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On a generalization of the Gasca–Maeztu
conjecture

Hakop Hakopian and Levon Rafayelyan

Abstract. Denote the space of all bivariate polynomials of total de-
gree not exceeding n by Πn. The Gasca–Maeztu conjecture [Gasca M.
and Maeztu J. I., On Lagrange and Hermite interpolation in Rk, Nu-
mer. Math. 39 (1982), 1–14.] states that any Πn-poised set of nodes, all
fundamental polynomials of which are products of linear factors, pos-
sesses a maximal line, i.e., a line passing through n + 1 nodes. Till
now it is proved to be true for n ≤ 5. The case n = 5 was proved
recently in [Hakopian H., Jetter K. and Zimmermann G., The Gasca–
Maeztu conjecture for n = 5, Numer. Math. 127 (2014), 685–713]. In
an earlier paper the following generalized conjecture was proposed by
the authors of the present paper: Any Πn-poised set of nodes, all funda-
mental polynomials of which are reducible, possesses a maximal curve
of some degree k, 1 ≤ k ≤ n−1, i.e., an algebraic curve passing through
(1/2)k(2n− k + 3) nodes. Clearly the two above conjectures coincide in
the case n ≤ 2. In this paper we prove that the generalized conjecture
is true for n = 3.
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1. Introduction

The bivariate (multivariate) polynomial interpolation is much more in-
volved than the respective univariate one. A poised interpolation with a set
of nodes and a polynomial space means that there is, for arbitrary data at
those nodes, exactly one polynomial from the space that matches the given
information. In order to have an n — poised interpolation with Πn, the
space of bivariate algebraic polynomials of total degree not exceeding n, the
number of interpolation nodes has to fit the dimension of the space:

N := dim Πn =
(n+ 2)(n+ 1)

2
.

In contrast with the univariate interpolation, even if this is the case, the
poisedness of the bivariate interpolation essentially depends on the geomet-
rical distribution of nodes. Thus, a new problem arises, which is permanently
actual in the subject — the identification of simple constructions of poised
node sets.

The Gasca–Maeztu conjecture concerns perhaps the simplest such con-
struction — the so called GCn construction, based on a geometric condition.
Namely, in GCn set every fundamental polynomial is a product of n linear
factors, as it always takes place in the univariate case. Geometrically this
means that for each fixed node there are n lines which pass through all the
nodes of the set but the fixed one. The conjecture states that each GCn set
possesses a maximal line, i.e., line passing through n+ 1 nodes. The conjec-
ture is equivalent to the statement that each GCn set is a particular case of
an extremely simple construction — the Berzolari–Radon construction (see
Definition 1.0.6). So far the conjecture was proved to be true for n ≤ 5.
Let us mention that settling the conjecture for particular n enables also the
classification of GCn sets of the respective order (see [3]).

In this paper a generalization of the Gasca–Maeztu conjecture is consid-
ered in terms of higher order curves. We call a node set GC∗n set if every
fundamental polynomial is reducible, i.e., is the product of two or more
nontrivial factors. The generalized conjecture claims that (see Conjecture
2.0.11), for each GC∗n set, there is a maximal curve of some degree k, with
1 ≤ k ≤ n−1, i.e., a curve containing as much as d(n, k) := (1/2)k(2n+3−k)
nodes. This is maximal possible number of nodes given that the node set is
n-poised.

The generalized conjecture in its turn is equivalent to the statement that
each GC∗n set is a particular case of another simple known construction,
which is a generalization of the Berzolari–Radon construction (see [15]).

The present paper settles the generalized conjecture for n = 3, which is the
first interesting case, stating that under the assumption of reducibility, there
is a maximal line (containing n + 1 nodes), or a maximal conic (containing
2n + 1 nodes).
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Consider a set of nodes (points):

Ts := {(x1, y1), . . . , (xs, ys)}.
The interpolation problem consists of finding a polynomial p ∈ Πn such that

(1.0.1) p(xi, yi) = ci, i = 1, 2, . . . , s.

Definition 1.0.1. A set of nodes Ts is called Πn-poised, or briefly n-poised,
if for any data c̄ = {c1, . . . , cs} there exists a unique polynomial p ∈ Πn

satisfying the conditions (1.0.1).

A necessary condition for n-poisedness of Ts is: s = N.
Denote by p|T the restriction of p to T .
A polynomial p ∈ Πn is called n-fundamental for T = (xk, yk) ∈ Ts if

p|Ts\{T} = 0, p(T ) = 1.

We denote by p?T := p?k this fundamental polynomial.
Now let us consider an important concept for node sets.

Definition 1.0.2. A set of nodes Ts is called n-independent, if all its nodes
have n-fundamental polynomials: p?i ∈ Πn, i = 1, . . . , s.

The fundamental polynomials are linearly independent. Therefore a nec-
essary condition of n-independence of Ts is: s ≤ N. Clearly any n-poised set
is n-independent. We also have that Ts is n-independent if and only if the
interpolation problem (1.0.1) is solvable, meaning that for any data c̄ there
exists a polynomial p ∈ Πn (not unique, if s < N) satisfying the conditions
(1.0.1).

In the sequel we will need the following proposition (see [6], Proposition
1, see also [9], Theorem 9, for the case of multiple nodes).

Proposition 1.0.3. Any set of k nodes, with k ≤ 2n + 1, in the plane, is
n-independent if and only if no n+ 2 of them are collinear.

Next we present so called GCn sets introduced by Chung and Yao [5].

Definition 1.0.4. An n-poised set of nodes T is called a GCn set, if the
n-fundamental polynomial of each its node is a product of n linear factors.

We say that a node T ∈ T uses an algebraic curve q of degree k if the latter
divides the fundamental polynomial of T, i.e., p?T = qr for some r ∈ Πn−k.
Thus each node of a GCn set uses n lines.

The Gasca–Maeztu conjecture is the following [7]:

Conjecture 1.0.5 (Gasca–Maeztu). If T is a GCn set, then there is at least
one line l such that #(T ∩ l) = n+ 1.

So far this conjecture has been verified only for n ≤ 5 (see [1],[2],[11] for
n ≤ 4 and [12] for n = 5). In fact, the conjecture states that every GCn

set is a particular case of a very simple construction of n-poised sets, called
Berzolari–Radon (see [4]):



354 HAKOP HAKOPIAN AND LEVON RAFAYELYAN

Definition 1.0.6. A set of N = 1 + · · ·+ (n+ 1) nodes is called Berzolari–
Radon set for degree n, or briefly B-R set, if there exist lines l1, l2, . . . , ln+1,
such that the sets l1, l2 \ l1, l3 \ (l1 ∪ l2), . . . , ln+1 \ (l1 ∪ · · · ∪ ln) contain
exactly (n+ 1), n, n− 1, . . . , 1 nodes, respectively.

2. Maximal curves and the generalized conjecture

Let us start with the following well-known statement.

Proposition 2.0.7. Assume that l is a line and Tn+1 is any subset of l
containing n+ 1 points. Then we have that

p ∈ Πn and p|Tn+1 = 0 ⇒ p = lr, where r ∈ Πn−1.

Denote

d := d(n, k) := dim Πn − dim Πn−k = (1/2)k(2n+ 3− k).

The following is a generalization of Proposition 2.0.7.

Proposition 2.0.8 ([15], Proposition 3.1). Let q be an algebraic curve of
degree k ≤ n without multiple components. Then the following hold:

(i) Any subset of q containing more than d(n, k) nodes is n-dependent.
(ii) Any subset Td of q containing exactly d(n, k) nodes is n-independent

if and only if the following condition holds:

p ∈ Πn and p|Td = 0⇒ p = qr, where r ∈ Πn−k.

Suppose that T is an n-poised set of nodes and q is an algebraic curve
of degree k ≤ n. Then of course any subset of T is n-independent too.
Therefore, according to Proposition 2.0.8(i), at most d(n, k) nodes of T can
lie in the curve q. Let us mention that a special case of this when q is a set
of k lines is proved in [3]. This motivates the following (see [15], Def.3.1).

Definition 2.0.9. Given an n-poised set of nodes T . A curve of degree
k ≤ n is called maximal if it passes through d(n, k) nodes of the set T .

We have that d(n, 1) = n+ 1, d(n, 2) = 2n+ 1, d(n, 3) = 3n. In view of
Proposition 1.0.3, any set of n+ 1 nodes located in a line is n-independent.
Note that a maximal line, as a line passing through n + 1 nodes of T , is
defined in [2] (see also [10] for the case of general dimension). Any irreducible
conic, i.e., conic which is not a pair of lines, contains at most two collinear
points. Hence by Proposition 1.0.3, any set of 2n + 1 nodes located in an
irreducible conic is n-independent. In the case of cubics (and similarly in
the case of curves of higher degree) we already deal with a new phenomenon.
Namely, not any set of 3n nodes in an irreducible cubic is n-independent (see
[13]). Since d(n, n) = N − 1 we have that each n-fundamental polynomial
of any n-poised set T is a maximal curve of degree n.

Next we bring a characterization of maximal curves:
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Proposition 2.0.10 ([15], Prop. 3.3). Let a node set T be n-poised. Then
a polynomial q of degree k, k ≤ n, is a maximal curve if and only if it is
used by any node in T \ q.

Note that one side of this statement follows from Proposition 2.0.8(ii). In
the case of lines this was proved in ([2]). For other properties of maximal
curves we refer reader to [15], where (in Conjecture 7.2) we propose the
following generalized:

Conjecture 2.0.11 (H.H., L.R.). Suppose that T is an n-poised node set
and the fundamental polynomial of each node is reducible. Then T possesses
a maximal curve of some degree k, 1 ≤ k ≤ n− 1, i.e., a curve q such that
#(T ∩ q) = d(n, k).

Note the degree of the maximal curve here does not exceed n− 1 and the
same estimate holds for the degrees of factors of fundamental polynomials.
By taking into account this fact we put forward the following refined:

Conjecture 2.0.12. Suppose that T is an n-poised node set and the fun-
damental polynomial of each node is a product of factors whose degrees do
not exceed m, where 1 ≤ m ≤ n− 1. Then T possesses a maximal curve of
some degree k, 1 ≤ k ≤ m.

Clearly this conjecture coincides with the Gasca–Maeztu conjecture and
Conjecture 2.0.11 if m = 1 and m = n− 1, respectively.

2.1. The generalized conjecture for n = 3. We start this subsection
with the particular case n = 3 of Conjecture 2.0.11 (or, which is the same,
case n = 3, m = 2 of Conjecture 2.0.12).

Theorem 2.1.1. Suppose that a node set T is Π3-poised and the fundamen-
tal polynomial of each node is reducible. Then T possesses a maximal curve
of degree ≤ 2, i.e., a maximal line or a maximal conic.

This is our main result and will be proved in Sections 3–4. Note that a
Π3-poised set contains 10 nodes, while a maximal line, in case n = 3, passes
through 4 nodes and a maximal conic passes through 7 nodes.

The following three simple lemmas will be used frequently in the sequel.

Lemma 2.1.2. Assume that a node set T is Π3-poised and 2 nodes in T
use the same line. Then T possesses a maximal line.

Proof. Suppose that two nodes T0 and T1 ∈ T use a line l: p?0 = lq0 p?1 =
lq1, where q0, q1 ∈ Π2. Assume also that l passes through ≤ 3 nodes,
since otherwise it is maximal. Then both q0 and q1 vanish at the set
S := T \({T0, T1} ∪ l) containing ≥ 5 nodes. Now, if the nodes in S
are 2-independent then q0 and q1 determine the same conic, which means
that p?0 and p?1 are linearly dependent, leading to a contradiction. Other-
wise the nodes are 2-dependent and by Proposition 1.0.3, four of them are
collinear. �
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Lemma 2.1.3. Assume that a node set T is Π3-poised. If a node T ∈ T
uses a line l passing through exactly 3 nodes and there exists a line l′ passing
through exactly 3 nodes in T \({T} ∪ l), then the following hold:

(i) The node T uses the line l′.
(ii) The remaining 3 nodes in T \({T}∪ l∪ l′) lie in a line l′′ and T uses

the line l′′ too.

Proof. We have p?T = lq, where q ∈ Π2 vanishes at the 3 nodes in l′. Thus,
according to Proposition 2.0.7 we have that q = l′l′′, with l′′ ∈ Π1. Therefore
p?T = ll′l′′ implying that the remaining 3 nodes are in l′′, since none of them
lies in l or l′ by assumption. �

Lemma 2.1.4. Assume that a node set T is Π3-poised without a maximal
line and a maximal conic. Then the following hold:

(i) Each used line passes through exactly three nodes.
(ii) If l and l′ are two lines, both used by a node of T , then l∩ l′∩T = ∅.

Proof. Suppose, for (i), that a node T ∈ T uses a line l passing just through
2 nodes, then p?T = lq, where the conic q ∈ Π2 passes through 7 nodes of
T \({T} ∪ l), and hence is maximal, which contradicts our assumption.

For (ii), suppose that l and l′ are two lines used by T ∈ T , i.e., p?T = ll′l′′,
where l′′ ∈ Π1. Now, assume by way of contradiction that l ∩ l′ ∈ T , hence
there are only 5 nodes in l ∪ l′. Then l′′ passes through the 4 nodes of
T \({T} ∪ l ∪ l′), and is maximal, which contradicts our assumption. �

2.2. Alternatives 1 and 2. Let us start the proof of Theorem 2.1.1. From
now on we shall assume that

(2.2.1) T has no maximal lines or conics,

in order to derive a contradiction.
Now let as present the following proposition which is important for the

later consideration.

Proposition 2.2.1. Assume that each fundamental polynomial of a Π3-
poised node set T with (2.2.1) is reducible. Assume also that no node of T
is intersection point of 4 used lines. Then the following hold.

(1) There are exactly 10 used lines.
(2) On each used line there are exactly 3 nodes.
(3) Each node is an intersection point of exactly 3 used lines.
(4) Each node uses a line and an irreducible conic.

Proof. Note that the reducibility of fundamental polynomials in the case of
degree 3 means that each node uses either 3 lines, or a line and an irreducible
conic. By taking onto account (2.2.1), we get from Lemma 2.1.2 that there
are at least 10 distinct used lines. Also we get that each node uses a line
and an irreducible conic, if there are exactly 10 used lines. According to
Lemma 2.1.4(i) each used line passes through exactly 3 nodes. Therefore in
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Figure 1. Four concurrent lines.

the case of exactly 10 distinct used lines the total number of nodes belonging
to them equals 30. Thus we get that on average a node of T is in 3 used
lines, i.e., is an intersection point of 3 used lines. Thus if there are more
than 10 distinct used lines, or if a node is an intersection point of less than
3 used lines, then there is a node, which is an intersection point of four used
lines, contrary to our assumption. �

In view of Proposition 2.2.1 we are to proceed in the following two alter-
native directions:

Alternative 1. Four used lines intersect at a node of T .

Alternative 2. T satisfies the conditions (1)–(4) of Proposition 2.2.1.

We consider these two cases in the forthcoming Sections 3 and 4, respec-
tively.

3. Alternative 1 — proof of the main result

Assume that we have a set of four used lines L = {l1, l2, l3, l4} that in-
tersect at a node T0 ∈ T . Assume also, in view of Lemma 2.1.4(i) and
assumption (2.2.1), that the two nodes in l1, l2, l3, l4, besides T0, are T2, T3;
T4, T5; T6, T7; T8, T9, respectively. Denote the node which does not belong
to the lines of L by T1 (see Figure 1).

Let us start with:

Lemma 3.0.2. Suppose that M is a set of 3 or 4 lines from L. Suppose
also that a node T not belonging to the lines of M does not use any line of
L. Then the following hold:

(i) The set M consists of 3 lines, i.e., #M = 3.
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(ii) Any line used by T intersects each of the three lines of M at a node,
different from T0.

Proof. Suppose that the node T uses a line l. Since l /∈ L we have, in view of
Lemma 2.1.4(i), that l is not passing through T0. Then, by Lemma 2.1.3(i),
l passes through one node from each line of M, since otherwise T uses it,
contrary to our assumption. Now, in view of Lemma 2.1.4(i), we obtain that
#M = 3. �

Lemma 3.0.3. The following hold:

(i) No node of T can use 2 lines from L.
(ii) The node T1 uses a line from L.

Proof. Statement (i) follows immediately from Lemma 2.1.4(ii). In order
to verify statement (ii), assume that T1 does not use any line of L. Then by
setting M = L, we obtain a contradiction in view of Lemma 3.0.2(i). �

Now we may assume without loss of generality:

(�) The node T1 uses the line l1.

With that assumption, p?1 = l1q, with q a quadratic polynomial that must
vanish at the 6 nodes T4, . . . , T9 at which p?1 vanishes but l1 does not. In
other words:

(3.0.2) The nodes T4, T5, T6, T7, T8, T9 are in a conic (possibly reducible).

Now, we turn to the nodes in the line l1.

Lemma 3.0.4. Each of the nodes T2, T3, lying in the line l1, uses a line of
L.

Proof. Suppose one of the nodes T2, T3, say T2, does not use any line of L.
Assume that l is a line used by T2, where l /∈ L. Then from Lemma 3.0.2(ii),
with M = {l2, l3, l4}, we get that the line l intersects each of the lines
li, i = 2, 3, 4, at a node, different from T0. Hence 3 of 6 nodes mentioned in
(3.0.2), which belong to a conic, are collinear. Thus the conic is reducible and
the other 3 nodes, i.e., the 3 nodes in {T4, T5, T6, T7, T8, T9}\l are collinear
too. Now, the remaining three nodes of ten: T0, T1, T3, are not collinear, in
contradiction with Lemma 2.1.3(ii). �

Thus there is no loss of generality in assuming:

(�) The nodes T2 and T3 use the lines l2 and l3, respectively.

Next we consider the nodes in the line l4.

Lemma 3.0.5. The nodes T8 and T9, lying in the line l4, use certain lines
l′ and l′′, respectively, which intersect each of the three lines li, i = 1, 2, 3,
at a node, different from T0.
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Proof. We have that the line li is used by the node Ti, i = 1, 2, 3. Therefore,
by Lemma 2.1.2 the nodes T8 and T9, do not use any line from L. Now, it
remains to set M = {l1, l2, l3} and use Lemma 3.0.2(ii). �

Furthermore, we have:

Lemma 3.0.6. The lines l′ and l′′ of Lemma 3.0.5 have a common node T
which belongs to T \l1. Moreover T uses the line l4.

Proof. Assume by way of contradiction that there is no common node.
Then, in view of Lemma 2.1.3(i) and Lemma 3.0.5, the nodes T8 and T9
both use the lines l′ and l′′, which is impossible by Lemma 2.1.2. Now
suppose that l4 is used by a node T ′ ∈ T \l4, different from the common
node T. Then T ′ does not belong to one of the lines l′ and l′′, say to l′. Next,
by Lemma 2.1.3(i), the node T ′ uses the line l′ already used by T8. This
contradicts Lemma 2.1.2. Finally, notice that, in view of Lemma 3.0.3(i),
the common node T is not in the line l1, i.e., it is not coinciding with the
nodes T2, T3. Indeed, T uses the line l4 ∈ L, and the latter nodes use the
lines l2, l3 ∈ L, respectively. �

Therefore the common node T is in the line l2 or l3. Hence, without loss
of generality suppose that the lines l′ and l′′ intersect at T4.

Thus, according to Lemma 3.0.6, we have (see Figure 2)

(�) The node T4 = l′ ∩ l′′ uses the line l4.

Next, completely similarly to Lemma 3.0.5 we get:

Lemma 3.0.7. The nodes T6 and T7, lying in the line l3, use certain lines
l? and l??, respectively, which intersect each of the three lines li, i = 1, 2, 4,
at a node, different from T0.

Now we are in a position to complete:

Proof of Theorem 2.1.1 in the case of Alternative 1. We have that
the lines l′ and l′′ pass through the node T4. In view of Lemma 3.0.5, we
may assume without loss of generality that l′ passes also through the node
T2 and one of T6, T7, while l′′ passes through T3 and another one of T6, T7.
Next, we have, in view of Lemma 3.0.7, that the lines l? and l?? pass through
the node T5 of the line l2. Indeed, otherwise if one of them passes through
the node T4 ∈ l2, then it coincides with one of the lines l′ and l′′. Again,
in view of Lemma 3.0.7, we may assume without loss of generality that one
of the lines l? and l??, say l?, passes also through the node T2 and one of
T8, T9. Finally, let us turn to the node T3 which uses the line l3. By Lem-
ma 2.1.3(i) it uses also l?, already used by T6. This, in view of Lemma 2.1.2,
is a contradiction. �
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Figure 2. Alternative 1 — proof.

4. Alternative 2

4.1. The Desargues and Pascal theorems. Denote by lAB the line pass-
ing through the points A and B.

For a set of points A1, A2, A3, B1, B2, B3 the following cross- and v-type
intersection points (see Figure 3) will be considered in the sequel:

˙AB1∨2 := lA1A2 ∩ lB1B2 =: C∨3 ,
˙AB3∨1 =: C∨2 ,

˙AB2∨3 =: C∨1 ,

˙AB1×2 := lA1B2 ∩ lA2B1 =: C×3 ,
˙AB3×1 =: C×2 ,

˙AB2×3 =: C×1 .

In the brief notation C∨i and C×i we take into account the fact that
˙ABj∨k = ˙ABk∨j and ˙ABj×k = ˙ABk×j .

Remark 4.1.1. Notice that the intersection points ˙AB1∨2 and ˙AB1×2 will
be interchanged if we interchange the points A1, B1 or A2, B2 (see Figure 4).

Let us now present the well-known Desargues and Pascal theorems in
terms of the above cross- and v-type intersection points (see Figure 6).

Theorem 4.1.2 (Desargues). Suppose the lines l1, l2, l3 are concurrent and
two points Ai, Bi are given on each line li, i = 1, 2, 3. Then the intersection
points C∨1 , C

∨
2 , C

∨
3 are collinear.

Theorem 4.1.3 (Pascal). Suppose six points: A1, A2, A3, B1, B2, B3 are
given in a conic (i.e., in an algebraic curve of degree 2). Then the intersec-
tion points C×1 , C

×
2 , C

×
3 are collinear.
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Figure 3. Points ˙AB1∨2 and ˙AB1×2.

Figure 4. Points A2 and B2 interchanged.

Below, in Remark 4.1.4, we bring two other equivalent formulations of
the Pascal theorem. First one is well-known and second one will be used in
the proof of the forthcoming Theorem 4.1.5.

Remark 4.1.4.

(i) If we apply the Pascal theorem for the 6 points T1, . . . , T6 ordered
as {T1, T5, T3, T4, T2, T6} ≡ {A1, A2, A3, B1, B2, B3} then we get the
following equivalent formulation of the Pascal theorem:

Suppose 6 points: T1, . . . , T6 are given in a conic. Then the following
three intersection points are collinear:

l12 ∩ l45, l23 ∩ l56, l34 ∩ l61,

where lij is the line passing through Ti and Tj .
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Figure 5. The six collinear points.

(ii) If we interchange A3 and B3 in Theorem 4.1.3 then, in view of Re-
mark 4.1.1, we get the following equivalent formulation of the Pascal
theorem:

Suppose 6 points: A1, A2, A3, B1, B2, B3 are given in a conic. Then
the intersection points C∨1 , C

∨
2 , C

×
3 are collinear.

On the basis of the Desargues and Pascal theorems we get the following,
interesting in itself:

Theorem 4.1.5. Suppose the lines l1, l2, l3 are concurrent and two points
Ai, Bi are given on each line li, i = 1, 2, 3, such that the six points A1, A2, A3,
B1, B2, B3 are in a conic. Then the following six intersection points: C∨1 ,
C∨2 , C∨3 , C×1 , C×2 , C×3 are collinear (see Figure 5).

Proof. In view of the Desargues theorem and the Pascal theorem formulated
as in Remark 4.1.4(ii), we have that the points C∨1 , C

∨
2 , C

∨
3 , C

×
3 are in a line

l. Next we apply the Pascal theorem once more for the 6 points ordered in
the following way: A3, A1, A2, B3, B1, B2, to get that the points C∨1 , C

∨
3 , C

×
2

are collinear. Since first two of these 3 points are in l, also the third one:
C×2 is in l. To complete the proof we apply for the third time the Pascal
theorem for the 6 points ordered in the following way: A2, A3, A1, B2, B3, B1,
and get that the points C∨2 , C

∨
3 , C

×
1 are collinear. Hence we obtain that C×1

is in l. �

Remark 4.1.6. Note that the inverses of the Desargues and Pascal theo-
rems as well as Theorem 4.1.5 also hold true.

4.2. The construction of the node set. Now let us turn to the case
of Alternative 2 described in Subsection 2.2. Before starting the proof of
Theorem 2.1.1 in this case (in Subsection 4.3), we describe the construction
of T and make some clarifications. Now, the conditions (1)–(4) of Proposi-
tion 2.2.1 hold. It is convenient to refer to these conditions, as conditions
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Figure 6. The construction of T with C∨3 .

(1)–(4) of Alternative 2, or briefly, as Alt2.1–Alt2.4. Note that conditions
(1)–(3) mean that the 10 nodes of T and 10 used lines form a 103 configu-
ration (see [14], Chapter 3, Section 19). Recall that by condition (4) each
node of T uses exactly one line and one irreducible conic. Below we describe
the construction of T , starting with any node (see Figure 6).

Proposition 4.2.1. Let S ∈ T be any (starting) node. Assume that l1, l2, l3
are the three used lines passing through S (Alt2.3) Assume also that Ai, Bi

are the 2 nodes, besides S, in the line li, i = 1, 2, 3 (Alt2.2). Then the
following hold.

(i) The 6 nodes A1, A2, A3, B1, B2, B3 are in the irreducible conic used
by S.

(ii) The line l used by S passes through the remaining three nodes of T ,
i.e., the nodes of T \ {S,A1, A2, A3, B1, B2, B3}. These three nodes
can be identified as C∨1 , C

∨
2 , and C∨3 or C×3 (for this we may inter-

change the nodes Ai, Bi in the lines li, i = 3, 1, if necessary).
(iii) The three nodes in l, i.e., C∨1 , C

∨
2 , C

∨
3 or C×3 , use the lines l1, l2, l3,

respectively.
(iv) The 6 intersection points C∨1 , C

∨
2 , C

∨
3 , C

×
1 , C

×
2 , C

×
3 belong to the line

l.

Proof. Consider the line l used by S. In view of conditions Alt2.2 and
Alt2.3, there are 3 nodes: S′, S′′, S′′′ in l and through each node there pass
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2 used lines, besides l. Thus, we have identified 7 used lines: l and the other
6 ones intersecting l at a node.

Now, let us verify that the remaining 3 used lines of 10, which already
do not intersect l at a node, pass through S, i.e., coincide with l1, l2, l3.
Otherwise, according to Lemma 2.1.3(i), each line not passing through S
and not intersecting l at a node, will be used by S, which already uses the
line l. But, this contradicts condition Alt2.4. Thus, the 6 nodes A1, A2, A3,
B1, B2, B3 are outside the line l. Therefore, in view of condition Alt2.4, they
are in the irreducible conic used by S, and (i) is proved.

Next, we observe that the line l used by the node S can be determined
by each of the following two criteria: Take the 3 used lines l1, l2, l3, passing
through the node S and then the line used by this node is

(a) the line passing through the 3 nodes of T not belonging to l1, l2, l3,
(b) the line not intersecting the 3 lines l1, l2, l3, at a node.

Then, in view of (b), we get that each of the 3 nodes in l uses one of
the concurrent lines li, i = 1, 2, 3, since all other 6 lines intersect l at a
node. Now let us fix one of the 3 nodes, say S′′′, and suppose that it uses
l3 (see Figure 6). According to (a), all the nodes except the 3 in the line
l3, i.e., S,A3, B3, are in the used lines passing through S′′′. Thus the nodes
A1, A2, B1, B2 are in the two used lines passing through S′′′, since the third
line through S′′′ is l, which passes through S′ and S′′. Therefore we have
two possibilities. The two used lines pass either through the pairs of nodes
{A1, A2}, {B1, B2} or {A1, B2}, {A2, B1}. In other words, we get that S′′′

is either C∨3 or C×3 . In the same way, by supposing that S′ and S′′ use l1 and
l2, respectively, we get that S′ is either C∨1 or C×1 and S′′ is either C∨2 or
C×2 . Now, we interchange the nodes A3, B3 in the line l3 and then the nodes
A1, B1 in the line l1, if necessary, to fix these nodes as they are mentioned
in (ii). Thus (ii) and (iii) are proved. (Note that we cannot interchange the
nodes in the line l2 to fix one of the two possibilities also for the third node:
C∨3 or C×3 , since then the already fixed intersection point C∨1 will turn into
C×1 .) Finally, we get (iv) by using (i) and Theorem 4.1.5. �

The following proposition along with Proposition 4.2.1 is a main tool in
proving Theorem 2.1.1 for the case of Alternative 2.

Proposition 4.2.2. Suppose that two used lines l1 and l2 pass through a
node S ∈ T . Suppose also that Ai, Bi are the 2 nodes, besides S, in the line
li, i = 1, 2. Then one of the points C∨3 , C

×
3 (i.e., ˙AB1∨2, ˙AB1×2) is a node

in T and another coincides with the intersection point l3 ∩ l, where l3 is the
third used line through S and l is the line used by S.

Proof. Assume, in view of Proposition 4.2.1(ii) and Remark 4.1.1, without
loss of generality, that C∨3 ∈ T . Then we need to prove that

C×3 = l3 ∩ l.
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Figure 7. Alternative 2 — the proof.

First notice that by Proposition 4.2.1(iv) C×3 ∈ l. Next, we are going to use
Proposition 4.2.1(iii) with the starting node S = C∨3 . We have that this node
uses the line l3. On the other hand the pairs of nodes {A1, A2}, {B1, B2} are
in the two used lines passing through the starting node C∨3 , respectively.
Therefore, by using Proposition 4.2.1(iv), we conclude that C×3 ∈ l3 (see
Figure 3). �

4.3. Alternative 2 — proof of the main result. Consider a node S ∈ T
satisfying the condition

(4.3.1) S /∈ conv{T \ S}.
Suppose the 3 used lines passing through S are l1, l2, l3. Suppose also that
the 2 nodes in li, besides S, are Ai, Bi, i = 1, 2, 3. These nodes, in view of
the condition (4.3.1) are on the rays starting with S, which we denote by
l+i , i = 1, 2, 3 . Assume that A1, B2, A3 are the middle nodes in the rays,
i.e., they lie in the segments SB1, SA2, SB3, respectively. (see Figure 7).
Without loss of generality assume that l+2 is between l+1 and l+3 , meaning
that

(4.3.2) l+2 belongs to ∠α,

where ∠α is the angle (< π) with the sides l+1 , l
+
3 .

Then it is easily seen that

C∨1 := ˙AB2∨3 ∈ conv{B2, A2, B3, A3},(4.3.3)

C∨3 := ˙AB1∨2 ∈ conv{A1, B1, A2, B2},(4.3.4)

and

(4.3.5) C∨2 := ˙AB3∨1 /∈ ∠α ∪ ∠α−,
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where ∠α− is the opposite angle of ∠α.
Now let us verify that the points C∨1 , C

∨
2 and C∨3 are nodes of T . In-

deed, otherwise, by Proposition 4.2.2, they belong to the lines l1, l2, and l3,
respectively, contrary to (4.3.3–4.3.5).

Next, notice that one of the nodes B1 or B3 has the property (4.3.1) of
S, depending on which one is an end point in the triple B1, B3, S. Suppose
it is the node B1 (as in Figure 7). Note that the 3 used lines through B1

are the lines k1 := lB1S , k2 := lB1B2 and k3 := lB1B3 . Then the 2 nodes in
ki, besides B1, are in the respective rays starting with B1, which we denote
by k+i , i = 1, 2, 3, respectively.

Now, let us show that

(4.3.6) k+2 is between k+1 and k+3 .

For this notice that, in view of Proposition 4.2.1(ii), S uses the line l passing
through the nodes C∨1 , C

∨
2 and C∨3 . Hence, according to Proposition 4.2.2,

C×2 := ˙AB3×1, i.e., the intersection point of diagonals of the quadrangle
A1, A3, B3, B1, coincides with the point O := l2 ∩ l. From here we get that

(4.3.7) m+
2 is between m+

1 and m+
3 ,

where m+
1 ,m

+
2 ,m

+
3 are the rays starting with C∨2 and passing through

A1, C
∨
1 , B1, respectively.

Therefore

(4.3.8) O1 ∈ conv{A1, B1}, O ∈ conv{O2, O4},
where O1 := m2 ∩ l1, O2 := m1 ∩ l2, O4 = m3 ∩ l2.

On the other hand, by the condition (4.3.4), and the fact that C∨3 ∈ l, we
conclude that

C∨3 ∈ conv{O1, O}.
This, in view of (4.3.8), establishes (4.3.6), since the ray k+2 intersects l at
C∨3 .

Now notice that the relations (4.3.4) and (4.3.3) proved for the starting
node S, in the case of the starting node B1 imply that conv{A1, S,B2, C

∨
3 }

contains in its interior one of the 3 nodes in the line used by B1, i.e., one
of A2, C

∨
1 , A3. But it is easily seen that the later nodes belong to the angle

with sides l+2 , l
+
3 , which is a contradiction. �
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