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When are radicals of Lie groups
lattice-hereditary?

Andrew Geng

Abstract. This note aims to clarify what conditions on a connected
Lie group G imply that its maximal connected normal solvable subgroup
R intersects each lattice of G as a lattice in R.
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1. Introduction

1.1. Motivation. The purpose of this note is to clarify the situation about
a fundamental claim in the general study of lattices in Lie groups. The setup
is as follows.

Recall that every connected Lie group G is an extension

1→ R→ G→ S → 1,
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with R solvable and S semisimple. The subgroup R, called the radical of G,
is the unique maximal connected, normal, and solvable subgroup of G. A
subgroup S ⊆ G, called the semisimple part, covers S via the map G → S
(not necessarily finitely) and is unique up to conjugacy. This divides much
of the study of a general Lie group into the study of R and S.

A lattice in G is a discrete subgroup Γ for which Γ\G has finite measure
(induced by Haar measure on G). Attempting to achieve the above division
for lattices, one can ask the following.

Question 1.1. If Γ is a lattice in G, is Γ ∩R a lattice in R?

When it is, one then obtains 1→ Γ ∩R→ Γ→ Γ/(Γ ∩R)→ 1, and it is
known (see Theorem 2.6 below) that Γ/(Γ ∩R) is then a lattice in S.

One can also ask whether Γ ∩N is a lattice in N where N is the unique
maximal connected, normal, and nilpotent subgroup of G (the nilradical).
So define a Lie subgroup H of G to be lattice-hereditary if Γ∩H is a lattice
in H for each lattice Γ of G. Raghunathan has made the following positive
claim.

Claim 1.2 ([Rag72, Corollary 8.28]). If G is connected and no compact
factor of S acts trivially on R, then N and R are both lattice-hereditary.

In [Sta84], Starkov produced the counterexample

G =
(
R2 o SO(1, 1)0

)
×
(
R3 o SO(3)

)
(details below in Example 3.2). In response, Wu gave a revised proof in
[Wu88, Proposition 1.3], following Mostow’s proof in [Mos71, Lemma 3.9]
that N is hereditary. An internet search for citations indicates awareness of
these papers by later authors but scant further elaboration, found mostly
in [OV00, p. 107]. Except for Wu’s comments in [Wu88, §2] about why one
step in Raghunathan’s proof is false, no one points out specific mistakes in
previous arguments. Some authors have explicitly chosen to “refrain from
taking sides in the discussion” [KLR14, Rem. 6].

In his review [Hum89] of Wu’s proof, Humphreys encourages the reader
to “study these arguments independently, since they involve a complicated
mixture of techniques.” Misprints (noted in the review) and sentence frag-
ments further complicate reading, and Wu’s claim ultimately turns out to
be incorrect. Since the literature does not contain a correction of Claim 1.2
that accounts for what Wu’s method can achieve, the author wishes to give
one (Theorem 1.3, below) and reconcile it with other results.

1.2. Results. Applying Wu’s revised proof step-by-step to Starkov’s coun-
terexample reveals that a step elided in Raghunathan’s proof and made ex-
plicit in Wu’s is missing an assumption in both versions. Adding it yields
the following.
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Theorem 1.3 (Revised Claim 1.2). Let G be a connected Lie group whose
semisimple part S has no compact factor acting trivially on the radical R of
G. Then:

(i) The nilradical N of G is lattice-hereditary.
(ii) If no compact factor of S acts trivially on R/N , then R is also

lattice-hereditary.

Mostow proved part (i) in [Mos71, Lemma 3.9]. The new assumption, in
(ii), is required by Starkov’s example (see Remark 4.6 below). In fact, via
a theorem of Chevalley, (ii) is a case of [Aus63, Theorem 1] by Auslander
(see Remark 4.7). So what Wu’s method does is to unify these theorems
of Mostow and Auslander, which we express for all connected G as follows.
(See Section 4.3 for the proof.)

Corollary 1.4. Let G be a connected Lie group with radical R, nilradical N ,
and semisimple part S. Let C and SK be the maximal connected semisim-
ple compact normal subgroups of G and S, respectively. The following are
lattice-hereditary in G.

C ⊆ NC ⊆ NSK ⊆ RSK
Remark 1.5. Part (i) of Theorem 1.3 is recovered by assuming C = {1},
and part (ii) by assuming SK = {1}. Auslander’s result, as originally stated,
is the heredity of RSK .1

After definitions and basic facts in Section 2, we recall examples (includ-
ing Starkov’s) in Section 3 and the proof in Section 4. This includes the
correction, an alternative proof of the key lemma [Mos71, Lemma 3.8], a
remark on where Starkov’s example fits in, and the proof of Corollary 1.4.
We mention related statements in Section 5.

Acknowledgements. The author wishes to thank Benson Farb for helpful
discussions and extensive comments during the preparation of this note.
Thanks are also due to Daniel Studenmund for a careful proofreading, to
Dave Witte Morris for comments on a draft, and to an anonymous referee
whose review led to a couple of corrections.

2. Background

This section contains definitions of concepts mentioned in the introduction
and used in the sequel (e.g., radical, nilradical, and heredity), along with
some facts used in the examples and proof. Most of this material can be
found in the books [Rag72], [OV00], and [GOV94].

1The version in [Aus63, Theorem 1] requires uniform (i.e., cocompact) lattices.
For the nonuniform case (which is claimed in, e.g., [GOV94, I.4 Theorem 1.7]), one

could replace [Aus63, Prop. 3] with [Mos71, Lemma 3.4(d)] to show ΓRK is closed with
identity component RK and use [Mos62, Lemma 2.5] to finish. We will instead use these
ingredients in Theorem 1.3 and use that to prove this part of Corollary 1.4.
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2.1. Relevant subgroups of Lie groups.

Definition 2.1 (Levi decomposition; see, e.g., [GOV94, §1.4]). If G is a
connected Lie group, thenG = RS where R is the unique maximal connected
normal solvable subgroup of G and S is a semisimple virtual Lie subgroup
covering G/R. The group R is called the radical. The group S is called the
semisimple part and is unique up to conjugacy [GOV94, Theorem 1.4.3].

Definition 2.2 (Nilradical; see, e.g., [GOV94, §2.5]). If G is a Lie group,
its nilradical N is its unique maximal connected normal nilpotent subgroup.
It coincides with the nilradical of R.

The nilradical may not be part of an analogous decomposition—i.e., G→
G/N may not restrict to a covering homomorphism on any virtual Lie sub-
group2—but it has the following useful relationship with R, due to Chevalley.

Theorem 2.3 (See, e.g., [Jac62, II.7 Theorem 13]). Let n, r, and g be the
Lie algebras of N , R, and G. Then [g, r] ⊆ n.

Corollary 2.4. R/N and r/n are abelian, and G acts trivially on them.

2.2. Heredity. This section defines heredity and recalls some related prop-
erties and theorems.

Definition 2.5 (Heredity, following [OV00, §I.1.4.2]). In a Lie group G, let
Γ be a lattice, and let H be a closed (i.e., Lie) subgroup of G.

• H is Γ-hereditary if H ∩ Γ is a lattice in H.
• H is lattice-hereditary if it is Γ-hereditary for every lattice Γ in G.

The statements of Theorem 1.3 in [Rag72, 8.28] and [Wu88, Prop. 1.3]
include as conclusions some properties that are equivalent to heredity, so we
note the equivalence now.

Theorem 2.6 ([OV00, I.1 Theorem 4.3,5,7]). Let Γ and H be a lattice and
a closed subgroup, respectively, of a Lie group G. If either Γ is uniform (i.e.,
Γ\G is compact) or H is normal, then the following are equivalent.

• HΓ is a closed subset of G.
• H is Γ-hereditary.
• The image of Γ in G/H is discrete.
• The image of Γ in G/H is a lattice (when H is normal).

Example 2.7. It can happen that HΓ is closed but H is not Γ-hereditary
for nonnormal H and nonuniform Γ, e.g., if G = SL(2,R) and Γ = SL(2,Z)
with H being the diagonal matrices. [OV00, I.1 Example 4.6]

2For example, if G = R4 o H where H is the Heisenberg group acting through the
composition H → H/Z(H) ∼= R2 → SO(2)×SO(2), then G has nilradical N = R4×Z(H)
and G→ G/N ∼= R2 has no homomorphic section. However, see, e.g., [GOV94, §1.6.4] for
a related decomposition.



WHEN ARE RADICALS OF LIE GROUPS LATTICE-HEREDITARY? 325

Remark 2.8. Example 2.7 is not a counterexample to [Mos62, Lemma 2.5]
(Lemma 4.5 below) because here HΓ ⊆ G is only a subset, not a subgroup.

To study lattices in general Lie groups, we will use two facts about lattices
in solvable groups, due to Mostow.

Theorem 2.9. Let G be a connected solvable Lie group.

(i) Every lattice of G is uniform [Mos62, Theorem 6.2].
(ii) The nilradical N of G is lattice-hereditary [Mos54, §5].3

3. Cautionary examples

This section contains two examples illustrating the necessity of the hy-
potheses in Theorem 1.3. The second example is due to Starkov in [Sta84].
We give some details in order to fill the gaps mentioned by its review in
[Hum86].

3.1. A lowest-dimensional group with nonhereditary radical. The
following example establishes the necessity of the hypothesis (included in
most versions of Theorem 1.3) that no compact factor of S acts trivially on
R.

Example 3.1 (See, e.g., [vL14, Ex. 2.3]). Define

ρ : Z→ R× SO(3)

n 7→ (n,An)

where A ∈ SO(3) has infinite order. Then ρ(Z) is a lattice in R × SO(3),
and the radical R of R× SO(3) is not ρ(Z)-hereditary.

Proof. Let G = R×SO(3). The projection G→ R takes ρ(Z) injectively to
the discrete group Z, so ρ(Z) is discrete in G. A fundamental domain of the
action of ρ(Z) on G is contained in [0, 1]× SO(3), which has finite volume.
Therefore ρ(Z) is a lattice.

Since A has infinite order, ρ(Z) ∩ R = 0, which is not a lattice in R. �

3.2. Starkov’s counterexample. The following example, due to Starkov,
refutes Claim 1.2, including the version written in [Wu88, Prop. 1.3]. (See
Remark 4.6.)

Example 3.2 ([Sta84]). Let SO(1, 1)0 denote the identity component of
SO(1, 1). The radical R of

G =
(
R2 o SO(1, 1)0

)
×
(
R3 o SO(3)

)
is not lattice-hereditary, as demonstrated by the following lattice Γ.

3Cited as “Theorem 4.1” from [Mos54] in the proof of [Mos71, Lemma 3.9].
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Choose (s, r) ∈ SO(1, 1)0 × SO(3) where s and r act with the following
characteristic polynomials.

Ps(x) = x2 −
(
4 +
√

8
)
x+ 1

Pr(x) =
(
x2 −

(
4−
√

8
)
x+ 1

)
(x− 1)

The basis of R2×R3 in which (s, r) acts in Frobenius normal form generates
a group Γ0

∼= Z5. Let Γ be the group generated by (s, r) and Γ0.

Proof that Γ is a (uniform) lattice. Since Γ0 is generated by a basis of
R2 × R3, it is a lattice in R2 × R3. Then some open V ⊂ R2 × R3 meets Γ0

in only the identity. Define

W = V ·
({
a ∈ SO(1, 1)0

∣∣∣ tr a < 4 +
√

8
}
× SO(3)

)
.

In the topology on a semidirect product, W is open in G. Since tr s = 4+
√

8,
the projection of W ∩ Γ to SO(1, 1)0 is trivial.

The characteristic polynomial by which (s, r) acts on R2 × R3 is

Ps(x)Pr(x) = (x− 1)(x4 − 8x3 + 10x2 − 8x+ 1).

This has integer coefficients, so conjugation by (s, r) preserves Γ0. Therefore
elements of Γ with trivial projection to SO(1, 1)0 lie in Γ0. Then

W ∩ Γ = W ∩ Γ0 = V ∩ Γ0,

which contains only the identity; so Γ is discrete in G.
If U is a closed fundamental domain for the action of Γ0 on R2×R3, then

a closed fundamental domain for the action of Γ on G is the set

U ·
({
a ∈ SO(1, 1)0

∣∣∣ tr a2 ≤ 4 +
√

8
}
× SO(3)

)
.

In the topology on a semidirect product, this set is diffeomorphic to the
product of SO(3) and a 6-cube; so Γ\G is compact. �

Proof that the radical is not Γ-hereditary. ProjectionG→ SO(3) has
simple image and solvable kernel (R2 o SO(1, 1)0)×R3, so R is this kernel.
The eigenvalues of r have Galois conjugates off the unit circle (namely the
eigenvalues of s), so none are roots of unity. Then r has infinite order in
SO(3), so Γ ∩R is only the trivial (s, r)-translate Γ0.

By dropping the R2 ×R3 coordinates, Γ0\R surjects onto SO(1, 1)0 ∼= R;
so Γ0 is not a uniform lattice in R. Since lattices in solvable groups are
uniform (Theorem 2.9(i)), Γ0 is not a lattice in R. �

Remark 3.3. The discussion after [OV00, I.4 Theorem 1.6] includes the
remark that R admits no lattices. This appears to be a mistake, since R is a
product of R2 o SO(1, 1)0 and R3, both of which admit lattices. Explicitly,
the above construction produces a lattice of G lying in R when given

Ps(x) = x2 − 3x+ 1

r = idR3 .
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4. Proofs of Theorem 1.3 and Corollary 1.4

The proof given in this section follows the same general method as both
Wu’s in [Wu88, 1.3] and Mostow’s in [Mos71, Lemma 3.9]. We repair the
step made explicit by Wu and also use it to prove Corollary 1.4.

4.1. A key lemma. Mostow and Wu prove the following lemma using
algebraic groups; Wu appears to use a decomposition like the one in [GOV94,
Theorem 1.5.6]. At the risk of causing further confusion, we give yet another
proof, using Lie algebras and hiding the use of algebraic groups behind
Chevalley’s Theorem (Theorem 2.3).

Lemma 4.1 ([Mos71, Lemma 3.8], see also [Wu88, Lemma 1.1]). Let G be
a connected Lie group whose semisimple part S is compact. If S contains no
nontrivial connected closed subgroup that is normal in G, then the nilradical
N of G is a maximal connected nilpotent subgroup.

Proof. Let n, r, g, and s be the Lie algebras of N , R (the radical), G, and
S. Suppose N1 ) N is a connected nilpotent subgroup of G with Lie algebra
n1. We show that if S is compact then s contains a nonzero ideal of g.

Taking coordinates from the Levi decomposition g = r + s (a direct sum
of vector spaces), pick r + s ∈ n1 r n. Since S is compact, we may make r
invariant by averaging. That is, if µ is normalized Haar measure on S, then

r′ =

∫
g∈S

Adg(r) dµ(g)

is S-invariant. Since S acts trivially on r/n due to Chevalley’s Theorem
(Theorem 2.3), r′ − r ∈ n. Thus r′ + s ∈ n1 r n.

Let adn denote the adjoint action of g on n. Since n1 is nilpotent and r′

is S-invariant, the following is a Jordan–Chevalley decomposition.

adn r
′ = adn(r

′ + s)− adn s

Acting by any element of S fixes r′ and replaces s with some s′. By unique-
ness of the Jordan–Chevalley decomposition, adn is zero on the S-orbit
S(s − s′) ⊂ s. The subspace this generates is an ideal a of s with triv-
ial action on n and trivial action on r/n—thus an ideal of g.

Since r/n is abelian, any subalgebra of r containing n is an ideal of r. So
n1, being nilpotent and properly containing the nilradical n, cannot lie in r.
Thus we may assume s 6= 0. Then since S is semisimple, we can take s′ 6= s,
which makes a nonzero. �

4.2. Proof of Theorem 1.3.

Notation 4.2. If A is a subset of a topological group G, then A denotes its
closure and A0 denotes its identity component.

Proof of Theorem 1.3. Let G be a connected Lie group with solvable
part R, nilradical N , and semisimple part S. Assume no nontrivial compact

factor of S acts trivially on R. Given a lattice Γ in G, let R1 = ΓR
0
.
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Step 1. R1 is solvable. Since R is normal in G, the set ΓR is a subgroup of

G. Then R1 and ΓR1 = Γ(ΓR
0
) = ΓR are both closed subgroups.

Solvability of R1 will follow from this theorem of Auslander.

Theorem 4.3 ([Aus63, Prop. 2]; see also [Rag72, Theorem 8.24]). In a
Lie group G, let R be a closed, connected, simply connected normal solvable

subgroup and let Γ be a discrete subgroup. Then ΓR
0

is solvable.

In our situation, R is not simply connected. However, Mostow notes in
[Mos71, 2.6.1] that the conclusion still holds. One can use the version in
[Rag72, Theorem 8.24] or derive it from the original as follows.

Let π : G̃ → G be the universal cover of G. The Levi decomposition
of G̃ splits [GOV94, §1.4.1], so the inclusion R ↪→ G lifts to an injection

on universal covers R̃ → G̃. Multiplication by kerπ preserves π−1(ΓR), so

π restricts to a covering map π−1(Γ)R̃ = π−1(ΓR) → ΓR. Then ΓR
0

is

covered by π−1(Γ)R̃
0
, which is solvable by Theorem 4.3.

Step 2. The nilradical of R1 is the nilradical of G. Using Borel’s density
theorem, Mostow proves the following.

Lemma 4.4 ([Mos71, Lemma 3.4(d)]). Let R be the radical of a connected
Lie group G. If Γ is a closed subgroup of G such that Γ0 ⊆ R and Γ\G has

finite volume, then ΓR
0 ⊆ RK where K is a maximal compact factor of the

semisimple part S.

Normal subgroups of G lying in S must commute with R (since their
tangent algebras are ideals in the Lie algebra of G), so the hypothesis of
Lemma 4.1 is satisfied when no compact factor of S acts trivially on R.
Then N—which is the nilradical of G and thus also that of R and RK—
is a maximal connected nilpotent subgroup of RK by Lemma 4.1. Since
R1 ⊆ RK, maximality makes N the nilradical of R1.

Step 3. N is Γ-hereditary (part (i) of the theorem). This theorem of Mostow,
applied to the subgroups ΓR1 ⊇ Γ, implies ΓR1/Γ = R1/(Γ ∩R1) has finite
volume.

Theorem 4.5 ([Mos62, Lemma 2.5]). Let G be a locally compact topological
group and let F ⊇ E be closed subgroups. If G/E has a finite invariant
measure m, then G/F and F/E admit finite invariant measures of which m
is a product.

Therefore R1 is Γ-hereditary. As the nilradical in a solvable group, N is
lattice-hereditary in R1 (Theorem 2.9(ii)). Thus Γ ∩ R1 ∩ N = Γ ∩ N is a
lattice in N . Since Γ is an arbitrary lattice of G, this proves (i).

Step 4. Wu’s reduction of part (ii) to part (i). In this part, we assume
additionally that S acts onR/N without compact factors in the kernel. Since
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R/N is both the radical and the nilradical of G/N , it is lattice-hereditary
in G/N by part (i).

By Theorem 2.6, heredity is equivalent to having the quotient map take
lattices to lattices. So G → G/N → (G/N)/(R/N) = G/R sends Γ to a
lattice. Thus R is lattice-hereditary in G. �

Remark 4.6. It is at the last step (step 4) above that Wu’s proof in [Wu88,
1.3] omits the condition involving R/N . Raghunathan’s proof, in [Rag72,
8.28], stops after obtaining Γ-heredity of N and leaves readers to reconstruct
the rest. (See, however, [Wu88, § 2] where Wu discusses an earlier problem
in Raghunathan’s proof.)

To spell it out, the problem is this: although the action of S on R might
have no compact factors in the kernel, the same is not automatically guar-
anteed for the induced action of S on R/N .

For example: in Example 3.2, the nilradical N of G is R2 × R3, and
N ∩ Γ = Γ0 is indeed a lattice in N . Passing to G/N yields Example 3.1.

Remark 4.7. In view of Chevalley’s Theorem (Theorem 2.3), G acts triv-
ially on R/N . Thus S has no compact factor acting trivially on R/N if and
only if S has no compact factor. This simplification makes part (ii) a case
of Auslander’s theorem [Aus63, Theorem 1], which suggests the statement
of Corollary 1.4.

4.3. Proof of Corollary 1.4. Let G be a connected Lie group with Levi
decomposition G = RS and nilradical N . Let C and SK be the maximal
connected semisimple compact normal subgroups of G and S, respectively.

Proof of Corollary 1.4. C is compact and thus lattice-hereditary in G. It
is normal by assumption and closed by compactness, so G/C is a Lie group.
We will pass to G/C and continue this pattern.

A normal subgroup of S acting trivially on R is normal in G, so G/C
satisfies part (i) of Theorem 1.3. The nilradical of G/C is NC/C, which is
thus closed, normal, and lattice-hereditary.

Since SK acts trivially on R/N by Chevalley’s Theorem (Theorem 2.3)
and is normal in S, its image NSK/(NC) in G/(NC) is normal. Since SK
is compact, NSK/(NC) is also closed and lattice-hereditary.
RSK/(NSK) is the nilradical of G/(NSK), whose semisimple part has no

compact factors by the definition of SK . So by part (i) again, RSK/(NSK)
is lattice-hereditary in G/(NSK).

Then by Theorem 2.6, a lattice in G maps to a lattice under quotients
by each of the subgroups C ⊆ NC ⊆ NSK ⊆ RSK . By the same theorem,
each of these subgroups is lattice-hereditary in G. �

5. Related results

For a summary of other known results on heredity, see [vL14, §2.1]. Proofs
can be found in [OV00, §I.1.4] and in [Rag72, Chapter 1] starting with
Theorem 1.12.
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The version of Theorem 1.3 in [OV00, I.4 Theorem 1.6] also cites [Wol72].
A scan through the index and through chapters with promising-looking sec-
tion titles did not reveal the location of this statement to the author.

When G is a complex Lie group, S has no compact factors. In this
situation, a shorter proof is possible, using the Borel density theorem (see,
e.g., [OV00, I.1 Theorem 8.2]) to show that R1 = R. See, e.g., [Win98,
Theorem 3.5.3].

When H is a connected, simply-connected solvable Lie group and K ⊆
AutH is compact, Dekimpe, Lee, and Raymond give conditions in [DLR01]
for H to be lattice-hereditary in H oK.

Instead of studying Γ/(Γ∩R) in G/R, one may take the quotient of Γ by
its maximal solvable normal subgroup. In [Pra76, Lemma 6], Prasad relates
this quotient to a lattice in (a group covered by) G/(RSK).
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