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Operator convexity in Krein spaces

Mohammad Sal Moslehian and Mahdi Dehghani

Abstract. We introduce the notion of Krein-operator convexity in the
setting of Krein spaces. We present an indefinite version of the Jensen
operator inequality on Krein spaces by showing that if (H , J) is a Krein
space, U is an open set which is symmetric with respect to the real axis
such that U ∩ R consists of a segment of real axis and f is a Krein-
operator convex function on U with f(0) = 0, then

f(C]AC) ≤J C]f(A)C

for all J-positive operators A and all invertible J-contractions C such
that the spectra of A, C]AC and D]AD are contained in U , where D
is a defect operator for C]. We also show that in contrast with usual
operator convex functions the converse of this implication is not true,
in general.
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1. Introduction and preliminaries

Linear spaces with indefinite inner products were used for the first time in
the quantum field theory in physics by Dirac [10] and Pauli [17]. Their
first mathematical definition was provided by Pontrjagin [18] and since then
they have been studied by many mathematicians. Krein spaces as an in-
definite generalization of Hilbert spaces were formally defined by Ginzburg
[14] and applies in the quantum field theory by Jakóbczyk [16] and others.
Strohmaier [22] applied Krein spaces in the definition of semi-Riemannian
spectral triples in noncommutative geometry. Bebiano et al. [7] proved an
extension of the classical theory of Courant and Fisher to the case of J-
Hermitian matrices. We present the standard terminology and some basic
results on Krein spaces. The reader is referred to [3, 5, 9] for a complete
exposition on the subject.
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Let (H , 〈·, ·〉) be a Hilbert space and B(H ) denote the C∗-algebra of all
bounded linear operators on H with the identity operator IH . An operator
T ∈ B(H ) is called positive if 〈Tx, x〉 ≥ 0 for all x ∈ H . If T is a positive
invertible operator we write T > 0. For bounded selfadjoint operators T
and S on H , we say T ≤ S if S − T ≥ 0.

Suppose that a nontrivial selfadjoint involution J on H , i.e., J = J∗ =
J−1, is given to produce an indefinite inner product

[x, y]J := 〈Jx, y〉 (x, y ∈H ).

In this case (H , J) is called a Krein space. The operators P+ = I+J
2

and P− = I−J
2 are orthogonal projections onto H+ = ran(P+) and H− =

ran(P−), respectively and

H = H+ ⊕H−.

In correspondence to this orthogonal decomposition, each bounded linear
operator C on H is uniquely represented by the matrix

(1.1) C =

(
C11 C12

C21 C22

)
where C11 = P+CP+|H+ , C12 = P+CP−|H− , C21 = P−CP+|H+ , C22 =
P−CP−|H− . The n-dimensional Minkowski space is a well-known example
of a Krein space:

Example 1.1. Let Mn(C) be the set of all complex n× n matrices and let
〈·, ·〉 be the standard inner product on Cn. For selfadjoint involution

J0 =

(
In−1 0

0 −1

)
,

where In−1 denotes the identity of Mn−1(C), one can define an indefinite
inner product [., .]J0 on Cn by

[x, y]J0 = 〈J0x, y〉 =
n−1∑
k=1

xkȳk − xnȳn

for x = (x1, · · · , xn) , y = (y1, · · · , yn) ∈ Cn. The Krein space (Cn, J0) is
called the n-dimensional Minkowski space.

Let (H1, J1) and (H2, J2) be Krein spaces. The (J1, J2)-adjoint operator
A] of A ∈ B(H1,H2) is defined by

[Ax, y]J2 = [x,A]y]J1 (x ∈H1, y ∈H2),

which is equivalent to say that A] = J1A
∗J2. Trivially (A])] = A. An

operator A ∈ B(H ) on a Krein space (H , J) is said to be J-selfadjoint
if A] = A, or equivalently, A = JA∗J . The spectrum of a J-selfadjoint
operator on a Krein space (H , J) is not necessarily real (it can even cover
the whole plane); see [9].
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For J-selfadjoint operators A and B, the J-order, denoted as A ≤J B, is
defined by

[Ax, x]J ≤ [Bx, x]J (x ∈H ).

Clearly A ≤J B if and only if JA ≤ JB. The J-selfadjoint operator A ∈
B(H ) is said to be J-positive if A ≥J 0. Evidently, A is J-positive if and
only if AJ is positive. It is easy to see that neither A ≥ 0 implies A ≥J 0
nor A ≥J 0 implies A ≥ 0.

Let (H1, J1) and (H2, J2) be Krein spaces. As usual, let B(H1,H2) be
the space of all bounded linear operators from H1 into H2. An operator
C ∈ B(H1,H2) is called a (J1, J2)-contraction if C]C ≤J1 IH1 , that is,
C∗J2C ≤ J1. The operator C is called (J1, J2)-bicontraction if C and C]

are (J1, J2)-contraction and (J2, J1)-contraction, respectively. In the case
that H1 = H2 and J1 = J2 = J we write J-contraction instead of (J, J)-
contraction. An invertible operator U ∈ B(H1,H2) such that U ] = U−1 is
said to be (J1, J2)-unitary.

Note that in contrast to the setting of Hilbert spaces, not all J-contractions
are J-bicontractions; see [12, Example 1.3.8]. The following theorem pre-
senting a suitable condition for a J-contraction to being a J-bicontraction.

Theorem 1.2 ([3, Corollary 3.3.3]). A J-contraction C on a Krein space
(H , J) is a J-bicontraction if and only if the operator C22 in the matrix form
(1.1) of C is invertible. In particular if C is an invertible J-contraction, then
C is a J-bicontraction.

Let C ∈ B(H1,H2). By a defect operator for C we mean any operator

E ∈ B(H̃2,H1), where (H̃2, J̃2) is a Krein space, such that E has zero kernel

and IH1−C]C = EE]. A Julia operator for C is a (J1⊕ J̃1, J2⊕ J̃2)-unitary

U : H1 ⊕ H̃1 →H2 ⊕ H̃2 of the form

U =

(
C D
E] −L]

)
,

where (H̃1, J̃1) and (H̃2, J̃2) are Krein spaces such that the operators D ∈
B(H̃1,H2) and E ∈ B(H̃2,H1) have zero kernels. In this case E is a defect
operator for C, and D is a defect operator for C]; cf. [11].

Defect and Julia operators have played important roles in the Krein space
operator theory. The first constructions of these operators in the Krein space
setting are due to Arsene et al. [2]. An abstract theory of Julia operators
in Krein spaces and its applications appear in a number of sources; see e.g.,
[11, 12, 13]. We need the following theorem as a result of Corollary 1.4.3,
Theorem 2.4.5 of [12] and Theorem 13 of [13].

Theorem 1.3. Suppose that (H1, J1) and (H2, J2) are Krein spaces and
C ∈ B(H1,H2) is an injective (J1, J2)-bicontraction. Then C has a unique
(up to unitary) Julia operator of the form

U =

(
C D
E] −L∗

)
∈ B(H1 ⊕ H̃1,H2 ⊕ H̃2),
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for which H̃1 and H̃2 are Hilbert spaces and −L∗ is a Hilbert space contrac-
tion.

A real valued continuous function f on an interval I ⊆ R is said to be
operator convex if

f
(

(1− λ)A+ λB
)
≤ (1− λ)f(A) + λf(B),

for all λ ∈ [0, 1] and all selfadjoint operators A and B on a Hilbert space
H , whose spectra are contained in I. The notion of operator/matrix con-
vex functions, as well as that of operator/matrix monotone functions, have
played a vital role in operator/matrix analysis and its applications, e.g., to
quantum information. On the other hand, the operator theory in spaces
with an indefinite inner product (notably in Pontryagin spaces and Krein
spaces) has been investigated for a long time with the aim to establish math-
ematical formalism of quantum field theory. An indefinite analogue of the
concept of monotone matrix function was studied in [1].

In this paper we introduce the notion of Krein-operator convexity in the
setting of Krein spaces. We also present an indefinite version of Jensen’s
operator inequality based on the ideas due to Hansen and Pedersen [15].

2. Main results

Let A be a J-selfadjoint operator on a Krein space (H , J) and let U be
an open set which is not necessarily connected such that σ(A) ⊆ U . Suppose
that f : U → C is an analytic function. Then the operator f(A) is defined
by the usual Dunford-Riesz integral

(2.1) f(A) =
1

2πi

∫
Γ
f(λ)(λIH −A)−1dλ,

where Γ is a suitable finite family of closed rectifiable contours with positive
direction surrounding σ(A) in its interior; see [20].

From now on assume that U is an open set (not necessarily connected) in
the plane, which is symmetric with respect to real axis and U ∩R consists of
a segment of real axis. The following proposition provide some conditions
for f(A) to be J-selfadjoint whenever A is J-selfadjoint.

Proposition 2.1. Let A be a J-selfadjoint operator on a Krein space (H , J)
such that σ(A) ⊆ U . If f : U → C is an analytic function such that f(x) is
real for all x ∈ U ∩ R, then f(A) is J-selfadjoint.

Proof. By the definition of a J-selfadjoint operator, AJ = JA∗. Hence

Jf(A) =
1

2πi

∫
Γ
f(λ)J(λIH −A)−1dλ(2.2)

=
1

2πi

∫
Γ
f(λ)(λJ −AJ)−1dλ
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=
1

2πi

∫
Γ
f(λ)

(
J(λIH −A∗)

)−1
dλ

=
1

2πi

∫
Γ
f(λ)(λIH −A∗)−1Jdλ

= f(A∗)J.

The spectrum of a J-selfadjoint operator on a Krein space (H , J) is sym-
metric with respect to the real axis (see [9, Corollary 6.3]). Suppose that
Γ is a closed rectifiable contour with positive direction surrounding σ(A) in
its interior such that it is symmetric with respect to the real axis. By the
change of variable λ to λ̄, we have

f(A) =
1

2πi

∫
Γ−1

f(λ̄)(λ̄IH −A)−1dλ̄ = − 1

2πi

∫
Γ
f(λ̄)(λ̄IH −A)−1dλ̄.

By the reflection principle, we have f(z̄) = f(z) for all z ∈ Γ. Therefore

(f(A))∗ =
(
− 1

2πi

∫
Γ
f(λ̄)(λ̄IH −A)−1dλ̄

)∗
=

1

2πi

∫
Γ
f(λ̄)(λIH −A∗)−1dλ

=
1

2πi

∫
Γ
f(λ)(λIH −A∗)−1dλ

= f(A∗).

It follows from (2.2) that Jf(A) = f(A∗)J = f(A)∗J . Hence f(A) is J-
selfadjoint. �

The notion of operator convexity is a generalization of that of usual con-
vexity. This is based on the fact that the selfadjoint operators (Hermitian
matrices) can be regarded as a generalization of the real numbers. We aim
to introduce the notion of Krein-operator convexity as a generalization of
the operator convexity.

One may immediately say that a real valued function f being analytic on
an interval I is Krein-operator convex if

f
(

(1− λ)A+ λB
)
≤J (1− λ)f(A) + λf(B),

for all λ ∈ [0, 1] and all J-selfadjoint operators A and B on any Krein space
(H , J) with spectra contained in I. As noticed by Ando [4], this definition
is vain. In fact if H = H+ ⊕H− and

J =

(
IH+ 0

0 −IH−

)
with respect to this decomposition, α, β ∈ I and consider A = αIH and
B = βIH , then A,B are J-selfadjoint (selfadjoint) and σ(A) = {α} ⊆ I
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and σ(B) = {β} ⊆ I. Hence

f
(

(1− λ)A+ λB
)

= f
(

(1− λ)α+ λβ
)
IH .

and

(1− λ)f(A) + λf(B) =
(

(1− λ)f(α) + λf(β)
)
IH ,

for all λ ∈ [0, 1]. Therefore

f
(

(1− λ)A+ λB
)
≤J (1− λ)f(A) + λf(B)

whence (
(1− λ)f(α) + λf(β)

)
− f

(
(1− λ)α+ λβ

))
≥ 0

and (
(1− λ)f(α) + λf(β)

)
− f

(
(1− λ)α+ λβ

))
≤ 0.

Therefore

(1− λ)f(α) + λf(β) = f
(

(1− λ)α+ λβ
)
,

for all α, β ∈ I an all λ ∈ [0, 1]. Thus f is linear on I, that is, f(t) = at+ b
for some a, b ∈ R.

To avoid such trivialities, we restrict ourselves to the J-positive operators
instead of J-selfadjoint operators. It is well known that the spectrum of a
J-positive operator on a Krein space (H , J) is real (see [3, Theorem 2.1]).
From this point of view, the J-positive operators seem to behave like the
selfadjoint operators on Hilbert spaces. The following definition seems to be
satisfactory.

Definition 2.2. Suppose that f : U → C is an analytic function such that
f(x) is real for all x ∈ U ∩R. Then f is said to be Krein-operator convex if

(2.3) f
(

(1− λ)A+ λB
)
≤J (1− λ)f(A) + λf(B),

for all λ ∈ [0, 1] and all J-positive operators A and B on any Krein space
(H , J), such that spectra of A, B and (1− λ)A+ λB are contained in U .

Also, the condition (2.3) can be obviously replaced by

f

(
A+B

2

)
≤J f(A) + f(B)

2
.

The following example shows that operator convex functions are not nec-
essarily Krein-operator convex.

Example 2.3. Consider the 2-dimensional Minkowski space (C2, J0) with

J0 =

(
1 0
0 −1

)
. Let A =

(
a11 a12

a21 a22

)
∈ M2(C). Since the J0-selfadjoitness

of A is equivalent to the usual selfadjointness of J0A, we have

A =

(
a11 a12

−a12 a22

)
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in which a11 and a22 are real. Let A =

(
1 −1
1 −2

)
and B =

(
1 −1
1 −3

)
. It

is easy to see that A and B are J0-positive and they have real eigenvalues.
Also we have

J0

(
A2 +B2

2

)
− J0

(
A+B

2

)2

=

(
0 0
0 −1

4

)
� 0.

It shows that (
A+B

2

)2

�J0 A
2 +B2

2
.

Therefore f(t) = t2 is not Krein-operator convex, while it is well known
that, this function is operator convex on R (see [19, p. 8]).

The following lemma characterize the invertible J-positive operators on a
Krein space (H , J). For more information of J-positivite operators see [3,
Chapter 2].

Proposition 2.4. Let (H , J) be a Krein space and A ∈ B(H ). Then A is

J-positive and invertible if and only if it is of the form A = JÃ for some
Ã > 0.

Proof. Let A = JÃ with Ã > 0. Then A is invertible and JA = J(JÃ) =

Ã ≥ 0. It follows that A is J-positive and invertible.
Conversely, if A is J-positive and invertible, then A = JÃ with Ã := JA

which is positive and invertible. �

Example 2.5 ([4]). Define the function f(z) = 1
z (z 6= 0) and f(0) = 0.

Then f is Krein-operator convex on U = C \ {0}. To see this, assume that
A and B are invertible J-positive operators such that the spectra of A, B
and (1 − λ)A + λB are contained in U ∩ R = R \ {0}. Using the Dunford–

Riesz representation (2.1),
(

(1− λ)A+ λB)
)−1

exists. By Proposition 2.4,

A = JÃ and B = JB̃ for some Ã > 0 and B̃ > 0. The restriction of f to
(0,∞) is operator convex [19, p. 8]. Therefore(

(1− λ)A+ λB
)−1

J =
(

(1− λ)Ã+ λB̃
)−1

≤ (1− λ)Ã−1 + λB̃−1

=
(

(1− λ)A−1 + λB−1
)
J.

Hence (
(1− λ)A+ λB

)−1
≤J (1− λ)A−1 + λB−1.

Generally, suppose that U contains an interval I ⊆ [0,∞) and f is a

Krein-operator convex function on U . Let Ã =

(
A 0
0 0

)
and B̃ =

(
B 0
0 0

)
,
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for which A and B are positive operators on a Hilbert space H . Then

f
(

(1− λ)Ã+ λB̃
)
≤J (1− λ)f(Ã) + λf(B̃)

with J =

(
IH 0
0 −IH

)
for all λ ∈ [0, 1]. It follows that

f
(
(1− λ)A+ λB

)
≤ (1− λ)f(A) + λf(B)

for all positive operators A and B with spectra in I and all λ ∈ [0, 1]. Hence
the restriction of f to I is operator convex. Thus under mild condition, when
the Krein space happens to be a Hilbert space, the definition of a Krein-
operator convex function then coincids with the traditional definition, when
we restricted ourself to the class of positive operators.

Before we present our main result, we give a lemma needed later.

Lemma 2.6. Let (H , J) be a Krein space and A be a J-selfadjoint operator
with σ(A) ⊆ U . Then

f(U ]AU) = U ]f(A)U

for any analytic function f : U → C and any J-unitary U .

Proof. The operator U ]AU is J-selfadjoint, since

(U ]AU)] = J(U ]AU)∗J = J(U∗A∗JUJ)J = JU∗A∗JU = JU∗JAU

= U ]AU,

where we use the J-selfadjointness of A at the fourth equality. By the
elementary operator theory, if A is some invertible operator, then

σ(U ]AU) ∪ {0} = σ(AUU ]) ∪ {0} = σ(A) ∪ {0},
and since U ]AU is invertible if A is, it follows that these operators have the
same spectra in this case. Finally

f(U ]AU) =
1

2πi

∫
Γ
f(λ)(λIH − U ]AU)−1dλ

=
1

2πi

∫
Γ
f(λ)U ](λIH −A)−1Udλ

= U ]f(A)U. �

In the following theorem we present a Jensen type inequality for Krein-
operator convex functions in the setting of Krein spaces.

Theorem 2.7. Let f be a Krein-operator convex function on U and f(0) =
0. Then

(2.4) f(C]AC) ≤J C]f(A)C

for all J-positive operators A and all invertible J-contractions C on a Krein
space (H , J) such that the spectra of A, C]AC and D]AD are contained in
U , where D is a defect operator for C].
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Proof. Let f : U → C be a Krein-operator convex function and let A be a
J-positive operator with σ(A) ⊆ U . Also assume that C is an invertible J-
contraction. By Theorem 1.2, C is a J-bicontraction. Therefore Theorem 1.3
implies that C has a unique Julia operator

U =

(
C D
E] −L∗

)
∈ B(H ⊕ H̃1,H ⊕ H̃2),

where H̃1 and H̃2 are Hilbert spaces such that the operators D ∈ B(H̃1,H )

and E ∈ B(H̃2,H ) have zero kernels and −L∗ is a Hilbert space contraction.

It is well known that H ⊕H̃i are Krein spaces with fundamental symmetries

J̃i = J ⊕ IH̃i
=

(
J 0
0 IH̃i

)
for i = 1, 2. Then U is a (J̃1, J̃2)-unitary i.e.,

U ]U = IH ⊕H̃1
and UU ] = IH ⊕H̃2

. Let

V =

(
C −D
E] L∗

)
.

Note that V is simply U multiplied by fundamental symmetry IH ⊕−IH̃1
.

So V is a (J̃1, J̃2)-unitary. Let

X =

(
A 0
0 0

)
: H ⊕ H̃2 →H ⊕ H̃2.

Since

X] = J̃2X
∗J̃2 =

(
J 0
0 IH̃2

)(
A∗ 0
0 0

)(
J 0
0 IH̃2

)
=

(
A] 0
0 0

)
=

(
A 0
0 0

)
= X,

we conclude that X is J̃2-selfadjoint. Moreover,

J̃2X =

(
J 0
0 IH̃2

)(
A 0
0 0

)
=

(
JA 0
0 0

)
≥ 0.

Hence X is J̃2-positive. It is clear that U ]XU and V ]XV are J̃1-positive
operators. If λ /∈ σ(A) ∪ {0}, then we have

(λIH ⊕H̃2
−X)−1 =

(
(λIH −A)−1 0

0 λ−1IH̃2

)
,

so that λ /∈ σ(X). Hence σ(X) ⊆ U . Since σ(U ]XU) = σ(V ]XV ) = σ(X),

the spectra of J̃1-positive operators U ]XU and V ]XV are contained in U .
Consequently, by the Krein-operator convexity of f and Lemma 2.6, we infer
that(
f(C]AC) 0

0 f(D]AD)

)
= f

(
C]AC 0

0 D]AD

)
= f

(
U ]XU + V ]XV

2

)
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≤J̃1
f(U ]XU) + f(V ]XV )

2

=
U ]f(X)U + V ]f(X)V

2

=
1

2
U ]

(
f(A) 0

0 f(0)

)
U +

1

2
V ]

(
f(A) 0

0 f(0)

)
V

=
1

2
U ]

(
f(A) 0

0 0

)
U +

1

2
V ]

(
f(A) 0

0 0

)
V

=

(
C]f(A)C 0

0 D]f(A)D

)
.

Hence(
J 0
0 IH̃1

)(
f(C]AC) 0

0 f(D]AD)

)
≤
(
J 0
0 IH̃1

)(
C]f(A)C 0

0 D]f(A)D

)
.

It follows that Jf(C]AC) ≤ JC]f(A)C. Therefore f(C]AC) ≤J C]f(A)C.
�

Remark 2.8. In the classical case the usual operator convexity is equivalent
to

f(C∗AC) ≤ C∗f(A)C,

where A is selfadjoint and C is an isometry; see [19, Theorem 1.9] or [8,
Section V]. Validity of an analogous relation as f(C]AC) ≤J C]f(A)C for
all J-selfadjoint A and all invertible J-isometries C (i.e., C]C = I ) on a
Krein space (H , J) is vain, since if C]C = I, then CC] = I and so C] = C−1

and we enter into a trivial situation.

In the following example we show that in contrast with usual operator
convex functions, the condition (2.4) in Theorem 2.7 is not equivalent to the
Krein-operator convexity of f .

Example 2.9. Let A be a J-positive operator and C be an invertible J-
contraction on a Krein space (H , J). Since A is J-selfadjoint and

CC] ≤J IH ,

we have

(C]AC)2 = (C]A])CC](AC) = (AC)]CC]AC ≤J (AC)]IH AC = C]AAC.

It follows that (C]AC)2 ≤J C]A2C.
Therefore the function f(t) = t2 satisfies (2.4). By Example 2.3, this

function, however, is not Krein-operator convex.
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in Krĕın spaces. Indiana Univ. Math. J. 40 (1991), no. 3, 885–901. MR1129333
(93b:46042), Zbl 0749.47022, http://people.virginia.edu/~jlr5m/Papers/p41.

pdf.
[14] Ginzburg, Yu. P. On J-contractive operator functions. (Russian) Dokl. Akad. Nauk

SSSR (N.S.), 117 (1957), 171–173. MR0094691 (20 #1203), Zbl 0084.10802.
[15] Hansen, Frank; Pedersen, Gert Kjaergȧrd. Jensen’s inequality for opera-
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