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Semistable symmetric spectra in
A1-homotopy theory

Stephan Hähne and Jens Hornbostel

Abstract. We study semistable symmetric spectra based on quite gen-
eral monoidal model categories, including motivic examples. In partic-
ular, we establish a generalization of Schwede’s list of equivalent char-
acterizations of semistability in the case of motivic symmetric spectra.
We also show that the motivic Eilenberg–MacLane spectrum and the
algebraic cobordism spectrum are semistable. Finally, we show that
semistability is preserved under localization if some reasonable condi-
tions — which often hold in practice — are satisfied.
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1. Introduction

A map between CW-spectra (or Bousfield–Friedlander-spectra) is a stable
weak equivalence if and only if it induces an isomorphism on stable homo-
topy groups. This is not true if we replace spectra by symmetric spectra
in general. However, there is a large class of symmetric spectra for which
the stable homotopy groups (sometimes called the “naive stable homotopy
groups” as they ignore the action of the symmetric groups) do coincide with
the stable weak equivalences. This leads to the notion of semistable sym-
metric spectra, and these have been studied notably by Schwede [Sch07],
[Sch08], [Sch12]. There are many equivalent ways to recognize them, and
there are indeed many examples of symmetric spectra which are semistable
(e.g., suspension spectra, Eilenberg–MacLane spectra, K-theory and vari-
ous cobordism spectra). Any symmetric spectrum is weakly equivalent to a
semistable one, and semistable spectra are very suitable both under theo-
retical and computational aspects.

The goal of this article is to study semistability for symmetric spectra
based on other model categories than simplicial sets or topological spaces.
Our main interest here are symmetric spectra based on motivic spaces as
studied in [Hov2], [Ja2], which model the motivic stable homotopy category
[Vo]. However, we state most results in greater generality so that they may
be applied to other settings as well.

The results of this article may be divided in three families. First, we
establish a long list of equivalent characterizations of semistability. Second,
using one of these characterizations, we prove that important examples of
motivic spectra, namely Eilenberg–Mac Lane spectra and algebraic cobor-
dism, are indeed semistable motivic symmetric ring spectra. Third, we show
that semistable ring spectra are particularly well-behaved under localization.
Most of our results are generalizations of known results for symmetric spec-
tra bases on simplicial sets, but at least some proofs considerably differ.

One of our motivations to study semistability for motivic symmetric ring
spectra was our expectation that a motivic version of a theorem of Snaith
[GS], [SØ] should lead to a motivic symmetric commutative ring spectrum
representing algebraic K-theory, which then would fit in the framework of
[Hor2]. Indeed, while the first author was writing [H], Röndigs, Spitzweck
and Østvær were able to deduce this result carrying out a small part of the
general theory established here, see Remark 2.48.

We now briefly recall the notion of semistability. For any symmetric
spectrum X, the actions of Σn on Xn induce an action of the injection
monoid M (that is the monoid of injective self-maps on N) on π∗X. We say
that X is semistable if this action is trivial. In general, theM-action encodes
additional information of the symmetric spectrum. See [Sch08, Example
3.4] for an example of symmetric spectra with isomorphic stable homotopy
groups but having different M-action.
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The following theorem of Schwede provides a list of equivalent ways of
describing semistable symmetric spectra based on simplicial sets. This is es-
sentially [Sch07, Theorem I.4.44], see also [Sch08, Theorem 4.1] and [Sch12].

Theorem 1.1. For any symmetric spectrum X in simplicial sets, the foll-
wing conditions (i)–(v) are equivalent. If X is levelwise fibrant, then these
are also equivalent to conditions (vi)–(viii).

(i) There is a π̂∗-isomorphism from X to an Ω-spectrum, that is an
isomorphism of naive stable homotopy groups.

(ii) The tautological map c : π̂kX −→ πkX from naive to “true” homo-
topy groups is an isomorphism for all k ∈ Z.

(iii) The action of M is trivial on all homotopy groups of X.
(iv) The cycle operator d acts trivially on all homotopy groups of X.
(v) The morphism λX : S1 ∧X −→ shX is a π̂∗-isomorphism.

(vi) The morphism λ̃X : X −→ Ω(shX) is a π̂∗-isomorphism.
(vii) The morphism λ∞X : X −→ R∞X is a π̂∗-isomorphism.
(viii) The symmetric spectrum R∞X is an Ω-spectrum.

In order to generalize this theorem to other model categories D, it seems
natural to generalize the M-action to appropriate stable homotopy groups
in D. However, in our first partial generalization Theorem 2.10 homotopy
groups do not appear. They only do appear later in the full generalization,
namely in Theorem 2.43. To state and prove the latter, we need to axioma-
tize the properties of the sign (−1)S1 on S1 (see Definition 2.16). That is, we
require that our circle object T has an automorphism (−1)T in Ho(D) satis-
fying the conditions of that definition. For our applications, it is thus crucial
that the pointed motivic space T = P1 has a sign (see Proposition 2.24).
We are then able to prove the full generalization of Schwede’s theorem. The
precise statement of this Main Theorem 2.43 looks rather technical at first
glance and can be appreciated only after having read Section 2, so we don’t
reproduce it here.

In Section 3, we prove the following using the results of Section 2 (see
Corollaries 3.5 and 3.9).

Theorem 1.2. The symmetric motivic Eilenberg–Mac Lane spectrum H is
semistable. The symmetric algebraic cobordism spectrum MGL of Voevodsky
is semistable.

The key to both proofs here, relating the rather abstract considerations of
Section 2 to the algebraic geometry of these spectra, is that the Σn-actions
that occur extend to GLn-actions.

Section 4 generalizes [Sch07, Corollary I.4.69] about the localization of
semistable symmetric ring spectra with respect to central elements. The
following is a special case of our Theorem 4.11:

Theorem 1.3. Let R be a level fibrant semistable motivic symmetric ring
spectrum and x : T l → Rm a central map. Then we can define a motivic
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symmetric ring spectrum R[1/x] which is semistable, and the ring homo-

morphism πmot
∗,∗ (R)

j∗−→ πmot
∗,∗ (R[1/x]) is a localization with respect to x.

This article is based on the diploma thesis of the first author [H] written
under the direction of the second author. We thank Stefan Schwede for
providing us with updates [Sch12] of his book project [Sch07] on symmetric
spectra. As the structure and in particular the numbering are still subject
to change, we only provide precise references to the version [Sch07]. We
provide details rather than refering to [Sch12] when relying on arguments
not contained in the version [Sch07] or in [Sch08].

We assume that the reader is familiar with model categories in general
[Hi], [Hov1]. For symmetric spectra, we refer to [HSS], [Hov2] and [Sch07],
[Sch12]. References for motivic spaces (that is simplicial presheaves on
Sm/S for a noetherian base scheme S of finite Krull dimension) and motivic
symmetric spectra include [MV], [Ja2] and [DLØRV]. It will be useful for
the reader to have a copy of [Hov2] and [Sch07] at hand.

2. Semistability

In this section, we will generalize Theorem 1.1 in two ways. The first
generalization (Theorem 2.10) applies to symmetric spectra based on a very
general monoidal model category, but covers only part of the list of equiva-
lent properties of Theorem 1.1. The second generalization (Theorem 2.43)
applies to a slightly more restricted class of examples (in particular the mo-
tivic ones we are mainly interested in) and provides the “full” analog of
Theorem 1.1. We will always assume that D is a monoidal model category,
and that T is a cofibrant object of D. If moreover D is cellular and left
proper, then by [Hov2] (see also [Ja2]), we have both a level and a stable
projective model structure on Sp(D, T ), and similarly on SpΣ(D, T ). We re-
fer to [Hov2, Definition 4.1] for the definition of “almost finitely generated”.

As usual, for a spectrum X we define sX by (sX)n = Xn+1, Ω =
Hom(T,−), Θ := Ω ◦ s and Θ∞ := colim Θk. We write σ̃Xn for the adjoints
of the structure maps σXn of X, and J for a fibrant replacement functor in
Sp(D, T ). By definition, an Ω-spectrum is level-wise fibrant.

For some almost finitely generalized model categories stable weak equiv-
alences may be characterized as follows [Hov2, Section 4]:

Theorem 2.1. Assume that D is almost finitely generated, and that se-
quential colimits commute with finite products and with Ω. Then for any
A ∈ Sp(D, T ), the map A → Θ∞JA is a stable equivalence into an Ω-
spectrum. Moreover, for an f in Sp(D, T ) the following are equivalent:

• f is a stable equivalence.
• For any levelwise fibrant replacement f ′ of f the map Θ∞f ′ is a

level equivalence.
• There is a levelwise fibrant replacement f ′ of f such that the map

Θ∞f ′ is a level equivalence.
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Proof. This is a special case of [Hov2, Theorem 4.12] with U = Ω. �

2.1. The first generalization. We refer to [HSS] and [Sch07] for stan-
dard definitions and properties of symmetric spectra. We consider a closed
symmetric monoidal model category (D,∧, S0) with internal Hom-objects
Hom. As above, let T be a cofibrant object in D and Ω = Hom(T,−). We
will consider the category of symmetric T -spectra SpΣ(D, T ) with the pro-
jective stable model structure of [Hov2]. As usual, we define an endofunctor
sh on SpΣ(D, T ) by shXn = X1+n, where (following Schwede) the notation
1 + n emphasizes which action of Σn on Xn+1 we consider. We further set
R := Ω ◦ sh and R∞ := colimRk. Recall also that there is a natural map
λX : X ∧ T → shX, which has an adjoint λ̃X : X → RX = Ω ◦ shX.

Lemma-Definition 2.2.

(i) Let X be any object of D. We inductively define

evnX : ΩnX ∧ Tn → X

by ev1
X = ev and evnX = ev ·(evn−1

ΩX ∧T ). Then the adjoint

δn,X : ΩnX → Hom(Tn, X)

of evnX is a natural isomorphism. Using this, we define for any
τ ∈ Σn a natural transformation Ωτ : Ωn → Ωn:

Ωn
∼=

δn,X

//

Ωτ

��

Hom(Tn,−)

Hom(τ−1,−)
��

Ωn
∼=

δn,X

// Hom(Tn,−)

(ii) If (τ1, τ2) ∈ Σn × Σm, (n,m ∈ N0), then Ωτ1+τ2
X = Ωτ1

ΩmX · ΩnΩτ2
X

Proof. (i) Obvious.
(ii) Setting

f := δn+m,X · δ−1
n,ΩmX ·Hom(Tn, δ−1

m,X) : Hom(Tn,Hom(Tm, X))

→ Hom(Tn+m, X)

we may identify D(A, f) using the following commutative diagram:

D(A,Ωn+mX)

D(A,δn,ΩmX)

&&

∼=
//

D(A,δn+m,X)
..

∼=

��

D(A ∧ Tn+m, X) ∼=
// D(A,Hom(Tn+m, X))

D(A ∧ Tn,ΩmX)

∼=

��

∼= //

D(A∧Tn,δm,X)

11
D((A ∧ Tn) ∧ Tm, X)

∼= // D(A ∧ Tn,Hom(Tm, X))

D(A,Hom(Tn,ΩmX))
D(A,Hom(Tn,δm,X))

// D(A,Hom(Tn,Hom(Tm, X)))

∼=

OO

D(A,f)

ff
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Hence f is compatible with τ−1
1 : Tn → Tn and τ−1

2 : Tm → Tm. By natu-

rality δn+m,X · δ−1
n,ΩmX is then compatible with τ−1

1 , and similarly (because

f = δn+m,X ·Ωnδ−1
m,X · δ

−1
n,Hom(Tm,X)) the map δn+m,X ·Ωnδ−1

m,X is compatibe

with τ−1
2 . The first compatibility imples Ωτ1+m

X = Ωτ1
ΩmX and the second

Ωτ1+m
X = ΩnΩτ2

X , whence the claim. �

Lemma 2.3. Let X be a symmetric T -spectrum and χl,m ∈ Σl+m permuting
the blocks of the first l and the last m elements. Then for the structure maps

of ΩlX, we have the equality σ̃ΩlX
n = Ω

χl,1
Xn+1

· Ωlσ̃Xn .

For R∞X, we have σ̃R
∞X

n = incl · colim σ̃R
kX

n , with incl being the map
colim(Ω(RkX)n+1)→ Ω(R∞X)n+1.

Proof. For l = 1, we have σ̃ΩX
n = Ω

χ1,1

Xn+1
· Ωσ̃Xn , as by definition we have

ev1
Xn+1

·(σΩX
n ∧ T ) = σXn · (ev1

Xn ∧T ) · (ΩXn ∧ tT,T )

and thus

ev ·[(δ2,Xn+1 · σ̃ΩX
n ) ∧ T 2]

= ev1
Xn+1

·(ev1
ΩXn+1

∧T ) · (σ̃ΩX
n ∧ T 2)

= ev1
Xn+1

·(σΩX
n ∧ T )

= σXn · (ev1
Xn ∧T ) · (ΩXn ∧ tT,T )

= ev1
Xn+1

·(σ̃Xn ∧ T ) · (ev1
Xn ∧T ) · (ΩXn ∧ tT,T )

= ev1
Xn+1

·(ev1
ΩXn+1

∧T ) · (Ωσ̃Xn ∧ tT,T )

= ev ·(δ2,Xn+1 ∧ T 2) · (Ωσ̃Xn ∧ tT,T )

= ev ·(Hom(T 2, Xn+1) ∧ tT,T ) · [(δ2,Xn+1Ωσ̃Xn ) ∧ T 2]

= ev ·(Hom(tT,T , Xn+1) ∧ T 2) · [(δ2,Xn+1Ωσ̃Xn ) ∧ T 2]

= ev ·[(δ2,Xn+1Ω
χ1,1

Xn+1
Ωσ̃Xn ) ∧ T 2].

Induction over l then yields

σ̃Ωl−1ΩX
n = Ω

χl−1,1

ΩXn+1
· Ωl−1σ̃ΩX

n

= Ω
χl−1,1

ΩXn+1
· Ωl−1(Ω

χ1,1

Xn+1
· Ωσ̃Xn )

= Ω
χl,1
Xn+1

· Ωlσ̃Xn ,

by Lemma 2.2 and χl,1 = (χl−1,1 + 1) · ((l − 1) + χ1,1).
The second claim follows as the adjoints of the maps already coincide on

(RlX)n ∧ T , where they are σR
lX

n = ev ·(σ̃RlXn ∧ T ). �

In Sections 2.3 and 2.4 below (compare also [Sch07, Example I.4.17]),
we will study in detail the action of the injection monoid M on X(ω) ∼=
(Θ∞X)0. In this section, we only need to know how the action of the cycle

operator d relates to the map λ̃ (generalizing a result of [Sch12]).
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Lemma 2.4. For any symmetric T -spectrum X, the following triangle com-
mutes:

(Θ∞X)0
d //

(Θ∞λ̃X)0 ''

(Θ∞X)0

∼=
��

(Θ∞Ω shX)0.

Proof. The isomorphism on the right hand side is induced by

Ω1+lX1+l

Ω
χ1,l
X1+l−−−−→ Ωl+1X1+l.

In the diagram

Ω1+lX1+l

Ω
χ1,l

��

Ω1+lσ̃ // Ω1+l+1X1+l+1

Ω
χ1,lΩ
��

Ω
χ1,l+1

((

Ωl+1X1+l
Ωl+1σ̃ // Ωl+2X1+l+1

ΩlΩχ1,1
// Ωl+1+1X1+l+1

the lower composition equals Ωlσ̃ΩX
1+l by Lemma 2.3. As Ωχ1,lΩ = Ωχ1,l+1 and

ΩlΩχ1,1 = Ωl+χ1,1 (Lemma 2.2) and χ1,l+1 = (l+χ1,1) · (χ1,l + 1) everything
commutes, hence the above maps are compatible with the structure maps.
Finally, the diagram of the lemma is induced by the following commutative
diagram:

ΩlXl
Ωlσ̃//

Ωlσ̃

$$

Ωl+1Xl+1

Ω
χl,1χl,1

// Ω1+lX1+l

Ω
χ1,l

��

Ωl+1Xl+1

Ωl+1χl,1
// Ωl+1X1+l.

�

Lemma 2.5. For any symmetric T -spectrum X, there is an isomorphism
symX,n : (Θ∞X)n ∼= (R∞X)n.

Proof. The isomorphism is induced by a sequence of compatible isomor-
phisms

Xn

1=α0,n

��

σ̃ // ΩXn+1

Ωα1,n

��

Ωσ̃ // Ω2Xn+2

Ω2α2,n

��

Ω2σ̃ // . . . // ΩlXn+l

Ωlαl,n
��

Ωlσ̃ //

Xn
λ̃ // ΩX1+n

Ωλ̃ // Ω2X2+n
Ω2λ̃ // . . . // ΩlXl+n

Ωlλ̃ //



8 STEPHAN HÄHNE AND JENS HORNBOSTEL

where αl,n is a permutation which is inductively defined by the following
commutative diagram:

ΩlXn+l

Ωlαl,n
��

Ωlσ̃// Ωl+1Xn+l+1
Ωl+1αl+1,n

''Ωl+1(αl,n+1)��

ΩlXl+n
Ωlσ̃

// Ωl+1Xl+n+1
Ωl+1χl+n,1

// Ωl+1X1+l+n.

Here we use the Σn+l-equivariance of σ̃ and set αl+1,n = χl+n,1 · (αl,n + 1).
Then by induction, it follows that αl,n = χn,l · (n+ βl), where βl ∈ Σl is the
reflection βl(i) = l + 1− i:

χn,0 · (n+ β0) = id

χl+n,1 · (αl,n + 1) = χl+n,1 · ([χn,l · (n+ βl)] + 1)

= χn,l+1 · (n+ βl+1). �

Corollary 2.6. Assume that Ω commutes with sequential colimits. Then
for any X in SpΣ(D, T ), the following diagram commutes:

(Θ∞ shnX)0

d
��

= (Θ∞X)n
symX,n

// (R∞X)n

σ̃R
∞X

n
��

(Θ∞ shnX)0 = (Θ∞X)n ∼= Ω(Θ∞X)n+1

Ω symX,n+1
// Ω(R∞X)n+1.

Proof. Using Lemma 2.3 it suffices to show that the following diagram
commutes:

ΩlXn+l
Ωlσ̃ //

Ωlαl,n
��

Ωl+1Xn+l+1

Ω
χl,1 (n+χl,1)

//

Ωl(αl,n+1)
��

Ω1+lXn+1+l

Ω1+lαl,n+1

��

ΩlXl+n
Ωlσ̃ // Ωl+1Xl+n+1

Ω
χl,1
// Ω1+lXl+n+1.

This is the case as we have

αl,n+1 · (n+ χl,1) = χn+1,l · (n+ 1 + βl) · (n+ χl,1)

= χn+1,l · (n+ χl,1) · (n+ βl + 1)

= [χn,l · (n+ βl)] + 1 = αl,n + 1. �

Lemma 2.7. Let X ∈ SpΣ(D, T ). Then the maps λ̃shX and sh λ̃X are equal
in SpΣ(D, T ) up to a canonical isomorphism of the targets.

Proof. We use the isomorphism Ω sh(shX)
∼=−→ sh(Ω shX) which is levelwise

given by the Σn-equivariant map ΩX1+1+n
Ω(χ1,1+n)
−−−−−−→ ΩX1+1+n. This really
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is a map in Sp(D, T ), as

ΩX1+1+n

Ω(χ1,1+n)

��

Ωσ̃ // Ω2X1+1+n+1

Ω2(χ1,1+n+1)
��

Ωχ1,1
// Ω2X1+1+n+1

Ω2(χ1,1+(n+1))
��

ΩX1+1+n
Ωσ̃ // Ω2X1+1+n+1

Ωχ1,1
// Ω2X1+1+n+1

commutes by Lemma 2.3. This yields a commutative diagram

shX
λ̃shX //

sh λ̃X

%%

Ω sh(shX)

∼=
��

sh(Ω shX)

as we have levelwise

X1+n
σ̃ // ΩX1+n+1

Ω(1+χn,1)
// ΩX1+1+n

Ω(χ1,1+n)

��

X1+n
σ̃ // ΩX1+n+1

Ωχ1+n,1
// ΩX1+1+n.

�

Lemma 2.8. Let X ∈ SpΣ(D, T ). Then we have a natural isomorphism
(Θ∞RX)n ∼= (Θ∞X)n.

Proof. The isomorphismus is induces by the following chain of compatible
isomorphisms:

ΩXn+1

1

��

Ωσ̃Xn+1
// Ω2Xn+2

Ωχ1,1

��

Ω2σ̃Xn+2
// . . . // ΩlXn+l

Ω
χ1,l−1

��

Ωlσ̃Xn+l
// Ωl+1Xn+l+1

Ωl+1σ̃Xn+l+1
//

Ω
χ1,l

��

ΩX1+n
σ̃RXn // Ω2X1+n+1

Ωσ̃RXn+1
// . . . // ΩlX1+n+l−1

Ωl−1σ̃RXn+l−1
// Ωl+1X1+n+l

Ωlσ̃RXn+l
//

This diagram commutes as the following does and we have

Ωl−1+χ1,1 = Ωl−1Ωχ1,1

(see Lemma-Definition 2.2):

ΩlXn+l

Ω
χ1,l−1

��

Ωlσ̃Xn+l
// Ωl+1Xn+l+1

Ω
χ1,l

��Ω
χ1,l−1+1

ww

ΩlX1+n+l−1
Ωlσ̃X1+n+l−1

// Ωl+1X1+n+l
Ωl−1+χ1,1

// Ωl+1X1+n+l.

�
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Proposition 2.9. Let (D,∧, S0) be as in Theorem 2.1. Then the endofunc-
tor R preserves stable weak equivalences in Sp(D, T ) between level fibrant
objects in SpΣ(D, T ).

Proof. Let f : X → Y be a map in SpΣ(D, T ) between level fibrant objects
which is a stable weak equivalence in Sp(D, T ). Then by assumption Θ∞f
is a level equivalence. By Lemma 2.8, we have (Θ∞Rf)l ∼= (Θ∞f)l for all
l ∈ N0. Hence Θ∞Rf is a level equivalence and RX,RY are level fibrant
objects (Ω preserves fibrant objects), and consequently Rf is a stable weak
equivalence again by assumption. �

We now establish a first incomplete generalization of Schwede’s Theo-
rem 1.1. Then we provide an example for D which satisfies the hypotheses.

Theorem 2.10. Let (D,∧, S0) be a symmetric monoidal model category and
T a cofibrant object. Assume that for Sp(D, T ) the projective level model
structure (see, e.g., [Hov2, Theorem 1.13]) exists. Assume further that:

(a) For any map f in Sp(D, T ) the following are equivalent (compare
also Theorem 2.1):
• f is a stable equivalence.
• For any level fibrant replacement f ′ of f , we have that Θ∞f ′

is a level equivalence.
• There is a level fibrant replacement f ′ of f such that Θ∞f ′ is

a level equivalence.
(b) Countable compositions of stable equivalences in Sp(D, T ) between

level fibrant objects are stable equivalences in Sp(D, T ).
(c) Ω commutes with sequential colimits in D (see also Theorem 2.1).
(d) Sequential colimits of fibrant objects in D are fibrant.

Let X be a symmetric spectrum in SpΣ(D, T ) which is levelwise fibrant.
Then (i) to (iv) below are equivalent, and (v) follows from these.

(i) There is a map in SpΣ(D, T ) from X to an Ω-spectrum which is a
stable equivalence in Sp(D, T ).

(ii) The morphism λ̃X : X −→ RX is a stable equivalence in Sp(D, T ).
(iii) For all n ∈ N0, the cycle operator

dshnX : (Θ∞ shnX)0 → (Θ∞ shnX)0

is a weak equivalence.
(iv) The symmetric spectrum R∞X is an Ω-spectrum.
(v) The morphism λ∞X : X −→ R∞X in SpΣ(D,K) is a stable equiva-

lence in Sp(D, T ).

Proof. (i)⇒(ii) Let f : X → Y be a map in SpΣ(D, T ) with Y being an
Ω-spectrum, and such that f is a stable equivalence in Sp(D, T ). Then
by Proposition 2.9, Rf is also a stable equivalence in Sp(D, T ). This im-

plies that λ̃Y ((λ̃Y )l = χYl,1 · σ̃Yl ) is a level equivalence, and hence a stable
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equivalence in Sp(D, T ), follows by naturality of λ̃ that

X
f
//

λ̃X
��

Y

λ̃Y
��

RX
Rf
// RY

commutes, hence by the 2-out-of-3 axiom λ̃X is a stable equivalence in
Sp(D, T ).

(ii)⇔(iii) We have dshnX
∼= (Θ∞λ̃shnX)0 by Lemma 2.4 and λ̃shnX

∼=
shn λ̃X by Lemma 2.7, and furthermore (Θ∞ shn)0

∼= (Θ∞)n, hence dshnX
∼=

(Θ∞λ̃X)n. As Ω is a right Quillen functor on D, both X (by assumption)
and RX are level fibrant. Using (a) and the above isomorphism, we deduce

that λ̃X is a stable equivalence in Sp(D, T ) if for every n ∈ N0 the map
dshnX is a weak equivalence in D.

(iii)⇔(iv) By Proposition 2.9, the maps Rsλ̃X are stable equivalences in
Sp(D, T ) for all s ∈ N0 between level fibrant objects (Ω is right Quillen).
By (b), the inclusion λ∞X is then a stable equivalence in Sp(D, T ).

(ii)⇒(i) This follows from (ii)⇒(iv),(v). �

An important class of examples is given by almost finitely generated model
categories:

Proposition 2.11. Let D be a symmetric monoidal model category which
is almost finitely generated, and let T be a cofibrant object of D. Assume
that sequential colimits commute with finite products, weak equivalences and
Ω, and that the projective level model structure on (D, T ) exists. Then the
couple (D, T ) satisfies the hypotheses of Theorem 2.10.

Proof. (a) holds by 2.1.
(b) We show more generally that stable equivalences in Sp(D, T ) are closed

under sequential colimits. Using a standard reduction, it suffices to show
that sequential colimits of stable equivalences between stably fibrant objects
in Sp(D, T ) are stable equivalences. But the stable model structure is a left
Bousfield localization of the projective level model structure, hence stable
equivalences between stably fibrant objects are level equivalences [Hi, The-
orem 3.2.13, Prop. 3.4.1]. By assumption, those are preserved by sequential
colimits (as these are defined level-wise), hence are stable equivalences again.

(c) holds by assumption.
(d) holds by [Hov2, Lemma 4.3]. �

We now consider the category M.(S) of pointed simplicial presheaves on
Sm/S for a given noetherian base scheme S (sometimes called the category
of motivic spaces). Besides the injective [MV] and the projective motivic
model structure, there is a third model structure introduced in [PPR1, Sec-
tion A.3] and denoted by M.cm(S) which is convenient for our purposes.
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(Recall also [MV], [Ja2] that there is a model structures on pointed sim-
plicial sheaves s Shv(S). which is – via the sheafification a as a left Quillen
functor – Quillen equivalent to the injective model structure on M.(S).)

Corollary 2.12. The assumptions of Theorem 2.10 are satisfied for the
model category D = M.cm(S) and for all cofibrant objects T for which
Hom(T,−) commutes with sequential colimits (in particular for T = P1).

Proof. The projective level model structure exists by [Hov2, Theorem 1.13].
The model category M.cm(S) is symmetric monoidal by [PPR1, Theorem
A.17] and weak equivalences are stable under sequential colimits by [PPR1,
Lemma A.18]. The claims about T and P1 follow from [PPR1, Lemma A.10]
and [DRØ, Lemma 2.5]. To show that M.cm(S) is almost finitely generated,
one shows that the model category M.cs(S) (see [PPR1, Section A.3]) is
almost fintely generated, left proper and cellular. From this, one deduces
that the left Bousfield-Hirschhorn localization M.cm(S) exists and is still
almost finitely generated. See [NS] or [H, Propositions 2.20, 2.44 and 2.49]
for further details. �

The model category sSet∗ together with T = S1 also satisfies the as-
sumptions of Theorem 2.10. By Lemma 2.13 below, the map dshnX is a
weak equivalence for all n ≥ 0 if and only if the cycle operator d induces
bijections on all stable homotopy groups π̂k(X), k ∈ Z. Moreover, the sta-
ble equivalences in Sp(sSet∗, S

1) are precisely the π̂∗-equivalences. Hence
Theorem 2.10 really is a partial generalization of Theorem 1.1.

Lemma 2.13. Let X ∈ SpΣ(sSet∗, S
1). Then

dshnX : (Θ∞ shnX)0 → (Θ∞ shnX)0

is a weak equivalence if and only if the cycle operator d induces bijections
on all stable homotopy groups π̂k−n(X), k ∈ N0.

Proof. Lemma 2.4 shows that dshnX is a weak equivalence if and only if
πk(dshnX) is a bijection for all k ≥ 0. Using [Sch07, Construction I.4.12]
and Section 2.2.1, we see that πk(dshnX) is isomorphic to the action of d on
π̂k(sh

nX). We also have isomorphisms of M-modules

π̂k(sh
nX) ∼= π̂k−n(X)(n)

(see Propostion 2.35, Remark 2.32 and Example 2.27). By tameness, d
acts as an automorphism on π̂k−n(X)(n) if and only if the M-action on
π̂k−n(X)(n) is trivial. Again by tameness, this in turn holds if and only if the
M-action on π̂k−n(X) is trivial, because then the filtration is bounded (see
Lemma 2.39). This is also equivalent to d acting trivially on π̂k−n(X). �

We now state a first version of our definition of semistability (see also
Definition 2.31 and Remark 2.32):
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Definition 2.14. Assume that the assumptions of Theorem 2.10 are sat-
isfied and the projective level structure on SpΣ(D, T ) exists, in particular
the functorial fibrant approximation JΣ. Then in this section, a symetric
spectrum X ∈ SpΣ(D, T ) is called semistable if JΣX satisfies one (and hence
all) of the above properties (i)–(iv).

Using this definition, we have (compare also [HSS, Proposition 5.6.5]):

Proposition 2.15. Assume that the assumptions of Theorem 2.10 are satis-
fied and the projective level structure on SpΣ(D, T ) exists. Let f : X → Y be
a morphism in SpΣ(D, T ) between semistable symmetric spectra, and assume
that the forgetful functor U : SpΣ(D, T ) → Sp(D, T ) reflects stable equiva-
lences. Then if f is a stable equivalence in SpΣ(D, T ), then so is U(f) in
Sp(D, T ).

Proof. It is enough to show the claim for JΣf . Namely, Z → JΣZ is a
natural level equivalence, hence we may replace f by JΣf and assume that
X and Y are level fibrant and the hypotheses of Theorem 2.10 hold for X
and Y . In the commutative diagram in SpΣ(D, T )

X

f
��

λ̃∞X // R∞X

R∞f
��

Y
λ̃∞Y // R∞Y

R∞X and R∞Y are Ω-spectra by assumption, and hence fibrant objects for
the stable model structure on SpΣ(D, T ). Also, U(λ̃∞X ) and U(λ̃∞Y ) are stable

equivalences. Using the assumptions on U , we see that λ̃∞X and λ̃∞Y are stable

equivalences in SpΣ(D, T ). But f is a stable equivalence in SpΣ(D, T ), hence
by [Hi, Theorem 3.2.13] R∞f is a level equivalence. Therefore U(R∞f) (and
thus U(f)) is a stable equivalence. �

The condition that U reflects stable equivalences is satisfied for D =
M cm
· (S), because by [PPR1, Theorem A.5.6 and Theorem A.6.4] the stable

equivalences for Sp(D, T ) and SpΣ(D, T ) in [Ja2] resp. [PPR1] coincide and
for the stable equivalences in [Ja2] the condition is satisfied by [Ja2, Prop.
4.8].

Comparing Theorem 2.10 with Theorem 1.1, one notices that several
things are missing. We will provide what is missing below (see Theo-
rem 2.43).

2.2. The sign (−1)T and the action of the symmetric group. We
now axiomatize some properties of the topological circle, in a way which
is convenient for studying the M-action on generalized stable homotopy
groups. The following two subsections then discuss the two key examples,
namely T = S1 in pointed simplicial sets and T = P1 in pointed motivic
spaces.



14 STEPHAN HÄHNE AND JENS HORNBOSTEL

Let (D,∧, S0) be a symmetric monoidal model category. Fix a cofibrant
object T in D and set Tn := T∧n.

Definition 2.16. A sign of T in D is an automorphism (−1)T of T in Ho(D)
of order 2 with the following properties:

(i) For any τ ∈ Σn, the permutation of factors Tn
τ−→ Tn coincides with

|τ |T ∧ Tn−1 in Ho(D) (the latter map is defined as T is cofibrant),
where we set |τ |T = (−1)T if τ is an odd permutation and |τ |T = 1
otherwise. We call |τ |T the sign of the permutation τ .

(ii) T 2 (−1)T∧1T−−−−−−→ T 2 coincides with T 2 1T∧(−1)T−−−−−−→ T 2 in Ho(D).

2.2.1. The sign of the simplicial circle. Let D = sSet∗ with the usual
smash product.

Definition 2.17. Fix a homeomorphism h : |S1| ∼= S1. This yields a

weak equivalence ν : S1 ∼−→ Sing(|S1|) h−→ Sing(R+) in sSet∗. The map
(−1)R : R→ R, t 7→ −t then induces the automorphism

(−1)S1 = ν−1 · Sing((−1)+
R ) · ν

of S1 in Ho(sSet∗), which we call the sign of S1, and which is obviously of
order 2.

In particular (−1)R+ has degree −1.

Lemma 2.18. The above automorphism (−1)S1 is a sign of S1.

Proof. It is enough to check the properties of Definition 2.16 in Ho(Top∗),
that is after geometric realization. It also suffices to check the equalities
after conjugation with the canonical isomorphism

|(S1)∧n| → |S1|∧n h∧n−−→ (R+)∧n → Rn+

(here we used that −+ is strictly monoidal) Conjugation of

τ : (S1)∧n → (S1)∧n

then yields the map Rn+ τ+

−−→ Rn+ because

|(S1)∧n| ∼=

|τ |
��

|S1|∧n ∼=

τ
��

(R+)∧n ∼=

τ

��

Rn+

τ+

��

|(S1)∧n| ∼= |S1|∧n ∼= (R+)∧n ∼= Rn+

commutes (−+ is symmetric monoidal).
After conjugation, the map |(−1)S1 ∧ (S1)∧n−1| yields

Rn+ diag(−1,1,...,1)+

−−−−−−−−−−→ Rn+
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because the following diagram commutes (here we use relations between
units and counit):

|S1 ∧ (S1)∧n−1|

|ν∧1|
��

∼= // |S1| ∧ |S1|∧n−1

|ν|∧1
��

∼= // (R+)∧n
∼= // Rn+

((−1)R×1Rn−1 )+

��

| Sing(R+) ∧ (S1)n−1|

| Sing((−1)+
R )∧1|

��

∼= // | Sing(R+)| ∧ |S1|∧n−1

|Sing((−1)+
R )|∧1

��

∼ // (R+)∧n

(−1)+
R ∧1

��

| Sing(R+) ∧ (S1)∧n−1|
∼= // | Sing(R+)| ∧ |S1|∧n−1 ∼ // (R+)∧n

|S1 ∧ (S1)∧n−1|

|ν∧1|

OO

∼= // |S1| ∧ |S1|∧n−1

|ν|∧1

OO

∼= // (R+)∧n
∼= // Rn+

and R2+ diag(1,−1)+

−−−−−−−→ R2+ is the conjugated map of |S1 ∧ (−1)S1 |.
Now let τ ∈ Σn and Pτ ∈ GLn(R) the permutation matrix corresponding

to τ . If τ is odd, then detPτ = −1 = det diag(−1, 1, ..., 1). Lemma 2.19 then
implies that the maps τ+ : Rn+ → Rn+ and diag(−1, 1, ..., 1)+ : Rn+ → Rn+

are equal in Ho(Top∗), hence τ : (S1)∧n → (S1)∧n and (−1)S1 ∧ (S1)∧n−1

are also equal in Ho(sSet∗). If τ is even , then detPτ = 1 = detEn, and
the maps τ : (S1)∧n → (S1)∧n equals the identity on (S1)∧n in Ho(sSet∗).
For the second condition, note that the diagonal matrices diag(−1, 1) and
diag(1,−1) have the same determinant, so by Lemma 2.19 the maps

R2+ diag(1,−1)+

−−−−−−−→ R2+,

R2+ diag(−1,1)+

−−−−−−−→ R2+,

are equal in Ho(Top∗) and therefore also (−1)S1 ∧ S1 and S1 ∧ (−1)S1 . �

We have just used the following:

Lemma 2.19. The topological group GLn(R) has two path components (cor-
responding to the sign of the determinant). If A,B ∈ GLn(R) have deter-
minants with the same sign, then the two pointed maps

Rn+ A+,B+

−−−−→ Rn+

are equal in Ho(Top∗).

Proof. Well-known. �

2.2.2. The sign (−1)P1 of the projective line. We have a pushout
diagram (both in Sm/S and in sShv(S).)

GmS = D+(T0T1)× S
i′1 //

i′0
��

A1
S = D+(T1)× S

i1
��

A1
S = D+(T0)× S i0 // P1

S .
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The base point of P1
Z is the closed immersion Spec(Z)

0−→ A1
Z

i1−→ P1
Z and its

base change S → P1
S is the base point of P1

S . The latter map induces a base
point map P1

S : ∞ : ∗ = S → P1
S which is closed for the cm-model structure

above (see Corollary 2.12). For that model structure, (P1
S ,∞) is a cofibrant

pointed motivic space which we denote by P1 from now on. Similarly, we
write Gm for the cm-cofibrant pointed motivic space (GmS , 1).

Now we define the sign of P1. (See also [Mo, 6.1 The element ε] for the
sign of P1 and its behaviour with respect to P1 ∼= S1 ∧Gm.)

Definition 2.20. The automorphism P1
Z → P1

Z given by the graded isomor-
phism Z[T0, T1] → Z[T0, T1], T0 7→ −T0, T1 7→ T1 is denoted by (−1)P1

Z
, and

similarly (−1)P1
S

= (−1)P1
Z
×S for the base change of that automorphism to

Sm/S. The following lemma shows that (−1)P1
S

induces an automorphism

(−1)P1
S

on P1, which we denote by (−1)P1 , and call it the sign of P1.

Lemma 2.21. The automorphism (−1)P1
Z

is the morphism induced by (the

push-outs of) the following diagram:

D+(T0)

T1
T0
7→−T1

T0
��

D+(T0T1)oo //

T1
T0
7→−T1

T0
��

D+(T1)

T0
T1
7→−T0

T1
��

D+(T0) D+(T0T1)oo // D+(T1).

Consequently, the diagram

A1
S ∪GmS

A1
S

(−1)∪(−1)(−1)

��

// P1
S

(−1)P1
S

��

A1
S ∪GmS

A1
S

// P1
S

commutes where (−1) on coordinates is given by T 7→ −T . Hence (−1)P1
S

respects the base point ∞.

Proof. Straightforward. For the last claim, use the first one and that
Spec(Z[T ])→ Spec(Z[T ]), T 7→ −T maps the point T = 0 to itself. �

From now on, we replace the motivic space (P1)∧n by the weakly equiva-
lent AnS/((AnZ − 0) × S). On the latter, we consider the usual GLnS-action
and relate it to the sign of P1.

Lemma 2.22.

(i) There is a zig-zag of weak equivalences in M·(S) between the pointed
spaces P1 and A1

S/i′0GmS.

(ii) Via this zig-zag, the pointed map (−1)P1
S

corresponds to the map

(−1)A1
S
/(−1)GmS

.
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Proof. (i) We have a commutative diagram

A1
S

1
��

GmS
i′0

oo

1

��

i′1 // A1
S

∼
��

A1
S GmS

i′0

oo // S

The map GmS
i′0−→ A1

S is a monomorphism, and the vertical maps are weak
equivalences. As the injective model structure is left proper, the induces
map f : A1

SqGmS
A1
S → A1

SqGmS
∗ = A1

S/i′0GmS is a weak equivalence, too.

The motivic space A1
SqGmS

A1
S is pointed by S

0−→ A1
S

incl1−−−→ A1
SqGmS

A1
S , and

with this choice f is a pointed map. The induced map A1
SqGmS

A1
S

(i0,i1)−−−−→ P1
S

is a motivic weak equivalence, as it is an isomorphism after sheafification
[Mo, Lemma 2.1.13]. It is pointed as (i0, i1) · incl1 · 0 = i1 · 0.

(ii) The squares

A1
S qGmS

A1
S

//

(−1)A1
S
q(−1)GmS

(−1)A1
S
��

A1
S qGmS

∗
(−1)A1

S
q(−1)GmS

1∗

��

A1
S qGmS

A1
S

// A1
S qGmS

∗

and

A1
S qGmS

A1
S

//

(−1)A1
S
q(−1)GmS

(−1)A1
S
��

P1
S

(−1)P1
S

��

h(A1
S)qGmS

A1
S

// P1
S

commute by Lemma 2.21. �

For any S → Spec(Z), we consider the usual actions

µ : GLnS ×SAnS → AnS
(on the open subscheme (An − 0)× S as well) and homomorphisms

GLn(Z)→ AutSchS (AnS),

GLn(Z)→ AutM·(S)(AnS/(An − 0)× S).

Above, as usual, we have identified smooth varieties and the associated
simplicially constant (pre-)sheaf given by the Yoneda embedding. However,
to avoid confusion when it comes to base points, we will write

h· : Sm/S →M.(S)

for the composition of the Yoneda embedding with adding a disjoint base
point.
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The above induces a map

h·(GLnS) ∧ [AnS/((An − 0)× S)]→ [AnS/((An − 0)× S)],

and for any A ∈ GLn(Z) the diagram

[AnS/((An − 0)× S)]

∼=
��

A

%%

h·(S) ∧ [AnS/((An − 0)× S)]

h·(A)∧1

��

h·(GLnS) ∧ [AnS/((An − 0)× S)] // [AnS/((An − 0)× S)]

commutes. Precomposition with the monomorphism Σn → GLn(Z) yields
the above Σn-actions on AnS and on AnS/((An − 0)× S).

Lemma 2.23.

(i) There is a Σn-equivariant map

f : [A1
S/GmS ]∧n → AnS/((AnZ − 0)× S)

in M·(S) which is a motivic equivalence.
(ii) The diagram

A1
S/GmS ∧ [A1

S/GmS ]∧n−1 //

(−1)A1
S
/GmS

∧1

��

AnS/((AnZ − 0)× S)

diag(−1,1,...,1)

��

A1
S/GmS ∧ [A1

S/GmS ]∧n−1 // AnS/((AnZ − 0)× S)

commutes, and similarly for diag(1, . . . , 1,−1).

Proof. (i) We have a commutative diagram∐n−1
i=0 (A1

S)×i ×GmS × (A1
S)×n−(i+1)

∼=
��

// (A1
S)×n

∼=
��∐n−1

i=0 A1×Si
S ×S GmS ×S A1×Sn−(i+1)

S

��

// A1
S
×Sn

∼=
��

(An − 0)× S // AnS

in which the vertical maps are Σn-equivariant. The horizontal maps induce
the desired map f on the quotients. To see that f is a weak equivalence, it
suffices to show [Ja1, Lemma 2.6] that its sheafification is an isomorphism.
Using the adjunction a : M·(S) //

oo s Shv·(S) : i, this reduces to show
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that for all F ∈ s Shv·(S) the induced map M·(S)(f, i(F)) is a bijection.
The familiy of open immersions

{A1×Si
S ×S GmS ×S A1×Sn−(i+1)

S ↪→ ((An − 0)× S); 0 ≤ i ≤ n− 1}

is a Zariski covering, hence a Nisnevich covering. Therefore, in the diagram

F(AnS)

∼=
��

// F((An − 0)× S)

��

F(S)oo

1

��

F(A1
S
×Sn) //

∏n−1
i=0 F(A1×Si

S ×S GmS ×S A1×Sn−(i+1)
S ) F(S)oo

the middle vertical map is injective. It follows that the induced map on
pull-backs is bijective, and that one coincides with M·(S)(f, i(F)).

(ii) The first diagram above is compatible with the corresponding maps
for diag(−1, 1, . . . , 1). (Apply the monomorphism ((An − 0) × S) ↪→ AnS to
see this for the lower left map.) �

The above together with Lemma 2.19 below leads to the main result of
this subsection:

Proposition 2.24. The automorphism (−1)P1 is a sign of P1 in M cm
· (S).

Proof. By Definition 2.20, the automorphism (−1)P1 has order 2. Using
that the smash product of weak equivalences in M·(S) is again a weak
equivalence, as well as Lemmas 2.22 and 2.23, the required properties of
Definition 2.16 follow from the following:

(i) Let τ ∈ Σn be a permutation. Then, in Ho(M cm
· (S)) the automor-

phism induced by τ on AnS/((AnZ− 0)×S) equals diag(−1, 1, . . . , 1)
if τ is an odd permutation, and the identity if τ is even.

(ii) The automorphisms diag(−1, 1) and diag(1,−1) of A2
S/(A2

Z−0)×S
are equal in Ho(M cm

· (S)).

Using Lemma 2.25(ii) these in turn follow from

(i) detPτ =

{
det diag(−1, 1, . . . , 1) τ is odd

det diag(1, . . . , 1) τ is even.

(ii) det diag(−1, 1) = det diag(1,−1). �

Lemma 2.25. Let A0, A1 ∈ GLn(Z) two matrices with A1A
−1
0 ∈ SLn(Z).

Via the inclusion GLn(Z) ↪→ GLn(OS(S)) ∼= SchS(S,GLn,S), these matrices
induce morphisms A0, A1 : S → GLn,S in Sm/S.

(i) There is a map f : A1
S → GLn,S in Sm/S with f · il = Al for

l = 0, 1, where il : S → A1
S are the morphisms represented by 0 and
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1 in OS(S):

S q S
(A0,A1)

//

(i0,i1)
��

GLn,S

A1
S

f
::

(ii) For any pointed motivic space E and µ : h·(GLnS)∧E → E a map
in M·(S), the endomorphisms on E induced by A0 and A1 are equal
in Ho(M cm

· (S)).

Proof. (i) By adjunction, a map f : A1
S → GLn,S in Sm/S corresponds

uniquely to a matrix Ã = Ã(f) ∈ GLn(OS(S)[T ]). On global sections, il is
given by OS(S)[T ] → OS(S), T 7→ l. Therefore, the condition that a lift f

exists corresponds to the equalities Ã(l) = Al for l = 0, 1, where Ã(l) is the

image of Ã under GLn(OS(S)[T ]) → GLn(OS(S)), T 7→ l. We may assume
that A0 = E is the unit matrix and A1 ∈ SLn(Z). (If the couple (E, A1 ·A−1

0 )

allows for a lift Ã ∈ GLn(OS(S)[T ]), then Ã · A0 ∈ GLn(OS(S)[T ]) is a lift
for (A0, A1) with A0 constant with respect to T .) We may further assume

that A1 is an elementary matrix, as T 7→ l is multiplicative. Namely, if Ã is a
lift of (A0, A1) and B̃ is a lift of (B0, B1), then ÃB̃ is a lift of (A0B0, A1B1).
Finally, for A0 = E and A1 = Ek,l(a) an elementary matrix with a ∈ Z, we

may choose Ã := Ek,l(aT ) ∈ GLn(OS(S)[T ]) as a lift.
(ii) If pr : A1

S → S is the projection, we have

h·(pr) · h·(il) = h·(pr · il) = h·(1S) = 1h·(S), l = 0, 1.

As h·(pr) is a motivic weak equivalence, h·(i0) and h·(i1) are isomorphic
in the motivic homotopy category and hence [MV, Lemma 3.2.13] so are
h·(il) ∧ E, l = 0, 1. Now the claim follows by Al = f · il. �

2.3. Definition of theM-action on stable homotopy groups. From
now on, we will make the following standard assumptions: Let (D,∧, S0)
be a pointed symmetric monoidal model category. There is a monoidal left
Quillen functor [Hov1, Def. 4.2.16] i : sSet∗ ↪→ D with right adjoint j : D →
sSet∗. We choose a cofibrant object T in D such that − ∧ T preserves weak
equivalences. Moreover, we assume that T is a cogroup object in Ho(D).
(This is the case if, e.g., T ' S1 ∧ B for some object B of D.) Finally, we
fix a class B of cofibrant objects in D.

For the category M·(S), we will take i to be the functor mapping a simpli-
cial set to a constant simplicial presheaf, and j the evaluation on the terminal
object S ∈ Sm/S. The condition that is T cofibrant is equivalent to require
that the functor −∧T preserves cofibrations, as then i(S0)∧T ∼= S0∧T ∼= T
is also cofibrant. The functor − ∧ T induces a functor on Ho(D).
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Definition 2.26. Let E be a T -spectrum in D. Then for all q ∈ Z, V ∈ B,
the abelian groups (see also Lemma 2.28)

colim
m≥0,q+m≥1

(· · · → [V ∧ T q+m, Em]
σ∗(−∧T )−−−−−→ [V ∧ T q+m+1, Em+1]→ · · · )

are called the stable homotopy groups of E, and will be denoted by πVq (E).
They are functors Sp(D, T )→ Ab.

Example 2.27.

(i) For D = sSet∗, T = S1 and B = {S0}, one recovers the definition of
the usual (naive, that is forgetting the Σn-action) stable homotopy

groups (denoted by π̂∗ in [Sch12]): πS
0

q (E) ∼= π̂q(E).

(ii) For D = M cm
· (S), T = P1 and

B = {Sr ∧ h·(U) ∧G∧sm | r, s ∈ N0, U ∈ Sm/S},
the groups πVq (E) are the motivic stable homotopy groups of E. In
particular,

πS
r∧G∧sm

q (E) ∼= πmot
q+r+s,q+s(E)(U)

(note that B consists of cm-cofibrant objects).

Lemma 2.28. Consider two objects A and X in D with A cofibrant, and
V ∈ B. Then V ∧ T 2 ∧ A has an abelian cogroup structure, and the corre-
sponding group structure on [V ∧ T 2 ∧A,X] is compatible with − ∧ T .

Proof. As T is a cogroup object by assumption, T 2 and more generally
A′ := V ∧ T 2 ∧A is an abelian cogroup object with comultiplication

V ∧ T 2 ∧A V ∧µ∧T∧A−−−−−−−→V ∧ (T ∨ T ) ∧ T ∧A
∼= [V ∧ T ∧ T ∧A] ∧ [V ∧ T ∧ T ∧A].

As the comultiplication on A′ ∧ T is given by

A′ ∧ T
µA′∧T−−−−→ (A′ ∨A′) ∧ T ∼= (A′ ∧ T ) ∨ (A′ ∧ T ),

the compatibility with − ∧ T follows. �

Definition 2.29. Let f : E → F be a map of T -spectra in D. Then f is
called a πB-stable equivalence if the induced maps

πVq (f) : πVq (E)→ πVq (F )

are isomorphisms for all q ∈ Z, V ∈ B.

We now turn to the M-action. Let I be the category of finite sets and
injective maps, and M the “injection monoid” (see [Sch07], [Sch08] and
Definition 2.34 below). Recall (see [Sch07, Section 4.2], [Sch08, Section 1.2])
that there are functors from symmetric spectra to Ab-valued I-functors and
from I-functors to (tame) M-modules, mapping X to X and further to
X(ω).
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We still make the above assumptions, and also assume that T has a sign.
The following definition generalizes [Sch08, 1.2 Construction, Step 1].

Proposition-Definition 2.30. Let q ∈ Z and V ∈ B. For any symmetric
spectrum X in D, we define a functor X : I → Ab for any symmetric T -
spectrum X in D and then obtain (see above) anM-action on its evaluation
at ω, πVq (X), which is precisely the group πVq (X) of Definition 2.26. In

more detail, any m in I is mapped to [V ∧ T q+m, Xm] (see Lemma 2.28) if
q + m ≥ 2, and to 0 otherwise. For f : m → n a morphism in I (hence
n ≥ m) we choose a permutation γ ∈ Σn with f = γ|m. Then X(f) is the
composition

[V ∧ T q+m, Xm]
σn−m∗ (−∧Tn−m)

// [V ∧ T q+n, Xn]

(V ∧|γ|T∧T q+n−1)∗γ∗

��

[V ∧ T q+n, Xn]

if q +m ≥ 2, and 0 otherwise.

Proof. The map V ∧ |γ|T ∧ T q+n−1 is defined as V and T are cofibrant.
The above composition is a group homomorphism as the group structure is
compatible with − ∧ T (Lemma 2.28), and we have

V ∧ |γ|T ∧ T q+n−1 = V ∧ T ∧ |γ|T ∧ T q+n−2

by Definition 2.16.
The functor X is well-defined on morphisms: Consider γ, γ′ ∈ Σn with

γ|m = γ′|m. Then there is a τ ∈ Σn−m with γ′−1γ = m + τ and the claim

X(γ) = X(γ′) is equivalent to showing that the two compositions

[V ∧ T q+m, Xm]
σn−m∗ (−∧Tn−m)

// [V ∧ T q+n, Xn]

(V ∧|m+τ |T∧T q+n−1)∗ (1m×τ)∗

��

[V ∧ T q+n, Xn]

are equal. Let n ≥ m (otherwise there is nothing to prove). By Defini-
tion 2.16, we have

|m+ τ |T ∧ T q+n−1 = T q+m ∧ |τ |T ∧ Tn−m−1 = T q+m ∧ τT

in Ho(D). Applying V ∧ − and using the equivariance of

(m+ τ) · σn−m = σn−m · (Xm ∧ τ),
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the equality follows from the equality of the following two compositions:

[V ∧ T q+m, Xm]
(−∧Tn−m)

// [V ∧ T q+m ∧ Tn−m, Xm ∧ Tn−m]

[(V ∧T q+m∧τ)∗](Xm∧τ)∗

��

[V ∧ T q+m ∧ Tn−m, Xm ∧ Tn−m].

A straighforward computation involving that

sgn(δ · (γ + (n′ − n))) = sgn(δ) · sgn(γ)

shows that X is indeed a functor. Finally, as the inclusion m → m + 1
corresponds to σ∗(− ∧ T ), X(ω) is indeed πVq (X) as claimed. �

For D = sSet∗, T = S1, this coincides with the definition of [Sch08],
because |(−1)S1 | is isomorphic to a self-map on S1 of degree −1. For D =
M cm
· (S) and T = P1, note that being semistable does not depend on the A1-

local model structure (projective, injective, cm...), but only on the motivic
homotopy category Ho(D).

We are now able to state our key definition.

Definition 2.31 (Compare [Sch08, Theorem 4.1]). Let D be as above and
fix a class B of cofibrant objects. A symmetric T -spectrum X is called
semistable, if the M-action (see Definition 2.30) is trivial on all homotopy
groups of X appearing in Definition 2.29.

Remark 2.32. Note that this definition heavily depends on the choice of
B. If the πB-stable equivalences coincide with the stable equivalences in
Sp(D, T ), then under the assumptions of Theorem 2.43 the two definitions
of semistability coincide. This holds in particular for D = M cm

· (S) (see
above and Proposition 2.45 below), and B as in the example above.

Lemma 2.33. Let f : X → Y be a πB-stable equivalence in SpΣ(D, T ).
Then πVq (f) is an isomorphism ofM-objects. In particular: X is semistable
if and only if Y is semistable.

Proof. By Definition, the map πVq (f) commutes with theM-action and by
assumption the map is an isomorphism. �

2.4. SomeM-isomorphisms between stable homotopy groups. We
keep the assumptions of the previous section, and assume that T has a sign.
Recall [Sch07], [Sch08] the definition of the cycle operator and of tameness:

Definition 2.34. • LetM be the set of all self injections of N. This
is a monoid under composition, the so-called injection monoid.
• The injective map d : N→ N given by x 7→ x+ 1 is called the cycle

operator.
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• As usual, we sometimes consider M as a category with a single
object. AM-object W in D is a functor W :M→D, and we have
the category Func(M,D) of M-objetcs in D. If D is the category
of sets resp- abelian groups, we call these objectsM-modules resp.
M-sets.
• Let n ∈ N0. The injective map M → M, given by mapping f to

the map

x 7→

{
x x ≤ n
f(x− n) x > n,

is denoted by n + − or −(n). For W any M-object, note that
W (n) is theM-object with underlying object W and theM-action
restricted along n+− .
• Now assume further that D has a forgetful functor to the category

of sets. Let φ be an M-action on an object W in D. Then we
sometimes write fx for [φ(f)](x) if the M-action is understood.
For any f ∈ M let |f | := min{i ≥ 0; f(i+ 1) 6= i+ 1}. An element
x ∈W has filtration n if for all f ∈M with |f | ≥ n we have fx = x.

We write W (n) for the subset of all elements of filtration n. The
M-action on W is tame if W =

⋃
n≥0W

(n). If D fas a forgetful

functor to abelian groups, then W (n), n ≥ 0 are abelian groups as
well.

The stable homotopy groups of shX, T ∧ X and ΩX may be expressed
through the stable homotopy groups of X. The following generalizes [Sch08,
Examples 3.10 and 3.11].

Proposition 2.35. Let X be a T -spectrum in D and q ∈ Z, V ∈ B. Then
we have the following isomorphisms of groups. They are compatible with the
sign of T , and if X is a symmetric spectrum they also respect theM-action:

(i) πVq+1(shX) ∼= πVq (X)(1).

(ii) πVq (ΩX) ∼= πVq+1(X), if X is level-fibrant and T is cofibrant.

(iii) πVq (X)
T∧−−−−→ πV1+q(T ∧X).

Proof. We first establish the isomorphisms.
(i) Easy.
(ii) As Xm is fibrant and V ∧ T q+m is cofibrant, we have isomorphisms:

[V ∧ T q+m,ΩXm]
αV ∧Tq+m,Xm−−−−−−−−−→ [V ∧ T q+m ∧ T,Xm]

(V ∧χ1,q+m)∗

−−−−−−−−→ [V ∧ T ∧ T q+m, Xm],

compatible with the structure maps, that is the diagram

[V ∧ T q+m,ΩXm]

σΩX
∗ (−∧T )

��

αV ∧Tq+m,Xm
// [V ∧ T q+m ∧ T,Xm]

(V ∧χ1,q+m)∗
// [V ∧ T ∧ T q+m, Xm]

σX∗ (−∧T )

��

[V ∧ T q+m+1,ΩXm+1]

αV ∧Tq+m+1,Xm+1
// [V ∧ T q+m+1 ∧ T,Xm+1]

(V ∧χ1,q+m+1)∗

// [V ∧ T ∧ T q+m+1, Xm+1]
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commutes. Now for any f : V ∧ T q+m → ΩXm in Ho(D), we have

αV ∧T q+m+1,Xm+1
(σΩX · (f ∧ T )) = ev ·([σΩX · (f ∧ T )] ∧ T )

= σX · (evX ∧T ) · (1 ∧ χ1,1) · (f ∧ T 2)

= σX · (evX ∧T ) · (f ∧ χ1,1).

Thus under the lower left composition, f maps to

σX · (evX ∧T ) · (f ∧ χ1,1) · (V ∧ χ1,q+m+1)

= σX · (evX ∧T ) · (f ∧ T 2) · (V ∧ χ1,q+m ∧ T ),

and to

σX · ([αV ∧T q+m,Xm(f) · (V ∧ χ1,q+m)] ∧ T )

= σX · ([ev ·(f ∧ T ) · (V ∧ χ1,q+m)] ∧ T )

under the upper right composition. This yields the claimed bijection. Using
Lemma 2.28 (respectively Definition 2.16), we see that αV ∧T q+m,Xm (respec-
tively (V ∧ χ1,q+m)∗) is a group homomorphism.

(iii) As T ∧ − preserves weak equivalences in D, it induces maps

[V ∧ T q+m, Xm]
T∧−

// [T ∧ V ∧ T q+m, T ∧Xm]

(tV,T∧T q+m)∗

��

[V ∧ T ∧ T q+m, T ∧Xm],

which are obviously compatible with the structure maps. For any

f : V ∧ T q+m → Xm

in Ho(D), the diagram

V ∧ T ∧ T q+m
tV,T∧T q+m

//

tT,Tq+m **

T ∧ V ∧ T q+m
T∧f

// T ∧Xm

V ∧ T q+m ∧ T
f∧T

//

tV ∧Tq+m,T

OO

Xm ∧ T

tT,Xm

OO

commutes, therefore the map above equals the composition

[V ∧ T q+m, Xm]
−∧T

// [V ∧ T q+m ∧ T,Xm ∧ T ]

(V ∧χ1,q+m)∗tT,Xm∗
��

[V ∧ T ∧ T q+m, T ∧Xm].

Arguing as in (ii), we see this is a group homomorphism. Passing to the
colimit yields the desired map T ∧ (−) = (T ∧ (−))X . By naturality, any
level equivalence Xc → X in Sp(D, T ) induces an isomorphism between the
maps (T ∧ −)X and (T ∧ −)Xc . Choosing Xc to be level cofibrant, we may
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assume that X is level cofibrant itself when showing that (T ∧ −)X is an
isomorphism.

To see injectivity, assume that there is some f in the kernel, and that f
is represented by some element in [V ∧T q+m, Xm]. Then contemplating the
commutative diagram

[V ∧ T q+m, Xm]
−∧T

//

T∧−
��

[V ∧ T q+m ∧ T,Xm ∧ T ]
σ∗ // [V ∧ T q+m ∧ T,Xm+1]

[T ∧ V ∧ T q+m, T ∧Xm]

t∗
V ∧Tq+m,T

·tT,Xm∗

44

(tV,T∧T q+m)∗

// [V ∧ T ∧ T q+m, T ∧Xm]
(V ∧χq+m,1)∗·tT,Xm∗

// [V ∧ T q+m ∧ T,Xm ∧ T ]

σ∗

OO

we see that it has to be zero in the upper right corner, showing injectivity
as claimed.

To obtain inverse images, consider the composition

[V ∧ T 1+q+m, T ∧Xm]
(V ∧χq+m,1)∗·tT,Xm∗

// [V ∧ T (q+m)+1, Xm ∧ T ]

σ∗
��

[V ∧ T q+m+1, Xm+1].

It remains to show σT∧X∗ (− ∧ T ) is the result of composing this with the
map above. This will rely on the existence of the sign on T . Let

f : V ∧ T 1+q+m → T ∧Xm

be a map in Ho(D). Then we have

[(tV,T ∧ 1)∗ · (T ∧ −)] · [σ∗ · tT,Xm∗ · (V ∧ χq+m,1)∗](f)

= [(tV,T ∧ 1)∗ · (T ∧ −)](σ · tT,Xm · f · (V ∧ χq+m,1))

= T ∧ (σ · tT,Xm · f · (V ∧ χq+m,1)) · (tV,T ∧ T q+m+1)

= σT∧X · (T ∧ tT,Xm) · (T ∧ f) · (tV,T ∧ χq+m,1).

Let us first consider

(T ∧ tT,Xm) · (T ∧ f)

= (T ∧ tT,Xm) · (tT,T ∧Xm)2 · (T ∧ f)

= [(T ∧ tT,Xm) · (tT,T ∧Xm)] · [((−1)T ∧ T ∧Xm) · (T ∧ f)]

= tT,T∧Xm · (T ∧ f) · ((−1)T ∧ V ∧ T 1+q+m)

= (f ∧ T ) · tT,V ∧T 1+q+m · ((−1)T ∧ V ∧ T 1+q+m).

Because

tT,V ∧T 1+q+m · ((−1)T ∧ V ∧ T 1+q+m) · (tV,T ∧ χq+m,1)

= tT,V ∧T 1+q+m · (tV,T ∧ χq+m,1) · (V ∧ (−1)T ∧ T 1+q+m)

= (V ∧ τ1,1+q+m+1) · (V ∧ (−1)T ∧ T 1+q+m)
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= (V ∧ (−1)T ∧ T 1+q+m) · (V ∧ (−1)T ∧ T 1+q+m) = 1

we finally obtain

[(tV,T ∧ 1)∗ · (T ∧ −)] · [σ∗ · tT,Xm∗ · (V ∧ χq+m,1)∗](f) = σT∧X · (f ∧ T ).

Here τ1,1+q+m+1 ∈ Σ1+q+m+1 is the permutation interchanging 1+q+m+1
and 1.

We now turn to theM-action. Let f : N→ N be injective, max(f(m)) =
n and γ ∈ Σn with γ|m = f |nm. Concerning (i), for 1 + γ ∈ Σ1+m we have

(1 + γ)|1+n = (1 + f)|1+n
1+m and the diagram

[V ∧ T (q+1)+m, (shX)m]

σn−m∗ ·(−∧Tn−m)
��

[V ∧ T q+(1+m), X1+m]

σ
(n+1)−(m+1)
∗ ·(−∧T (n+1)−(m+1))
��

[V ∧ T (q+1)+n, (shX)n]

(V ∧|γ|T∧1)∗·γ∗
��

[V ∧ T q+(1+n), X1+n]

(V ∧|1+γ|T∧1)∗·(1+γ)∗
��

[V ∧ T (q+1)+n, (shX)n] [V ∧ T q+(1+n), X1+n]

commutes as sgn(γ) = sgn(1 + γ). But the right hand side is precisely the
M-action on πVq (X)(1).

As the maps in (ii) and (iii) commute levelwise with σn−m∗ · (−∧ Tn−m),
it remains to show that they also commute with maps of the form

(V ∧ |γ|T ∧ 1)∗ · γ∗.

For (ii), consider the diagram

[V ∧ T q+m,ΩXn]
(1∧|γ|T∧1)∗·(Ωγ)∗

//

−∧T
��

[V ∧ T q+m,ΩXn]

−∧T
��

[V ∧ T q+m ∧ T,ΩXn ∧ T ]
(1∧|γ|T∧1∧T )∗·(Ωγ∧T )∗

//

ev

��

[V ∧ T q+m ∧ T,ΩXn ∧ T ]

ev

��

[V ∧ T q+m ∧ T,Xn]
(1∧|γ|T∧1∧T )∗·γ∗

//

(V ∧χ1,q+m)∗

��

[V ∧ T q+m ∧ T,Xn]

(V ∧χ1,q+m)∗

��

[V ∧ T ∧ T q+m, Xn]
(1∧T∧|γ|T∧1)∗·γ∗

// [V ∧ T ∧ T q+m, Xn]

which commutes by the naturality of ev and t−,−). In the last row, we have

1 ∧ T ∧ |γ|T ∧ 1 = 1 ∧ |γ|T ∧ 1
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by Definition 2.16. As α = ev ·(−∧T ) the compatibility with theM-action
follows. For (iii), we consider the commutative diagram

[V ∧ T q+m, Xn]
(1∧|γ|T∧1)∗·γ∗

//

(T∧−)

��

[V ∧ T q+m, Xn]

(T∧−)

��

[T ∧ V ∧ T q+m, T ∧Xn]
(T∧V ∧|γ|T∧1)∗·(T∧γ)∗

//

(tV,T∧1)∗

��

[T ∧ V ∧ T q+m, T ∧Xn]

(tV,T∧1)∗

��

[V ∧ T ∧ T q+m, T ∧Xn]
(V ∧T∧|γ|T∧1)∗·(T∧γ)∗

// [V ∧ T ∧ T q+m, T ∧Xn].

Here for the last row we have V ∧ T ∧ |γ|T ∧ T q+m−1 = V ∧ |γ|T ∧ T q+m by
Definition 2.16, hence the third isomorphism also respects the M-action.

The compatibility with the sign is shown by a similar argument. �

The proposition implies that the class of semistable spectra is stable under
various operations (compare [Sch08, Section 4], [Sch12]):

Corollary 2.36. Assume that SpΣ(D, T ) has a levelwise fibrant replace-
ment functor. Then for any symmetric T -spectrum in D, the following are
equivalent:

• X is semistable.
• T ∧X is semistable.
• ΩJΣX is semistable.
• shX is semistable.

Proof. Most of this follows directly from Proposition 2.35. Concerning shX
it remains to show that for a tame M-modul W the M-action is trivial if
and only if it is trivial on W (1). But if the M-action is trivial on W (1),
then W has filtration ≤ 1 and thus by Lemma 2.39 below the M-action is
trivial. �

Definition 2.37. Let X be a levelwise fibrant symmetric T -spectrum. We
denote the composition of the M-isomorphisms (i) and (ii) of Proposi-
tion 2.35 by α : πVq (RX) ∼= πVq (X)(1).

The following will be used when proving Theorem 2.43:

Proposition 2.38. Let X be a symmetric T -spectrum. The action of d ∈M
is isomorphic to the action of λX on stable homotopy groups, i.e., the square

πVq (X)
d∗ //

(−1)qT ·(T∧−) ∼=
��

πVq (X)(1)

∼=
��

πV1+q(T ∧X)
πV1+q(λX)

// πV1+q(shX)
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commutes. If X is levelwise fibrant, the for all n ∈ N0 the squares

πVq (X)
d∗ //

λ̃X ∗·(−1)qT
∼=
��

πVq (X)(1)

πVq (RX)
α // πVq (X)(1)

and πVq (RnX)
αn //

πVq (Ωnλ̃shn X)·(−1)qT
��

πVq (X)(n)

d∗
��

πVq (Rn+1X)
αn+1
// [πVq (X)(n)](1)

commute as well, the right d∗ is the action of d(n) on the underlying sets
πVq (X) (see Definition 2.34). In particular, the action of d(n) on πVq (X) is

isomorphic to the map πVq (Rnλ̃X).

Proof. Let f : V ∧ T q+m → Xm be a morphism in Ho(D). The first square
commutes because

[λX,m∗ · (V ∧ (−1)qT ∧ 1)∗ · [(tV,T ∧ T q+m)∗ · (T ∧ −)]](f)

= (χm,1 · σXm · tT,Xm) · (T ∧ f) · (tV,T ∧ T q+m) · (V ∧ (−1)qT ∧ 1)

= χm,1 · σXm · (f ∧ T ) · tT,V ∧T q+m · (tV,T ∧ T q+m) · (V ∧ (−1)qT ∧ 1)

= χm,1 · σXm · (f ∧ T ) · (V ∧ χ1,q+m) · (V ∧ (−1)qT ∧ 1)

= χm,1 · σXm · (f ∧ T ) · (V ∧ (−1)q+mT ∧ 1) · (V ∧ (−1)qT ∧ 1)

= χm,1 · σXm · (f ∧ T ) · (V ∧ (−1)mT ∧ 1)

= [χm,1∗ · (V ∧ (−1)mT ∧ 1)∗ · σX∗ · (− ∧ T )](f) = d∗(f).

And similarly for the second square,

[[(V ∧ χ1,q+m)∗ · α] · λ̃X,m ∗ · (V ∧ (−1)qT ∧ 1)∗](f)

= ev ·([λ̃X,m · f · (V ∧ (−1)qT ∧ 1)] ∧ T ) · (V ∧ χ1,q+m)

= χm,1 · σXm · (f ∧ T ) · (V ∧ χ1,q+m) · (V ∧ (−1)qT ∧ 1) = d∗(f).

Finally, following Schwede we observe that the commutativity of the third
square follows from the second. To see this, consider the large commuta-
tive (note that the isomorphisms are compatible with the sign by Proposi-
tion 2.35) diagram

πVq (Ωn shnX)
∼= //

αn

,,

(Ωnλ̃shn X)∗·(−1)qT
��

πVq+n(shnX)

(λ̃shn X)∗·(−1)qT
vv

d∗

''

∼= // πVq (X)

d(n)

��

πVq (Ωn shnRX)
∼= //

αn+1

22πVq+n(R shnX)
α
∼=

// πVq+n(shnX)
∼= // πVq (X).

The last claim follows from Lemma 2.7 by which the morphisms λ̃shnX and
shn λ̃X are isomorphic in SpΣ(D, T ). �
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2.5. Generalities concerning the M-action.

Lemma 2.39 (Schwede). Let W be a tame M-module.

(i) Any element of M acts injectively on W .
(ii) If the filtration on W is bounded, then W is a trivial M-module.

(iii) If d ∈M acts surjectively on W , then W is a trivial M-module.
(iv) If W is a finitely generated abelian group, then W is a trivial M-

module.

Proof. See [Sch08, Lemma 2.3]. �

Lemma 2.40. Let F : I → D be a functor and assume that D has sequential
colimits and a forgetful functor to the category of sets. Then, if any element

of F (ω) is in the image of some inclusion map incl
F (ω)
m , F (ω) is tame.

Proof. It suffices to show that any x ∈ F (ω) arising via

y ∈ F (l), x = incl
F (ω)
l (y)

has filtration ≤ l. Consider f ∈ M with |f | = l. By definition of F (f), we

have F (f) · incl
F (ω)
l = F (f|l) = incl

F (ω)
l · F (1l) = incl

F (ω)
l as f restrics to 1l.

This yields F (f)(x) = x, so x has filtration ≤ l. �

The next result describes several general properties of the construction
which [Sch12] applies to the functors π̂k.

Proposition-Definition 2.41. Let D be a category and F a class of func-
tors from D to the category of M-sets. Let C = DF be the full subcategory
of D of those X for which the M-action on F (X) is trivial for all f ∈ F .

(i) For any X ∈ D, F ∈ F , consider the set F̃ (X) of natural trans-

formations of functors C → Set from D(X,−) to F . Then F̃ is a
functor from D to M-sets.

(ii) M acts trivially on F̃ (X).

(iii) There is a natural map cX : F (X)→ F̃ (X) of M-sets.

(iv) An object X of D is in C if and only if cX : F (X) → F̃ (X) is
bijective (or equivalently injective).

Proof. (i) Let f : X1 → X2 be a map in D, g ∈ F̃ (X1) and k : X2 → Y a
map in D with Y in C. The natural transformation g maps kf to an element
g′Y (k) := gY (kf) ∈ F (Y ). By naturality of g the assignment k 7→ g′Y (k) is

natural in Y . Hence we obtain a map F̃ (f) : F̃ (X1) → F̃ (X2), g 7→ g′, and

one easily verifies that F̃ is a functor. Now let w ∈ M and g ∈ F̃ (X1).

Then the composition F|C(w) · g ∈ F̃ (X1) is a natural transformation, thus

defining an M-action on F̃ (X1). For any f : X1 → X2 in D we then have

[w∗F̃ (f)](g) = F|C(w) ·g(−·f) = [F|C(w) ·g](−·f) = [F̃ (f)w∗](g). Therefore

F̃ (f) respects the M-action.
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(ii) Let w ∈ M, g ∈ F̃ (X) and k : X → Y with Y in M. Then M acts
trivially on F (Y ) and we have [(F|C(w) ·g)(k)] = w∗[g(k)] = g(k), soM acts

trivially on F̃ (X) as well.
(iii) The map cX sents x ∈ F (X) to the natural transformation

k 7→ [F (k)](x) (k : X → Y, Y in C),

which is natural in X. For w ∈M we have

[w∗(cX(x))](k) = [F|C(w) · cX(x)](k) = F|C(w)([F (k)](x))

= [F (k)](w∗(x)) = [cX(w∗(x))](k)

as F is compatible with M. Hence cX is a map of M-sets.
(iv) Now let X in C. By Yoneda ev1X : F̃ (X)→ F (X) an 1X is bijective

with inverse cX (ev1X ·cX = 1F (X)). Conversely, if cX is injective, then by
(ii) and (iii) the action of M on F (X) trivial, hence X is in B. �

One can show that for D the category of symmetric spectra based on
simplicial sets and F the set of stable homotopy groups π̂k, k ∈ Z the above

definition of ˜̂πk is isomorphic to the definition of the “true” stable homotopy
groups. Later we will also need the follwing standard result.

Corollary 2.42. Assume that fibrant objects D are closed under sequential
colimits, and the functors j, Hom(T,−) and Hom(A,−) for all A ∈ B pre-
serve sequential colimits. Then for any sequential diagram X• in Sp(D, T )
the map

colim
n≥0

πVq (Xn)
incl∗−−−→ πVq (colimX•)

is an isomorphism for all q ∈ Z, V ∈ B.

2.6. Criteria for semistability: the generalized theorem. We keep
the hypotheses of Section 2.3. We now extend Theorem 2.10 (under ad-
ditional assumptions), which simultaneously generalizes Schwede’s Theo-
rem 1.1.

Theorem 2.43. Let (D,∧, S0) be a pointed symmetric monoidal model cat-
egory with a cofibrant object T , such that −∧T preserves weak equivalences
and T has a sign. Let i : sSet∗ → D be a monoidal left Quillen functor
with adjoint j. Let B be a class of cofibrant objects in D. Moreover, assume
that fibrant objects in D are closed under sequential colimits and that j,
Hom(T,−) and Hom(A,−) for all A ∈ B preserve sequential colimits. Then
for any T -spectrum X in D the following are equivalent:

(i) X is semistable (see Definition 2.31).
(ii) The cycle operator d (see Definition 2.34) acts surjectively on all

stable homotopy groups.
(iii) The map λX : T ∧X → shX is a πB- stable equivalence.
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If the class {πVq ; q ∈ Z, V ∈ B} of functors from SpΣ(D, T ) to M-sets satis-
fies the assumptions of Proposition-Definition 2.41, then (i) is also equiva-
lent to

(i′) The map cX : πVq (X) → π̃Vq (X) (Definition 2.41) is a bijection for
all q ∈ Z, V ∈ B.

If X is level fibrant, then (i)–(iii) are also equivalent to:

(iv) The map λ̃X : X → RX is a πB-stable equivalence.

(v) The map λ̃∞X : X → R∞X is a πB-stable equivalence.
(vi) The symmetric spectrum R∞X is semistable.

Now consider the following conditions:

(1) The projective level model structure on Sp(D, T ) exists and the con-
ditions (a) and (b) of Theorem 2.10 are satisfied.

(2) The projective level model structure on SpΣ(D, T ) exists (in partic-
ular there is a level fibrant replacement functor 1→ JΣ.

(3) πB-stable equivalences coincide with stable equivalences in Sp(D, T ).

If (1)–(3) hold, then (i)–(iii) are equivalent to (viii), below, and if X is also
level fibrant all above conditions are equivalent to (vii):

(vii) The symmetric spectrum R∞X is an Ω-spectrum.
(viii) There is a πB-stable equivalence X to an Ω-spectrum.

In any case, we always have the implications (viii)⇒(i) and (vii)⇒(vi).

Proof. (i)⇔(ii) By definition (ii) follows from (i). Because of tameness (see
Lemma 2.40), Lemma 2.39(iii) shows the converse.

(ii)⇔(iii) This follows from the first commutative diagram in Proposi-
tion 2.38.

(i)⇔(i′) follows from Proposition 2.41 and Definition 2.31.

(viii)⇒(ii) For any Ω-spectrum Z, λ̃Z is a level equivalence and hence
a πB-stable equivalence. By (iv)⇒(ii)⇒(i) it follows that Ω-spectra are
semistable. Lemma 2.33 then shows that X is semistable.

(vii)⇒(vi) We saw in (viii)⇒(ii) that Ω-spectra are semistable.

Now assume that X is level fibrant.

(ii)⇔(iv) By the second commutative square in Proposition 2.38, (iv) is
equivalent to d acting bijectively on all πB-stable homotopy groups of X.
Now use (i)⇔(ii).

(iv)⇒(v) As λ̃X is a πB-stable equivalence, so are Rnλ̃X , n ∈ N0 as Ω and
sh preserve πB-stable equivalences according to Proposition 2.35(i),(ii), By

Corollary 2.42, the map πVq (λ̃∞X ) is isomorphic to the inclusion

πVq (X)
incl0−−−→ colim

n≥0
πVq (RnX).

But all the maps πVq (Rnλ̃X), n ∈ N0 are isomorphisms, hence so is the

inclusion and thus λ̃∞X is a πB-stable equivalence.
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(v)⇒(ii) The maps πVq (Rnλ̃X), n ∈ N0 are injective, because by Proposi-

tion 2.38 they are isomorphic to the action of d(n) on πVq (X), which again
by Lemma 2.39 and 2.40 is injective. The inclusion

πVq (X)
incl−−→ colim

n≥0
πVq (RnX)

is an isomorphism, as it is isomorphic to πVq (λ̃∞X ) (Corollary 2.42). As

all maps in the sequential diagram πVq (R•X) are injective, they must be

surjective. Hence d acts surjectively on πVq (X).
(iv)⇒(vi) As (iv) implies (v) and (ii), hence also (i), Lemma 2.33 shows

that R∞X is semistable.
(vi)⇒(i) We saw above ((v)⇒(ii)) that πVq (λ̃∞X ) : πVq (X)→ πVq (R∞X) is

injective and compatible with theM-action. As theM-action on πVq (R∞X)

is trivial, so is its restriction to πVq (X).

Finally, we assume that hypotheses (1)–(3) are satisfied.

(iv)⇒(vii) By hypothesis λ̃X is a stable equivalence in Sp(D, T ). The
implication (ii)⇒(iv) in Theorem 2.10 then yields the claim.

(i)⇒(viii) We have a πB-stable equivalence X → JΣX =: Y in SpΣ(D, T ).
Using Lemma 2.33 we see that is JΣX semistable, so the implications
(i)⇒(v),(vii) show that λ̃∞Y : Y → R∞Y is a πB-stable equivalence and
R∞Y an Ω-spectrum. �

Example 2.44. For suspension spectra Σ∞L the map λΣ∞L is already
levelwise an isomorphism, as the structure maps σ are identities. Hence
suspension spectra are semistable.

The above Theorem 2.43 is designed to apply notably to the motivic
model category M cm

· (S):

Proposition 2.45. All assumptions (except for those preceding (i′)) of The-
orem 2.43 are satisfied for D = M cm

· (S), T = P1,

B = {Sr ∧Gs
m ∧ U+ | r, s ≥ 0, U ∈ Sm/S}.

Proof. Most of this has been proved in Corollary 2.12 already. Subsec-
tion 2.2.2 shows that P1 has a sign, and the projective level model structure
on SpΣ(D, T ) is established in [Hov2, Theorem 8.2]. The πB-equivalences
coincide with the stable equivalences in Sp(D, T ) by [Ja2, Section 3.2]. �

Sometimes sequential colimits preserve semistability:

Proposition 2.46. Let X• be a sequential diagram in SpΣ(D, T ) and as-
sume that the hypotheses of Corollary 2.42 hold. If all Xn, n ∈ N0 are
semistable, then so is colimX•.

Proof. Following Corollary 2.42, we have an isomorphism

colimπVq (X•)→ πVq (colimX•).
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Now the maps πVq (Xn)
incl∗−−−→ πVq (colimX•) respect the M-action and the

sets πVq (Xn), n ∈ N0 have trivial M-action. As colimits preserve identities,

M acts trivially on πVq (colimX•) as well. �

For D = Top∗, T = S1 a special class of semistable spectra is given
by orthogonal spectra (see [Sch08, Example 3.2].) These include not only
suspension spectra, but also various Thom spectra. This is related to the
following criteria:

Proposition 2.47. A symmetric spectrum X is semistable if one of the
following conditions hold:

(i) For any q ∈ Z and V ∈ B there is an l ≥ 0 such that the inclusion
map [V ∧T q+l, Xl]→ πVq (X) is surjective. This holds, in particular,
if the stable homotopy groups stabilize, i.e.,

[V ∧ T q+n, Xn]→ [V ∧ T q+n+1, Xn+1]

is an isomorphism for n� 0.
(ii) Even permutations on Xl induce identities in Ho(D).

(iii) The stable homotopy groups πVq (X) are finitely generated abelian
groups for all q ∈ Z and V ∈ B.

Proof. (i) According to Lemma 2.40 the filtration on πVq (X) is bounded,

hence by Lemma 2.39(ii) the M-action on πVq (X) is trivial.

(ii) We show that d acts trivially on πVq (X). The following observation is
crucial: For any even n ∈ N0 the map

[V ∧ T q+n+1, Tn+1]
χn,1∗(V ∧|χn,1|T∧1)∗

−−−−−−−−−−−−−→ [V ∧ T q+n+1, Tn+1]

is the identity. This is because χn,1 is even, hence |χn,1|T = 1 (Defini-
tion 2.16), and χn,1∗ is the identity by assumption. Any element in πVq (X)

is (stably) represented by some f ∈ [V ∧T q+n, Tn] with n ∈ N0 even. There-
fore d[f ] = [χn,1∗(V ∧ |χn,1|T ∧ 1)∗ · ι∗(f)] = [ι∗(f)] = [f ]. Thus d acts
trivially. Following Lemma 2.39, the M-action on πVq (X) is trivial.

(iii) By the tameness of πVq (X) (use Lemma 2.40), this follows from Lem-
ma 2.39(iv). �

Remark 2.48. The result in [RSØ, Proposition 3.2] provides exactly the
same criterion as Propostion 2.47(ii).

The motivic stable homotopy category contains various spectra X which
come with a natural action of the general linear group. If this action is
compatible with the action of the symmetric group, then X is semistable:

Corollary 2.49. Let E be a symmetric T -spectrum. Assume that for any
n ∈ N0 there is an E′n in M·(S) with Σn-action, a zig-zag of Σn-equivariant
maps between En and E′n which are motivic weak equivalences and a map

h·(GLnS) ∧ E′n → E′n
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in M·(S) such that this linear action restrics to the given Σn-action on E′n.
Then E is semistable.

Proof. Let D = M cm
· (S) and τ ∈ Σn even with permutation matrix Pτ .

By Lemma 2.25 we know that Pτ and id induce the same endomorphism on
E′n in Ho(D), and the latter is the identity by assumption. Hence any even
permutation acts trivially on E′n (in Ho(D)) as it is conjugated to the action
on En. Now apply Proposition 2.47(ii). �

Remark 2.50. In fact, one may define the notion of a motivic linear spec-
trum, using the canonical action of GLn on An and the canonical isomor-
phisms (An/(An − 0)) ∧ (Am/(Am − 0)) ∼= (An+m/(An+m − 0)) (see [MV,
Proposition 3.2.17]). Then the forgetful functor from motivic linear spectra
to motivic spectra with the projective, flat,... model structure should cre-
ate a projective, flat... monoidal model structure on motivic linear spectra.
Moreover, this forgetful functor has a right adjoint for formal reasons (see,
e.g., [MMSS, Proposition 3.2]), and this Quillen adjunction is expected to be
a Quillen equivalence. Motivic linear spectra will be a convenient framework
for equivariant stable motivic homotopy theory.

3. Examples of semistable motivic symmetric spectra

In [RSØ] it is shown that algebraic K-theory may be represented by an
explicit semistable motivic spectrum. In this section, we discuss two further
examples. In the following section, we only consider the motivic case, that
is D = M cm

· (S), T = P1, B = {Sr ∧ Gs
m ∧ U+|r, s ≥ 0, U ∈ Sm/S} as in

Proposition 2.45.

3.1. The motivic Eilenberg–Mac Lane spectrum. In [DRØ, Example
3.4], the motivic Eilenberg–Mac Lane spectrum is defined as the evaluation
of a certain motivic functor on smash powers of T (see [DRØ, Abschnitt 3]).
According to [DRØ, Lemma 4.6] this represents integral motivic cohomology,
and this is the description we will use.

In general, consider a functor H : M·(S) → M·(S) with the following
properties: First, there are natural functors

HA,B : Hom(A,B)→ Hom(H(A), H(B))

compatible with the composition and such that restriction to S and zero-
simplices is just H on morphisms. Second, H maps motivic weak equiv-
alences between projective cofibrant objects (see [DRØ, Section 2.1]) to
motivic weak equivalences. We will see below that these two properties are
sufficient to define a semistable motivic symmetric spectrum. To obtain the
motivic Eilenberg–Mac Lane spectrum as in [DRØ, Example 3.4], we must
take H = u ◦ Ztr where u denotes forgetting the transfers, and the second
property holds by [DRØ, S. 524].

Let T̃ be a projective cofibrant replacement of Gm ∧ S1.
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Definition 3.1. The motivic Eilenberg–Mac Lane spectrum H is the sym-
metric T̃ -spectrum with Hn := H(T̃n), Σn acting by permutation of the

smash functors and structure maps Hn ∧ T̃ → Hn+1 adjoint to

T̃
unit−−→ Hom(T̃n, T̃n ∧ T̃ )

HT̃n,T̃n∧T̃−−−−−−−→ Hom(H(T̃n), H(T̃n ∧ T̃ )).

Note that the compositions σH ln : Hn ∧ T̃ l → Hn+l of the structure maps

are adjoint to T̃ l
unit−−→ Hom(T̃n, T̃n∧ T̃ l) H−→ Hom(H(T̃n), H(T̃n+l)) because

H is compatible with compositions on Hom, hence Σn × Σl-equivariant.
The following lemmas show that H satisfies the assumptions of Corol-

lary 2.49.

Lemma 3.2. There is a zigzag of Σn-equivariant maps between T̃∧n and
Tn := h·(AnS)//h·((An − 0)S), and this is a zigzag of motivic weak equiva-
lences between projectively cofibrant pointed objects.

Proof. Using Lemma 2.22, Lemma 2.23 and [MV, Lemma 3.2.13] we obtain
the desired zigzag

h·(AnS)//h·((An − 0)S)
∼ // h·(AnS)/h·((An − 0)S)

(A1/Gm)∧n

∼
OO

'
(Gm ∧ S1)∧n T̃n.

∼oo

if we replace everything projectively cofibrant. Choosing a functorial re-
placement, it is Σn-equivariant as well. �

Lemma 3.3. There is a zigzag of motivic weak equivalences which are Σn-
invariant between Hn and H(h·(AnS)//h·((An − 0)S)).

Proof. The zigzag of weak equivalences follows from Lemma 3.2 and the
second above property of H, and equivariance follows from the first property.

�

Lemma 3.4.

(i) There is a map h·(GLnS) ∧ Tn → Tn extending the Σn-action on
Tn.

(ii) There is a map h·(GLnS) ∧ H(Tn) → H(Tn) extending the Σn-
action on H(Tn).

Proof. (i) We have a commutative diagram

h·(GLnS) ∧ h·((An − 0)S)

1∧h·(incl)

��

µ
// h·((An − 0)S)

h·(incl)

��

h·(GLnS) ∧ h·(AnS)
µ

// h·(AnS)
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where the maps µ extend the Σn-action. As the smash product commutes
with colimits, the diagram induces a map

h·(GLnS) ∧ Tn → Tn

extending the Σn-action.
(ii) The map in the first part is adjoint to a map

h·(GLnS)→ Hom(Tn, Tn)

whose composition with HTn,Tn is adjoint to a map

h·(GLnS) ∧H(Tn2 )→ H(Tn2 ).

The latter extends the Σn-action because HTn,Tn(S) is the map

M·(S)(Tn, Tn)→M·(S)(H(Tn), H(Tn))

and the Σn-action on H(Tn) is induced by the one on Tn. �

Corollary 3.5. The motivic Eilenberg–MacLane spectrum H is semistable.

Proof. This follows from Lemma 3.3, Lemma 3.4 and Corollary 2.49. �

3.2. The algebraic cobordism spectrum. [Vo, Abschnitt 6.3] gave the
first definition of the algebraic cobordism spectrum. In [PY, Section 6.5]
(see also [PPR2, Section 2.1]) it is shown how to construct it as a motivic
symmetric commutative ring spectrum. We only care about the underlying
motivic symmetric spectrum MGL (see Definition 3.8 below) and will show
that it is semistable.

Recall the following definition of [MV]. Let X be an S-scheme and

ξ : E → X

a vector bundle. Then the zero section z(ξ) : X → E of ξ is a closed
immersion, and the Thom space Th(ξ) of ξ is the pointed motivic space
a[h·(E)/(h·(U(ξ))].

Lemma 3.6.

(i) Let A be an S-scheme. Then U(1A) = ∅, and there is a natural
motivic pointed weak equivalence h·(A)→ Th(1A).

(ii) Let X,X ′ be two S-schemes with vector bundles

ξ : V → X,

ξ′ : V ′ → X ′.

Then U(ξ ×S ξ′) = pr−1
1 (ξ) ∪ pr−1

2 (ξ′). Furthermore, we have a
motivic pointed weak equivalence

Th(ξ) ∧ Th(ξ′)
'→ Th(ξ ×S ξ′)
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which is associative and commutes with the permutation of ξ and ξ′.
The composition h·(A) ∧ Th(ξ) → Th(1A) ∧ Th(ξ) → Th(1A ×S ξ)
is denoted by ThA,ξ. Then the following diagram commutes:

Th(ξ)

∼=
��

Th(∼=)

((

h·(S) ∧ Th(ξ)
ThS,ξ

// Th(1S ×S ξ).

Proof. Straightforward. �

Considering schemes as functors on commutative rings [DG, 4.4 Com-
parison Theorem in I, §1], we define Grassmannian schemes Gr(d, n) in the
usual way (see [DG, I, §1, 3.4 and I, §2, 4.4]). The tautological bundle is
denoted by ξn,d : τ(d, n)→ Gr(d, n).

Lemma-Definition 3.7. For m,n ≥ 0 there is a commutative diagramm
of GLn-equivariant maps

τ(n, nm) //

ξn,nm
��

τ(n, n(m+ 1))

ξn,n(m+1)

��

Gr(n, nm) // Gr(n, n(m+ 1)).

The induced morphism ξn,nm → ξn,n(m+1) will be denoted by υn,m. Then
U(ξn,nm) is mapped to U(ξn,n(m+1)).

Proof. Straightforward. �

As before, we may restrict the GLn-action to a Σn-action. Then we are
ready for the definition of MGL. Recall that T is the Thom space of the
trivial line bundle on S.

Definition 3.8. The symmetric algebraic cobordism spectrum MGL is the
underlying T -Spectrum of the following motivic commutative ring spectrum:

• The sequence of motivic spaces

MGLn := colim
m≥1

(· · · → Th(ξSn,nm)
Th(υn,m)−−−−−−→ Th(ξSn,n(m+1))→ · · · ), n ≥ 0

with the induced Σn-action.
• Σn × Σp-equivariant multiplication maps

µn,p : MGLn ∧MGLp →MGLn+p, n, p ≥ 0

induced by

Th(ξSn,nm) ∧ Th(ξSp,pm)→ Th(ξSn,nm ×S ξSp,pm)

Th(µn,p,m)−−−−−−−→ Th(ξSn+p,(n+p)m).
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• Σn-equivariant unit maps ιn : T
n → MGLn, n ≥ 0 which for n ≥ 1

are given by the compositions

T
n ∼= Th(ξS1,1)∧n → Th(ξS×Sn1,1 )→ Th(ξSn,n)→MGLn

(and for n = 0 by S0 = h·(S)→ Th(1S) ∼= Th(ξS0,0)
∼=−→MGL0).

Now the semistability of MGL follows from the above discussion and
(again) Corollary 2.49.

Corollary 3.9. The motivic symmetric spectrum MGL is semistable.

Proof. We have a morphism aMGLn : h·(GLSn) ∧MGLn →MGLn in M·(S)
induced by the following commutative diagram:

h·(GLSn) ∧ Th(ξSn,nm)
1∧Th(υn,m)

//

Th
GLSn,ξ

S
n,nm

��

h·(GLSn) ∧ Th(ξSn,n(m+1))

GLSn ,ξ
S
n,n(m+1)

��

Th(GLSn ×SξSn,nm)
Th(GLSn ×Sυn,m)

//

Th(aSn,m)

��

Th(GLSn ×SξSn,n(m+1))

Th(aSn,m+1)

��

Th(ξSn,nm)
Th(υn,m)

// Th(ξSn,n(m+1)).

Here the top square commutes by naturality (see Lemma 3.6) and the bottom
square by functoriality of Thom spaces and the GLn-equivariance in Lem-

ma 3.7. Now for τ ∈ Σn and S
fτ−→ GLSn the associated matrix, the following

square commutes (see Lemma 3.6):

Th(ξSn,nm)

Th(∼=)

**

∼=
��

Th(τ∗)

##

h·(S) ∧ Th(ξSn,nm)
Th

S,ξSn,nm
//

h·(fτ )∧1
��

Th(S ×S ξSn,nm)

Th(fτ×S1)
��

h·(GLSn) ∧ Th(ξSn,nm)
Th

GLSn,ξ
S
n,nm
// Th(GLSn ×SξSn,nm)

Th(aSn,m)
// Th(ξSn,nm).

Thus h·(GLSn)∧MGLn →MGLn extends the Σn-action on MGLn, and the
semistability follows from Corollary 2.49. �

4. The multiplicative structure on stable homotopy groups
of symmetric ring spectra and its localizations

In this section, we will prove a generalization of [Sch07, Corollary I.4.69].
More precisely, we will show that the localization R[1/x] (see below) of a
semistable symmetric ring spectrum R with respect to a suitable x is again
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semistable and the map j : R → R[1/x] behaves as expected on stable
homotopy groups (see Section 4.2).

Throughout this section, we assume the following: The assumptions of
Section 2.3 hold and T has a sign. The smash product in D preserves weak
equivalences, which is the case for simplicial sets and motivic spaces by [MV,
Lemma 3.2.13]. We also assume that there is a commutative monoid N with
zero, for any r ∈ N a cofibrant object Sr and isomorphisms

sr1,r2 : Sr1+r2 → Sr1 ∧ Sr2

in D for all r1, r2 ∈ N such that the following hold:

• There is an isomorphism ∼=S0
: S0 ∼= S0.

• s−,− is associative.

• There are isomorphisms s0,r
∼= l−1

Sr and sr,0 ∼= ρ−1
Sr (via S0 ∼= S0)

(here l and ρ are the obvious structure morphisms, see [Hov1, Chap-
ter 4]).

Finally, we assume that there is a class of cofibrant objects B′ in D with
B = {Sr ∧ U |r ∈ N,U ∈ B′}.

Example 4.1. The standard example is, of course, N = N0 and Sr =
Sr = (S1)∧r together with the identities Sr1+r2 = Sr1 ∧ Sr2 (recall that
the simplicial spheres are in D via i by assumption). If D = M·(S) and
B = {Sr ∧ Gs

m ∧ U+|r, s ≥ 0, U ∈ Sm/S} as above, we may also consider

N = N2
0 and Sr = Sr

′∧G∧r′′m with r = (r′, r′′) and the isomorphisms given by
the obvious permutations. Note that in general S and T may be completely
unrelated, but in the motivic case that we care about they are the same.

Definition 4.2. For any symmetric T -spectrum X we set

πUr,q(X) := πS
r∧U
q (X),

for alle r ∈ N,U ∈ B′, q ∈ Z. We further set Str,r′ = s−1
r,r′tSr,Sr′sr,r′ and

obtain maps tr′,r : πUr′+r,q(X)→ πUr+r′,q(X) induced by the maps

[Sr′ ∧ Sr ∧ U ∧ T q+m, Xm]
(Str,r′∧T∧T q+m)∗−−−−−−−−−−−→ [Sr ∧ Sr′ ∧ U ∧ T q+m, Xm].

In particular, we have t0,r = tr,0 = id as lSr ◦ tSr,S0 = ρSr .

In the motivic case, one of the indices is of course redundant. Namely, if
Sr = Sr

′ ∧G∧r′′m (hence r = (r′, r′′) and U = S0, we have

πUr,q(X) ∼= πmot
q+r′+r′′,q+r′(X),

where we used Voevodsky’s indexing on the right hand side.
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4.1. The multiplication on stable homotopy groups. The following
generalizes the multiplication of stable homotopy groups for usual symmetric

ring spectra (see, e.g., [Sch07, Section I.4.6]). The sign (−1)q
′n
T below will be

used to show that the product is compatible with stabilization. See [Sch07,
Definition I.1.3] (resp. its obvious generalization) for the definition of a
(commutative) symmetric ring spectra. In particular, for any symmetric
ring spectrum R we have maps µn,m : Rn × Rm → Rn+m. Recall also

the definition of central elements x : T l+m → Rm of [Sch07, Proposition
I.4.61(i)]. Those are stable under smash multiplication: if y : T k+n → Rn is
another central element, then µ◦ (x∧y) is also central. If R is commutative,
then of course all maps T l+m → Rm are central.

Lemma 4.3. Let R be a semistable symmetric T -ring spectrum. Then for
any cofibrant objects U, V in D and r, r′ ∈ N, q, q′ ∈ Z, there is a natural (in
R,U, V ) biadditive map

mU,V,R
r,q,r′,q′ : πUr,q(R)× πVr′,q′(R) −→ πU∧Vr+r′,q+q′(R)

induced by

· : [Sr ∧ U ∧ T q+n, Rn]× [Sr
′ ∧ V ∧ T q′+n′ , Rn′ ]

→ [Sr+r
′ ∧ U ∧ V ∧ T q+q′+n+n′ , Rn+n′ ].

This pairing maps (f, g) to the composition

Sr+r
′ ∧ U∧V ∧ T q+q′+n+n′

sr,r′∧U∧V ∧(−1)q
′n
T ∧1

−−−−−−−−−−−−−−→ Sr ∧ Sr
′ ∧ U ∧ V ∧ T q+n ∧ T q′+n′

ηr,r
′,U,V

q+n,q′+n′−−−−−−→ (Sr ∧ U ∧ T q+n) ∧ (Sr
′ ∧ V ∧ T q′+n′)

f∧g−−→ Rn ∧Rn′
µn,n′−−−→ Rn+n′

with ηr,r
′,U,V

q+n,q′+n′ being the obvious permutation of smash functors.

The product is associative, that is the square

πUr,q(R)× πVr′,q′(R)× πWr′′,q′′(R)
m×1

//

1×m
��

πU∧Vr+r′,q+q′(R)× πWr′′,q′′(R)

m

��

πUr,q(R)× πV ∧Wr′+r′′,q′+q′′(R)
1×m

// πU∧V ∧Wr+r′+r′′,q+q′+q′′(R)

commutes. It is compatible with the sign (−1)T in both variables, namely
we have

(−1)T (f · g) = ((−1)T f) · g = f · ((−1)T g)



42 STEPHAN HÄHNE AND JENS HORNBOSTEL

If the ring spectrum R is commutative, then the multiplication on stable
homotopy groups is commutative, that is the square

πUr,q(R)× πVr′,q′(R)
mU,V //

t

��

πU∧Vr+r′,q+q′(R)
(−1)q

′q
T tr′,r

''

πVr′,q′(R)× πUr,q(R)
mV,U // πV ∧Ur′+r,q′+q(R)

t∗U,V
// πU∧Vr′+r,q′+q(R)

also commutes. Finally, if f : Sr ∧ U ∧ T q+n → Rn is central in D, then

t∗U,V ◦ (g · [f ]) = (−1)q
′q
T tr′,r([f ] · g).

Proof.

Biadditivity. The product is biadditive already before stabilization. This is
a long, but straightforward verification.

Associativity. We show that the product is associative already before sta-
bilization. (The symbol η below denotes various obvious isomorphisms.)
Let

f ∈ [Sr ∧ U ∧ T q+n, Rn],

g ∈ [Sr
′ ∧ V ∧ T q′+n′ , Rn′ ],

h ∈ [Sr
′′ ∧W ∧ T q′′+n′′ , Rn′′ ].

Then we have

f · (g · h) = µn,n′+n′′ ◦ (f ∧ (g · h)) ◦ ηr,r
′+r′′,U,V ∧W

q+n,q′+q′′+n′+n′′

◦ (sr,r′+r′′ ∧ 1 ∧ (−1)
(q′+q′′)n
T ∧ 1)

= µn,n′+n′′ ◦ (f ∧ [µn′,n′′ ◦ (g ∧ h) ◦ ηr
′,r′′,V,W
q′+n′,q′′+n′′

◦ (sr′,r′′ ∧ 1 ∧ (−1)q
′′n′

T ∧ 1)])

◦ ηr,r
′+r′′,U,V ∧W

q+n,q′+q′′+n′+n′′ ◦ (sr,r′+r′′ ∧ 1 ∧ (−1)
(q′+q′′)n
T ∧ 1)

= [µn,n′+n′′ ◦ (1 ∧ µn′,n′′)] ◦ (f ∧ g ∧ h)

◦ (1 ∧ [ηr
′,r′′,V,W
q′+n′,q′′+n′′ ◦ (sr′,r′′ ∧ 1 ∧ (−1)q

′′n′

T ∧ 1)])

◦ ηr,r
′+r′′,U,V ∧W

,q+n,q′+q′′+n′+n′′ ◦ (sr,r′+r′′ ∧ 1 ∧ (−1)
(q′+q′′)n
T ∧ 1)

= [µn,n′+n′′ ◦ (1 ∧ µn′,n′′)] ◦ (f ∧ g ∧ h)

◦ [(1 ∧ ηr
′,r′′,V,W
q′+n′,q′′+n′′) ◦ η

r,r′+r′′,U,V ∧W
q+n,q′+q′′+n′+n′′ ]

◦ [1 ∧ (sr′,r′′ ∧ 1 ∧ T q+n ∧ (−1)q
′′n′

T ∧ 1)

◦ (sr,r′+r′′ ∧ 1 ∧ (−1)
(q′+q′′)n
T ∧ 1)]

= [µn,n′+n′′ ◦ (1 ∧ µn′,n′′)] ◦ (f ∧ g ∧ h)

◦ [(1 ∧ ηr
′,r′′,V,W
q′+n′,q′′+n′′) ◦ η

r,r′+r′′,U,V ∧W
q+n,q′+q′′+n′+n′′ ]
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◦ [1 ∧ (sr′,r′′ ∧ 1 ∧ (−1)q
′′n′

T ∧ 1)

◦ (sr,r′+r′′ ∧ 1 ∧ (−1)
(q′+q′′)n
T ∧ 1)]

= [µn,n′+n′′ ◦ (1 ∧ µn′,n′′)] ◦ (f ∧ g ∧ h)

◦ [(1 ∧ ηr
′,r′′,V,W
q′+n′,q′′+n′′) ◦ η

r,r′+r′′,U,V ∧W
q+n,q′+q′′+n′+n′′ ]

◦ (((1 ∧ sr′,r′′)sr,r′+r′′) ∧ 1 ∧ (−1)
q′′n′+(q′+q′′)n
T ∧ 1).

Here the second last equality uses Definition 2.16, which yields

Sr+r
′+r′′ ∧ U ∧ V ∧W ∧ T q+n ∧ (−1)q

′′n′

T ∧ T q′+q′′+n′+n′′−1

= Sr+r
′+r′′ ∧ U ∧ V ∧W ∧ (−1)q

′′n′

T ∧ T q+q′+q′′+n+n′+n′′−1.

A similar computation (slightly easier, Definition 2.16 is not used here)
shows that

(f · g) · h

= [µn+n′,n′′ ◦ (µn,n′ ∧ 1)] ◦ (f ∧ g ∧ h) ◦ [(ηr,r
′,U,V

q+n,q′+n′ ∧ 1)

◦ ηr+r
′,r′′,U∧V,W

q+q′+n+n′,q′′+n′′ ] ◦ (((sr,r′ ∧ 1)sr+r′,r′′) ∧ 1 ∧ (−1)
q′n+q′′(n+n′)
T ∧ 1).

As R is associative, we have µn,n′+n′′ ◦ (1∧µn′,n′′) = µn+n′,n′′ ◦ (µn,n′ ∧1).
Moreover

(1 ∧ ηr
′,r′′,V,W
q′+n′,q′′+n′′) ◦ η

r,r′+r′′,U,V ∧W
q+n,q′+q′′+n′+n′′ = (ηr,r

′,U,V
q+n,q′+n′ ∧ 1) ◦ ηr+r

′,r′′,U∧V,W
q+q′+n+n′,q′′+n′′

as both sides are induced by permutations, and finally

q′n+ q′′(n+ n′) = q′′n′ + (q′ + q′′)n,

(sr,r′ ∧ 1)sr+r′,r′′ = (1 ∧ sr′,r′′)sr,r′+r′′ .

Compatibility with stabilization. We show that the unstable product above
is compatible with the stabilization ι∗ := σ∗ · (−∧ T ) in both variables. For
the second variable, we must show that

[Sr ∧ U ∧ T q+n, Rn]× [Sr′ ∧ V ∧ T q′+n′ , Rn′ ]

1×ι∗

��

·
**

[Sr+r′ ∧ U ∧ V ∧ T q+q′+n+n′ , Rn+n′ ]

ι∗

��

[Sr ∧ U ∧ T q+n, Rn]× [Sr′ ∧ V ∧ T q′+n′+1, Rn′+1]

·
**

[Sr+r′ ∧ U ∧ V ∧ T q+q′+n+n′+1, Rn+n′+1]

commutes. For f ∈ [Sr ∧ U ∧ T q+n, Rn], and

c = lT ◦ lS0∧T ◦ (∼= ∧1) : S0 ∧ S0 ∧ T → T,
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we have

[f · (ι1 ◦ c)] ◦ (Sr ∧ ρ−1
U ∧ T

q+n+1)

= µn,1 ◦ (f ∧ (ι1 ◦ c)) ◦ ηr,0,U,S
0

q+n,0+1 ◦ (sr,0 ∧ 1) ◦ (Sr ∧ ρ−1
U ∧ T

q+n+1)

= µn,1 ◦ (f ∧ ι1) = σn ◦ (f ∧ T ) = ι∗(f)

because of

(1 ∧ ([lT lS0∧T ◦ ((S0 → S0) ∧ 1)])

◦ (Sr ∧ [(tS0,U∧T q+n ∧ S0)(S0 ∧ U ∧ tS0,T q+n)] ∧ T ) ◦ (sr,0 ∧ ρ−1
U ∧ T

q+n+1)

= (1 ∧ lT lS0∧T ) ◦ (Sr ∧ [(tS0,U∧T q+n ∧ S0)(S0 ∧ U ∧ tS0,T q+n)] ∧ T )

◦ (ρ−1
Sr ∧ ρ

−1
U ∧ T

q+n+1) = 1.

Applying this to g and f · g, together with associativity and naturality we
obtain

ι∗(f · g) = [(f · g) · (ι1c)] ◦ (1 ∧ ρ−1
U∧V ∧ 1)

= [f · (g · (ι1c))] ◦ (1 ∧ U ∧ ρ−1
V ∧ 1)

= f · [(g · (ι1c)) ◦ (1 ∧ ρ−1
V ∧ 1)]

= f · ι∗(g).

This yields a map [Sr ∧ U ∧ T q+n, Rn]× πUr′,q′(R)→ πUr+r′,q+q′(R).
The first variable is more subtle. By

ι∗(f) · g = [(f · ι1c) ◦ (Sr ∧ ρ−1
U ∧ T

q+n+1)] · g
= [(f · ι1c) · g] ◦ (1 ∧ ρ−1

U ∧ 1)

= [f · (ι1c · g)] ◦ (1 ∧ l−1
V ∧ 1)

= f · [(ι1c · g) ◦ (Sr
′ ∧ l−1

V ∧ T
1+q′+n′)]

and the above it suffices to show that [(ι1c · g) ◦ (Sr′ ∧ l−1
V ∧ T 1+q′+n′)] = [g]

in πVr′,q′(R). For this, we first note that

(ι1c · g) ◦ (Sr
′ ∧ l−1

V ∧ T
1+q′+n′) = χn′,1 ◦ ι∗(g) ◦ (1 ∧ (−1)n

′
T ∧ 1)

by the following computation:

(ι1c · g) ◦ (Sr
′ ∧ l−1

V ∧ T
1+q′+n′)

= µ1,n′ ◦ (ι1 ∧ 1) ◦ (c ∧ g) ◦ η0,r′,S0,V
0+1,q′+n′ ◦ (s0,r′ ∧ 1 ∧ (−1)q

′

T ∧ 1)

◦ (Sr
′ ∧ l−1

V ∧ T
1+q′+n′)

=
central

[χn′,1 ◦ µn′,1 ◦ (1 ∧ ι1) ◦ tT,Rn′ ] ◦ (c ∧ g) ◦ η0,r′,S0,V
0+1,q′+n′

◦ (s0,r′ ∧ l−1
V ∧ T

1+q′+n′) ◦ (1 ∧ (−1)q
′

T ∧ 1)

= χn′,1 ◦ µn′,1 ◦ (g ∧ ι1) ◦ [tT,Sr′∧V ∧T q′+n′ ◦ (c ∧ 1) ◦ η0,r′,S0,V
0+1,q′+n′
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◦ (s0,r′ ∧ l−1
V ∧ T

1+q′+n′)] ◦ (1 ∧ (−1)q
′

T ∧ 1)

= χn′,1 ◦ µn′,1 ◦ (g ∧ ι1) ◦ (Sr
′ ∧ V ∧ tT,T q′+n′ ) ◦ (1 ∧ (−1)q

′

T ∧ 1)

= χn′,1 ◦ ι∗(g) ◦ (Sr
′ ∧ V ∧ (−1)q

′+n′

T ∧ T q′+n′) ◦ (1 ∧ (−1)q
′

T ∧ 1)

= χn′,1 ◦ ι∗(g) ◦ (1 ∧ (−1)n
′
T ∧ 1).

Stabilizing this, we obtain [χn′,1 ◦ ι∗(g) ◦ (1∧ (−1)n
′
T ∧ 1)] = d[ι∗(g)] = [g],

because d acts trivially by semistability. Hence we have

[ι∗(f) · g] = [f · χn′,1 ◦ ι∗(g) ◦ (1 ∧ (−1)n
′
T ∧ 1)]

= f · [χn′,1 ◦ ι∗(g) ◦ (1 ∧ (−1)n
′
T ∧ 1)] = f · [g] = [f · g].

Compatibility with signs. This follows by the naturality of the permutation

map ηr,r
′,U,V

q+n,q′+n′ together with the second property of Definition 2.16:

[(Sr ∧ U ∧ (−1)T ∧ T q+n−1) ∧ 1] ◦ ηr,r
′,U,V

q+n,q′+n′

= ηr,r
′,U,V

q+n,q′+n′ ◦ (1 ∧ (−1)T ∧ T q+n−1 ∧ T q′+n′)

[1 ∧ (Sr
′ ∧ U ∧ (−1)T ∧ T q

′+n′−1)] ◦ ηr,r
′,U,V

q+n,q′+n′

= ηr,r
′,U,V

q+n,q′+n′ ◦ (1 ∧ T q+n ∧ (−1)T ∧ T q
′+n′−1)

1 ∧ T q+n ∧ (−1)T ∧ T q
′+n′−1 = 1 ∧ (−1)T ∧ T q+n−1 ∧ T q′+n′ .

Commutativity. We have a commutative diagram

Sr+r′ ∧ U ∧ V ∧ T q+q′+n+n′

sr,r′∧1∧(−1)q
′n
T ∧1

��

α // Sr′+r ∧ U ∧ V ∧ T q′+q+n′+n

sr′,r∧1∧tU,V ∧(−1)qn
′

T ∧1

��

Sr ∧ Sr′ ∧ U ∧ V ∧ T q+n ∧ T q′+n′
β
//

ηr,r
′,U,V

q+n,q′+n′
��

Sr′ ∧ Sr ∧ V ∧ U ∧ T q′+n′ ∧ T q+n

ηr
′,r,V,U
q′+n′,q+n

��

(Sr ∧ U ∧ T q+n) ∧ (Sr′ ∧ V ∧ T q′+n′)
γ
// (Sr′ ∧ V ∧ T q′+n′) ∧ (Sr ∧ U ∧ T q+n),

where β = tSr,Sr′ ∧ tU,V ∧ tT q+n,T q′+n′ , γ = tSr∧U∧T q+n,Sr′∧V ∧T q′+n′ , and

α = Str,r′ ∧ U ∧ V ∧ [((−1)qn
′

T ∧ 1)tT q+n,T q′+n′ ((−1)q
′n
T ∧ 1)],

for which we have

((−1)qn
′

T ∧ 1)tT q+n,T q′+n′ ((−1)q
′n
T ∧ 1)

= (−1)
qn′+(q+n)(q′+n′)q′n
T ∧ T q+q′+n+n′−1

= (−1)qq
′+nn′

T ∧ T q+q′+n+n′−1.

If f : Sr ∧ U ∧ T q+n → Rn is central (e.g., if R is commutative), we have
χn,n′ ◦ µn,n′ ◦ (f ∧ 1) = µn′,n ◦ (1 ∧ f) ◦ tSr∧U∧T q+n,Rn′ . Together with the
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above commutative diagram, for g ∈ [Sr′ ∧ V ∧ T q′+n′ , Rn′ ] we then deduce

χn,n′(f · g)(1 ∧ (−1)nn
′

T ∧ 1)

= χn,n′ ◦ µn,n′ ◦ (f ∧ g) ◦ ηr,r
′,U,V

q+n,q′+n′ ◦ (sr,r′ ∧ 1 ∧ (−1)q
′n
T ∧ 1)

◦ (1 ∧ (−1)nn
′

T ∧ 1)

= µn′,n ◦ (g ∧ f) ◦ [tSr∧U∧T q+n,Sr′∧V ∧T q′+n′ ◦ η
r,r′,U,V
q+n,q′+n′

◦ (sr,r′ ∧ 1 ∧ (−1)q
′n
T ∧ 1)] ◦ (1 ∧ (−1)nn

′
T ∧ 1)

= µn′,n ◦ (g ∧ f) ◦ [ηr
′,r,V,U
q′+n′,q+n ◦ (sr′,r ∧ 1 ∧ tU,V ∧ (−1)qn

′

T ∧ 1)

◦ (Str,r′ ∧ U ∧ V ∧ [(−1)qq
′+nn′

T ∧ 1])] ◦ (1 ∧ (−1)nn
′

T ∧ 1)

= (g · f)(Str,r′ ∧ 1 ∧ (−1)qq
′

T ∧ 1).

As R is semistable, this implies [f · g] = [χn,n′(f · g)(1∧ (−1)nn
′

T ∧ 1)], which
yields commutativity. �

To obtain an internal product on stable homotopy groups, we assume
from now on that there are natural transformations diagU : U → U ∧U and
ωU : U → S0 for any U ∈ B′ making U a commutative comonoid in D.

Example 4.4. In sSet∗ or M·(S) we have

diag : K+
diag−−→ (K ×K)+

∼= K+ ∧K+

for any K in sSet or M(S).

We set l2
T l

:= lT l ◦ (S0 ∧ lT l) and define cl to be the map

S0 ∧ U ∧ T l
∼=∧ωU∧T l−−−−−−→ S0 ∧ S0 ∧ T l

l2
Tl−−→ T l.

In particular, cl ∧ Tn = cl+n, and cl = id if U = S0.

Proposition-Definition 4.5 (multiplicative structure on stable homotopy
groups). Let R be a semistabile symmetric T -ring spectrum. Then we have
a natural (in R) structure of a N × Z-graded ring on

πU∗,∗(R) := ⊕(r,q)∈N×Zπ
U
r,q(R),

induced by taking colimits of the following biadditive maps (q+n, q′+n′ ≥ 1
as usual):

· : [Sr∧U∧T q+n, Rn]×[Sr
′∧U∧T q′+n′ , Rn′ ]→ [Sr+r

′∧U∧T q+q′+n+n′ , Rn+n′ ].

Here a pair (f, g) is mapped to the composition

Sr+r
′ ∧ U∧T q+q′+n+n′

sr,r′∧diagU ∧(−1)q
′n
T ∧1

−−−−−−−−−−−−−−−→ Sr ∧ Sr
′ ∧ U ∧ U ∧ T q+n ∧ T q′+n′

Sr∧tSr′∧U,U∧Tq+n∧T
q′+n′

−−−−−−−−−−−−−−−−−→ Sr ∧ U ∧ T q+n ∧ Sr
′ ∧ U ∧ T q′+n′
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f∧g−−→ Rn ∧Rn′
µn,n′−−−→ Rn+n′

(q + n, q′ + n′ ≥ 1).
The product is compatible with the signs, and graded commutative if R is

commutative:

f · g = (−1)q·q
′

T tr′,r(g · f),

for any f ∈ πUr,q(R) and g ∈ πUr′,q′(R). For the latter equality it suffices that
f is represented by a central map.

Proof. The multiplication decomposes as the external product of Lem-
ma 4.3 and the diagonal:

πUr,q(R)× πUr′,q′(R)
mU,U,R
r,q,r′,q′

//

mU,R
r,q,r′,q′ ''

πU∧Ur+r′,q+q′(R)

πdiagU

r+r′,q+q′ (R)

��

πUr+r′,q+q′(R)

because the map

Sr ∧ Sr
′ ∧ V ∧ U ∧ T q+n ∧ T q′+n′

1∧tV,U∧1
−−−−−−→ Sr ∧ Sr

′ ∧ U ∧ V ∧ T q+n ∧ T q′+n′

ηr,r
′,U,V

q+n,q′+n′−−−−−−→ Sr ∧ U ∧ T q+n ∧ Sr
′ ∧ V ∧ T q′+n′

coincides with Sr ∧ tSr′∧V,U∧T q+n ∧ T
q′+n′ , because diag− is cocommutative.

As it is also coassociative, the product is also associative. Compatibility
with the signs is clear, and commutativity follows from

(diagU )∗ ◦ t∗U,U = (tU,U ◦ diagU )∗ = (diagU )∗.

Another computation using the previous lemma shows that

[f ] = [ι∗(f)] = [f ] · [ι1c1]

and (note that ι1c1 is central)

[f ] · [ι1c1] = (−1)0·q
T t0,r([ι1c1] · [f ]) = [ι1c1] · [f ]. �

4.2. Localization of ring spectra. We are now ready to define the lo-
calization of a symmetric ring spectrum with respect to a central map, gen-
eralizing [Sch07, Example I.4.65]:

Proposition-Definition 4.6. Let R be a symmetric ring spectrum and
x : T l → Rm a central map. Then we define a symmetric ring spectrum
R[1/x] together with a map of symmetric ring spectra j : R → R[1/x] as
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follows. Levelwise, we set R[1/x]p = Hom(T lp, R(1+m)p). There are maps
∆s,p : Σp → Σsp,

∆s,p(γ)(i+ s · (j − 1)) = i+ s · (γ(j)− 1),

1 ≤ i ≤ s, 1 ≤ j ≤ p permuting the p summands of sp = s + s + · · · + s.
Now Σp via ∆l,p acts on T lp, then via ∆1+m,p on R(1+m)p and finally by

conjugation on Hom(T lp, R(1+m)p). Hence the square

R[1/x]p ∧ T lp
γ∧1
//

1∧∆l,p(γ−1)
��

R[1/x]p ∧ T lp

ev

��

R[1/x]p ∧ T lp
ev // R(1+m)p

∆1+m,p(γ)
// R(1+m)p

is commutative. The multiplication

µp,q : R[1/x]p ∧R[1/x]q → R[1/x]p+q

is by definition the adjoint of

R[1/x]p ∧R[1/x]q ∧ T l(p+q)
1∧t

R[1/x]q,T lp
∧1
// R[1/x]p ∧ T lp ∧R[1/x]q ∧ T lq

ev∧ ev

��

R(1+m)p ∧R(1+m)q

µ(1+m)p,(1+m)q

��

R(1+m)(p+q).

The unit of R[1/x] is the composition of the unit of R with j. The map j is
defined by jp : Rp → R[1/x]p being the adjoint to

Rp ∧ T lp
1∧xp−−−→ Rp ∧Rmp

µp,mp−−−→ Rp+mp
ξm,p−−−→ R(1+m)p.

Here xp means of course T lp
x∧p−−→ R∧pm

µm,m,...,m−−−−−−→ Rmp, and x0 = ιR0 . The
permutation ξm,p ∈ Σ(1+m)p is defined as follows:

ξm,p(k) =


1 + (1 +m) · (k − 1) if 1 ≤ k ≤ p
1 + j + (1 +m)(i− 1) if k = p+mi+ j

with 1 ≤ i ≤ p, 1 ≤ j ≤ m.

Proof. Again, this is very long but essentially straightforward. To show the
required properties (the multiplication maps are equivariant, the multipli-
cation is associative, the claims about the unit and about j) one shows
them for the adjoints. For example: for the equivariance of the µ, let
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(γ, δ) ∈ Σp×Σq ⊆ Σp+q. We must show that (γ+δ)·µR[1/x]
p,q = µ

R[1/x]
p,q ·(γ∧δ).

The left hand side is adjoint to

∆1+m,p+q(γ + δ) · µ̂R[1/x]
p,q · (R[1/x]p ∧R[1/x]q ∧∆1+m,p+q(γ + δ)−1).

The right hand side is adjoint to µ̂
R[1/x]
p,q ·(γ∧δ∧T l(p+q)), and one shows that

these adjoints coincide. The claims about j also use the fact that central
elements are stable under multiplication. �

The next results will be used to prove the Main Theorem 4.11.

Lemma 4.7. Let γ ∈ Σp and s ∈ N. Then sgn(∆s,p(γ)) = sgn(γ)s.

Proof. The map ∆s,p : Σp → Σsp is a group homomorphism by definition, so
we only need to show the claim for the generators (σi = τi,i+1, 1 ≤ i ≤ p−1).
For those, we have ∆s,p(σi) = (s(i − 1) + χs,s + s(p − (i + 1))) and thus

sgn(∆s,p(σi)) = sgn(χs,s) = (−1)s
2

= (−1)s = sgn(σi)
s. �

Corollary 4.8. For any f ∈ πUr,q(R[1/x]) we have

f · j∗([xcl]) = j∗[(xcl)] · ((−1)
(l−m)q
T f).

Proof. One checks that jmx and hence jmxcl is central and that

[jmxcl] = j∗([xcl]).

Now the claim follows from the commutativity claim in Proposition 4.5 and
t0,r = id. �

Lemma 4.9. Let R be a symmetric T -ring spectrum and x : T l → Rm a
central map in D. Let f : Sr ∧U ∧ T q+n → R[1/x]n be a map in Ho(D) and

f̂ := ev ◦(f ∧ T ln) : Sr ∧ U ∧ T q+n ∧ T ln → R(1+m)n. Then for

ια∗ (f) = σα,R[1/x]
n ◦ (f ∧ Tα) : Sr ∧ U ∧ T q+n ∧ Tα → R[1/x]n+α,

α ∈ N, we have for the associated map

ι̂α∗ (f) := ev ◦(ια∗ (f) ∧ T l(n+α))

= (1 + ξm,α) ◦ µR(1+m)n+α,mα ◦ (ια∗ (f̂) ∧ xα)

◦ (Sr ∧ U ∧ T q+n ∧ tTα,T ln ∧ T lα).

Proof. Because of σα,R[1/x] = µ
R[1/x]
n,α ◦ (R[1/x]n ∧ ιR[1/x]

α ), ι
R[1/x]
α = jα ◦ ιRα

and σα,R = µRn,α ◦ (Rn ∧ ιRα ) we have for the associated map

ι̂α∗ (f) = ev ◦(ια∗ (f) ∧ T l(n+α))

= ev ◦([µR[1/x]
n,α ◦ (f ∧ (jα ◦ ιRα ))] ∧ T l(n+α))

= µ(1+m)n,(1+m)α ◦ ((ev ◦(f ∧ T ln)) ∧ (ev ◦((jα ◦ ιRα ) ∧ T lα)))

◦ (1 ∧ tTα,T ln ∧ 1)
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= µ(1+m)n,(1+m)α ◦ (f̂ ∧ (ξm,α ◦ µα,mα ◦ (ιRα ∧ xα)) ◦ (1 ∧ tTα,T ln ∧ 1)

= (1 + ξm,α) ◦ µ(1+m)n,(1+m)α ◦ (1 ∧ µα,mα) ◦ (f̂ ∧ ιRα ∧ xα)

◦ (1 ∧ tTα,T ln ∧ 1)

= (1 + ξm,α) ◦ µ(1+m)n+α,mα ◦ (µ(1+m)n,α ∧ 1) ◦ (f̂ ∧ ιRα ∧ xα)

◦ (1 ∧ tTα,T ln ∧ 1)

= (1 + ξm,α) ◦ µ(1+m)n+α,mα ◦ (ια∗ (f̂) ∧ xα) ◦ (1 ∧ tTα,T ln ∧ 1). �

Lemma 4.10. Let R be a levelwise fibrant semistabile symmetric T -ring
spectrum and x : T l → Rm a central map. Then for any

f, g ∈ [Sr ∧ U ∧ T q+n, R[1/x]n]

with f̂ = (−1)νT (ξ ◦ ĝ) for some fixed ν ∈ Z, ξ ∈ Σ(1+m)n, we have

[f ] = ((−1)νT |ξ|T )[g]

in πUr,q(R[1/x]).

Proof. AsR is semistable, there is an α ∈ N for which ια∗ (|ξ|T (ξ◦ĝ)) = ια∗ (ĝ),
hence

ια∗ (f̂) = ια∗ ((−1)νT (ξ ◦ ĝ)) = (−1)νT |ξ|T (ια∗ (|ξ|T (ξ ◦ ĝ))) = (−1)νT |ξ|T (ια∗ (ĝ)).

Applying Lemma 4.9 we deduce

ι̂α∗ (f) = (−1)νT |ξ|T ι̂α∗ (g) = v̂

with v = [(−1)νT |ξ|T ]ια∗ (g). As R is levelwise fibrant, the map

[Sr ∧ U ∧ T q+n+α,Hom(T l(n+α), R(1+m)(n+α))]

ev ◦(−∧T l(n+α))−−−−−−−−−−→ [Sr ∧ U ∧ T q+n+α+l(n+α), R(1+m)(n+α)]

is bijective. Therefore we have ια∗ (f) = [(−1)νT |ξ|T ]ια∗ (g). �

We are now able to state the Main Theorem of this section, which is a
generalization of [Sch07, Corollary I.4.69]. (The definition of cl is before
Proposition-Definition 4.5.)

Theorem 4.11. Assume that the standard assumptions of the beginning
of Section 4 hold (these are satisfied, e.g., in the motivic case by Proposi-
tion 2.45). Let R be a levelwise fibrant semistable symmetric T -ring spec-
trum and x : T l → Rm a central map. Then R[1/x] is semistable, and

for all U ∈ B′ the ring homomorphism πU∗,∗(R)
j∗−→ πU∗,∗(R[1/x]) is a [xcl]-

localization.

Proof. Semistability: Using Theorem 2.43 it suffices to show that the cy-
cle operator d acts trivially on πUr,q(R[1/x]). Let f ∈ [Sr∧U ∧T q+n, R[1/x]n]

represent an element in πUr,q(R[1/x]). After stabilization, we may assume
that n is even. Then df is represented by χn,1 ◦ ι∗(f) as |χn,1|T = 1. It
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remains to show that after stabilization [χn,1 ◦ ι∗(f)] = [f ] = [ι∗(f)]. This
reduces to the following: For f ∈ [Sr ∧ U ∧ T q+n, R[1/x]n] and γ ∈ Σn with
|γ|T = 1 we have [γ ◦ f ] = [f ] in πUr,q(R). To show this, consider the ad-

joint γ̂ ◦ f = ev ◦((γ ◦ f) ∧ T ln) = ∆1+m,n(γ) ◦ f̂ ◦ (1 ∧∆l,n(γ)−1) (compare
Proposition-Definition 4.6). As |γ|sT = 1 is the sign of ∆s,n(γ) (Lemma 4.7),

we obtain γ̂ ◦ f = |∆1+m,n(γ)|T (∆1+m,n(γ)◦f̂) by Definition 2.16. Applying
Lemma 4.10 yields [γ ◦ f ] = [f ] as claimed.

Localization: By Proposition-Definition 4.5, we know that πU∗,∗(R[1/x])

is a ring and j∗ : πU∗,∗(R) −→ πU∗,∗(R[1/x]) a ring homomorphism. It remains
to show that j∗ is a [xcl]-localization. For this, we will check that the three
conditions of Proposition 4.12 are satisfied (note that the Ore condition holds
by Corollary 4.8). First, we show that j∗([xcl]) is a unit in πU∗,∗(R[1/x]). The
map jm ◦ x ◦ cl represents j∗([xcl]) and this element has (±1)T [yc1+m] as a
left inverse (up to sign). Here y : T 1+m → R[1/x]1+l denotes the adjoint to
µ1+m+l,ml ◦ (ι1+m+l ∧ xl). We now show that [(yc1+m) · (jmxcl)] equals (up

to sign) the unit in πU∗,∗(R). By definition

f := (yc1+m) · (jmxcl)

= µ
R[1/x]
1+l,m ◦ (y ∧ (jmx)) ◦ (c1+m ∧ cl) ◦ (S0 ∧ tS0∧U,U∧T 1+m ∧ T l)

◦ (s0,0 ∧ diagU ∧(−1)
(l−m)(1+l)
T ∧ 1)

= µ
R[1/x]
1+l,m ◦ (y ∧ (jmx)) ◦ (l2T 1+m ∧ l2T l) ◦ (S0 ∧ tS0∧S0,S0∧T 1+m ∧ T l)

◦ ([l−1
S0
∼=S0

] ∧ ([ωU ∧ ωU ] ◦ diagU ) ∧ (−1)
(l−m)(1+l)
T ∧ 1).

Using (ωU ∧ ωU ) ◦ diagU = (ωU ∧ S0) ◦ ρ−1
U = ρ−1

S0 ◦ ωU and

l2T 1+m+l = S0 ∧ S0 ∧ T 1+m+l ∼= S0 ∧ S0 ∧ S0 ∧ S0 ∧ T 1+m+l

∼= S0 ∧ S0 ∧ T 1+m ∧ S0 ∧ S0 ∧ T l ∼= T 1+m ∧ T l

we get f = µ
R[1/x]
1+l,m ◦ (y ∧ (jmx)) ◦ ((−1)

(l−m)(1+l)
T ∧ 1) ◦ c1+m+l.

The adjoint of f is (c := c1+m+l ∧ T l(1+l+m), a := (1 +m)(1 + l)):

f̂ = ev ◦(f ∧ T l(1+l+m))

= µ(1+m)(1+l),(1+m)m ◦ ((ev ◦(y ∧ T l(1+l))) ∧ (ev ◦(jmx ∧ T lm)))

◦ (1 ∧ tT l,T l(1+l) ∧ 1) ◦ ((−1)
(l−m)(1+l)
T ∧ 1) ◦ c

= µa,(1+m)m ◦ ((µ1+m+l,ml ◦ (ι1+m+l ∧ xl)) ∧ (ξm,mm ◦ x1+m))

◦ (1 ∧ tT l,T l(1+l) ∧ 1) ◦ ((−1)
(l−m)(1+l)
T ∧ 1) ◦ c

= (a+ ξm,mm) ◦ [µa,m+mm ◦ (µ1+m+l,ml ∧ 1)] ◦ ((ι1+m+l ∧ xl) ∧ x1+m)

◦ (1 ∧ tT l,T l(1+l) ∧ 1) ◦ ((−1)
(l−m)(1+l)
T ∧ 1) ◦ c

= (a+ ξm,mm) ◦ [µ1+m+l,ml+m+mm ◦ (1 ∧ µml,m+mm)]
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◦ (ι1+m+l ∧ (xl ∧ x1+m)) ◦ (1 ∧ tT l,T l(1+l) ∧ 1) ◦ ((−1)
(l−m)(1+l)
T ∧ 1) ◦ c

= (a+ ξm,mm) ◦ µ1+m+l,m(1+l+m) ◦ (ι1+m+l ∧ x1+l+m) ◦ c

◦ (1 ∧ tT l,T l(1+l) ∧ 1) ◦ (1 ∧ (−1)
(l−m)(1+l)
T ∧ 1)

where we used µsm,tm ◦ (xs ∧ xt) = xs+t, i.e., the associativity of R.

The unit [ι
R[1/x]
1 c1] in πU∗,∗(R) is also represented by

g := ιl+m∗ (ι
R[1/x]
1 c1) = ι

R[1/x]
1+l+m ◦ c1+l+m

which is adjoint to ĝ = ξm,1+l+m ◦ µ1+l+m,m(1+l+m) ◦ (ι1+l+m ∧ x1+l+m) ◦ c.
Therefore

f̂ = ξ′ ◦ ĝ ◦ (1 ∧ tT l,T l(1+l) ∧ 1) ◦ (1 ∧ (−1)
(l−m)(1+l)
T ∧ 1) = (−1)νT ξ

′ ◦ ĝ

with ξ′ = (a+ ξm,mm) ◦ ξ−1
m,1+l+m and ν = l2(1 + l) + (l−m)(1 + l). Apply-

ing 4.10 yields [f ] = ((−1)νT |ξ′|T )[g] and finally

(((−1)νT |ξ′|T )[yc1+m]) · j∗([xcl]) = ((−1)νT |ξ′|T )[f ] = [g] = 1

in πUr,q(R[1/x]). By Corollary 4.8 j∗([xcl]) has then also a right inverse.

The second condition amounts to showing that for any z ∈ πU∗,∗(R[1/x]) —

repesented by some f ∈ [Sr∧U∧T q+n, R[1/x]n] — there is some u ∈ πU∗,∗(R)

and some p ∈ N satisfying z · j∗([xcl])·p = j∗((±1)Tu). For u we choose f̂ as

representative and set p = n. Then j∗(u) is represented by g := j(1+m)n ◦ f̂
which is adjoint to

ĝ := ev ◦(g ∧ T l(1+m)n) = ξm,(1+m)n ◦ µ(1+m)n,m(1+m)n ◦ (f̂ ∧ x(1+m)n).

The element z · j∗([xcl])·n = z · j∗([xcl]·n) is represented by

h := f · (jmn ◦ (xcl)
·n),

where (xcl)
·n is given by xn ◦ ((−1)

(l−m)m(n−1)n/2
T ∧ 1) ◦ cnl, as we show by

induction:

(xn ◦ ((−1)
(l−m)m(n−1)n/2
T ∧ 1) ◦ cnl) · (xcl)

= µRmn,m ◦ ((xn ◦ ((−1)
(l−m)m(n−1)n/2
T ∧ 1)) ∧ x)

◦ ((−1)
(l−m)mn
T ∧ 1) ◦ c(n+1)l

= xn+1 ◦ ((−1)
(l−m)m[(n−1)n/2+n]
T ∧ 1) ◦ c(n+1)l

(cf. also the computation of f above). Furthermore,

h = µR[1/x]
n,mn ◦ (f ∧ (jmn ◦ (xcl)

·n)) ◦ (Sr ∧ tS0∧U,U∧T q+n ∧ T ln)

◦ (sr,0 ∧ diagU ∧(−1)
(l−m)n2

T ∧ 1)

implies

ĥ = ev ◦(h ∧ T l(n+mn))
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= µR(1+m)n,(1+m)mn ◦ [(ev ◦(f ∧ T ln)) ∧ (ev ◦((jmn ◦ (xcl)
·n) ∧ T lmn))]

◦ (1 ∧ tS0∧U∧T ln,T ln ∧ 1) ◦ (Sr ∧ tS0∧U,U∧T q+n ∧ 1)

◦ (sr,0 ∧ diagU ∧(−1)
(l−m)n2

T ∧ 1)

= µR(1+m)n,(1+m)mn

◦ [f̂ ∧ (ξm,mn ◦ µRmn,mmn
◦ ((xn ◦ ((−1)

(l−m)m(n−1)n/2
T ∧ 1) ◦ cnl) ∧ xmn))]

◦ (1 ∧ tS0∧U∧T ln,T ln ∧ 1) ◦ (Sr ∧ tS0∧U,U∧T q+n ∧ 1)

◦ (sr,0 ∧ diagU ∧(−1)
(l−m)n2

T ∧ 1)

= (a′ + ξm,mn) ◦ µR(1+m)n,(1+m)mn ◦ (f̂ ∧ (µRmn,mmn ◦ (xn ∧ xmn))

◦ (1 ∧ (−1)
(l−m)n2+(l−m)m(n−1)n/2+(ln)2

T ∧ 1)

= (a′ + ξm,mn) ◦ µR(1+m)n,(1+m)mn ◦ (f̂ ∧ x(1+m)n)

◦ (1 ∧ (−1)
(l−m)[n2+m(n−1)n/2]+(ln)2

T ∧ 1),

where a′ := (1 +m)n. Here the second last step uses

Sr ∧ [(U ∧ T q+n ∧ T ln ∧ [l2T ln (∼=S0 ∧ωU ∧ T ln)])

(U ∧ T q+n ∧ tS0∧U∧T ln,T ln) (tS0∧U,U∧T q+n ∧ T ln ∧ T ln)] ∧ T lmn

◦ (sr,0 ∧ diagU ∧T ã)

= Sr ∧ [(U ∧ T q+n ∧ tT ln,T ln)(U ∧ T q+n ∧ l2T ln ∧ T
ln)(tS0∧S0,U∧T q+n ∧ T ln)]

∧ T lmn ◦ (ρ−1
Sr ∧ ((ωU ∧ U) diagU ) ∧ T ã)

= Sr ∧ [(U ∧ T q+n ∧ (−1)
(ln)2

T ∧ 1) ◦ (U ∧ T q+n ∧ l2T ln ∧ T
ln)

◦ (tS0∧S0,U∧T q+n ∧ T ln)] ∧ T lmn ◦ (ρ−1
Sr ∧ l

−1
U ∧ T

ã)

= Sr ∧ U ∧ (−1)
(ln)2

T ∧ T ã−1

with ã := (q+n)+ln+l(n+mn). Hence ĥ and ĝ only differ by a permutation
and a sign, and Lemma 4.10 then implies

z · j∗([xc])·p = [h] = (±1)T [g] = (±1)T j∗(u) = j∗((±1)Tu).

It remains to verify the third condition: for any [f ], [g] ∈ πU∗,∗(R) with
j∗([f ]) = j∗([g]), we have [f ] · [xcl]·n = [g] · [xcl]·n for some n ∈ N. We may
assume that f, g ∈ [Sr ∧ U ∧ T q+n, Rn] and that jn ◦ f = jn ◦ g. Using

(xcl)
·n = xn ◦ ((−1)

(l−m)m(n−1)n/2
T ∧ 1) ◦ cnl we obtain

f · (xcl)·n = µRn,mn ◦ (f ∧ xn) ◦ (−1)
(l−m)[m(n−1)n/2+n2]
T

= ξ−1
m,n ◦ ĵn ◦ f ◦ (−1)

(l−m)[m(n−1)n/2+n2]
T ,
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as

Sr ∧ [(U ∧ T q+n ∧ l2T ln) ◦ (U ∧ T q+n∧ ∼=S0 ∧ωU ∧ T ln)

◦ tS0∧U,U∧T q+n ∧ T ln] ◦ (sr,0 ∧ diagU ∧(−1)
(l−m)n2

T ∧ 1)

= Sr ∧ [(U ∧ T q+n ∧ l2T ln) ◦ tS0∧S0,U∧T q+n ∧ T ln]

◦ (ρ−1
Sr ∧ ([ωU ∧ U ] diagU ) ∧ (−1)

(l−m)n2

T ∧ 1)

= Sr ∧ [(U ∧ T q+n ∧ l2T ln) ◦ tS0∧S0,U∧T q+n ∧ T ln]

◦ (ρ−1
Sr ∧ l

−1
U ∧ (−1)

(l−m)n2

T ∧ 1)

= 1 ∧ (−1)
(l−m)n2

T ∧ 1.

This also holds for g, thus f · (xcl)·n = g · (xcl)·n and hence

[f ] · [xcl]·n = [f · (xcl)·n] = [g · (xcl)·n] = [g] · [xcl]·n

as desired. �

We have used the following standard criterion for localizations above:

Proposition 4.12. Let M,N be two rings and x ∈M . Assume that for any
x1 ∈M there is an x2 ∈M with x1x = xx2 (Ore condition). Assume further
that there is a ring homomorphism j : M → N satisfying the following:

(i) There are y, y′ ∈ N with yj(x) = 1 and j(x)y′ = 1.
(ii) For all z ∈ N there is some p ∈ N and some u ∈M with

zj(x)p = j(u).

(iii) For all a, b ∈M with j(a) = j(b) there is an n ∈ N with axn = bxn.

Then j is an [x]-localization. If M and N are graded, then j is a graded
ring homomorphism. If moreover x is homogenous, then it suffices to check
the above conditions for homogenous elements x1, x2, a and b.
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