm1)) - (tvr AT
oIN (T A trx,.) (TAf)-(tvr A Xgrm,1)-
Let us first consider
(T'Atrx,,) (TAf)
= (T Atrx,,)  (tre AXm)? - (T A f)
= [T Ntrx,,) - (tre A X))l - [(FD)2 AT A Xon) - (TN f)]
=trrax,,  (TAf)- (=) AV ATHHET™)
= (f AT) - tryarivatm - (1) ANV ATHTM),
Because
tryaritarm - (D)7 AV AT (ty 0 A Xggm,1)
= tryaritarm - (Ve A Xgima) - (VA (=L)p AT
= (VAT 14g+m+1) - (VA (=1)p ATHHIE™)
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= (VA (=) AT (VA (=1)p ATTTIT™) = 1
we finally obtain
[(tvr A (T A=) - [0 -t X - (VA Xgim1)*1(f) = o7 (f AT).

Here 71 14¢+m+1 € X14¢+m+1 is the permutation interchanging 1+¢+m+1
and 1.

We now turn to the M-action. Let f : N — N be injective, max(f(m)) =
n and vy € X, with v, = f[;,. Concerning (i), for 1+~ € X1, we have

(I +jign = 1+ f) 11" and the diagram

[V AT+ (sh X)), | == [V AT9T0+m) X7 ]

J{afm.(ATn—m) lo_inle)(erl).(/\T(n+1)(m+1))
[V AT@D+ (sh X)), | =—— [V ATt X

J((V/\|’Y|T/\1)*"Y* J(V/\HWITM)*-(IM)*
[V AT@t)+ (sh X),| =——= [V AT+ X ]

commutes as sgn(y) = sgn(1 + «). But the right hand side is precisely the

M-action on W}I/(X)(l).

As the maps in (ii) and (iii) commute levelwise with o'~ - (— AT™™™),
it remains to show that they also commute with maps of the form

(VAP AL s
For (ii), consider the diagram

ANV AL)™ ()«

[V A Tatm, QXn] [V ATatm, QXn]
—NT —AT

AP AIATY* (QYAT).

[V AT AT, QX AT] [V AT AT, QX AT]

ev ev

ANV AIAT ) s

[V AT AT, X,,] [V AT AT, X,,]

(VAX1,q4m)* (VAX1,q4m)*

(ANT AT ALY s

[V AT AT™ X, VAT ATT™ X,

which commutes by the naturality of ev and ¢_ _). In the last row, we have

INTARTAL=1A]y|r A1
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by Definition 2.16. As o = ev-(— AT the compatibility with the M-action
follows. For (iii), we consider the commutative diagram

(LAl AL)* s

[V ATT™ X,]

J(T/\—) (T/\—)l

[T AV AT T A X, [T AV ATIT™ T A Xy

J/(tV’T/\l)* (tV’T/\l)*l

VAT *(T *
VAT ATem T A X, ] LTV END @y o pasm o .

[V AT X,]

(TAV Al AL (TAY)-

Here for the last row we have V AT A |y|p AT =V A|y|p ATIH™ by
Definition 2.16, hence the third isomorphism also respects the M-action.
The compatibility with the sign is shown by a similar argument. U

The proposition implies that the class of semistable spectra is stable under
various operations (compare [Sch08, Section 4], [Sch12]):

Corollary 2.36. Assume that Sp*(D,T) has a levelwise fibrant replace-
ment functor. Then for any symmetric T-spectrum in D, the following are
equivalent:

X s semistable.

T AN X is semistable.

OJEX is semistable.
sh X is semistable.

Proof. Most of this follows directly from Proposition 2.35. Concerning sh X
it remains to show that for a tame M-modul W the M-action is trivial if
and only if it is trivial on W (1). But if the M-action is trivial on W(1),
then W has filtration < 1 and thus by Lemma 2.39 below the M-action is
trivial. O

Definition 2.37. Let X be a levelwise fibrant symmetric T-spectrum. We
denote the composition of the M-isomorphisms (i) and (ii) of Proposi-
tion 2.35 by a : 7} (RX) = 7} (X)(1).

The following will be used when proving Theorem 2.43:

Proposition 2.38. Let X be a symmetric T-spectrum. The action of d € M
is isomorphic to the action of Ax on stable homotopy groups, i.e., the square

Y (X) —Z— 7YV (X)(1)

(—1)‘1T'(T/\—)lg J(g
v g (Ax) v
T g(TAX) —— 7, (shX)
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commutes. If X is levelwise fibrant, the for all n € Ngy the squares

dx n a”
W;/(X)*HT and TF;/(R X)—HTC‘I/(X)(n)
S\X*-(l)i}lﬁ Jm‘{(ﬁnxsh"x)'(—l)qfr Jd*
Oc n anJrl
7y (RX) —— g (RTHX) —=— [my (X)(n)](1)

commute as well, the right d. is the action of d(n) on the underlying sets

7y (X) (see Definition 2.34). In particular, the action of d(n) on 7Y (X) is

isomorphic to the map 7, (R")\X)

Proof. Let f: V ATY™™ — X,,, be a morphism in Ho(D). The first square
commutes because

AxXime - (VA (=DF AL [ty ATT) (T A=)]I(S)
= (Xm,1 O~ t1,%,,) - (T A ) (tve ATT™) - (VA (-1)F A1)

= Xm,1* Oy - (f AT) - tryararm - (byp ATTT™) (VA (=1)5 A1)
= Xm,1 - 0 - (FAT) - (V Axigm) - (VA (=DF A )

= Xm1 O (FAT)-(VA(=DE™ AL (VA (=DEAT)

= X1 - Opn - (fAT) - (VA (= U A1)

= Xmae - (VA (EDF AL -0 - (= AD)(S) = dulf)-

And similarly for the second square,
[(V AX1gtm) - a] - Axme - (VA (=13 AD)](f)
=ev '([S\Xm [ (VAEDEADIAT) - (VA X1g4m)
= X1 O - (FAT) - (V Axagem) - (VA (=DFAL) = du(f).

Finally, following Schwede we observe that the commutativity of the third
square follows from the second. To see this, consider the large commuta-
tive (note that the isomorphisms are compatible with the sign by Proposi-
tion 2.35) diagram

am”

IR

my (" sh” X) Yo (50" X) = Y (X)

- dx
Jm%n (=1 / m«—n%\ f“")
Ty (Q"sh" RX) — ), (Rsh" X) Ty (sh" X) —= )/ (X).

antl

IR|e

The last claim follows from Lemma 2.7 by which the morphisms Xshn x and
sh™ \x are isomorphic in Sp™(D, T). O
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2.5. Generalities concerning the M-action.

Lemma 2.39 (Schwede). Let W be a tame M-module.

(i) Any element of M acts injectively on W.
(ii) If the filtration on W is bounded, then W is a trivial M-module.
(iii) If d € M acts surjectively on W, then W is a trivial M-module.
(iv) If W is a finitely generated abelian group, then W is a trivial M-

module.
Proof. See [Sch08, Lemma 2.3]. O

Lemma 2.40. Let F' : Z — D be a functor and assume that D has sequential
colimits and a forgetful functor to the category of sets. Then, if any element

(@)

of F(w) is in the image of some inclusion map inclb ), F(w) is tame.

Proof. It suffices to show that any = € F(w) arising via
ye FQ), x=incl“(y)

has filtration < [. Consider f € M with |f| = [. By definition of F(f), we
have F(f) - inclf(w) =F(fy) = incllF(w) -F(L) = incllF(w) as f restrics to 1j.
This yields F(f)(xz) = z, so = has filtration < [. O

The next result describes several general properties of the construction
which [Sch12] applies to the functors 7.

Proposition-Definition 2.41. Let D be a category and F a class of func-
tors from D to the category of M-sets. Let C = Dx be the full subcategory
of D of those X for which the M-action on F(X) is trivial for all f € F.

(i) For any X € D,F € F, consider the set F(X) of natural trans-
formations of functors C — Set from D(X,—) to F. Then Fisa
functor from D to M-sets.

(ii) M acts trivially on F(X).

(iii) There is a natural map cx : F(X) — F(X) of M-sets.
(iv) An object X of D is in C if and only if cx : F(X) — F(X) is
bijective (or equivalently injective).

Proof. (i) Let f: X; - XobeamapinD, g€ F(X;)and k: Xy - Y a
map in D with Y in C. The natural transformation g maps kf to an element
gy (k) == gy(kf) € F(Y). By naturality of g the assignment k — gy (k) is
natural in Y. Hence we obtain a map F(f) : F(X;) = F(X3),g — ¢/, and
one easily verifies that F is a functor. Now let w € M and g € F(X).
Then the composition Fio(w) - g € F(X,) is a natural transformation, thus

defining an M-action on F(X;). For any f : X; — Xy in D we then have

[weF'(f)I(9) = Fie(w)-g(=-f) = [Fle(w) - g](—=- f) = [F'(f)w:](g). Therefore

F(f) respects the M-action.
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(ii) Let w € M,g € F(X) and k : X — Y with Y in M. Then M acts
trivially on F'(Y) and we have [(Fic(w)- g)(k)] = w«[g(k)] = g(k), so M acts
trivially on F(X) as well.

(iii) The map cx sents z € F(X) to the natural transformation

kE— [F(k)](z) (k:X—=Y,Y inC),
which is natural in X. For w € M we have

[we(ex (2))](k) = [Fe(w) - ex (@)](k) = Fle(w)([F(k)](x))
= [F(F)](ws(z)) = [ex (ws(x))] ()

as F' is compatible with M. Hence cx is a map of M-sets.

(iv) Now let X in C. By Yoneda evy, : F(X) — F(X) an 1x is bijective
with inverse cx (eviy -cx = lp(x)). Conversely, if cx is injective, then by
(ii) and (iii) the action of M on F(X) trivial, hence X is in 5. O

One can show that for D the category of symmetric spectra based on
simplicial sets and F the set of stable homotopy groups 7%, k € Z the above
definition of 7y, is isomorphic to the definition of the “true” stable homotopy
groups. Later we will also need the follwing standard result.

Corollary 2.42. Assume that fibrant objects D are closed under sequential
colimits, and the functors j, Hom (T, —) and Hom(A, —) for all A € B pre-
serve sequential colimits. Then for any sequential diagram X*® in Sp(D,T)
the map

colimmy (X™) ks 7Y (colim X*)
n>

is an isomorphism for all q € Z,V € B.

2.6. Criteria for semistability: the generalized theorem. We keep
the hypotheses of Section 2.3. We now extend Theorem 2.10 (under ad-
ditional assumptions), which simultaneously generalizes Schwede’s Theo-
rem 1.1.

Theorem 2.43. Let (D, A, S°) be a pointed symmetric monoidal model cat-
egory with a coftbrant object T', such that — N'T preserves weak equivalences
and T has a sign. Let i : sSet, — D be a monoidal left Quillen functor
with adjoint j. Let B be a class of cofibrant objects in D. Moreover, assume
that fibrant objects in D are closed under sequential colimits and that j,
Hom(T,—) and Hom(A, —) for all A € B preserve sequential colimits. Then
for any T-spectrum X in D the following are equivalent:

(i) X is semistable (see Definition 2.31).
(ii) The cycle operator d (see Definition 2.34) acts surjectively on all
stable homotopy groups.
(iii) The map A\x : T A X — sh X is a 75- stable equivalence.
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If the class {71’;/; q € 7,V € B} of functors from Sp¥(D,T) to M-sets satis-
fies the assumptions of Proposition-Definition 2.41, then (i) is also equiva-
lent to

(") The map cx : W;/(X) — 7/1\[}7()() (Definition 2.41) is a bijection for

allq e Z,V € B.
If X is level fibrant, then (i)—(iil) are also equivalent to:

(iv) The map Ax : X — RX is a nP-stable equivalence.
(v) The map ;\3(0 : X — R®X is a nB-stable equivalence.
(vi) The symmetric spectrum R X is semistable.

Now consider the following conditions:

(1) The projective level model structure on Sp(D,T) exists and the con-
ditions (a) and (b) of Theorem 2.10 are satisfied.
(2) The projective level model structure on Sp™(D,T) exists (in partic-
ular there is a level fibrant replacement functor 1 — J>.
(3) wB-stable equivalences coincide with stable equivalences in Sp(D,T).
If (1)—(3) hold, then (i)-(iil) are equivalent to (viii), below, and if X is also
level fibrant all above conditions are equivalent to (vii):
(vil) The symmetric spectrum R>®X is an Q-spectrum.
(viii) There is a w8-stable equivalence X to an Q-spectrum.

In any case, we always have the implications (viii)=(i) and (vii)=-(vi).

Proof. (i)<(ii) By definition (ii) follows from (i). Because of tameness (see
Lemma 2.40), Lemma 2.39(iii) shows the converse.

(ii)«<(iii) This follows from the first commutative diagram in Proposi-
tion 2.38.

(i)<(i") follows from Proposition 2.41 and Definition 2.31.

(viii)=(ii) For any Q-spectrum Z, Az is a level equivalence and hence
a 7mB-stable equivalence. By (iv)=-(ii)=(i) it follows that Q-spectra are
semistable. Lemma 2.33 then shows that X is semistable.

(vii)=-(vi) We saw in (viii)=-(ii) that {-spectra are semistable.

Now assume that X is level fibrant.

(ii)<(iv) By the second commutative square in Proposition 2.38, (iv) is
equivalent to d acting bijectively on all 78-stable homotopy groups of X.
Now use (i)<(ii).

(iv)=(v) As Ax is a 7B-stable equivalence, so are R"Ax,n € Ny as Q and
sh preserve mB-stable equivalences according to Proposition 2.35(i),(ii), By
Corollary 2.42, the map 71';/ (5&0) is isomorphic to the inclusion

my (X) =% colimmy (R"X),
But all the maps Tr(‘l/(R”S\X),n € Np are isomorphisms, hence so is the
inclusion and thus 5\‘)’? is a 7B-stable equivalence.
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(v)=(ii) The maps ﬂ;/(R"S\X), n € Ny are injective, because by Proposi-
tion 2.38 they are isomorphic to the action of d(n) on 7} (X), which again
by Lemma 2.39 and 2.40 is injective. The inclusion

v (x) 2, colim V(R X)
is an isomorphism, as it is isomorphic to 7721/ (%) (Corollary 2.42). As
all maps in the sequential diagram 71';/ (R*X) are injective, they must be
surjective. Hence d acts surjectively on 77(‘]/ (X).

(iv)=-(vi) As (iv) implies (v) and (ii), hence also (i), Lemma 2.33 shows
that R*°X is semistable. )

(vi)=(i) We saw above ((v)=>(ii)) that ) (A¥) : m) (X) — m) (R™X) is
injective and compatible with the M-action. As the M-action on 7'[';/ (R*X)
is trivial, so is its restriction to 7'(';/ (X).

Finally, we assume that hypotheses (1)—(3) are satisfied.

(iv)=(vii) By hypothesis Ax is a stable equivalence in Sp(D,T). The
implication (ii)=-(iv) in Theorem 2.10 then yields the claim.

(1)=(viii) We have a mB-stable equivalence X — J*X =: Y in Sp*(D, T)).
Using Lemma 2.33 we see that is J>X semistable, so the implications
(1)=(v),(vii) show that A\ : ¥ — R®Y is a nB-stable equivalence and
R>®Y an Q-spectrum. O

Example 2.44. For suspension spectra >*°L the map Ay is already
levelwise an isomorphism, as the structure maps o are identities. Hence
suspension spectra are semistable.

The above Theorem 2.43 is designed to apply notably to the motivic
model category M (S):

Proposition 2.45. All assumptions (except for those preceding (I')) of The-
orem 2.43 are satisfied for D = M™(S),T = P!,

B={S"NG, NUy|r,5s>0,U€ Sm/S}.
Proof. Most of this has been proved in Corollary 2.12 already. Subsec-
tion 2.2.2 shows that P! has a sign, and the projective level model structure

on Sp¥(D,T) is established in [Hov2, Theorem 8.2]. The 7wB-equivalences
coincide with the stable equivalences in Sp(D,T') by [Ja2, Section 3.2]. O

Sometimes sequential colimits preserve semistability:

Proposition 2.46. Let X® be a sequential diagram in Sp™(D,T) and as-
sume that the hypotheses of Corollary 2.42 hold. If all X",n € Ny are
semistable, then so is colim X°.

Proof. Following Corollary 2.42, we have an isomorphism

colim 7T(‘1/ (X*) — W;/ (colim X'*).
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Now the maps 7 (X™) Incle, 7y (colim X'®) respect the M-action and the
sets 7'[';/ (X™), n € Ny have trivial M-action. As colimits preserve identities,
M acts trivially on 77(‘1/ (colim X*) as well. O

For D = Top,,T = S!' a special class of semistable spectra is given
by orthogonal spectra (see [Sch08, Example 3.2].) These include not only
suspension spectra, but also various Thom spectra. This is related to the
following criteria:

Proposition 2.47. A symmetric spectrum X is semistable if one of the
following conditions hold:

(i) For any q € Z and V € B there is an | > 0 such that the inclusion
map [V AT X] — W(‘I/(X) is surjective. This holds, in particular,
if the stable homotopy groups stabilize, i.e.,

VAT X,] — [V AT X, 0]

is an isomorphism for n > 0.
(ii) Even permutations on X induce identities in Ho(D).
(iii) The stable homotopy groups w(‘I/(X) are finitely generated abelian

groups for all g € Z and V € B.
Proof. (i) According to Lemma 2.40 the filtration on 7} (X) is bounded,
hence by Lemma 2.39(ii) the M-action on 7} (X) is trivial.
\%

(ii) We show that d acts trivially on 7, (X). The following observation is

crucial: For any even n € Ny the map

(V/\|Xn,1 |T/\1)*\

[V A Tq—‘rn-i-l’ Tn+1] ke [V A Tq—‘rn—&-l’ TnJrl]

is the identity. This is because xp,1 is even, hence |xp 1|7 = 1 (Defini-
tion 2.16), and xy, 1« is the identity by assumption. Any element in 7r;/ (X)
is (stably) represented by some f € [V AT T,,] with n € Ny even. There-
fore d[f] = [Xn1x(V A [xnale A D)* - 0e(f)] = [tx(f)] = [f]- Thus d acts
trivially. Following Lemma 2.39, the M-action on 71'(‘]/ (X) is trivial.

(iii) By the tameness of m} (X) (use Lemma 2.40), this follows from Lem-

ma 2.39(iv). O

Remark 2.48. The result in [RSQ, Proposition 3.2] provides exactly the
same criterion as Propostion 2.47(ii).

The motivic stable homotopy category contains various spectra X which
come with a natural action of the general linear group. If this action is
compatible with the action of the symmetric group, then X is semistable:

Corollary 2.49. Let E be a symmetric T-spectrum. Assume that for any
n € Ny there is an E!, in M.(S) with X, -action, a zig-zag of Xy -equivariant
maps between E,, and E], which are motivic weak equivalences and a map

h.(GLns) VAN E7/1 — E;l



SEMISTABLE SYMMETRIC SPECTRA IN Al-HOMOTOPY THEORY 35

in M.(S) such that this linear action restrics to the given X,-action on E!.
Then E is semistable.

Proof. Let D = M“"*(S) and 7 € ¥,, even with permutation matrix P;.
By Lemma 2.25 we know that P and id induce the same endomorphism on
E! in Ho(D), and the latter is the identity by assumption. Hence any even
permutation acts trivially on E/, (in Ho(D)) as it is conjugated to the action
on E,. Now apply Proposition 2.47(ii). O

Remark 2.50. In fact, one may define the notion of a motivic linear spec-
trum, using the canonical action of GL,, on A™ and the canonical isomor-
phisms (A"/(A™ —0)) A (A™/(A™ — 0)) = (A"T™/(A"T™ —0)) (see MV,
Proposition 3.2.17]). Then the forgetful functor from motivic linear spectra
to motivic spectra with the projective, flat,... model structure should cre-
ate a projective, flat... monoidal model structure on motivic linear spectra.
Moreover, this forgetful functor has a right adjoint for formal reasons (see,
e.g., [MMSS, Proposition 3.2]), and this Quillen adjunction is expected to be
a Quillen equivalence. Motivic linear spectra will be a convenient framework
for equivariant stable motivic homotopy theory.

3. Examples of semistable motivic symmetric spectra

In [RSQ)] it is shown that algebraic K-theory may be represented by an
explicit semistable motivic spectrum. In this section, we discuss two further
examples. In the following section, we only consider the motivic case, that
is D = M™(S),T =P, B={S"AGS, AUy|r,s > 0,U € Sm/S} as in
Proposition 2.45.

3.1. The motivic Eilenberg—Mac Lane spectrum. In [DRQ, Example
3.4], the motivic Eilenberg-Mac Lane spectrum is defined as the evaluation
of a certain motivic functor on smash powers of T' (see [DRQ), Abschnitt 3]).
According to [DRO, Lemma 4.6] this represents integral motivic cohomology,
and this is the description we will use.

In general, consider a functor H : M.(S) — M.(S) with the following
properties: First, there are natural functors

Hap : Hom(A, B) — Hom(H(A), H(B))

compatible with the composition and such that restriction to S and zero-
simplices is just H on morphisms. Second, H maps motivic weak equiv-
alences between projective cofibrant objects (see [DR@, Section 2.1]) to
motivic weak equivalences. We will see below that these two properties are
sufficient to define a semistable motivic symmetric spectrum. To obtain the
motivic Eilenberg-Mac Lane spectrum as in [DR@, Example 3.4], we must
take H = u o Zy,. where u denotes forgetting the transfers, and the second
property holds by [DRQ, S. 524].
Let T be a projective cofibrant replacement of G,, A S!.
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Definition 3.1. The motivic Eilenberg-Mac Lane spectrum H is the sym-
metric T-spectrum with H,, := H(T™), ¥,, acting by permutation of the
smash functors and structure maps H, AT — H,; adjoint to

unit Hin pnag

T ™5 Hom(T™, T" AN T) ———"5% Hom(H(T™), H(T" A T)).
Note that the compositions JEU :H, A T — H,,+; of the structure maps
are adjoint to 7% 2% Hom(T™, T* AT") A, Hom(H (T™), H(T™*")) because
H is compatible with compositions on Hom, hence ¥,, x ¥;-equivariant.

The following lemmas show that H satisfies the assumptions of Corol-
lary 2.49.

Lemma 3.2. There is a zigzag of Xy, -equivariant maps between T’ and
T" := h.(A%)//h.((A" = 0)s), and this is a zigzag of motivic weak equiva-
lences between projectively cofibrant pointed objects.

Proof. Using Lemma 2.22, Lemma 2.23 and [MV, Lemma 3.2.13] we obtain
the desired zigzag

h.(A%)//h.((A" = 0)s) = h.(A%)/h.((A" = 0)s)
(Al/Gm)/\” ~ (Gm A Sl)/\n Pl fj"n

if we replace everything projectively cofibrant. Choosing a functorial re-
placement, it is X,-equivariant as well. ([l

Lemma 3.3. There is a zigzag of motivic weak equivalences which are ¥, -
invariant between H,, and H(h.(A%)//h.((A" —0)s)).

Proof. The zigzag of weak equivalences follows from Lemma 3.2 and the
second above property of H, and equivariance follows from the first property.
O

Lemma 3.4.

(i) There is a map h.(GL,g) AT" — T" extending the ¥, -action on
.

(ii) There is a map h.(GL,s) AN H(T™) — H(T"™) extending the %,-
action on H(T™).

Proof. (i) We have a commutative diagram

h.(GLys) A h.((A™ = 0)5) —"— h.((A™ — 0)s)

ll/\h.(incl) Jh. (incl)

h.(GLys) A h(A%) —— b (A7)
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where the maps u extend the Y,-action. As the smash product commutes
with colimits, the diagram induces a map

h.(GLypg) AT™ — T"

extending the Y,-action.
(ii) The map in the first part is adjoint to a map

h.(GL,s) — Hom(T",T")
whose composition with Hr» 7= is adjoint to a map
h.(GL,s) N H(Ty') — H(Ty').
The latter extends the ¥,-action because Hyn 7 (S) is the map
M.(S)(T",T") — M.(S)(H(T"),H(T™))
and the ¥,,-action on H(T™) is induced by the one on T". O
Corollary 3.5. The motivic Eilenberg-MacLane spectrum H is semistable.

Proof. This follows from Lemma 3.3, Lemma 3.4 and Corollary 2.49. [

3.2. The algebraic cobordism spectrum. [Vo, Abschnitt 6.3] gave the
first definition of the algebraic cobordism spectrum. In [PY, Section 6.5]
(see also [PPR2, Section 2.1]) it is shown how to construct it as a motivic
symmetric commutative ring spectrum. We only care about the underlying
motivic symmetric spectrum MGL (see Definition 3.8 below) and will show
that it is semistable.

Recall the following definition of [MV]. Let X be an S-scheme and

¢ E— X

a vector bundle. Then the zero section z(§) : X — E of £ is a closed
immersion, and the Thom space Th() of £ is the pointed motivic space

alh.(E)/(h.(U(£))]-
Lemma 3.6.

(i) Let A be an S-scheme. Then U(14) = 0, and there is a natural
motivic pointed weak equivalence h.(A) — Th(14).
(i) Let X, X’ be two S-schemes with vector bundles

&V X,
&V - X

Then U(€ xs &) = pri(€) Upry ' (€). Furthermore, we have a
motivic pointed weak equivalence

Th(¢) A Th(¢') = Th(¢ x5 ¢)
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which is associative and commutes with the permutation of € and &'.
The composition h.(A) A Th(§) — Th(14) A Th(§) — Th(las x5 &)
is denoted by ThA,g. Then the following diagram commutes:

Proof. Straightforward. O

Considering schemes as functors on commutative rings [DG, 4.4 Com-
parison Theorem in I, §1], we define Grassmannian schemes Gr(d,n) in the
usual way (see [DG, I, §1, 3.4 and I, §2, 4.4]). The tautological bundle is
denoted by &, 4 : 7(d,n) — Gr(d, n).

Lemma-Definition 3.7. For m,n > 0 there is a commutative diagramm
of GLy,-equivariant maps

7(n,nm) —— 7(n,n(m + 1))

J{gn,nm lgn,n(rrk!»l)

Gr(n,nm) —— Gr(n,n(m + 1)).

The induced morphism §nnm — &nn(m+1) will be denoted by vpm. Then
U(&nnm) is mapped to U(&, pim+1))-

Proof. Straightforward. ([l

As before, we may restrict the GL,-action to a ¥,-action. Then we are
ready for the definition of MGIL. Recall that T' is the Thom space of the
trivial line bundle on S.

Definition 3.8. The symmetric algebraic cobordism spectrum MGL is the
underlying T-Spectrum of the following motivic commutative ring spectrum:
e The sequence of motivic spaces

Th(vn,m)

MGL,, := Cr(r)zgrln( e Th(gg,nm) (fn n( m+1)> o )7 n =0

with the induced X,,-action.
e X, X Xp-equivariant multiplication maps

finp : MGL,, A MGL, — MGLy 1, n,p > 0

induced by
Th(pn,p,m
4p> Th(gn—i-p (n—l—p)m)
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e 3,-equivariant unit maps ¢, : 7'~ — MGL,,,n > 0 which for n > 1
are given by the compositions

T" = Th(¢f )™ — Th(&) ™) — Th(&s,,) - MGL,

(and for n = 0 by S° = h.(S) — Th(lg) = Th(&§,) — MGLy).

Now the semistability of MIGL follows from the above discussion and
(again) Corollary 2.49.

Corollary 3.9. The motivic symmetric spectrum MG is semistable.

Proof. We have a morphism aygr, : h.(GLS) A MGL, — MGL,, in M.(S)
induced by the following commutative diagram:

1IATh(vn,m)

h.(GLS) A Th(ES 1) h(GLY) A Th(ES L nin)

S ¢S
ThGLgvgﬁ,nm lGLn ’gn,n(m+l)

Th(GLS X 50n,m)
Th(GL}, X5 m)

Th(GL} X&) ni1))

Th(ay ) lTh(aflmerl)
Th(vn,m)

Here the top square commutes by naturality (see Lemma 3.6) and the bottom
square by functoriality of Thom spaces and the GL,-equivariance in Lem-

ma 3.7. Now for 7 € ¥,, and S EN GL? the associated matrix, the following
square commutes (see Lemma 3.6):

Th(&7 rim)
gl - Th(7s)
Thses m
h(S> A Th( S,nm) — Th(S XS ég,nm)
h.(ff)/\{ JTh(fTXSl)
ThGLS e h(as

Thus h.(GLS) AMGL, — MGL,, extends the ¥,-action on MGL,,, and the
semistability follows from Corollary 2.49. O

4. The multiplicative structure on stable homotopy groups
of symmetric ring spectra and its localizations

In this section, we will prove a generalization of [Sch07, Corollary 1.4.69].
More precisely, we will show that the localization R[1/x] (see below) of a
semistable symmetric ring spectrum R with respect to a suitable x is again
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semistable and the map j : R — R[1/z] behaves as expected on stable
homotopy groups (see Section 4.2).

Throughout this section, we assume the following: The assumptions of
Section 2.3 hold and T has a sign. The smash product in D preserves weak
equivalences, which is the case for simplicial sets and motivic spaces by [MV,
Lemma 3.2.13]. We also assume that there is a commutative monoid N with
zero, for any r € N a cofibrant object S” and isomorphisms

Spyry i STITT2 5 ST A ST

in D for all r1,79 € N such that the following hold:

o There is an isomorphism =57, g0 o GO0,

® s_ _ 18 associative.

e There are isomorphisms sq, = lSZl and sy = pgrl (via S® = S9)
(here l and p are the obvious structure morphisms, see [Hovl, Chap-
ter 4] ).

Finally, we assume that there is a class of cofibrant objects B' in D with
B={S"AUlre N,U € B'}.

Example 4.1. The standard example is, of course, N = Ny and S" =
S™ = (SH\ together with the identities ST+ = S™ A S™2 (recall that
the simplicial spheres are in D via i by assumption). If D = M.(S) and
B={S"ANG} ANUilr,s > 0,U € Sm/S} as above, we may also consider
N =NZand S" = S" AG)™ with r = (+,7") and the isomorphisms given by
the obvious permutations. Note that in general S and T" may be completely
unrelated, but in the motivic case that we care about they are the same.

Definition 4.2. For any symmetric T-spectrum X we set

7l (X) = WETAU(X),

for alle r € N,U € B',q € Z. We further set S'» = Sr_,:’tS’”,S"'SﬁT' and

obtain maps t,/ , : Trfﬂj,ﬂ,’q(X) — 77?+T,7q(X) induced by the maps

(S'rr! AT AT *

[S"AS" AU ATIT™ X,] [STAST AU ATI™ X,
In particular, we have tg, = t,0 = id as lsr o tgr go = pgr.

In the motivic case, one of the indices is of course redundant. Namely, if
S" = 8" AGN" (hence r = (', 7") and U = S°, we have

7TU (X) = W;I}i(_)ﬁ/_i_,r.//’q_;'_,,./ (X),

where we used Voevodsky’s indexing on the right hand side.
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4.1. The multiplication on stable homotopy groups. The following
generalizes the multiplication of stable homotopy groups for usual symmetric
ring spectra (see, e.g., [Sch07, Section 1.4.6]). The sign (—1)%:" below will be
used to show that the product is compatible with stabilization. See [Sch07,
Definition I.1.3] (resp. its obvious generalization) for the definition of a
(commutative) symmetric ring spectra. In particular, for any symmetric
ring spectrum R we have maps finm @ Rp X Ry — Rpgm. Recall also
the definition of central elements 2 : 7™ — R,, of [Sch07, Proposition
1.4.61(i)]. Those are stable under smash multiplication: if y : T*¥" — R,, is
another central element, then po (z Ay) is also central. If R is commutative,
then of course all maps T'™ — R,,, are central.

Lemma 4.3. Let R be a semistable symmetric T-ring spectrum. Then for
any cofibrant objects U,V in D and r,r' € N,q,q € Z, there is a natural (in
R,U,V ) biadditive map

mggj’fq, : qu(R) X WXH/(R) — ngr‘//,quq/(R)
induced by
G STAUAT™ Ry x [S” AV AT R,
— [STT AU AV AT R
This pairing maps (f,g) to the composition
ST A UAV A TTH Hnn!

/
8yt AUNVA(=1) L AL

S"AST AUAV AT AT
T,TI,U,V
q+n,q'+n (Sr AU A Tq+n) A (ST AV AT +n )
l’Ln nl
9 R A Ry B Ry

/
with ngiri?;’,zn, being the obvious permutation of smash functors.

The product is associative, that is the square

1
qu(R) X 7T}ﬂ/’v,q’(]:i) X Wrw,q//(R) % W?”U-ii\r"/,q-&-q’(R) X WW,q”(R)
Jlxm Jm
1xm
qu(R) X 7T7‘“//</|\»‘7/‘"/’,q’+q”(R) - 7T7(“]+/\7"//J/r\7“//[//,q+q/+q” (R)

commutes. It is compatible with the sign (—1)p in both variables, namely
we have

(=Dr(f-9)=((-Drf)-g=f (=Drg)
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If the ring spectrum R is commutative, then the multiplication on stable
homotopy groups is commutative, that is the square

W,l{q(R) X 71':/,7(],(}2) LA W?ﬁrvq+q, (R)

!
(71)%qtr/,'r
t
*

v (R) x xl (R) S aVaU(p) VAU (R)

7r'r’,q T,q r'+r.q'+q r'+r,q'+q

also commutes. Finally, if f : S"AU ATI™ — R, is central in D, then
tgv o (g-1f]) = (=17 ([f] - 9).
Proof.

Biadditivity. The product is biadditive already before stabilization. This is
a long, but straightforward verification.

Associativity. We show that the product is associative already before sta-
bilization. (The symbol 1 below denotes various obvious isomorphisms.)
Let

fES"AUANTT™ R,],
geS" AV AT R,
helS" AW AT Ryl
Then we have
Fo(g- D) = pinrsnr o (F A (g h)) ol 0N
(

0 (Spraen AL (=DE T A1)

VW
= /‘Ln,n/—i-n” © (f A [Nn’,n” o (g A h) o 77:; ITL g +n"

(@] (ST‘/,T” /\ ]_ /\ (—1)%:,71/ /\ 1)])

ro'r" U VAW (¢'+q")n
o nq+n7q/+q//+n/+n// ®) (Sfp’r/+7-// VAN 1 A (—1)T AN 1)

= [Wnpn © (LA pins )] o (f Ag A h)

VW 1"
(]- A [n;_:n g n! o (ST’JJ’ A 1 VAN (—1)% " A 1)])

ral e U VAW (¢'+q")n
n’q+n7q/+q//+n/+n// o (Sr,ruﬂ// AN1TA (—1)T A 1)

= [Mn,n’Jrn” © (1 A Mn’,n”)] o (f ANgA h)

r' " VW ror' +r" UV AW
o [(1 A T]q/+n/7q//+n//) nq+n7q/+q//+n/+n//]

o [LA (8 n ANLATIT A(=1)E™ A1)
o (spprrr ALA (1) F A1)

= [.Un,n’Jrn” o (1A Nn’,n”)] o(fAgAh)

r' ' VW r,or'+r" U VAW
o [(1 VAN nq’+n’7q”+n”) o nq+n7q/+q//+n/+n//]
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O [LA (spr0 ALA (=D)E™ A1)
o (spprarn ATA (=1 T A1)

= [Wnpn © (LA pins )] o (f Ag A h)

r' ' VW r,or' +r" U VAW
o [(1 A nq/+n/7q//+n//) nq+n7q/+q//+n/+n//]

O (LA 8 g)pprgr) ANLA (=15 HIF ),
Here the second last equality uses Definition 2.16, which yields
ST ANUAV AW ATI A (=D)L A 79+ 40
ST A AUAV AW A (_1)%”71' A T+ +d" +ntn/+n"~1

A similar computation (slightly easier, Definition 2.16 is not used here)
shows that

(f-9)-h
ror’ UV
= [,U/n—i—n’,n” o (:U'n,n’ A 1)] ° (f ANRA h) o [(nq+n,q’+n’ A 1)

YA/

+r! " UANV,W 'n+q" (n+n’
© 772+;/ln+n/7qu+nu] o (((87“,7"’ VAN 1)3r+r’,r”) ATA (—1)%” ¢" (ntn') VAN 1).

As R is associative, we have i, n/407 0 (LA figy 1) = finsm/ m © (o s A1),
Moreover

(1/\ ' ! VW ) ro! " U VAW 7( rr! UV /\1) o r4r' " UNV,W
nql+n/7q//+n// /r’q_j'_n’q/_’_q//_)'_n/_['_n// - /r]q_)'_n’q/_j’_n/ /’7q+q/+n+n/’q//+n//

as both sides are induced by permutations, and finally
dn+q"(n+n) ="' +(d + "),
(57",7" A 1)sr+r’,r” = (1 A Sr’,r”)Sr,r’—i—r”'

Compatibility with stabilization. We show that the unstable product above
is compatible with the stabilization ¢, := o, - (— AT) in both variables. For
the second variable, we must show that

[STAU AT R, % [S" AV ATIT R,
Xt [SH AU AV AT 40" R
[STAUATT™ Ry X [S” AV ATCH+L R ] b
[SH ANUAV AT 0+ R ]

commutes. For f € [S"AU AT R,], and
c=lpolgoapo(=A):SPASAT = T,
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we have
[f - (noe)] o (S A pyt ATTHHHY)
= fin1 0 (f A (1100)) o2V o (5,0 A1) 0 (ST A pit ATTHHY)
= pin1 0 (fAu)=0no(fAT)=1.(f)
because of
(LA (irlsonr o ((S” — %) A 1))
o (S A [(tso yzatn ASO)SY AU Atgopain)] AT) 0 (500 A pgt ATTH L)
= (1 Alplgoar) o (S A [(tgo,yazatn A SY) (SO AU Atgo zatn)] AT)
o (pg' Apyt AT = 1.

Applying this to g and f - g, together with associativity and naturality we
obtain

W(fg)=1(f9) (oo (LApghy A1)
:[f-(g-(Llc))]o(l/\U/\p‘_/l/\l)
=f-[(g- (e)) o (LA py! AL)]
= fu(9).

This yields a map [S" AU AT R,] x 7Y
The first variable is more subtle. By

w(f)-g=(f-1uc)o (S"Apy' ATT )] g
=[(f-1e)-glo (XA py A L)
=[f-(ue-g)lo(IAL AT
= f-[(ic-g) o (S” AL ATHTHY)

and the above it suffices to show that [(t1c- g) o (S ALyt AT = [g]
in 777‘,/,7q,(R). For this, we first note that

(R) — 7Y,

r+r’,q+q’ (R).

.4

(L1e-g) o (S” Al ATy =y g 0 1u(g) o (LA (=1)F A1)
by the following computation:
(tic-g)o (S” A I A i

9’ /7507V !
= M1 © (Ll A 1) o (C A g) o 778.:1,[1/4.”/ o (SO,T‘/ ALA (_1)’% A 1)

o (S AL AT
1,89V
= [waopwao(lAu)otrr,]o(cAg)ong iy

central
o (50 ALyt ATHFIH Y 0 (1A (=1)E A1)

0,7,59v
= Xn/,1© Hn/,1 0 (g A1) 0 [tT,ST’/\V/\Tq’+n’ o(cAl)o Mo+1,q' +n/
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o (500 ALy AT I o (1A (=1)% A T)
= X1 © a1 0 (g A1) © (S AV Aty gy o (LA (1) A1)
= Xw10tl(g) o (S AV A(=DEF AT+ ) o (1A (=1)E A1)
— X1 0 talg) 0 (1A (= 1) A1),
Stabilizing this, we obtain [, 1 0 t:(g) o (1A (=1)% A1)] = d[w.(g)] = [g],
because d acts trivially by semistability. Hence we have
[te(F) - g) = [f - Xw1 0 ta(g) 0 (LA (1)F A )]
= fDawpou(g) o (LA (=DF AL = f-lg] = [f-g]-

Compatibility with signs. This follows by the naturality of the permutation
map ngiﬁi’,‘in, together with the second property of Definition 2.16:

- b /7U7V
(87 AU A(=D)r AT AT o100,

=T o (LA (=) AT A 77+
LA™ AU A(=D)p AT D] o il UN
= o (LATT™ A (—1)p ATTH 1)
LATTA (=D ATYT 1 = 1A (=1)p ATTF AT
Commutativity. We have a commutative diagram

ST ANUAV AT Fndn’ & Qrivr A 7 AV AT a4
sT,T//\l/\(—l)%,"/\lJ/ srlyT/\l/\tU,V/\(—l)?//\ll
STASTAUAV AT ATI 2§ AST AV AU ATTH o Totn
rr! UV VU
gtn.q 4! Mg 4n' q4n
(S"AU AT A (S” AV ATITYI (ST AV ATIH) A (ST AU AT,

where = tr ' NEUY Abpain parnts ¥ = tgr naTatn s/ Ay AT’ +n' 5 and
a =S AUAV (=D AV tpgin poiw (FDE" AT,
for which we have

(DT A Dtpgrn g+ (17" A1)
(_1)%n’+(q+n)(q’+n’)q’n A Tq+q’+n+n’—1

/ ’ / ’_
(_1)%11 +nn A T!I+q +n+n 1'

If f:S"AUATH™ — R, is central (e.g., if R is commutative), we have
Xn,n' © Unmn' © (f A 1) = Hn/n O (1 A f) o tST/\U/\T‘H",Rn/' Together with the
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above commutative diagram, for g € [S’J AV ATT+ R,/] we then deduce

Xn (f - 9) XA (=1)7" A1)
= Xn,n’ © Hnn' © (f A g) o ngiﬁf{]”‘:—n’ o (smn/ AN1A (—1)%" A 1)
o (LA (=13 A1)

ror! UV
= Wn/pn O (g A\ f) o [tSTAUATq+",ST'AVATq,+"' % nq+n’q’+n’

o (spr ALA(=D)E" A1) o (1A (1) A1)

=t 0 (g A F) 0 e © (800 LAt A (=15 AT)

o (St AUAV A[(=D)HF ™ Ao (1A (=1 A1)
= (g- S ALA(-DF A1),
As R is semistable, this implies [f - g] = [xnn(f-9) (1A (—1)%"/ A 1)], which
yields commutativity. O

To obtain an internal product on stable homotopy groups, we assume
from now on that there are natural transformations diag” : U — U AU and
wy : U — 8% for any U € B’ making U a commutative comonoid in D.

Example 4.4. In sSet, or M.(S) we have

diag : Ky 2% (K x K)y 2 Ky AK,

for any K in sSet or M (S).

We set l%l := I 0 (S° Alp) and define ¢ to be the map

SO/\U/\TlgAw—UATl>SO/\SO/\TlZiZ>TZ.

In particular, ¢; AT = ¢i4p, and ¢ = id if U = SY.
Proposition-Definition 4.5 (multiplicative structure on stable homotopy

groups). Let R be a semistabile symmetric T-ring spectrum. Then we have
a natural (in R) structure of a N x Z-graded ring on

Wg*(R) = 69(7‘,(])€N><Z7r7(“{q(‘R)’

induced by taking colimits of the following biadditive maps (q+mn,q +n’ > 1
as usual):

2 [STAUATO™ Ry x[ST AUATT T Ry] — [STH AUATIH 4 R LT
Here a pair (f,g) is mapped to the composition

ST A UATITE Tt

S, T//\diagU /\(71)‘1/"/\1 / I
: T STASTAUAU ATIT ATTH?

/ /
(s q +n
S AtST/AU,UATq+nAT

STAUANTIT AST AU AT
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l’L’n, nl
9 R A Ry B Ry
(g+n,¢d +n >1).
The product is compatible with the signs, and graded commutative if R is
commutative:

frg=E0 (g ),
for any f € qu(R) and g € WE q,(R). For the latter equality it suffices that

f is represented by a central map.

Proof. The multiplication decomposes as the external product of Lem-
ma 4.3 and the diagonal:

because the map

STAST AV AU AT AT

1INt Al ’ / ’
LI STAST AU AV AT AT

r,r/,U,V

n .o +n! / / /
e STAU AT AST AV AT

coincides with S A tsr Ay U aTatn N Tqur"/, because diag™ is cocommutative.
As it is also coassociative, the product is also associative. Compatibility
with the signs is clear, and commutativity follows from

(diag¥)* o toy = (tuy o diag?)* = (diag¥)*.
Another computation using the previous lemma shows that

1= (D] = 1] - [taed]

and (note that ¢1c; is central)
]+ [tner] = (=1)7%0 4 (ftrea] - [£]) = [taed] - [f]. O

4.2. Localization of ring spectra. We are now ready to define the lo-
calization of a symmetric ring spectrum with respect to a central map, gen-
eralizing [Sch07, Example 1.4.65]:

Proposition-Definition 4.6. Let R be a symmetric ring spectrum and
z: T = R, a central map. Then we define a symmetric ring spectrum
R[1/x] together with a map of symmetric ring spectra j : R — R[1/z] as



48 STEPHAN HAHNE AND JENS HORNBOSTEL

follows. Levelwise, we set R[1/x], = Hom(T", R(1,,),). There are maps
ANgp: Xp = Xp,

AspMi+s-(G—1) =i+s-(v() - 1),

1 <1 <s,1< 5 < p permuting the p summands of sp =s+ s+ -+ s.
Now %, via Ay acts on T, then via Atimp on Riym), and finally by
conjugation on Hom(T'™, R(14m)p)- Hence the square

R[1/2], AT 25 R[1 /2], AT
ll/\Al’p('yl) lev
lp _ev Attm,p(7)
R[1/2]y AT = Ry s —"% Rty

18 commutative. The multiplication
tp,q : R[1/z]p A R[1/z]g = R[1/2]piq
is by definition the adjoint of

lAtR[l/a:]q,Tlp/\l

R[1/z], A R[1/z], A T'P+0) R[1/z], AT A R[1/z], AT

evAev

R(1+m)p A R(1+m)q

K(14+m)p,(1+m)q

R(14m)(ptq)-

The unit of R[1/z] is the composition of the unit of R with j. The map j is
defined by j, : R, — R[1/x], being the adjoint to

Ry AT 227 R A Ry 2272 Ry =225 Ry

Ap Hm,m,...,
Here 2P means of course TP Z— Rpp L, R, and 20 = Lé%. The
permutation &m.p € X144y 18 defined as follows:

1+(1+m)-(k—1) if1<k<p
mp(B) =< 1+j+(14+4m)i—1) ifk=p+mi+j
with 1 <:i:<p, 1 <j<m.

Proof. Again, this is very long but essentially straightforward. To show the
required properties (the multiplication maps are equivariant, the multipli-
cation is associative, the claims about the unit and about j) one shows
them for the adjoints. For example: for the equivariance of the pu, let
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(7,0) € ¥px¥, C ¥ptq. We must show that (y+9)- M;}%E}/x] ,uR[l/z] (yN9).
The left hand side is adjoint to

Attmpra(y+6) - pns ™ - (R[1/]y A R[L/]g A At mpra(y +6)70).

The right hand side is adjoint to py 4 e (7A5ATl(p+q)), and one shows that
these adjoints coincide. The claims about j also use the fact that central
elements are stable under multiplication. O

The next results will be used to prove the Main Theorem 4.11.
Lemma 4.7. Let v € ), and s € N. Then sgn(A, (7)) = sgn(v)®.

Proof. The map A, : ¥, = 3, is a group homomorphism by definition, so
we only need to show the claim for the generators (o; = 741,11 <i < p—1).
For those, we have A;,(0;) = (s(i — 1) + xs,s + s(p — (¢ + 1))) and thus

2

sgn(Asp(0i)) = sgn(xs,s) = (=1)* = (=1)* = sgn(0y)*. u
Corollary 4.8. For any f € n (R[1/z]) we have

j 1 l—m
f - dulzal) = Gul(@e)] - (~)F ™).
Proof. One checks that j,,x and hence j,,xc; is central and that
limaal] = ja([zcr)).

Now the claim follows from the commutativity claim in Proposition 4.5 and
to,r = id. O

Lemma 4.9. Let R be a symmetric T-ring spectrum and z : T' — Ry, a
central map in D. Let f:S"ANUANT™ — R[1/x], be a map in Ho(D) and
fi=ev o(f ANT™) : ST AU AT AT — R 4myn- Then for

S(f) = 0B o (f AT®) i ST AU AT AT = R[1/2]n4a,
a € N, we have for the associated map
2(f) = evo(i2(f) AT
— (14 €ma) © B oy © (2(F) A )
o (S"AUAT™ Atga pin AT).

Proof. Because of o
and 0@ =yl o (R, A uft) we have for the associated map

B/ — (B o (RI1 ), A BV RO/ g o R
2(f) = evo(ud (f) ATI(H))
= evo([ufl/® o (£ A (jo 0 f2))] AT!PH))

— B ama © (€7 0(f AT™) A (ev o (ju o 1) A T™)))
o (1 VAN tTO‘,Tl” A 1)
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= Ha4+m)n,(1+m)a © (f N (gm,a © Ha,ma © (Lf N wa)) © (1 N tTa,Tl" A 1)

=(1+&mna)o H(1+m)n,(14m)a © (LA fta,ma) © (f A LaR A z%)
o(1LA lpa pin N\ 1)

A~

= (1 + gm,a) ° f(14+m)n+a,ma © (N(1+m)n,a N 1) o (f A Lg N xa)
9] (1 /\ tTa7Tln /\ 1)

= (1 + gm,a) © H(1+m)n+a,ma © (Lf(f) A ma) © (1 A 7fTD‘,Tl" N 1) [

Lemma 4.10. Let R be a levelwise fibrant semistabile symmetric T-ring
spectrum and z : T — Ry, a central map. Then for any

fg €[S"AUAT™™, R[1/x],]
with f = (=1)7(§ 0 g) for some fived v € Z,& € X1 4m)n, we have

[f] = ((=1)7[¢]r)]g]
n W,Zn{q(R[l/x]).

Proof. As R issemistable, there is an o € N for which (& (|¢|7(€0g)) = ¢£(9),
hence

() = (D50 9)) = (D5 (2 (€€ 0 9)) = (—DFIEr (8 (9))-
Applying Lemma 4.9 we deduce

—

@ (f) = (=0)7lElre(g) =v
with v = [(=1)7[¢|7]e$ (9). As R is levelwise fibrant, the map

[ST NU A Tq—l—n—‘roz’ Hom(Tl(TH_a)’ R(l-l—m)(n—l—a))]

oA, 87 AU AT o) Ry ]

is bijective. Therefore we have ($(f) = [(=1)7|&|7]e$(9). O

We are now able to state the Main Theorem of this section, which is a
generalization of [Sch07, Corollary 1.4.69]. (The definition of ¢; is before
Proposition-Definition 4.5.)

Theorem 4.11. Assume that the standard assumptions of the beginning
of Section 4 hold (these are satisfied, e.g., in the motivic case by Proposi-
tion 2.45). Let R be a levelwise fibrant semistable symmetric T-ring spec-
trum and x : T' — Ry, a central map. Then R[1/x] is semistable, and
for all U € B' the ring homomorphism =¥, (R) I 7l (R[1/x]) is a [zc]-
localization.

Proof. Semistability: Using Theorem 2.43 it suffices to show that the cy-
cle operator d acts trivially on 7, (R[1/z]). Let f € [S"AUATI™, R[1/x],]
represent an element in w (R[1/x]). After stabilization, we may assume
that n is even. Then df is represented by xn1 o t«(f) as [xnalr = 1. It
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remains to show that after stabilization [xn.1 o t«(f)] = [f] = [e«(f)]. This
reduces to the following: For f € [S" AU AT, R[1/x],] and v € ¥,, with
|77 = 1 we have [yo f] = [f] in ﬂgq(R). To show this, consider the ad-
joint %\f =evo((yo fYAT™) = Atymn(y) o fo(LAALL(Y)™") (compare
Proposition-Definition 4.6). As |v|5 = 1 is the sign of A, (v) (Lemma 4.7),

N

we obtain y/crf = |A1mn (V) |7 (A14mn (7)o f) by Definition 2.16. Applying
Lemma 4.10 yields [y o f] = [f] as claimed.

Localization: By Proposition-Definition 4.5, we know that =¥, (R[1/x])
is a ring and j, : 7, (R) — «l,(R[1/]) a ring homomorphism. It remains
to show that j, is a [x¢]-localization. For this, we will check that the three
conditions of Proposition 4.12 are satisfied (note that the Ore condition holds
by Corollary 4.8). First, we show that j.([z¢]) is a unit in 7¥, (R[1/2]). The
map jm, o x o ¢; represents j.([z¢;]) and this element has (+1)7[yciym] as a
left inverse (up to sign). Here y : T'*™ — R[1/x];,; denotes the adjoint to
1ttt © (t14mat A 2'). We now show that [(ye11m) - (jmzer)] equals (up
to sign) the unit in 7V, (R). By definition

f=(yerim) - (Imwer)
R[1 .
= lul%[»l,/ri] 0 (y A (me)) o (Cl+m A Cl) o (SO AN tSO/\U,U/\T1+m AN Tl)

o (50,0 A diagl A(—1)E™ D A1)

R .
= 1o (y A (jmx)) © (B A 121) 0 (S° A tsonso sopgism AT

o ([lzd =] A (Jwy A wo] o diag?) A (=1)E ™D A1),

Using (wy A wy) o diag! = (wy A S°) o ,0[_]1 = pgol owy and
B = SON SO AT 22 G0 A G0 A GO A GO A LA
> SONSOATIHTM A SONSO AT 2 M AT
we get =yt o (y A (im)) o (15 ™ A1) 0ty
The adjoint of f is (¢ := c1pmas A T g = (1 +m)(1 +1)):
f- _ evo(f A Tl(l-l—l-i-m))
= [(14m) (141, (14m)m © ((evo(y A T A (ev o(jma AT™)))
o (1 A tgquaen A1) o (1) ™ AT)oc
= Ha,(14m)m © ((H14mrtmi © (Lipmer A 2)) A (Emamm 0 2 T™))
o (1 At quasn A1) o (1) ™M ATy o
= (a+ &mamm) © [amtmm © (B1rmrtmt A D] 0 ((igmpr Azh) Az T™)
o (1 A tguquaen A1) o (1) ™M AT)oc

= (CL + fm,mm) o [M1+m+l,ml+m+mm o (1 A le,m—l—mm)]



52 STEPHAN HAHNE AND JENS HORNBOSTEL

o (t1gmet A (@ AZT™)) 0 (1A tri piasy A1) o ((—1)¥7m)(1+l) ANl)oc

1+
= (a+ &mmm) © H14mA41,m(1+14m) © (14mr A * +m) oc

[¢) (1 A tTl,Tl(l‘H) A 1) o (1 A (_l)gé—m)(1+l) A 1)

where we used figm tm o (z° A z') = 25T i.e., the associativity of R.

The unit [¢; R{1/] 1] in 7Y, (R) is also represented by
m R x
g = ey = 1J[rléﬂ]n © Clyltm

. . « . A 1 l
which is adjoint t0 § = &m 1+14+m © K1ti4m,m(1+14m) © (t1414m AT o .
Therefore

f=€0g0(LAtppawm AL o (LA (=DT ™I AL = (—1)5€ 0 g

with £ = (a + &mmm) © ér:L,l1+l+m and v = 12(1+1)+ (I —m)(1 +1). Apply-
ing 4.10 yields [f] = ((—1)%]&'|7)[g] and finally

(D7l [T) [yerim]) - g+ ([za]) = (D7) [f] = 9] =1

in 7 (R[1/z]). By Corollary 4.8 j.([z¢]) has then also a right inverse.

The second condition amounts to showing that for any z € 7 (R[1/x]) —
repesented by some f € [S"AUATIT" R[l/x] ] — there is some u € 7, (R)
and some p € N satisfying z - j.([zc])? = j.((£1)7u). For u we choose f as
representative and set p = n. Then j.(u) is represented by g := j11m)n of
which is adjoint to

§i=evo(g AT ™M) = &1 n © Bt tmynm(ipmyn © (f A 2T,
The element z - j.([z¢)])™ = z - j«([xe]™) is represented by
hi= [ (mn o (zc)™),
where (xz¢;)™ is given by z™ o ((—1)§£7mm(n*1)n/2 A1) o ¢y, as we show by
induction:

(@™ o ((=1)E ™m0 A 1) 0 ey - (ze)

- Mﬁm,m ° ((xn 0 ((_1

o ((=1)E™™ A1) 0 ey
n+1 ((_1)g€—m)m[(n—l)n/2+n] A 1)

=z "o O C(n+1)l

(cf. also the computation of f above). Furthermore,
h= gl o (f A (mn © (wer) ™)) © (S™ Atgonvuagan AT™)
o (sn0 A diag! A(=1)E™" A1)
implies

h = evo(h A THHmn)
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= 103 oy, (1rmymn © (€9 o(F AT™)) A (ev o((jmn © (wer)™) AT™))]
O (1 /\ tSO/\U/\Tln Tln /\ 1) (¢] (ST /\ tSO/\U7U/\Tq+n /\ 1)
o (sn0 A diag” A(=1)E™m A1)
R
= /’L(1+m)n,(1+m)mn
0 [ f A (gm,mn © Mfwn,mmn
o ((a" o (=1 ™" A L) 0 ) A2™™))]
(¢] (1 A tSO/\U/\Tl" Tlin A ].) (¢] (ST A tSOAU,UATq+” A\ 1)
o (8.0 A diag! A(— 1)( —mn 1)
- ((l + &m mn) © 'U'(l-i-m)n (I4+m)mn (f A (/’Lmn mmn o(z" Az™))
(1 A ( )(l m)n2+(l—m)m(n—1)n/24(In)> A 1)
= (a +&n mn) © M(l—i—m)n,(l—i—m)mn o (f A x(1+m)n)
(1 A ( )(l m)[n2+m(n—1)n/2]+(in)? A 1)

where @’ := (1 + m)n. Here the second last step uses
S" AU AT AT A (20, (25 Awp AT™))
(U AT Atgopgagin pin) (tsopvuaratn AT™ AT AT
o (5.0 A diag/ AT?)
=" AU AT Atun gin) (U ATT NGy AT™)(Esons0,unTarn AT™)]
AT™ o (pst A ((wo AU) diagh) A T?)
= S"A[U AT A (DI A1) o (U ATH A2y, AT
o (tsons0,uaTa+tn A Tln)] AT o (Ps_rl A lz;l A Ta)
=STAUA (=D ATa

with @ := (¢+n)+In-+I(n+mn). Hence h and § only differ by a permutation
and a sign, and Lemma 4.10 then implies

2 Jullzc))? = [h] = (FD)rlg] = (FD)7js(u) = ju((£1)7u).

It remains to verify the third condition: for any [f],[g] € Wg +(R) with
J«([f]) = j«([g]), we have [f] - [xc;]™ = [g] - [zc)]™ for some n € N. We may
assume that f,g € [S" AU A T R,] and that j, o f = j, o g. Using
(xe))™ =2a"o ((—1)§£_m)m(n_1)n/2 A1) o ¢y we obtain

—m)[m(n—1)n n?
f ’ (wcl).n - Mﬁ,mn ° (f A xn) o (—1),(1l1 )[m(n—1)n/2+n]

_ - l—m)[m(n—1)n/24n?

I
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as
S"A LU AT AL2) 0 (U AT 25 Awp A T™)
o tgonuazarn AT 0 (500 A diag? A(=1)E™™ A1)
=S"A [(U AT A l%m) o tSO/\SO,U/\T‘H'" AN Tln]
o (p5 A (lww AU diag?) A (D)5 A1)
= ST VAN [(U VAN TQ+n A\ l%’ln) o tSO/\SO,U/\TqJF” AN Tln]
o (pgt Al A (D)™ AT
— 1A (=) AL
This also holds for g, thus f - (z¢;))™ = g - (x¢;)™ and hence

- lwa]™ =[f - (wa)™] = lg - (wa))™] = lg] - [xe)]™
as desired. O

We have used the following standard criterion for localizations above:

Proposition 4.12. Let M, N be two rings and x € M. Assume that for any
x1 € M there is an x9 € M with x1x = xxo (Ore condition). Assume further
that there is a ring homomorphism j : M — N satisfying the following:

(i) There are y,y' € N with yj(z) =1 and j(z)y' = 1.
(ii) For all z € N there is some p € N and some w € M with

2j(x)? = j(u).
(iii) For all a,b € M with j(a) = j(b) there is an n € N with az™ = bx™.
Then j is an [x]-localization. If M and N are graded, then j is a graded

ring homomorphism. If moreover x is homogenous, then it suffices to check
the above conditions for homogenous elements x1,x2,a and b.

References

[DG] DEMAZURE, MICHEL; GABRIEL, PETER. Introduction to algebraic geometry and
algebraic groups. Translated from the French by J. Bell. North-Holland Mathe-
matics Studies, 39. North-Holland Publishing Co., Amsterdam-New York, 1980.
xiv+357 pp. ISBN: 0-444-85443-6. MR0563524 (82e:14001), Zbl 0431.14015.

[DLORV] DunpAS, B. I.; LEVINE, M.; OsTvZER, P. A.; RONDIGS, O.; VOEVOD-
SKY, V. Motivic homotopy theory. Lectures from the Summer School held in
Nordfjordeid, August 2002. Universitext. Springer-Verlag, Berlin, 2007. x+221
pp. ISBN: 978-3-540-45895-1; 3-540-45895-6. MR2334212 (2008k:14046), Zbl
1118.14001, doi: 10.1007/978-3-540-45897-5.

[DRQ)] DunDpAs, BigRN IAN; RONDIGS, OLIVER; DSTVAR, PAUL ARNE. Motivic func-
tors. Doc. Math. 8 (2003), 489-525. MR2029171 (2004m:55011), Zbl 1042.55006.

[GS] GEPNER, DAVID; SNAITH, VICTOR. On the motivic spectra representing al-
gebraic cobordism and algebraic K-theory. Doc. Math. 14 (2009), 359-396.
MR2540697 (2011b:55004), Zbl 1232.55010, arXiv:0712.2817.


http://www.ams.org/mathscinet-getitem?mr=0563524
http://zbmath.org/?q=an:0431.14015
http://www.ams.org/mathscinet-getitem?mr=2334212
http://zbmath.org/?q=an:1118.14001
http://zbmath.org/?q=an:1118.14001
http://dx.doi.org/10.1007/978-3-540-45897-5
http://www.ams.org/mathscinet-getitem?mr=2029171
http://zbmath.org/?q=an:1042.55006
http://www.ams.org/mathscinet-getitem?mr=2540697
http://zbmath.org/?q=an:1232.55010
http://arXiv.org/abs/0712.2817

SEMISTABLE SYMMETRIC SPECTRA IN Al-HOMOTOPY THEORY 55

[H] HAHNE, STEPHAN. Semistabile symmetrische spektren in der Al-
homotopietheorie. Diplomarbeit, Universitit Bonn, June 2010. http:
//www2 .math.uni-wuppertal.de/~hornbost/haehne.pdf.

[Hi] HirscHHORN, PHILIP S. Model categories and their localizations. Mathemati-
cal Surveys and Monographs, 99. American Mathematical Society, Providence,
RI, 2003. xvi+457 pp. ISBN: 0-8218-3279-4. MR1944041 (2003j:18018), Zbl
1017.55001.

[Hor1] HORNBOSTEL, JENS. Localizations in motivic homotopy theory. Math. Proc.
Cambridge Philos. Soc. 140 (2006), no. 1, 95-114. MR2197578 (2006k:14028),
Zbl 1094.55014, doi: 10.1017/S030500410500890X.

[Hor2] HORNBOSTEL, JENS. Preorientations of the derived motivic multiplicative
group. Alg. Geom. Topology 13 (2013), no. 5, 2667-2712. MR3116300, Zbl
1281.55009, arXiv:1005.4546, doi: 10.2140/agt.2013.13.2667.

[Hov1] HoveEy, MARK. Model categories. Mathematical Surveys and Monographs, 63.
American Mathematical Society, Providence, RI, 1999. xii+209 pp. ISBN: 0-
8218-1359-5. MR1650134 (99h:55031) Zbl 0909.55001.

[Hov2] HovEY, MARK. Spectra and symmetric spectra in general model categories. J.
Pure Appl. Algebra 165 (2001), no. 1, 63-127. MR1860878 (2002j:55006), Zbl
1008.55006, arXiv:/math,/0004051, doi: 10.1016,/S0022-4049(00)00172-9.

[HSS] HovEY, MARK; SHIPLEY, BROOKE; SMITH, JEFF. Symmetric spectra. J.
Amer. Math. Soc. 13 (2000), no. 1, 149-208. MR1695653 (2000h:55016), Zbl
0931.55006, arXiv:/math/9801077, doi: 10.1090/S0894-0347-99-00320-3.

[Jal] JARDINE, J. F. Simplicial presheaves. J. Pure Appl. Algebra 47 (1987),
no. 1, 35-87, North-Holland. MR0906403 (88j:18005), Zbl 0624.18007,
doi: 10.1016,/0022-4049(87)90100-9.

[Ja2] JARDINE, J. F. Motivic symmetric spectra. Doc. Math. 5 (2000), 445-553.
MR1787949 (2002b:55014), Zbl 0969.19004.

[MMSS] MANDELL, M. A.; MaAy, J. P.; SCHWEDE, S.; SHIPLEY, B. Model categories
of diagram spectra. Proc. London Math. Soc. (3) 82 (2001), no. 2, 441-512.
MR1806878 (2001k:55025), Zbl 1017.55004, doi: 10.1112/S0024611501012692.

[Mo] MOREL, FABIEN. An introduction to A'-homotopy theory. Contemporary de-
velopments in algebraic K-theory, 357-441, ICTP Lect. Notes, XV. Abdus
Salam Int. Cent. Theoret. Phys., Trieste, 2004. MR2175638 (2006m:19007),
Zbl 1081.14029, http://users.ictp.it/~pub_off/lectures/1ns015/Morel/
Morel.pdf.

[MV] MOREL, FABIEN; VOEVODSKY, VLADIMIR. A'-homotopy theory of schemes.
Inst. Hautes Etudes Sci. Publ. Math 90 (1999), 45-143 (2001). MR1813224
(2002f:14029), Zbl 0983.14007, doi: 10.1007/BF02698831.

[NS] NAUMANN, NiKo; SPITZWECK, MARKUS. Brown representabil-
ity in A'-homotopy theory. J. K-Theory 7 (2011), no. 3, 527-
539. MR2811714 (2012h:14056), Zbl  1226.14031, arXiv:0909.1943,
doi: 10.1017/is011003012jkt148.

[PPR1] PaNIN, Ivan; PIMENOvV, KONSTANTIN; RONDIGS, OLIVER. On Voevod-
sky’s algebraic K-theory spectrum. Algebraic topology, 279-330, Abel Symp.,
4. Springer, Berlin, 2009. MR2597741 (2011¢:19005), Zbl 1179.14022,
arXiv:0709.3905, doi: 10.1007/978-3-642-01200-6_10.

[PPR2] PaANIN, IvAN; PIMENOV, KONSTANTIN; RONDIGS, OLIVER. A universality the-
orem for Voevodsky’s algebraic cobordism spectrum. Homology, Homotopy
Appl. 10 (2008), no. 2, 211-226. MR2475610 (2010b:55006), Zbl 1162.14013,
arXiv:0709.4116.


http://www2.math.uni-wuppertal.de/~hornbost/haehne.pdf
http://www2.math.uni-wuppertal.de/~hornbost/haehne.pdf
http://www.ams.org/mathscinet-getitem?mr=1944041
http://zbmath.org/?q=an:1017.55001
http://zbmath.org/?q=an:1017.55001
http://www.ams.org/mathscinet-getitem?mr=2197578
http://zbmath.org/?q=an:1094.55014
http://dx.doi.org/10.1017/S030500410500890X
http://www.ams.org/mathscinet-getitem?mr=3116300
http://zbmath.org/?q=an:1281.55009
http://zbmath.org/?q=an:1281.55009
http://arXiv.org/abs/1005.4546
http://dx.doi.org/10.2140/agt.2013.13.2667
http://www.ams.org/mathscinet-getitem?mr=1650134
http://zbmath.org/?q=an:0909.55001
http://www.ams.org/mathscinet-getitem?mr=1860878
http://zbmath.org/?q=an:1008.55006
http://zbmath.org/?q=an:1008.55006
http://arXiv.org/abs//math/0004051
http://dx.doi.org/10.1016/S0022-4049(00)00172-9
http://www.ams.org/mathscinet-getitem?mr=1695653
http://zbmath.org/?q=an:0931.55006
http://zbmath.org/?q=an:0931.55006
http://arXiv.org/abs//math/9801077
http://dx.doi.org/10.1090/S0894-0347-99-00320-3
http://www.ams.org/mathscinet-getitem?mr=0906403
http://zbmath.org/?q=an:0624.18007
http://dx.doi.org/10.1016/0022-4049(87)90100-9
http://www.ams.org/mathscinet-getitem?mr=1787949
http://zbmath.org/?q=an:0969.19004
http://www.ams.org/mathscinet-getitem?mr=1806878
http://zbmath.org/?q=an:1017.55004
http://dx.doi.org/10.1112/S0024611501012692
http://www.ams.org/mathscinet-getitem?mr=2175638
http://zbmath.org/?q=an:1081.14029
http://users.ictp.it/~pub_off/lectures/lns015/Morel/Morel.pdf
http://users.ictp.it/~pub_off/lectures/lns015/Morel/Morel.pdf
http://www.ams.org/mathscinet-getitem?mr=1813224
http://zbmath.org/?q=an:0983.14007
http://dx.doi.org/10.1007/BF02698831
http://www.ams.org/mathscinet-getitem?mr=2811714
http://zbmath.org/?q=an:1226.14031
http://arXiv.org/abs/0909.1943
http://dx.doi.org/10.1017/is011003012jkt148
http://www.ams.org/mathscinet-getitem?mr=2597741
http://zbmath.org/?q=an:1179.14022
http://arXiv.org/abs/0709.3905
http://dx.doi.org/10.1007/978-3-642-01200-6_10
http://www.ams.org/mathscinet-getitem?mr=2475610
http://zbmath.org/?q=an:1162.14013
http://arXiv.org/abs/0709.4116

[Sch07]

[Sch0g]

[Sch12]
[SO]

[Vol

STEPHAN HAHNE AND JENS HORNBOSTEL

PANIN, IVAN; YAGUNOV, SERGE. Rigidity for orientable functors. J. Pure Appl.
Algebra 172 (2002), no. 1, 49-77. MR1904229 (2003e:14014), Zbl 1056.14027,
doi: 10.1016/S0022-4049(01)00134-7.

RONDIGS, OLIVER; SPITZWECK, MARKUS; OSTVER, PAUL ARNE. Motivic
strict ring models for K-theory. Proc. Amer. Math. Soc. 138 (2010), no.
10, 3509-3520. MR2661551 (2011h:14024), Zbl 1209.14018, arXiv:0907.4121,
doi: 10.1090/S0002-9939-10-10394-3.

SCHWEDE, STEFAN. An untitled book project about symmetric spec-
tra. Preprint v2.4, July 12, 2007. http://www.math.uni-bonn.de/people/
schwede/SymSpec . pdf.

SCHWEDE, STEFAN. On the homotopy groups of symmetric spectra. Geom.
Topol. 12 (2008), no. 3, 1313-1344. MR2421129 (2009¢:55006), Zbl 1146.55005,
arXiv:/math /0608059, doi: 10.2140/gt.2008.12.1313.

SCHWEDE, STEFAN. Symmetric spectra. Book project, draft version 2012.
SPITZWECK, MARKUS; @STVAR, PAUL ARNE. The Bott inverted infi-
nite projective space is homotopy algebraic K-theory. Bull. Lond. Math.
Soc. 41 (2009), no. 2, 281-292. MR2496504 (2010f:19005), Zbl 1213.55006,
doi: 10.1112/blms/bdn124.

VOEVODSKY, VLADIMIR. A'-homotopy theory. Proceedings of the International
Congress of Mathematicians, Extra Vol. T (Berlin, 1998). Doc. Math. 1998,
579-604. MR1648048 (99j:14018), Zbl 0907.19002.

(Stephan Hahne) GROENENWEG 79, 22549 HAMBURG
StephanHPQgmx .de

(Jens Hornbostel) BERGISCHE UNIVERSITAT WUPPERTAL, FB C, MATHEMATIK UND IN-
FORMATIK, GAUSSSTRASSE 20, 42119 WUPPERTAL
hornbostel@math.uni-wuppertal.de

This paper is available via http://nyjm.albany.edu/j/2015/21-1.html.


http://www.ams.org/mathscinet-getitem?mr=1904229
http://zbmath.org/?q=an:1056.14027
http://dx.doi.org/10.1016/S0022-4049(01)00134-7
http://www.ams.org/mathscinet-getitem?mr=2661551
http://zbmath.org/?q=an:1209.14018
http://arXiv.org/abs/0907.4121
http://dx.doi.org/10.1090/S0002-9939-10-10394-3
http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf
http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf
http://www.ams.org/mathscinet-getitem?mr=2421129
http://zbmath.org/?q=an:1146.55005
http://arXiv.org/abs//math/0608059
http://dx.doi.org/10.2140/gt.2008.12.1313
http://www.ams.org/mathscinet-getitem?mr=2496504
http://zbmath.org/?q=an:1213.55006
http://dx.doi.org/10.1112/blms/bdn124
http://www.ams.org/mathscinet-getitem?mr=1648048
http://zbmath.org/?q=an:0907.19002
mailto:StephanHP@gmx.de
mailto:hornbostel@math.uni-wuppertal.de
http://nyjm.albany.edu/j/2015/21-1.html

	1. Introduction
	2. Semistability
	2.1. The first generalization
	2.2. The sign (-1)T and the action of the symmetric group
	2.2.1. The sign of the simplicial circle
	2.2.2. The sign (-1)P1 of the projective line

	2.3. Definition of the M-action on stable homotopy groups
	2.4. Some M-isomorphisms between stable homotopy groups
	2.5. Generalities concerning the M-action
	2.6. Criteria for semistability: the generalized theorem

	3. Examples of semistable motivic symmetric spectra
	3.1. The motivic Eilenberg–Mac Lane spectrum
	3.2. The algebraic cobordism spectrum

	4. The multiplicative structure on stable homotopy groups of symmetric ring spectra and its localizations
	4.1. The multiplication on stable homotopy groups
	4.2. Localization of ring spectra

	References

