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The authors dedicate this paper to John Moore, who pioneered this area of mathematics.
He was the senior author’s adviser, and his mathematical philosophy pervades this work

and indeed pervades algebraic topology at its best.

Abstract. In Part 1, we describe six projective-type model structures
on the category of differential graded modules over a differential graded
algebra A over a commutative ring R. When R is a field, the six collapse
to three and are well-known, at least to folklore, but in the general case
the new relative and mixed model structures offer interesting alterna-
tives to the model structures in common use. The construction of some
of these model structures requires two new variants of the small object
argument, an enriched and an algebraic one, and we describe these more
generally.

In Part 2, we present a variety of theoretical and calculational cofi-
brant approximations in these model categories. The classical bar con-
struction gives cofibrant approximations in the relative model structure,
but generally not in the usual one. In the usual model structure, there
are two quite different ways to lift cofibrant approximations from the
level of homology modules over homology algebras, where they are classi-
cal projective resolutions, to the level of DG-modules over DG-algebras.
The new theory makes model theoretic sense of earlier explicit calcu-
lations based on one of these constructions. A novel phenomenon we
encounter is isomorphic cofibrant approximations with different combi-
natorial structure such that things proven in one avatar are not readily
proven in the other.
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Overview

We aim to modernize differential homological algebra model theoretically
and to exhibit several new general features of model category theory, the
theme being how nicely the generalities of model category theory can inter-
act with the calculational specificities of the subject at hand, giving concrete
results inaccessible to either alone. This protean feature of model category
theory distinguishes it from more abstract and general foundations of ho-
motopical algebra.

The subject of differential homological algebra began with the hyperho-
mology groups of Cartan and Eilenberg [CE56] and continued with work
of Eilenberg and Moore [EM65, Mor59] in which they introduced relative
homological algebra and its application to differential graded (abbreviated
DG hencefoward) modules over a differential graded algebra. In [EM66],
they developed the Eilenberg–Moore spectral sequence for the computation
of the cohomology H∗(D;R) in terms of differential torsion products, where
D is the pullback in a diagram

D //

��

E

p

��

A // B

in which p is a fibration. This work dates from the mid 1960’s, and it all
works with bigraded chain bicomplexes X: Xn =

∑
p+q=nXp,q is a bigraded

R-module with commuting horizontal and vertical differentials and a total
differential given by their sum (with suitable signs).

In the early 1970’s, Gugenheim and May [GM74, May68] gave an ad hoc
alternative treatment of differential homological algebra that was based on
bigraded multicomplexes X: now d : Xn −→ Xn−1 is the sum over r ≥ 0
of partial differentials dr : Xp,q −→ Xp−r,q+r−1, r ≥ 0. Bicomplexes are the
special case with dr = 0 for r ≥ 2. The advantage of the generalization
was computability, as the cited papers show and we will illustrate shortly.
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While the applications worked, the foundations were so obscure that it was
not even clear that the several definitions of differential torsion products in
sight agreed.

This paper has several distinct purposes. The primary purpose is to
establish model theoretic foundations for differential homological algebra
over a commutative ground ring R and to integrate the early work into
the modern foundations. Specialization to a field R simplifies the theory,
but the force of the early applications depends on working more generally.
Then relative homological algebra enters the picture: for DG modules over a
DG R-algebra A, there are three natural choices for the weak equivalences:
quasi-isomorphism, homotopy equivalence of underlying DG R-modules, and
homotopy equivalence of DG A-modules. We shall explain six related model
category structures on the category MA of DG A-modules, one or more for
each of these choices.

Here a second purpose enters. Some of these model structures cannot be
constructed using previously known techniques. We develop new enriched
and algebraic versions of the classical small object argument that allow the
construction of model category structures that are definitely not cofibrantly
generated in the classical sense. The classical bar construction always gives
cofibrant approximations in one of these new relative model structures, but
not in the model structure in (implicit) common use. The model category
foundations are explained generally, since they will surely have other appli-
cations.

The model categorical cell complexes that underpin our model structures
are given by multicomplexes, not bicomplexes, and a third purpose is to ex-
plain the interplay between the several kinds of resolutions in early work and
our model structures. In particular, we show that the “distinguished resolu-
tions” of [GM74] are essentially model categorical cofibrant approximations.
Our work in this paper is largely model theoretic but, as we explain in §11.3,
the applications in [GM74, May68, MN02] show that it applies directly to
concrete explicit calculations. Here is an example whose statement makes
no reference to model categorical machinery.

Theorem 0.1. Let H be a compact Lie group with maximal torus Tn such
that H∗(BTn;R) is a free H∗(BH;R)-module and let G be a connected
topological group such that H∗(BG;R) is a polynomial algebra. Then for
any map f : BH −→ BG,

H∗(Ff ;R) ∼= Tor∗H∗(BG;R)(H
∗(BH;R), R).

Here H∗(BH;R) is an H∗(BG;R)-module via f∗. The space Ff is the
fiber of f , and it is G/H when f = Bi for an inclusion i of H as a closed
subgroup of G. The hypothesis on H holds if H∗(H;Z) has no p-torsion
for any prime p that divides the characteristic of R. A generalization to
H-spaces is given in [MN02].
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The use of explicit distinguished resolutions given by model categorical
cell complexes is the central feature of the proof. The connection between
model categorical foundations and explicit calculations is rarely as close as
it is here.

Introduction

We shall show that there are (at least) six compellingly reasonable re-
lated model structures on the category of DG modules over a DG algebra,
and we shall show how some of these model structures relate to explicit
computations. In fact, calculational applications were announced in 1968
[May68] and explained in the 1974 memoir [GM74] and its 2002 general-
ization [MN02]. In [GM74], we gave ad hoc definitions of differential Tor
functors (called “torsion products” in those days) and Ext functors in terms
of certain general types of resolutions. We wrote then that our definitions
have “the welcome merit of brevity, although we should admit that this
is largely due to the fact that we can offer no categorical justification (in
terms of projective objects, etc) for our definitions.” Among other things,
at the price of some sacrifice of brevity, we belatedly give model categorical
justifications here.

We let MR denote the category of unbounded chain complexes over a
fixed ring R, which we always call DG R-modules. We have two natu-
ral categories of weak equivalences in MR. We define h-equivalences to be
homotopy equivalences of DG R-modules and q-equivalences to be quasi-
isomorphisms, namely those maps of DG R-modules that induce an isomor-
phism on passage to the homology of the underlying chain complexes. We
call the subcategories consisting of these classes of weak equivalences Wh

and Wq. Since chain homotopic maps induce the same map on homology,
Wh ⊂ Wq. Both categories are closed under retracts and satisfy the two out
of three property. Similarly, it will be evident that all classes of cofibrations
and fibrations that we define in this paper are subcategories closed under
retracts.

As usual, let KR denote the homotopy category of MR obtained by iden-
tifying homotopic maps; it is called the classical homotopy category of MR.
Also as usual, let DR denote the category obtained from MR (or KR) by
inverting the quasi-isomorphisms; it is called the derived category of R. We
recall three familiar model structures on MR that lead to these homotopy
categories in §1.2, §1.3, and §5.2. They are analogues of the Quillen, classi-
cal, and mixed model structures on spaces [Col06a, MP12]. We name them
as follows.

The Quillen, or projective, model structure is denoted by

(0.2) (Wq,Cq,Fq).

The q-fibrations are the degreewise surjections. Its homotopy category is
DR.
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The classical, or Hurewicz, model structure is denoted by

(0.3) (Wh,Ch,Fh).

Its homotopy category is KR. The h-fibrations are the degreewise split
surjections. We sometimes use the alternative notation (Wr,Cr,Fr), the “r”
standing for “relative.” In fact, we give two a priori different definitions of
fibrations and cofibrations that turn out to be identical. When we generalize
to DG A-modules, where A is a DGA over a commutative ring R, we will give
different h- and r-model structures; they happen to coincide when A = R,
but not in general.

We can mix these two model structures. Since we will shortly have several
mixed model structures in sight, we denote this one1 by

(0.4) (Wq,Cq,h,Fh).

Its homotopy category is again DR. For clarity of exposition, we defer all
discussion of mixed model structures like this to §5.

In §1 and §5.2, we allow the ring R to be non-commutative. Except in
these sections, we use the short-hand ⊗ and Hom for ⊗R and HomR. As we
explain in §2, when R is commutative the r-model structure on MR has an
alternative conceptual interpretation in terms of enriched lifting properties
and enriched weak factorization systems. It is compactly generated in an
enriched sense, although it is not compactly or cofibrantly generated in the
traditional sense. Here “compactly generated” is a variant of “cofibrantly
generated” that applies when only sequential cell complexes are required. It
is described in Definition 6.5 and discussed in detail in [MP12, §15.2]. The
variant is essential to the philosophy expounded in this paper since use of
sequential cell complexes is needed if one is to forge a close calculational
connection between the abstract cell complexes of model category theory
and the concrete cell complexes that arise from analogues of projective res-
olutions. After all, projective resolutions in homological algebra are never
given transfinite filtrations.

Starting in §3, we also fix a (Z-graded) DG R-algebra A. Thus A is a DG
R-module and an R-algebra with a unit cycle in degree zero and a product
A ⊗ A −→ A that commutes with the differentials. Our conventions on
graded structures are that we never add elements in different degrees. The
product is given by maps Ai ⊗ Aj −→ Ai+j and the differential is given by
maps d : An −→ An−1. We can shift to cohomological grading, Ai = A−i,
without changing the mathematics.

We let MA denote the category of left DG A-modules.2 An object X
in MA is a DG R-module X with an A-module structure A ⊗ X −→ X
that commutes with the differentials. We use the term A-module when we

1The cofibrations were denoted Cm in [MP12], m standing for mixed.
2We suppress the adjective “left”, but we use the adjective “right” when appropriate.
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choose to forget the differential and consider only the underlying (graded)
A-module structure, as we shall often have occasion to do.

In §3, which is parallel to §1, we define Quillen and classical model struc-
tures on MA, using the same notations as in (0.1) and (0.2). The maps
in Wq are the quasi-isomorphisms and the maps in Wh are the homotopy
equivalences of DG A-modules. The q-fibrations, like the q-equivalences,
are created in MR and thus depend only on the underlying DG R-modules.
The h-fibrations are the maps that satisfy the covering homotopy property
in the category MA; they do not appear to admit an easily verifiable char-
acterization in more familiar algebraic terms. We defer discussion of the
associated mixed model structure generalizing (0.3) to §5.3.

There is a subtlety in proving the factorization axioms for the h-model
structure, but to minimize interpolations of general theory in the direct line
of development, we have deferred the relevant model categorical underpin-
nings to §6. If A has zero differential, the h-and q-model structures and
the associated mixed model structure are the obvious generalizations from
ungraded rings R to graded rings A of the model structures in §1.2 and §1.3,
and the differential adds relatively little complication. These model struc-
tures are independent of the assumption that A is an R-algebra, encoding
no more information than if we regard A as a DG ring.

We are interested in model structures that remember that A is an R-
algebra. We define Wr to be the category of maps of DG A-modules that
are homotopy equivalences of DG R-modules. These are the appropriate
equivalences for relative homological algebra, which does remember R. Of
course,

Wh ⊂ Wr ⊂ Wq.

We consider Wr to be a very natural category of weak equivalences in MA,
and we are interested in model structures with these weak equivalences and
their relationship with model structures that take Wh or Wq as the weak
equivalences.

We have three homotopy categories of DG A-modules. We let KA denote
the ordinary homotopy category of MA and call it the absolute homotopy
category. It is obtained from MA by passing to homotopy classes of maps
or, equivalently, by inverting the homotopy equivalences of DG A-modules.
We let Dr

A denote the homotopy category obtained by formally inverting
the r-equivalences. We let DA denote the category obtained from MA, or
equivalently from KA or Dr

A, by formally inverting the quasi-isomorphisms.
It is called the derived category of the category of DG A-modules. We call
Dr
A the relative derived category of A. We hope to convince the reader that

Dr
A is as natural and perhaps even as important as DA.
In §4, we construct the relative model structure

(0.5) (Wr,Cr,Fr).
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The r-fibrations are the maps in MA that are r-fibrations (= h-fibrations)
when regarded as maps in MR. That is, like the r-equivalences, the r-
fibrations are created by the r-model structure on MR. Here again there
is a subtlety in the proof of the factorization axioms, discussion of which is
deferred to §6.

Along with the inclusions Wh ⊂ Wr ⊂ Wq, we have inclusions

Fh ⊂ Fr ⊂ Fq.

There result three mixed model structures on MA, the (r, h)-model structure

(0.6) (Wr,Cr,h,Fh)

and the (q, r)-model structure

(0.7) (Wq,Mq,r,Fr).

joining the (q, h)-model structure (Wq,Mq,h,Fh) that generalizes (0.3). We
discuss these in §5.3. They have advantages over the q- and r-model struc-
tures analogous to those described in §5.2 and in more detail in [MP12,
§18.6] in the classical case of model structures on MR.

In all of these model structures, all objects are fibrant. By an observation
of Joyal, two model structures with the same cofibrations and fibrant objects
are the same (cf. [Rie14, 15.3.1]). Thus, in principle, our six model structures
differ only in their cofibrations. We shall see in §6 that recent work in model
category theory [BR13, Gar09, Rie14] illuminates the cofibrations in our new
model structures.

However, the distinction we emphasize is seen most clearly in the fibra-
tions. The lifting property that defines q-fibrations implies that they are
degreewise surjections. The lifting property that defines r-fibrations implies
that they are degreewise split surjections. The splittings promised by the
lifting properties are merely functions in the former case, but they are maps
of R-modules in the latter case. The new theory explains the distinction
in terms of enriched model category theory. As we describe in §2, when
R is commutative the (h = r)-model structure on MR is the R-module
enrichment of its q-model structure, in a sense that we shall make precise.
Similarly, as we explain in §4, the r-model structure on MA is the R-module
enrichment of its q-model structure.

The construction of our h- and r-model structures on MA requires new
model theoretic foundations, without which we would not know how to
prove the factorization axioms. In §6, we introduce “enriched” and “alge-
braic” generalizations of Garner’s variant of Quillen’s small object argument
(SOA). We shall implicitly use Garner’s variant in all of our model theoretic
work, and we shall use its generalized versions to obtain the required fac-
torizations.

This material is of independent interest in model category theory, and we
have collected it in §6 both to avoid interrupting the flow and to make it more
readily accessible to readers interested in other applications. These results
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expand on work of two of us in [BR13], where mistakes in the literature
concerning h-model structures in topology are corrected. The new variants
of the SOA provide systematic general ways to construct interesting model
structures that are not cofibrantly generated in the classical sense. As the
quite different applications in [BR13] and here illustrate, the new theory can
be expected to apply to a variety of situations to which the ordinary SOA
does not apply. That is a central theme of Part 1.

In Part 2, we are especially interested in understanding q- and r-cofibrant
approximations and relating them to projective resolutions in traditional
homological algebra. We shall give three homological constructions of cofi-
brant approximations that a priori bear no obvious relationship to the model
theoretic cofibrant approximations provided by either the classical or the en-
riched SOA.

Beginning with q-cofibrant approximations, we show in §8.2 that the clas-
sical projective resolutions of DG R-modules that Cartan and Eilenberg in-
troduced and used to construct the Künneth spectral sequence in [CE56,
XVII] give q-cofibrant approximations of DG R-modules, even though they
are specified as bicomplexes with no apparent relationship to the retracts of
q-cell complexes that arise from model category theory. They are isomorphic
to such retracts, but there is no obvious way to construct the isomorphisms,
which can be viewed as changes of filtrations.

More generally, in §8.4 we show that we can obtain q-cofibrant approxima-
tions of DG A-modules as the total complexes TP of projective resolutions
P , where the P are suitable bicomplexes. The construction is due to Moore
[Mor59], generalizing Cartan and Eilenberg [CE56, XVII]. The TP must be
retracts of q-cell complexes, but, as bicomplexes, they come in nature with
entirely different non-cellular filtrations and it is not obvious how to com-
pare filtrations. Precisely because they are given in terms of bicomplexes,
they allow us to prove some things that are not readily accessible to q-cell
complexes. For example, these q-cofibrant approximations allow us to derive
information from the assumption that the underlying A-module of a DG A-
module is flat and to view the Eilenberg–Moore spectral sequence (EMSS)
as a generalized Künneth spectral sequence under appropriate hypotheses.

We head towards alternative cofibrant approximations in §9. We give
theorems that characterize the q- and r-cofibrations and cofibrant objects in
the parallel sections §9.1 and §9.2. In §9.3 and §9.4, we introduce a common
generalization of model theoretic cell DG A-modules and the total complexes
TP of projective resolutions, together with a concomitant generalization of
model theoretic cofibrations. The key notion is that of a split DG A-module,
which was already defined in [GM74]. The model theoretic q-cell and r-cell
DG A-modules, the projective DG A-modules of §8.4, and the classical bar
resolutions are all examples of split DG A-modules.

We single out a key feature of split DG A-modules. Prior to [GM74],
differential homological algebra used only bicomplexes, as in our §8. Split
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DG A-modules are “multicomplexes,”3 which means that they are filtered
and have differentials with filtration-lowering components that are closely
related to the differentials of the associated spectral sequences. We now
see that the generalization from bicomplexes to multicomplexes in [GM74],
which then seemed esoteric and artificial, is forced by model theoretic con-
siderations: our q- and r-model structures are constructed in terms of q-cell
and r-cell complexes, as dictated by the SOA, and these are multicomplexes,
almost never bicomplexes.

In §10, we head towards applications by relating split DG A-modules to
the EMSS. The differentials in the EMSS are built into the differentials
of the relevant multicomplexes and they have interpretations in terms of
matric Massey products, as we indicate briefly. We illustrate the use of
this interpretation in §10.4, where we recall from [GM74] that when A is a
connected algebra (not DG algebra) over a field R, ExtA(R,R) is generated
under matric Massey products by its elements of degree 1, which are the
duals of the indecomposable elements of A.

In §10.2, we return to the relationship between the q- and r-model struc-
tures. We show that the bar construction always gives r-cofibrant approxi-
mations. Unless R is a field, the bar construction is usually not q-cofibrant,
but when A is R-flat, for example when A = C∗(X;R) for a space X and a
commutative Noetherian ring R, bar constructions very often behave homo-
logically as if they were q-cofibrant or at least (q, h)-cofibrant, although they
are generally not. Precisely, we prove that they give “semi-flat resolutions”
under mild hypotheses. This implies that the two different definitions of
differential torsion products obtained by applying homology to the tensor
product derived from the q- and r-model structures agree far more often
than one would expect from model categorical considerations alone.

In §11, which follows [GM74], we show how to start from a classical pro-
jective resolution of H∗(M) as an H∗(A)-module and construct from it a
“distinguished resolution” ε : X −→M of any given DG A-module M . This
resolution is very nearly a q-cofibrant approximation: X is q-cofibrant, and ε
is a q-equivalence. However, ε need not be a degreewise epimorphism, which
means that ε need not be a q-fibration. It follows that X is h-equivalent
over M to any chosen q-cofibrant approximation Y −→ M , so there is no
loss of information. The trade-off is a huge gain in calculability. We show
how this works explicitly when H∗(A) is a polynomial algebra in §11.2. In
turn, we show how this applies to prove Theorem 0.1 in §11.3.

Our work displays a plethora of different types of cell objects, ranging from
general types of cell objects used in our enriched and algebraic variants of
the SOA in §6 to special types of cell objects used for both calculations and
theoretical results in our specific category MA of DG A-modules. Focus-
ing on cellular approximations, we have two quite different special types of

3Multicomplexes in the sense used here were first introduced in a brief paper of Wall
[Wal61].
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q-cofibrant approximations, namely distinguished resolutions, which are de-
fined in Definition 9.22 and constructed in §11.1, and projective resolutions,
which are defined and constructed in §8.4. The former are multicomplexes
and the latter are bicomplexes. It is almost never the case that a resolution
is both distinguished and projective, and each is used to prove things we
do not know how to prove with the other. Both are examples of Künneth
resolutions, which are defined in §10.5 and which give precisely the right
generality to construct the algebraic EMSS but are not always q-cofibrant.
We also have the bar resolution in §10.2, which always gives r-cofibrant
approximations and sometimes gives q-cofibrant approximations. Without
exception, all of these types of DG A-modules are examples of split DG
A-modules, as defined in Definition 9.22.

We are moved to offer some philosophical comments about model category
theory in general. In serious applications within a subject, it is rarely if
ever true that all cofibrant approximations of a given object are of equal
calculational value. The most obvious example is topological spaces, where
the general cell complexes given by the SOA are of no particular interest
and one instead works with CW complexes, or with special types of CW
complexes. This is also true of spectra and much more so of G-spectra, where
the calculational utility of different types of cell complexes depends heavily
on both the choice of several possible Quillen equivalent model categories in
which to work and the choice of cell objects within the chosen category; see
[MM02, §IV.1] and [MS06, §24.2] for discussion.

Philosophically, our theory epitomizes the virtues of model category the-
ory, illustrating the dictum “It is the large generalization, limited by a happy
particularity, which is the fruitful conception.”4 Because model category
theory axiomatizes structure that is already present in the categories in
which one is working, it can be combined directly with those particulars
that enable concrete calculations: it works within the context at hand rather
than translating it to one that is chosen for purposes of greater generality
and theoretical convenience, however useful that may sometimes be (albeit
rarely if ever for purposes of calculation).

It will be clear to the experts that some of our work can be generalized
from DG algebras to DG categories. We will not go into that, but we hope
to return to it elsewhere. It should be clear to everyone that generaliza-
tions and analogues in other contexts must abound. Model structures as in
Part 1 should appear whenever one has a category M of structured objects
enriched in a category V with two canonical model structures (like the h-
and q-model structures on spaces and on DG R-modules). The category
M then has three natural notions of weak equivalences, the structure pre-
serving homotopy equivalences (h-equivalences), the homotopy equivalences
of underlying objects in V (r-equivalences), and the weak equivalences of
underlying objects in V (q-equivalences). These can be expected to yield

4G.H. Hardy [Har67, p. 109], quoting A.N. Whitehead.
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q-, r-, and h-model structures with accompanying mixed (r, h)-, (q, h)-, and
(q, r)-model structures.

Acknowledgments. We thank Takashi Suzuki for reminding us of Moore’s
early paper [Mor59],5 which he has found useful in new applications of
Mac Lane homology in algebraic geometry.

Part 1. Six model structures for DG-modules over
DGAs

1. The q- and h-model structures on the category MR

Although R will be required to be commutative later, R can be any ring
in this section. We describe the q- and h-model structures on the category
MR of (left) DG R-modules. In particular, of course, we could replace R by
an algebra A regarded just as a ring. This section is a summary of material
treated in detail in [MP12], to which we refer the reader for all proofs.

1.1. Preliminaries. The category MR is bicomplete. Limits and colimits
in MR are just limits and colimits of the underlying graded R-modules,
constructed degreewise, with the naturally induced differentials. We reserve
the term R-module for an ungraded R-module, and we often regard R-
modules as DG R-modules concentrated in degree zero.

It is convenient to use the category theorists’ notion of a cosmos, namely
a bicomplete closed symmetric monoidal category. When R is commutative,
MR is a cosmos under ⊗R and HomR. In this section, we use the cosmos
MZ, and we write ⊗ and Hom for tensor products and hom functors over
Z. Recall that

(X ⊗ Y )n =
∑
i+j=n

Xi ⊗ Yj and Hom(X,Y )n =
∏
i

Hom(Xi, Yi+n)

with differentials given by

d(x⊗y) = d(x)⊗y+(−1)degxx⊗d(y) and (df)(x) = d(f(x))−(−1)nf(d(x)).

The category MR is enriched, tensored, and cotensored over MZ. We say
that it is a bicomplete MZ-category. The chain complex (DG Z-module) of
morphisms X −→ Y is HomR(X,Y ), where HomR(X,Y ) is the subcomplex
of Hom(X,Y ) consisting of those maps f that are maps of underlying R-
modules. Tensors are given by tensor products X ⊗ K, noting that the
tensor product of a left R-module and an abelian group is a left R-module.
Similarly, cotensors are given by XK = Hom(K,X). Explicitly, for X ∈MR

andK ∈MZ, the chain complexesX⊗K and Hom(K,X) are DGR-modules

5It appears in a 1959-60 Cartan Seminar and is not on MathSciNet.
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with r(x⊗ k) = (rx)⊗ k and (rf)(k) = rf(k) for r ∈ R, x ∈ X, k ∈ K, and
f ∈ Hom(K,X). We have the adjunctions

HomR(X ⊗K,Y ) ∼= Hom(K,HomR(X,Y )) ∼= HomR(X,Y K).

To emphasize the analogy with topology, we give algebraic objects topo-
logical names. Since the zero module 0 is initial and terminal in MR, the
analogy is with based rather than unbased spaces. For n ∈ Z, we define
Sn, the n-sphere chain complex, to be Z concentrated in degree n with zero
differential. For any integer n, we define the n-fold suspension ΣnX of a DG
R-module X to be X ⊗ Sn. Thus (ΣnX)n+q ∼= Xq. The notation is moti-
vated by the observation that if we define πn(X) to be the abelian group of
chain homotopy classes of maps Sn −→ X (ignoring the R-module structure
on X), then πn(X) = Hn(X).

Analogously, we define Dn+1 to be the (n + 1)-disk chain complex. It is
Z in degrees n and n + 1 and zero in all other degrees. There is only one
differential that can be non-zero, and that differential is the identity map
Z −→ Z. The copy of Z in degree n is identified with Sn and is the boundary
of Dn+1. We write SnR = R⊗ Sn and Dn+1

R = R⊗Dn+1.
We define I to be the chain complex with one basis element [I] in degree 1,

two basis elements [0] and [1] in degrees 0, and differential d([I]) = [0]− [1].
A homotopy f ' g between maps of DG R-modules X −→ Y is a map of
DG R-modules h : X ⊗ I −→ Y that restricts to f and g on X ⊗ [0] and
X ⊗ [1]. Letting s(x) = (−1)deg xh(x ⊗ [I]), h specifies a chain homotopy
s : f ' g in the usual sense. In all of our model structures, this notion of
homotopy can be used interchangeably with the model categorical notion of
homotopy.

Remark 1.1. To elaborate, the natural cylinder object X ⊗ I is not neces-
sarily a cylinder object in the model theoretic sense because the canonical
map X ⊕ X −→ X ⊗ I is not necessarily a cofibration. We will see that
it is always an h- and r-cofibration, but X must be q-cofibrant to ensure
that it is a q-cofibration. However this subtlety is immaterial since [MP12,
16.4.10 and 16.4.11] ensure that the classical and model theoretic notions of
homotopy really can be used interchangeably.

1.2. The q-model structure. This is the model structure in standard
use.

Definition 1.2. Let IR denote the set of inclusions Sn−1R −→ Dn
R for all

n ∈ Z and let JR denote the set of maps 0 −→ Dn
R for all n ∈ Z. A map

in MR is a q-fibration if it satisfies the right lifting property (RLP) against
JR. A map is a q-cofibration if it satisfies the left lifting property (LLP)
against all q-acyclic q-fibrations, which are the maps that have the RLP
against IR. Let Cq and Fq denote the subcategories of q-cofibrations and
q-fibrations. Recall that Wq denotes the subcategory of quasi-isomorphisms
of DG R-modules.
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Remark 1.3. In [MP12], JR was taken to be the set of maps i0 : Dn
R −→

Dn
R ⊗ I for all n ∈ Z in order to emphasize the analogy with topology. The

proof of [MP12, 18.4.3] makes clear that either set can be used.

One proof of the following result is precisely parallel to that of its topo-
logical analogue, but there are alternative, more algebraically focused, ar-
guments. Full details are given in [MP12] and elsewhere.

Theorem 1.4. The subcategories (Wq,Cq,Fq) define a compactly gener-
ated model category structure on MR called the q-model structure. The sets
IR and JR are generating sets for the q-cofibrations and the q-acyclic q-
cofibrations. Every object is q-fibrant and the q-model structure is proper. If
R is commutative, the cosmos MR is a monoidal model category under ⊗.
In general, MR is an MZ-model category.

It is easy to characterize the q-fibrations directly from the definitions.

Proposition 1.5. A map is a q-fibration if and only if it is a degreewise
epimorphism.

Of course, one characterization of the q-cofibrations and q-acyclic q-co-
fibrations is that they are retracts of relative IR-cell complexes and relative
JR-cell complexes; cf. Definition 6.2 and Theorem 6.3. We record several
alternative characterizations.

Definition 1.6. A DG R-module X is q-semi-projective if it is degreewise
projective and if HomR(X,Z) is q-acyclic for all q-acyclic DG R-modules Z.

Proposition 1.7. Let X be a DG R-module and consider the following
statements.

(i) X is q-semi-projective.
(ii) X is q-cofibrant.
(iii) X is degreewise projective.

Statements (i) and (ii) are equivalent and imply (iii); if X is bounded below,
then (iii) implies (i) and (ii). Moreover, 0 −→ X is a q-acyclic q-cofibration
if and only if X is a projective object of the category MR.

We return to the q-cofibrant objects in §8.2, where we use Proposition 1.7
to show that every DG R-module M has a q-cofibrant approximation that
a priori looks nothing like a retract of an IR-cell complex. We prove a
generalization of Proposition 1.7 in Theorem 9.10.

Remark 1.8. If all R-modules are projective, that is if R is semi-simple,
then all objects of MR are q-cofibrant (see Remark 5.5). However, in general
(iii) does not imply (i) and (ii). Here is a well-known counterexample (see,
e.g., [Wei94, 1.4.2]). Let R = Z/4 and let X be the degreewise free R-
complex

· · · 2 //Z/4 2 //Z/4 2 // · · · .
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Then X is q-acyclic. Remembering that all objects are q-fibrant, so that a
q-equivalence between q-cofibrant objects must be an h-equivalence, we see
that X cannot be q-cofibrant since it is not contractible.

Proposition 1.9. A map i : W −→ Y is a q-cofibration if and only if it is
a monomorphism and Y/W is q-cofibrant, and then i is a degreewise split
monomorphism.

Regarding an ungraded R-module M as a DG R-module concentrated in
degree 0, a q-cofibrant approximation of M is exactly a projective resolution
of M . There is a dual model structure that encodes injective resolutions
[Hov99, 2.3.13], but we shall say nothing about that in this paper.

1.3. The h-model structure. The topological theory of h-cofibrations
and h-fibrations transposes directly to algebra.

Definition 1.10. An h-cofibration is a map i in MR that satisfies the homo-
topy extension property (HEP). That is, for all DG R-modules B, i satisfies
the LLP against the map p0 : BI −→ B given by evaluation at the zero
cycle [0]. An h-fibration is a map p that satisfies the covering homotopy
property (CHP). That is, for all DG R-modules W , p satisfies the RLP
against the map i0 : W −→ W ⊗ I. Let Ch and Fh denote the classes of
h-cofibrations and h-fibrations. Recall that Wh denotes the subcategory of
homotopy equivalences of DG R-modules.

An elementary proof of the model theoretic versions of the lifting prop-
erties of h-cofibrations and h-fibrations can be found in [MP12], but here
we want to emphasize a parallel set of definitions that set up the frame-
work for our later work. In fact, the h-cofibrations and h-fibrations admit
a more familiar description, which should be compared with the description
of q-cofibrations and q-fibrations given by Propositions 1.5 and 1.9.

Definition 1.11. A map of DG R-modules is an r-cofibration if it is a
degreewise split monomorphism. It is an r-fibration if it is a degreewise split
epimorphism. We use the term R-split for degreewise split from now on.

Of course, such splittings are given by maps of underlying graded R-
modules that need not be maps of DG R-modules. However, the split-
tings can be deformed to DG R-maps if the given R-splittable maps are
h-equivalences.

Proposition 1.12. Let

0 //X
f
//Y

g
//Z //0

be an exact sequence of DG R-modules whose underlying exact sequence
of R-modules splits. If f or g is an h-equivalence, then the sequence is
isomorphic under X and over Z to the canonical split exact sequence of DG
R-modules

0 //X //X ⊕ Z //Z //0.
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This result does not generalize to DG A-modules. In the present context,
it leads to a proof of the r-notion half of the following result. The h-notion
half is proven in analogy with topology and will generalize directly to DG
A-modules.

Proposition 1.13. Consider a commutative diagram of DG R-modules

W
g
//

i
��

E

p

��

X

λ
==

f
// B.

Assume either that i is an h-cofibration and p is an h-fibration or that i is
an r-cofibration and p is an r-fibration. If either i or p is an h-equivalence,
then there exists a lift λ.

In turn, this leads to a proof that our r-notions and h-notions coincide.

Proposition 1.14. A map of DG R-modules is an h-cofibration if and only
if it is an r-cofibration; it is an h-fibration if and only if it is an r-fibration.

Theorem 1.15. The subcategories (Wh,Ch,Fh) define a model category
structure on MR called the h-model structure. The identity functor is a
Quillen right adjoint from the h-model structure to the q-model structure.
Every object is h-cofibrant and h-fibrant, hence the h-model structure is
proper. If R is commutative, the cosmos MR is a monoidal model cate-
gory under ⊗. In general, MR is an MZ-model category.

Remark 1.16. Implicitly, we have two model structures on MR that happen
to coincide. If we define an r-equivalence to be an h-equivalence, then
Proposition 1.14 says that the h-model structure and the r-model structure
on MR are the same. An elementary proof of the factorization axioms
for the (h = r)-model structure is given in [MP12] and sketched above.
However, that argument does not extend to either the h-model structure or
the r-model structure on MA.

Remark 1.17. Christensen and Hovey [CH02], Cole [Col99], and Schwänzl
and Vogt [SV02] all noticed the h-model structure on MR around the year
2000.

2. The r-model structure on MR for commutative rings R

2.1. Compact generation in the R-module enriched sense. Let us
return to the r-model structure on MR, which happened to coincide with
the h-model structure. While that observation applies to any R, we can
interpret it more conceptually when R is commutative, which we assume
from here on out (aside from §5.2). Recall that a map p : E −→ B is an
r-fibration if and only if it is an R-split epimorphism, that is, if and only if
it admits a section as a map of graded R-modules. A key observation is that
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this definition can be encoded via an enriched reformulation of the lifting
property

(2.1) 0

��

// E

p

��

Dn
R

==

// B.

Letting the bottom arrow vary and choosing lifts, if p is a q-fibration we
obtain a section of pn in the category of sets for each n ∈ Z. For p to be an
r-fibration, we must have sections that are maps of R-modules and not just
of sets, and that is what the enrichment of the lifting property encodes.

Our interest in this enrichment is two-fold. Firstly, it precisely charac-
terizes the r-fibrations, proving that they are “compactly generated” in the
R-module enriched sense, despite the fact that this class is generally not
compactly generated in the usual sense [CH02, §5]. This observation will
allow us to construct the r-model structure on MA by an enriched variant
of the standard procedure for lifting compactly generated model structures
along adjunctions.

Secondly, and more profoundly, our focus on enrichment in the category
of (ungraded) R-modules precisely describes the difference between the r-
model structure and the q-model structure on both MR and MA. Inter-
preted in the usual (set-based) sense, the lifting property displayed in (2.1)
characterizes the q-fibrations: q-fibrations are degreewise epimorphisms,
that is, maps admitting a section given by a map of underlying graded
sets. The notion of R-module enrichment transforms q-fibrations into r-
fibrations. Similarly, R-module enrichment transforms q-acyclic q-fibrations
into r-acyclic r-fibrations. We summarize these results in a theorem, which
will be proven in §2.3 below.

Theorem 2.2. Let R be a commutative ring and define

IR = {Sn−1R −→ Dn
R | n ∈ Z} and JR = {0 −→ Dn

R | n ∈ Z}.

Then IR and JR are generating sets of cofibrations and acyclic cofibrations
for the q-model structure, when compact generation is understood in the
usual set based sense, and for the r-model structure, when compact genera-
tion is understood in the R-module enriched sense.

The role of R-module enrichment in differentiating the r- and q-model
structures is also visible on the cofibration side. Among the q-cofibrations
are the relative cell complexes. They are maps that can be built as countable
composites of pushouts of coproducts of the maps Sn−1R −→ Dn

R; see Defini-
tion 6.2 . We refer to these as the q-cellular cofibrations. Any q-cofibration
is a retract of a q-cellular cofibration.

By contrast, among the r-cofibrations are the enriched relative cell com-
plexes. They are maps that can be built as countable composites of pushouts
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of coproducts of tensor products of the maps Sn−1R −→ Dn
R with any (un-

graded) R-module V ; see Definition 6.9. If R is not semi-simple, we have
R-modules V that are not projective, and they are allowed. We refer to these
as the r-cellular cofibrations. Any r-cofibration is a retract of an r-cellular
cofibration. Clearly q-cofibrations are r-cofibrations, but not conversely.

This discussion, including Theorem 2.2, will generalize without change to
MA, as we shall see in §4.2.

Remark 2.3. We have often used the term enrichment, and it will help if
the reader has seen some enriched category theory. In fact, the category
MR is naturally enriched in three different categories: the category VR of
ungraded R-modules, the category of graded R-modules, and itself (since
it is closed symmetric monoidal). Our discussion focuses on enrichment in
VR for simplicity and relevance. The VR-enriched hom objects in MR are
just the R-modules MR(M,N) of maps of DG R-modules M −→ N , so the
reader unfamiliar with enriched category theory will nevertheless be familiar
with the example we use.

2.2. The enriched lifting properties. We recall the definition of a weak
factorization system (WFS) in Definition 6.1, but this structure is already
familiar: The most succinct among the equivalent definitions of a model
structure is that it consists of a class W of maps that satisfies the two out
of three property together with two classes of maps C and F such that
(C ∩W ,F ) and (C ,F ∩W ) are WFSs. This form of the definition is due to
Joyal and Tierney [JT07, 7.8], and expositions are given in [MP12, Rie14].
Quillen’s SOA, which we use in the original sequential form given in [Qui67],
codifies a procedure for constructing (compactly generated) WFSs.

There are analogous enriched WFSs, as defined in Definition 6.8. A gen-
eral treatment is given in [Rie14, Chapter 13], but we shall only consider
enrichment in the cosmos VR of R-modules, with monoidal structure given
by the tensor product. Henceforth, we say “enriched” to mean “enriched
over VR”. From now on, for DG R-modules M and N we agree to write
M ⊗N and Hom(M,N) for the DG R-modules M ⊗RN and HomR(M,N),
to simplify notation. With this notation, MR(M,N) is the R-module of
degree zero cycles in Hom(M,N).

Since VR embeds in MR as the chain complexes concentrated in degree
zero, M⊗V and Hom(V,M) are defined forR-modules V and DGR-modules
M . Categorically, these give tensors and cotensors in the VR-category MR.
Since MR is bicomplete in the usual sense, this means that MR is a bicom-
plete VR-category: it has all enriched limits and colimits, and the ordinary
limits and colimits satisfy enriched universal properties.

Enriched WFSs are defined in terms of enriched lifting properties, which
we specify here. Let i : W −→ X and p : E −→ B be maps of DG R-
modules. Let Sq(i, p) denote the R-module (not DG R-module) of commu-
tative squares from i to p in MR. It is defined via the pullback square of
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R-modules

(2.4) Sq(i, p)

��

//MR(W,E)

p∗

��

MR(X,B)
i∗
//MR(W,B).

The underlying set of theR-module Sq(i, p) is the set of commutative squares

(2.5) W

i
��

// E

p

��

X // B

of maps of DG R-modules. The unlabeled maps in (2.4) pick out the unla-
beled maps in (2.5). The maps p∗ and i∗ induce a map of R-modules

(2.6) ε : MR(X,E) −→ Sq(i, p).

Definition 2.7. The map i has the enriched left lifting property against
p, or equivalently the map p has the enriched right lifting property against
i, written i�p, if ε : MR(X,E) −→ Sq(i, p) is a split epimorphism of R-
modules. That is, i�p if there is an R-map η : Sq(i, p) −→MR(X,E) such
that εη = id.

Lemma 2.8. If i has the enriched LLP against p, then i has the usual
unenriched LLP against p.

Proof. If εη = id, then η applied to the element of Sq(j, f) displayed in
(2.5) is a lift X −→ E in that square. �

The notion of an enriched WFS is obtained by replacing lifting properties
by enriched lifting properties in the definition of the former; see Definition
6.8. It is easy to verify from the lemma that an enriched WFS is also an
ordinary WFS. In particular, a model structure can be specified using a pair
of enriched WFSs.

Our interest in enriched lifting properties is not academic: we will shortly
characterize the r-fibrations and r-acyclic r-fibrations as those maps satisfy-
ing enriched RLPs. These characterizations will later be used to construct
appropriate factorizations for the r-model structures on MA.

The proofs employ a procedure called the enriched SOA. As in our work
in this paper, it can be used in situations to which the ordinary SOA does
not apply. Just as the classical SOA gives a uniform method for constructing
compactly (or cofibrantly) generated WFSs, so the enriched SOA gives a uni-
form method for constructing compactly (or cofibrantly) generated enriched
WFSs. To avoid interrupting the flow and to collect material of independent
interest in model category theory in one place, we defer technical discussion
of the enriched SOA and related variant forms of the SOA to §6, but we
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emphasize that the material there is essential to several later proofs. The
following trivial example may help fix ideas.

Example 2.9. Consider j : 0 −→ R and p : E −→ B in VR. Because
MR(0, B) = 0 and MR(R,B) ∼= B, Sq(j, p) ∼= B and j�p if and only
if p : E −→ B is a split epimorphism. For the moment, write J for the
singleton set {0 −→ R}. Via the unenriched SOA, J generates a WFS
on VR whose right class consists of the epimorphisms and whose left class
consists of the monomorphisms with projective cokernel. Garner’s variant
of Quillen’s SOA factors a map X −→ Y in VR more economically through
the direct sum X ⊕ (⊕YR) of X with the free R-module on the underlying
set of Y . Via the enriched SOA, J generates an enriched WFS on VR whose
right class consists of the R-split epimorphisms and whose left class consists
of the monomorphisms. The enriched version of Garner’s SOA (which is the
enriched version we focus on) factors a map X −→ Y as X −→ X⊕Y −→ Y .

2.3. Enriching the r-model structure. With enriched WFSs at our dis-
posal, we turn to the proof of statements about the r-model structure on
MR in Theorem 2.2. We first expand Example 2.9. Recall from Proposi-
tion 1.5 that the set JR generates a WFS on MR whose right class consists
of the degreewise epimorphisms.

Example 2.10. Consider jn : 0 −→ Dn
R and a map p : E −→ B in MR.

Since MR(0, B) = 0 and MR(Dn
R, B) ∼= Bn,

ε : MR(Dn, E) −→ Sq(jn, p)

is isomorphic to
pn : En −→ Bn.

Thus jn�p if and only if pn is an R-split epimorphism. If this holds for
all n, then JR�p. That is, p has the enriched RLP against each map in
JR if and only if p is an R-split epimorphism, which means that p is an
r-fibration. Since an enriched WFS, like an ordinary one, is determined by
its right class, we conclude that the enriched WFS generated by JR is the
(r-acyclic r-cofibration, r-fibration) WFS.

Remark 2.11. The factorization produced by the enriched SOA applied
to JR is the precise algebraic analogue of the standard topological mapping
cocylinder construction, as specified in Definition 3.12 and (3.14). See [Rie14,
§13.2].

Example 2.12. Consider in : Sn−1R −→ Dn
R and p : E −→ B in MR. We

have a natural isomorphism MR(Sn−1R , B) ∼= Zn−1B since a DG R-map

Sn−1R −→ B is specified by an (n− 1)-cycle in B. It follows that

ε : MR(Dn, E) −→ Sq(in, p)

is isomorphic to

(pn, d) : En −→ Bn ×Zn−1B Zn−1E.
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By definition, in�p if and only if this map of R-modules has a section ηn.

It turns out that the enriched right lifting property against IR character-
izes the r-acyclic r-fibrations. This is analogous to Example 2.10, but less
obvious.

Lemma 2.13. A map p : E −→ B in MR satisfies the enriched RLP against
IR if and only if p is an r-acyclic r-fibration.

Proof. Recall that the r-acyclic r-fibrations are exactly the h-acyclic h-
fibrations. By [MP12, Corollary 18.2.7], p is an h-acyclic h-fibration if and
only if p is isomorphic to the projection map B ⊕C −→ B where C ∼= ker p
is contractible. Suppose given such a map and let maps sn : Cn −→ Cn+1

give a contracting homotopy, so that ds+ sd = idC . The pullback

Bn ×Zn−1B (Zn−1B ⊕ Zn−1C)

is isomorphic to Bn ⊕ Zn−1C. We can define a section of the map

Bn ⊕ Cn −→ Bn ⊕ Zn−1C

by sending (b, c) to (b, s(c)); here c = ds(c) + sd(c) = ds(c) since c is a
boundary. This shows that the r-acyclic r-fibrations satisfy the enriched
RLP against IR.

Conversely, suppose that p has the enriched RLP. Identify ZnB with the
submodule ZnB×{0} of the pullback Bn×Zn−1B Zn−1E. Restriction of the
postulated section ηn gives a section ηn : ZnB −→ ZnE of pn|ZnE . Define
σn : Bn −→ En by

σn(b) = ηn(b, ηn−1d(b)).

Since ε = (pn, d), εηn = id, and d2 = 0, we see that pnσn(b) = b and

dσn(b) = π2εηn(b, ηn−1d(b)) = ηn−1d(b) = σn−1d(b).

Therefore σ is a section of pn and a map of DG R-modules.
The section σ and the inclusion ker p ⊂ E define a chain map

B ⊕ ker p −→ E

over B. We claim that it is an isomorphism. It is injective since if (b, c) ∈
B ⊕ ker p maps to zero then σ(b) + c = 0, hence b = pσ(b) + p(c) = 0, and
thus c = −σ(b) = 0. It is surjective since it sends (p(c), c− σp(c)) to c.

It remains to show that ker p is h-acyclic. We define a contracting ho-
motopy s on ker p by letting sn : ker pn −→ ker pn+1 send an element c to
ηn+1(0, c− ηn(0, d(c))). Then

(dsn + sn−1d)(c) = dηn+1(0, c− ηn(0, d(c))) + ηn(0, d(c)− ηn−1(0, d2(c)))
= c− ηn(0, d(c)) + ηn(0, d(c)− ηn−1(0, 0))

= c− ηn(0, d(c)) + ηn(0, d(c)) = c. �
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Remark 2.14. The factorization produced by the enriched SOA applied
to IR is the precise algebraic analogue of the standard topological mapping
cylinder construction, as specified in Definition 3.12 and (3.14). See [Rie14,
§13.4]. This observation and the less surprising Remark 2.11 illustrate some
advantages of the variant forms of the SOA we promote in §6. Like Quillen’s
SOA, these are a priori infinite constructions; however in practice, they may
converge much sooner.

Theorem 2.2 is immediate from Lemma 2.13 and Example 2.10: The r-
model structure was established in Theorem 1.15 and the cited results show
that its two constituent WFSs are generated in the enriched sense by the
sets IR and JR.

For commutative rings R, we now have a structural understanding of the
r-cofibrant and r-acyclic and r-cofibrant objects that was invisible to our
original proof of the model structure. It is a special case of Theorem 6.10
below.

Corollary 2.15. A DG R-module is r-cofibrant or r-acyclic and r-cofibrant
if and only if it is a retract of an enriched IR-cell complex or an enriched
JR-cell complex.

3. The q- and h-model structures on the category MA

Now return to the introductory context of a commutative ring R and a
DG R-algebra A. If we forget the differential and the R-module structure on
A, then §1 (applied to modules over graded rings) gives the category of left
A-modules q- and h-model structures. The fact that A is an R-algebra is
invisible to these model structures. Similarly, as we explain in this section,
we can forget the R-module structure or, equivalently, let R = Z, and give
the category MA of (left) DG A-modules q-, h-, and therefore (q, h)-model
structures. Most of the proofs are similar or identical to those given in
[MP12] for the parallel results in §1, and we indicate points of difference
and alternative arguments. The main exception is the verification of the
factorization axioms for the h-model structure, which requires an algebraic
generalization of the small object argument discussed in §6.4.

3.1. Preliminaries and the adjunction F a U. Remember that ⊗ and
Hom mean ⊗R and HomR. The category MA is bicomplete; its limits and
colimits are limits and colimits in MR with the induced actions of A. It is
also enriched, tensored, and cotensored over the cosmos MR. The internal
hom objects are the DG R-modules HomA(X,Y ), where HomA(X,Y ) is the
subcomplex of Hom(X,Y ) consisting of those maps f that commute with
the action of A. Precisely, remembering signs, for a map f : X −→ Y of
degree n with components fi : Xi −→ Yi+n, f(ax) = (−1)ndeg(a)af(x).6 For

6As usual, we are invoking the rule of signs which says that whenever two things with
a degree are permuted, the appropriate sign should be introduced.
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a DG A-module X and a DG R-module K, the tensor X ⊗K and cotensor
XK = Hom(K,X) are the evident DG R-modules with left A-actions given

by a(x ⊗ k) = (ax) ⊗ k and (af)(k) = (−1)deg(a) deg(f)f(ak). We have the
adjunctions

HomA(X ⊗K,Y ) ∼= Hom(K,HomA(X,Y ))(3.1)

∼= HomA(X,Hom(K,Y )).

If A is commutative, where of course the graded sense of commutativity is
understood, then MA is a cosmos; the tensor product X ⊗A Y and internal
hom HomA(X,Y ) inherit A-module structures from X or, equivalently, Y .

Define the extension of scalars functor F : MR −→MA by FX = A⊗X.
It is left adjoint to the underlying DG R-module functor U : MA −→ MR.
The action maps A ⊗ X −→ X of A-modules X give the counit α of the
adjunction. The unit of A induces maps K = R ⊗ K −→ A ⊗ K of DG
R-modules that give the unit ι of the adjunction. Categorically, a DG R-
algebra A is a monoid in the symmetric monoidal category MR, and a DG
A-module is the same structure as an algebra over the monad UF associated
to the monoid A. That is, the adjunction is monadic.

Logically, we have two adjunctions F a U in sight, one between graded
R-modules and graded A-modules and the other between DG R-modules
and DG A-modules, but we shall only use the latter here. We briefly use the
former in §4.1, where we discuss the sense in which F should be thought of
as a “free A-module functor”. Unless X is free as an R-module, FX will not
be free as an A-module. In general, FX is free in a relative sense that we
make precise there. We use F to construct our model structures on MA, but
when developing the q-model structure we only apply it to free R-modules.

3.2. The q-model structure. Again, this is the model structure in com-
mon use. We can construct it directly, without reference to MR, or we
can use a standard argument recalled in Theorem 6.6 to lift the q-model
structure from MR to MA. We summarize the latter approach because its
enriched variant will appear when we transfer the r-model structure from
MR to MA in §4. Thus define the q-model structure on MA by requiring U
to create the weak equivalences and fibrations from the q-model structure
on MR. Recall Definition 1.2.

Definition 3.2. Define FIR and FJR to be the sets of maps in MA obtained
by applying F to the sets of maps IR and JR in MR. Define Wq and Fq

to be the subcategories of maps f in MA such that Uf is in Wq or Fq in
MR; that is, f is a quasi-isomorphism or surjection. Define Cq to be the
subcategory of maps that have the LLP with respect to Fq ∩Wq.

Theorem 3.3. The subcategories (Wq,Cq,Fq) define a compactly gener-
ated model category structure on MA called the q-model structure. The sets
FIR and FJR are generating sets for the q-cofibrations and the q-acyclic q-
cofibrations. Every object is q-fibrant and the q-model structure is proper. If
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A is commutative, the cosmos MA is a monoidal model category under ⊗A.
In general, MA is an MR-model category, and F a U is a Quillen adjunction
between the q-model structures on MA and MR. In particular, F preserves
q-cofibrations and q-acyclic q-cofibrations.

Proof. We refer to Theorem 6.6. The sets of maps FIR and FJR are com-
pact in MA since their domains are free A-modules on 0 or 1 generator.
Acyclicity follows from the proof of Proposition 4.4 below: the relative FJR-
cell complexes are contained in the enriched relative FJR-cell complexes, and
the argument given there shows that these are r-equivalences, and hence q-
equivalences. Properness is proven in the same way as for MR in [MP12,
§18.5].

For X,Y ∈MR, the associativity isomorphism (A⊗X)⊗Y ∼= A⊗(X⊗Y )
shows that F preserves cotensors by MR. Therefore Theorem 6.6 implies
that the q-model structure makes MA an MR-model category. When A is
commutative, (A⊗X)⊗A (A⊗ Y ) ∼= A⊗ (X ⊗ Y ) so that F is a monoidal
functor. Since the unit A for ⊗A is cofibrant, it follows that the q-model
structure on MA is monoidal. �

3.3. The h-model structure. The basic definitions are the same as for
the h-model structure on MR. We write I for the DG R-module R ⊗ I in
this section.

Definition 3.4. Just as in Definition 1.10, an h-cofibration is a map in MA

that satisfies the homotopy extension property (HEP) and an h-fibration is
a map that satisfies the covering homotopy property (CHP). Let Ch and Fh

denote the subcategories of h-cofibrations and h-fibrations. An h-equivalence
is a homotopy equivalence of DG A-modules, and Wh denotes the subcate-
gory of h-equivalences.

Theorem 3.5. The subcategories (Wh,Ch,Fh) define a model category struc-
ture on MA called the h-model structure. The identity functor is a Quillen
right adjoint from the h-model structure to the q-model structure. Every
object is h-cofibrant and h-fibrant, hence the h-model structure is proper. If
A is commutative, then MA is a monoidal model category. In general, MA

is an MR-model category.

The starting point of the proof, up through the verification of the factor-
ization axioms, is the same as the starting point in the special case A = R,
and the proofs in [MP12, §18.2] of the following series of results work in
precisely the same fashion.

Suppose we have DG A-modules X and Y under a DG A-module W , with
given maps i : W −→ X and j : W −→ Y . Two maps f, g : X −→ Y under
W are homotopic under W if there is a homotopy h : X ⊗ I −→ Y between
them such that h(i(w) ⊗ [I]) = 0 for w ∈ W . A cofiber homotopy equiv-
alence is a homotopy equivalence under W . The notion of fiber homotopy
equivalence is defined dually.



SIX MODEL STRUCTURES FOR DG-MODULES OVER DGAS 1101

Lemma 3.6. Let i : W −→ X and j : W −→ Y be h-cofibrations and let
f : X −→ Y be a map under W . If f is a homotopy equivalence, then f is
a cofiber homotopy equivalence.

Proposition 3.7. A map i : W −→ Y is an h-acyclic h-cofibration if and
only if i is a monomorphism, Y/W is contractible, and i is isomorphic under
W to the inclusion W −→W ⊕ Y/W .

Lemma 3.8. Let p : E −→ B and q : F −→ B be h-fibrations and let
f : E −→ F be a map over B, so that qf = p. If f is a homotopy equivalence,
then f is a fiber homotopy equivalence.

Proposition 3.9. A map p : E −→ B is an h-acyclic h-fibration if and only
if p is an epimorphism, ker(p) is contractible, and p is isomorphic over B
to the projection B ⊕ ker(p) −→ B.

Lemma 3.10. Let

0 //X
f
//Y

g
//Z //0

be an exact sequence of A-chain complexes whose underlying exact sequence
of A-modules, with differentials ignored, splits. Then f is an h-equivalence
if and only if Z is contractible and g is an h-equivalence if and only if X is
contractible.

Proposition 3.11. Consider a commutative diagram of A-chain complexes

W
g
//

i
��

E

p

��

X

λ
>>

f
// B

in which i is an h-cofibration and p is an h-fibration. If either i or p is an
h-equivalence, then there exists a lift λ.

Whereas the proofs of the results above are the same as in [MP12, §18.2],
the proofs there of the factorization axioms do not generalize. We no longer
have an identity of r- and h-model structures since we no longer have an
analogue of Proposition 1.12 when A has non-zero differential. Therefore,
we no longer have simple explicit descriptions of the h-fibrations and h-
cofibrations. To begin with, we mimic a standard argument in topology.

Definition 3.12. Let f : X −→ Y be a map of DG A-modules. Define the
mapping cylinder Mf to be the pushout Y ∪f (X ⊗ I) of the diagram

Y X
f
oo

i0 //X ⊗ I.
Define the mapping cocylinder Nf to be the pullback X×fY I of the diagram

X
f
//Y Y I .

p0
oo
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Just as in topology, we have the following naive factorization results.

Lemma 3.13. Any map f : X −→ Y in MA factors as composites

(3.14) X
j
//Mf

r //Y and X
ν //Nf

ρ
//Y

where r and ν are h-equivalences, j is an h-cofibration, and ρ is an h-
fibration.

Remark 3.15. When A = R, a quick inspection shows that j and ν are
R-split monomorphisms and r and ρ are R-split epimorphisms. Therefore
these factorizations are model theoretic factorizations, completing one proof
of Theorem 1.15.

Proof. Since the topological proofs of the equivalences do not transcribe
directly to algebra, we indicate a quick proof that r is an h-equivalence.
Here j(x) = x⊗ [1], r(y) = y, r(x⊗ [1]) = f(x), and r(x⊗ [I]) = 0. Define
i : Y −→Mf by i(y) = y. Then ri = idY . A homotopy h : Mf ⊗ I −→Mf
from ir to idMf is given by

h(z ⊗ [I]) =

 0 if z ∈ Y (or z = x⊗ [0])
x⊗ [I] if z = x⊗ [1]
0 if z = x⊗ [I].

A small check, taking care with signs, shows that this works. The definitions
of ν and ρ are dual to those of i and r, and a dual proof shows that ν is an
h-equivalence.

We next prove that j is an h-cofibration. We can factor j as the bottom
composite in the diagram

X ⊕X i0+i1 //

f⊕id
��

X ⊗ I

��

X
(0,id)

// Y ⊕X
i+i1

// Mf,

in which the square is a pushout. Since a pushout of an h-cofibration is an
h-cofibration, j is an h-cofibration if X ⊗ I is a good cylinder object, that
is, if the natural map i0 + i1 : X ⊕X −→ X ⊗ I is an h-cofibration. Recall
from Proposition 3.9 that a map p : E −→ B is an h-acyclic h-fibration if
and only if E is isomorphic over B to the projection B ⊕ C −→ B where
C = ker(p) contractible. Therefore, we are reduced to showing that i0 + i1
has the left lifting problem against idB : B −→ B and against C −→ 0 for
all B and all contractible C. The first part is obvious. For the second,
let (u0, u1) : X ⊕ X −→ C be a given map. If h : C ⊗ I −→ C denotes
a homotopy between idC and 0 and h′ is h with reversed direction, we
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construct the desired extension as u = h(u0 ⊗ I) + h′(u1 ⊗ I),

X ⊕X

(i0,i1)
��

(u0,u1)
// C

X ⊗ I.
u

;;

The dual argument works to show that Y I is a good cocylinder object and
therefore ρ is an h-fibration. �

Remark 3.16. Although j : X −→Mf is an h-cofibration in MA, it is not
generally an r-cofibration (or q-cofibration). Indeed, take X = 0 and let Y
be an object in MA that is not r-cofibrant. Then the map 0 −→ Mf = Y
is not an r-cofibration.

Unfortunately, in Lemma 3.13 there is no reason to expect r to be an h-
fibration or ν to be an h-cofibration. We therefore give an entirely different
proof of the factorization axioms. The idea is to iterate the construction
of the mapping cocylinder, but the details are more subtle than one might
expect. The same issues arose in the topological context and the solution is
identical to the one given there in [BR13]. We prove the following result in
§6.4 where we discuss the algebraic SOA.

Proposition 3.17. Any map f : X −→ Y factors as the composite of an
h-acyclic h-cofibration and an h-fibration.

Corollary 3.18. Any map f also factors as the composite of an h-cofibration
and an h-acyclic h-fibration.

Proof. We obtain the factorization from X
j
//Mf

r //Y by factoring r
into an h-acyclic h-cofibration followed by an h-fibration. �

We have completed the proof that MA is a model category. Since h-acyclic
h-cofibrations and h-acyclic h-fibrations are inclusions and projections of
deformation retractions, by Propositions 3.6 and 3.8, every object is both
h-cofibrant and h-fibrant, hence the model structure is proper. The proofs
that MA is an MR-model category and that MA is monoidal when A is
commutative are the same as in the case A = R given in [MP12, p. 383].

4. The r-model structure on MA

4.1. Relatively projective A-modules. Forget the differentials for a mo-
ment and consider a graded R-algebra A. Classically [EM65, Mac63], abso-
lute homological algebra considers exact sequences of (graded) A-modules,
which of course are just sequences of A-modules whose underlying sequences
of (graded) R-modules are exact in each degree. For us, relative homological
algebra considers exact sequences of A-modules whose underlying sequences
of R-modules are split exact, which means that they are degreewise split
exact. The two notions agree when R is semi-simple.
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Graded A-modules of the form FV = A ⊗ V , for a graded R-module V ,
are said to be relatively free. They need not be free in the usual sense of
having a basis, and they need not be free or even projective as R-modules.
A direct summand (as an A-module) of such an A-module is said to be
relatively projective. The term is justified by the following result, which
is peripheral to our work but relates it to a classical context. It uses the
notion of a projective class, which is the classical starting point of relative
homological algebra. Projective classes axiomatize the relationship between
the projective objects and the epimorphisms in an abelian category. The full
definition would be digressive here, but we recall it in Definition 8.1 below,
to which we refer in the proof.

Lemma 4.1. Let P be the class of relatively projective A-modules (not DG
A-modules) and let E be the class of R-split epimorphisms of A-modules.
Then (E ,P) is a projective class in the category of A-modules.

Proof. Let P be a relatively projective A-module and p : E −→ M be
an R-split epimorphism of A-modules. Then for any map of A-modules
f : P −→M , there is a map f̃ : P −→ E of A-modules such that pf̃ = f .

P

f
��

f̃

~~

E p
// M // 0

To see that, choose a map j : M −→ E of underlying graded R-modules,
such that pj = id. Let i : P −→ A ⊗ K and r : A ⊗ K −→ P be maps of
A-modules such that ri = id. The composite of j and the restriction of fr to
K gives a map of graded R-modules K −→ E. Its adjoint f̄ : A⊗K −→ E
satisfies pf̄ = fr, hence the composite f̃ = f̄ i satisfies pf̃ = f .

We must still verify (i)–(iii) of Definition 8.1. For (i), we must show that
if p : E −→ M is a map of A-modules such that the lifting property above
holds for all P ∈ P, then p ∈ E . The hypothesis gives that the action
map f : A ⊗M −→ M of A-modules lifts to a map f̃ : A ⊗M −→ E of
A-modules. Its restriction to M gives a map s : M −→ E of R-modules such
that ps = id, hence p is an R-split epimorphism. For (iii), we must show
that for every M there is a map p : P −→M of A-modules such that P ∈P
and p ∈ E . Since the action map f is an R-split epimorphism, it is such a
map. For (ii), we must show that if P is such that the lifting property of
the first paragraph holds for all p ∈ E , then P ∈ P. As the action map
f : A⊗ P −→ P is in E , the hypothesis gives that it is a split surjection of
A-modules, so this is clear. �

Returning to our DG context, we say that a DG A-module P is relatively
free or relatively projective if its underlying A-module is so. If P denotes
the class of relatively projective DG A-modules, then the corresponding class
E of maps that are P -surjective for all P ∈ P has another name: it is the
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class of r-fibrations in the r-model category we construct next. However, it
is not true in general that (P,E ) is a projective class in MA.

It is natural to ask if there is a useful projective class (P,E ) in the
category of DG A-modules itself, and we shall show that there is in §8.3.

Remark 4.2. As already noted, projective classes in abelian categories are
the starting point of the general subject of relative homological algebra. It
was developed classically by Eilenberg, Mac Lane, and Moore [EM65, Mac63,
Mor59] and model theoretically by Christensen and Hovey [CH02], whose
work has influenced ours. However, it does not apply to give the model
structures we develop here; see Remark 4.7.

4.2. Construction of the r-model structure. Returning to our model
theoretic work, recall that Wr denotes the category of r-equivalences, namely
the maps that are homotopy equivalences of underlying DG R-modules.

Definition 4.3. A map f of DG A-modules is an r-fibration if it is an R-
split epimorphism, that is, if Uf is an r-fibration. A map is an r-cofibration
if it satisfies the LLP against the r-acyclic r-fibrations. Let Cr and Fr

denote the classes of r-cofibrations and r-fibrations.

By definition, the right adjoint U creates the r-equivalences and r-fib-
rations in MA from the r-equivalences and r-fibrations in MR. Since the
adjunction F a U is enriched over R-modules, the r-fibrations in MA are
exactly the maps that have the enriched RLP against FJR and the r-acyclic
r-fibrations are exactly the maps that have the enriched RLP against FIR
[Rie14, §13.3]. As observed in the proof of Theorem 3.3, these sets of maps
are compact in MA, so we can construct factorizations using the enriched
SOA described in §6.2. Therefore, by Theorem 6.12, which is the enriched
analogue of the standard result for lifting model structures along adjunctions
recalled in Theorem 6.6, to prove that these classes define a model structure
on MA, it suffices to prove the following acyclicity condition. As spelled
out in detail in Definition 6.9, an enriched relative FJR-cell complex is a
composite of pushouts of coproducts of tensors of maps in FJR with R-
modules.

Proposition 4.4. Enriched relative FJR-cell complexes are r-equivalences.

Proof. The adjunction F a U is monadic and the monad A ⊗ − preserves
colimits in MR since MR is closed monoidal. It follows that the forgetful
functor U : MA −→ MR creates and therefore preserves both limits and
colimits [Bor94b, 4.3.2] and also tensors with R-modules. Because U also
creates the r-equivalences, it suffices to show that enriched relative A⊗JR-
cell complexes are r-equivalences in MR. By Theorem 2.2, it suffices to show
that 0→ A⊗Dn

R is an r-acyclic r-cofibration. But this is clear: all objects
in MR are (r = h)-cofibrant and tensoring with A preserves the contracting
homotopy that witnesses the (r = h)-acyclicity of Dn

R. �
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By Theorem 6.12, this implies the following analogue of Theorem 2.2.

Theorem 4.5. Let A be a DG-algebra over a commutative ring R. Then
FIR and FJR are sets of generating cofibrations and acyclic cofibrations
for the q-model structure on MA, when compact generation is meant in the
usual sense, and for the r-model structure on MA, when compact generation
is meant in the VR-enriched sense.

As with our previous model categories, we have the following elaboration.

Theorem 4.6. If A is commutative, the r-model structure is monoidal. In
general, the r-model structure makes MA into an MR-model category with
respect to the r-model structure on MR, and F a U is a Quillen adjunction
between the r-model structures on MA and MR. In particular, F preserves
r-cofibrations and r-acyclic r-cofibrations.

Proof. By Theorem 6.13, this is a formal consequence of our characteriza-
tion of the r-model structure on MA as a lift of the VR-compactly generated
r-model structure on MR. There is some delicacy to formulating the argu-
ment precisely since it involves the double enrichment, over MR and VR, of
all categories in sight; details are given in §6.3. �

Remark 4.7. Parenthetically, [CH02, 3.4] claimed without proof that the
r-model structure on MA exists. However, as noted in [CH02, 5.12], the r-
model structure on MR is usually not cofibrantly generated in the classical
sense, and the arguments the authors had in mind cannot be applied, as
they agree.7 This emphasizes the importance of the enriched SOA: we know
of no other proof that MA has the factorizations necessary to construct the
r-model structure.

5. The six model structures on MA

5.1. Mixed model category structures in general. We recall the fol-
lowing results of Cole [Col06a]; see also [MP12, §17.3]. These sources give
more detailed information than we will include here about mixed model
structures in general. The notation in this section is generic: the pair (q, h)
can and will vary.

Theorem 5.1. Let M be a category with model structures (Wh,Ch,Fh) and
(Wq,Cq,Fq) such that Wh ⊂ Wq and Fh ⊂ Fq and therefore Cq ⊂ Ch. Then
there is a mixed model structure, called the (q, h)-model structure,

(Wq,Cq,h,Fh).

It satisfies the following properties.

(i) A map is a (q, h)-cofibration if and only if it is an h-cofibration that
factors as a composite fi, where i is a q-cofibration and f is an
h-equivalence.

7They say this in a nice postscript that they added to the arXived version of [CH02].
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(ii) An object is (q, h)-cofibrant if and only if it is h-cofibrant and has
the h-homotopy type of a q-cofibrant object.

(iii) The identity functor on M is a right Quillen equivalence from the
(q, h)-model structure to the q-model structure, hence is a left Quillen
equivalence from the q-model structure to the (q, h)-model structure.

(iv) If M is q-proper, then M is (q, h)-proper.
(v) If M is a cosmos that is monoidal in the h- and q-model structures,

then M is monoidal in the (q, h)-model structure.
(vi) Under the hypotheses of (v), if N is an M -bicomplete M -category

that has an analogous pair of model structures such that Wh ⊂ Wq,
Fh ⊂ Fq, and N is an M -model category with respect to the h- and
q-model structures, then N is an M -model category with respect to
the (q, h)-model structures.

Conceptually, the (q, h)-model structure is a resolvant (or colocalization)
model structure. The (q, h)-cofibrant, or resolvant, objects can be charac-
terized as those h-cofibrant objects C such that

f∗ : hM (C, Y ) −→ hM (C,Z)

is a bijection for all maps f : Y −→ Z in Wq. A (q, h)-cofibrant approxima-
tion ΓX −→ X can be thought of as a resolution of X. This includes approx-
imations of spaces by CW complexes in topology and projective resolutions
in algebra, but it allows such approximations up to homotopy equivalence.

5.2. The mixed model structure on MR. In this section only, we drop
the requirement that R be commutative. In MR, every object is h-cofibrant
and we have the following special case.

Theorem 5.2. MR has a proper (q, h)-model structure. It is monoidal if R
is commutative and is an MZ-model structure in general. It has the following
properties.

(i) The (q, h)-cofibrations are the h-cofibrations (R-split monomorphi-
sms) that factor as composites of q-cofibrations and h-equivalences.

(ii) The (q, h)-cofibrant objects are the DG R-modules of the homotopy
types of q-cofibrant DG R-modules; they are homotopy equivalent
to degreewise projective R-modules, and the converse holds in the
bounded below case.

(iii) The identity functor on MR is a right Quillen equivalence from the
(q, h)-model structure to the q-model structure, hence is a left Quillen
equivalence from the q-model structure to the (q, h)-model structure.

The (q, h)-model structure is sometimes more natural than the q-model
structure. For example, when R is commutative, the dualizable objects of
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DR are the perfect complexes, namely the objects of MR that are homo-
topy equivalent to bounded complexes of finitely generated projective R-
modules.8 The homotopy invariance means that these objects live naturally
as (q, h)-cofibrant objects, although they need not be q-cofibrant. Using a
(q, h)-cofibrant approximation X of a DG R-module M , we have

(5.3) TorR∗ (N,M) = H∗(N⊗RX) and Ext∗R(M,N) = H∗HomR(X,N),

the latter regraded cohomologically. We can think of these as obtained by
first applying the derived functors of N ⊗R (−) and HomR(−, N) and then
taking homology groups. When M is an R-module regarded as a DG R-
module concentrated in degree 0, these are the Tor and Ext functors of
classical homological algebra.

Remark 5.4. Although the (q, h)-cofibrant objects are precisely analogous
to spaces of the homotopy types of CW complexes in topology [MP12, §17.4]
and are of comparable conceptual interest [GM74, §18.6], they are not com-
parably easy to recognize. We lack an analogue of Milnor’s classic character-
ization [Mil59] of CW homotopy types that would let us recognize objects of
MR that are homotopy equivalent to q-cofibrant objects when we see them.

Remark 5.5. If R is semi-simple, then Fh = Fq since all epimorphisms
split. It is well-known that Wq = Wh in this case. Indeed, if f : X −→ Y is in
Wq, then it is in Wh since its cofiber, the evident pushout C = Y ∪f (X⊗D1

R),
is q-acyclic and therefore contractible, splittings Cn ∼= Zn⊕Bn determining a
contracting homotopy. Therefore our three model structures on MR coincide
in this case. Our interest is in commutative ground rings that are not semi-
simple.

5.3. Three mixed model structures on MA. Returning to our usual
context of a DG R-algebra A, we display and compare the six projective-
type model structures that we have in sight on MA. There are actually
more, but these are the ones that seem to us to be of most obvious interest.
Let us write M t

A generically for MA with the t-model structure, with a pair
of superscripts for mixed model structures. In the previous two sections, we
discussed M q

A, M h
A, and M r

A. We complete their comparison to the model
structures on MR in the following observation.

Lemma 5.6. The adjunction F a U is a Quillen adjunction with respect to
the h-, q-, or r-model structures on both MR and MA.

Proof. We have already observed that this holds for the q- and r-model
structures since those were created on MA by lifting the corresponding

8Dualizability is usually thought of in DR, and for that it is equivalent to define per-
fect complexes to be complexes quasi-isomorphic to bounded chain complexes of finitely
generated projective R-modules. But for work before passage to derived categories, where
dualizability already makes sense, it is much more natural to define perfect in terms of
homotopy equivalence.
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model structures on MR. Obviously U takes A-homotopy equivalences to
R-homotopy equivalences. It takes h-fibrations p in MA to h-fibrations since
F(K ⊗ I) ∼= (FK)⊗ I, so that Up has the RLP against i0 : K −→ K ⊗ I for
all K ∈MR by adjunction. �

By their definitions, we have inclusions

Wh ⊂ Wr ⊂ Wq.

The following further inclusions should be almost obvious, but it seems
worthwhile to give proofs.

Lemma 5.7. The following inclusions hold:

Fh ⊂ Fr ⊂ Fq and Ch ⊃ Cr ⊃ Cq.

Proof. The proof of Lemma 5.6 shows that if p is an h-fibration in MA,
then Up is an (h = r)-fibration in MR, hence p is an r-fibration. If i is an
r-cofibration, it has the LLP against the r-acyclic r-fibrations p0 : XI −→ X
and is thus an h-cofibration.

If i is a q-cofibration, then it is a retract of an FIR-cell complex and thus
of an enriched FIR-cell complex, hence it is an r-cofibration. Similarly, if
i is a q-acyclic q-fibration, then it is a retract of an FJR-cell complex and
thus of an enriched FJR-cell complex, hence it is an r-acyclic r-cofibration.
If p is an r-fibration, it has the enriched RLP against FJR and hence also
the weaker unenriched RLP and is thus a q-fibration. �

Therefore Theorem 5.1 gives us mixed model structures

M q,h
A = (Wq,Cq,h,Fh),

M q,r
A = (Wq,Cq,r,Fr),

M r,h
A = (Wr,Cr,h,Fh).

The identity functor on MA gives right Quillen adjoints displayed in the
diagram

M h
A

//

""

M r
A

//M q
A

M r,h
A

//

""

OO

M q,r
A

OO

M q,h
A .

OO

From left to right, these arrows induce the evident functors

KA −→ Dr
A −→ DA

on passage to homotopy categories. From bottom to top they induce iso-
morphisms on homotopy categories. The comparisons of weak equivalences
and fibrations are built into the definitions and Lemma 5.7.
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By [MP12, 17.3.3], the following result is a formal consequence of Lem-

ma 5.6. Note that M q,h
R = M q,r

R .

Lemma 5.8. The adjunction F a U is a Quillen adjunction with respect to
the (q, r)- or (q, h)-model structures on both MR and MA.

Since every object is fibrant in all six of our model categories, we pass to
homotopy categories by cofibrant approximation and passage to homotopy
classes. It is worth emphasizing the obvious: the relevant notion of homo-
topy is always that between maps of DG A-modules, which is the notion
of homotopy used to define Wh. The h-fibrations are very natural, being
the algebraic analogue of Hurewicz fibrations in topological situations, and
they are the fibrations of the h-, (r, h)-, and (q, h)-model structures defined
with respect to our three classes of weak equivalences. The comparisons of
cofibrations among our various model structures on MA are of interest, and
we focus on cofibrant objects. Since every object is h-cofibrant, the (r, h)-
and (q, h)-cofibrant objects are just the h-homotopy types of r-cofibrant and
q-cofibrant objects.

Now focus further on the interrelationships among the cofibrant objects
in the r-, q-, and (q, r)-model structures. The r-cofibrant objects are the
retracts of VR-enriched FIR-cell complexes, the q-cofibrant objects are the
retracts of ordinary FIR-cell complexes, and the (q, r)-cofibrant objects are
the r-cofibrant objects that have the r-homotopy type (and thus the q-
homotopy type) of q-cofibrant objects.

The derived category DA is our preferred homotopy category of interest, so
we are most interested in the q-equivalences. In the applications of [13], the
relevant DG algebras A are typically R-flat but not necessarily R-projective.
In such a situation, the most natural cofibrant approximations are given by
bar constructions. They are r-cofibrant, and we shall see in §10.2 that
they often behave homologically as if they are (q, h)-cofibrant, although
they are generally not. Bar constructions are large, of great theoretical
importance, but of little calculational utility. On the other hand, there are
calculationally accessible q-cofibrant approximations that can be compared
to the bar construction, as we shall see by mimicry of classical homological
algebra.

6. Enriched and algebraic variants of the small object
argument

To construct functorial factorizations for the q-, r-, and h-model struc-
tures on MA, we use three different versions of the small object argument
(SOA), namely:

• Garner’s version of the classical SOA, used to construct factoriza-
tions for the q-model structure (§6.1);
• the enriched SOA, used for the r-model structure (§6.2);
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• the algebraic SOA, generalizing Garner’s SOA to algebraically con-
trolled classes and categories of generators, used for the h-model
structure (§6.4).

In more detail, the q-model structure is compactly generated in the classi-
cally understood sense (see Definition 6.5), but the r- and h-model structures
are not. As in the case of the r-model structure on MR described in §2, the
r-model structure on MA is compactly generated in an R-module enriched
sense. We present the necessary model theoretic machinery for the classical
and enriched factorizations in parallel in §6.1 and §6.2, respectively.

In §6.3, we describe conditions under which the model structure created
by a right adjoint from an existing enriched or monoidal model category is
again enriched or monoidal. These general results are then used to prove that
the q- and r-model structures on MA are MR-model structures, monoidal
if A is commutative. For the r-model structure, our observations concern-
ing enrichment are vital: the usual model structure lifting theorems take
compact (or cofibrant) generation as a hypothesis, and the (h = r)-model
structure on MR generally fails to satisfy that hypothesis in the traditional
unenriched sense.

Neither the classical nor the enriched SOA seem to be able to produce
the desired factorization for the h-model structure on MA, which also fails
to be compactly generated. Instead, drawing inspiration from the Garner
SOA, in §6.4 we describe an algebraic variant of the SOA, which allows
the construction of weak factorization systems generated by classes of maps
that are algebraic in a sense made precise there. We conclude that section
with a proof of the factorization axiom for the h-model structure on MA,
Proposition 3.17.

We restrict ourselves to the SOA based on ω-indexed colimits, which is
important for the applications in Part 2. The constructions and results in
this section generalize effortlessly for any regular cardinal κ in place of ℵ0.

6.1. The classical small object argument. To provide context, we brief-
ly recall the classical SOA, used to produce the factorizations for the q-model
structures on MR and MA. Let I be a set of maps in a cocomplete category.
Under certain set-theoretical conditions, the SOA constructs a functorial fac-
torization such that the right factor of any map has the RLP against I and
the left factor is a relative I-cell complex. This construction demonstrates
the existence of the weak factorization system compactly generated by I.

The version of the SOA we present is a variant of Quillen’s original con-
struction, due in its general form to Garner [Gar09] and in the special case
used here to the Ph.D. thesis of Radulescu-Banu [Rad06]. The use of this
version of the SOA to construct factorizations for the q-model structures is
merely a matter of taste but very much in accordance with the philosophy
of compact generation. Other expositions of our philosophy can be found in
[MP12, Chapter 15] and [Rie14, Chapter 12].
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Definition 6.1. A weak factorization system (WFS) (L,R) on a category
consists of two classes of morphisms L and R such that:

(i) Every morphism can be factored as rl with l ∈ L and r ∈ R.
(ii) L is the class of maps with the LLP against R, and R is the class of

maps with the RLP against L.

Definition 6.2. Let M be a cocomplete category. Let I be a set of maps in
M and let X ∈M . A relative I-cell complex under X is a map f : X −→ Y ,
where Y = colimFnY is the colimit of a sequence of maps FnY −→ Fn+1Y
such that F0Y = X and Fn+1Y is obtained as the pushout in a diagram∐

Jq∐
iq
��

j
// FnY

��∐
Kq

k
// Fn+1Y,

where each iq ∈ I and the coproducts are indexed by some set. The com-
ponents of j are called attaching maps, and the components of k are called
cells. An object C of M is compact with respect to I if for every relative
I-cell complex f : X −→ Y , the canonical map

colimn M (C,FnY ) −→M (C, Y )

is a bijection. The set I is compact if every domain object of a map in I is
compact with respect to I.

For a class I of maps in a category, let I� denote the class of maps with
the RLP with respect to I; similarly, let �(I�) denote the class of maps
with the LLP with respect to I�. The SOA provides a constructive proof
of the following theorem.

Theorem 6.3. Any compact set of arrows I in a cocomplete category gen-
erates a weak factorization system whose right class is I�. Moreover, the
left class �(I�) is precisely the class of retracts of relative I-cell complexes.

When the relative I-cell complexes are monomorphisms, as is always true
in the cases we consider, the difference between Quillen’s SOA and Garner’s
SOA is simple to describe. Quillen constructs factorizations in which the
left factor is a sequential colimit of pushouts of coproducts of generating
maps; the coproducts are indexed over all commutative squares between the
generating arrows and the right factor constructed at the previous stage.

Garner’s construction is similar, except that “cells are attached only
once,” meaning that any commutative square whose attaching map factors
through some previous stage of the sequential colimit is omitted from the
indexing coproduct. When I is compact, this process converges at ω: it is
not possible to attach any new non-redundant cells. See [Gar09] or [Rie14,
Chapter 12] for more details.
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To illustrate the difference between Quillen’s and Garner’s SOA, we in-
clude a simple relevant example.

Example 6.4. We use Garner’s SOA to factor a map f : X −→ Y in ac-
cordance with the WFS generated by JR on MR. Commutative squares
between the generating arrow 0 −→ Dn

R and f are indexed by the underly-
ing graded set of Yn. We have a “one-step” factorization of f defined via
the left-hand pushout square in

0 //

��

X

λf
��

X

f
��

⊕n ⊕Yn Dn
R

// X ⊕ (⊕n ⊕Yn Dn
R) ρf

// Y.

Quillen’s SOA would proceed by composing λf with the pushout of generat-
ing arrows indexed over commutative squares with codomain ρf . Garner’s
SOA performs no further attachments and terminates after the first step.
Indeed, ρf is a degreewise epimorphism that already has the RLP against
JR.

The main applications of the SOA are to the construction of model struc-
tures. We turn to the context used to construct the q-model structures.

Definition 6.5. A model structure (W ,C ,F ) on a category M is compactly
generated if there are compact sets I and J of maps in M such that C is the
subcategory of retracts of I-cell complexes and C ∩W is the subcategory of
retracts of J -cell complexes. In this case, F = J � and F ∩W = I�. The
sets I and J are called the generating cofibrations and generating acyclic
cofibrations.

We use the next result to lift the q-model structure from MR to MA. In
it, we have in mind our standard adjunction F a U between MR and MA,
with enrichment in U = MR. We assume in the rest of this section that U
is a cosmos with a monoidal model structure; we refer to such a category
as a monoidal model category. Later, we must add in enrichment of U in a
second category, which we will denote by V ; in our DG context, V will be
VR.

Theorem 6.6. Consider an adjunction F : M //N : Uoo between cocom-
plete categories such that M has a model structure compactly generated by
sets I and J . Assume the following two conditions hold.

(i) (Compactness condition) The sets FI and FJ are compact in N .
(ii) (Acyclicity condition) The functor U carries every relative FJ -cell

complex to a weak equivalence.

Then N has a model structure whose fibrations and weak equivalences are
created by the right adjoint U. It is compactly generated by FI and FJ , and
F a U is a Quillen adjunction.
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Moreover, if M and N are bicomplete U -categories, M is a U -model
category, and F preserves tensors, then N is again a U -model category. If
M is a monoidal model category, N is a monoidal category, and F preserves
the monoidal product, then N is a monoidal model category provided the
unit condition is satisfied.

A proof of the first part can be found, for example, in [Hir03, 11.3.1-2]
or [MP12, 16.2.5]. The second part should be equally standard, but we do
not know a published reference; for a proof of the enriched version of this
result, see §6.3.

Remark 6.7. The “unit condition” referred to in the second part of The-
orem 6.6 is described in [Hov99, 4.2.6, 4.2.18]. It is needed to ensure that
the monoidal unit of N or U gives rise to a unit for the monoidal struc-
ture or HoU -enrichment on the homotopy category of N . This condition
is automatically satisfied when the monoidal unit is cofibrant, as is always
the case for the model structures that we consider in this paper, so we will
not discuss it further.

6.2. Enriched WFSs and relative cell complexes. We now describe
the definition and construction of enriched WFSs in analogy to the unen-
riched setting of the last section. A more thorough account of this theory
is given in [Rie14, Chapter 13]. We assume that V is a cosmos; we do not
assume that it has a given model structure.

Definition 6.8. Let M be a bicomplete V -category. An enriched weak
factorization system consists of classes of maps L and R such that:

(i) Every morphism can be factored as rl with l ∈ L and r ∈ R.
(ii) L is the class of maps with the enriched LLP against R, and R is

the class of maps with the enriched RLP against L.

Definition 6.9. Let M be a bicomplete V -category. Let I be a set of maps
in M and let X ∈ M . An enriched relative I-cell complex under X is a
map f : X −→ Y , where Y = colimFnY is the colimit of a sequence of maps
FnY −→ Fn+1Y such that F0Y = X and Fn+1Y is obtained as the pushout
in a diagram ∐

Jq ⊗ Vq∐
iq⊗id

��

j
// FnY

��∐
Kq ⊗ Vq

k
// Fn+1Y,

where each iq ∈ I, each Vq ∈ V , and the coproducts are indexed by some
set. The components of j are called attaching maps and the components
of k are called cells. An object C of M is compact with respect to I if for
every enriched relative I-cell complex f : X −→ Y , the canonical map

colimn M (C,FnY ) −→M (C, Y )
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is a bijection. The set I is called compact if every domain object of a map
in I is compact with respect to I.

For a class I of maps in M , let I� denote the class of maps that have the
enriched RLP against I; similarly, let �(I�) denote the class of maps with
the enriched LLP against I�. The enriched SOA [Rie14, §13.2] provides a
constructive proof of the following theorem.

Theorem 6.10. Any compact set of arrows I in a bicomplete V -category
generates an enriched weak factorization system whose right class is I�.
Moreover, its left class �(I�) contains all retracts of enriched relative I-cell
complexes and consists precisely of such retracts when all enriched relative
I-cell complexes are monomorphisms.

Remark 6.11. In contrast with Theorem 6.3, in Theorem 6.10 we ask that
the ambient category be V -bicomplete. Colimits and tensors are used to
construct the factorizations produced by the enriched SOA. The presence of
cotensors guarantees that this defines a V -enriched functorial factorization.

As in the unenriched situation, enriched WFSs can be created through
an enriched adjunction [Rie14, 13.5.1].

Theorem 6.12. Consider a V -adjunction

M
F //

U
oo N

between V -bicomplete categories such that M has a model structure that is
compactly generated in the V -enriched sense by the sets I and J . Assume
the following two conditions hold.

(i) (Compactness condition) The sets FI and FJ are compact in N .
(ii) (Acyclicity condition) The functor U carries every relative FJ -cell

complex to a weak equivalence.

Then N has a model structure whose fibrations and weak equivalences are
created by the right adjoint U. It is compactly generated in the V -enriched
sense by FI and FJ , and F a U is a Quillen adjunction.

As in Theorem 6.6, it is often possible to infer that the model structure
created on N by Theorem 6.12 is monoidal or enriched when the model
structure on M is so.

Theorem 6.13. Assume in addition to the hypotheses of Theorem 6.12
that M is a monoidal model category, N is a monoidal category, and F
preserves the monoidal product. Then N , equipped with the model structure
constructed in Theorem 6.12, is a monoidal model category provided the unit
condition is satisfied.

The proof of Theorem 6.13 is no more difficult than in the unenriched
case. In the next section, we prove it simultaneously with the analogous
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result for enriched model structures, but we must first clarify the relevant
double enrichments of the “enriched model categories” used when both U
and V are present.

6.3. The two kinds of enriched model categories. The main theorems
in the previous two sections provide criteria to transfer a model structure
on a category M along an adjunction F : M //N : Uoo . The weak equiv-
alences and fibrations in the lifted model structure on N are created by
the right adjoint U. A key hypothesis is that the model structure on M is
compactly generated, in either the enriched or the unenriched sense.

In this section we assume further that the model category M has a com-
patible enriched or monoidal structure and establish conditions under which
the transferred model structure on N has analogous properties. Since this
material has not appeared in the literature before, we work in slightly greater
generality than is strictly necessary for our applications.

We have two distinct notions of “enriched model category” appearing
simultaneously here. The first is a model category whose constituent WFSs
are enriched over a cosmos V , as explained in the previous section. As in
the case V = VR, no model structure on V is needed for that, although one
may well be present and relevant. We will call such categories V -enriched
model categories. Secondly, there is the more standard notion of a U -model
category generalizing Quillen’s definition of a simplicial model category (e.g.,
[Hov99, 4.2.18]). Here U is a cosmos with a monoidal model structure. The
MZ-model categories of Theorems 1.4, 1.15, and 5.2, and the MR-model
categories of Theorems 3.3, 3.5, and 4.6 are of this type.

When all objects are cofibrant, the WFSs of a U -model category are
U -enriched WFSs, but in general that is not the case! The comparison is
discussed further in [Rie14, §13.5] but that is irrelevant to our applications
here.

The enriched version of Theorem 6.13 has both sorts of enrichments oc-
curring simultaneously. Suppose we have two cosmoi V and U , where the
latter is a monoidal model category, together with a strong monoidal ad-
junction V //Uoo ; that means that the left adjoint commutes with the
monoidal products. It follows that there is a “change of base” 2-functor
that translates any U -enriched category, functor, or adjunction into a V -
enriched category, functor, or adjunction where the V -enrichment is defined
by applying the right adjoint; see [Rie14, §3.7]. For instance, in our applica-
tions, V = VR, U = MR equipped with the q- or r-model structure, and in
the relevant adjunction VR

//MRoo the left adjoint includes an R-module
in degree 0 and the right adjoint takes cycles in degree 0.

The context for the U -model structure transfer result is a U -adjunction
between bicomplete U -categories M and N such that the induced V -
enrichments satisfy the hypotheses of Theorem 6.12. The second half of
Theorem 6.6 is then contained in the following theorem, which remains true
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under weaker hypotheses (regarding the interactions between the enrich-
ments) than we state here.

Theorem 6.14. Let U be a monoidal model category, let V be a cosmos,
and suppose that we are given a strong monoidal adjunction V //Uoo .
Let M be a compactly generated U -model category, N be a bicomplete U -
category, and F : M //N : Uoo be a U -adjunction such that the underlying
V -adjunction satisfies the hypotheses of Theorem 6.12. Then the V -enriched
model structure on N defined by Theorem 6.12 makes N a U -model cate-
gory.

Theorems 6.13 and 6.14 follow easily from the following lemma. Let N
be a bicomplete U -category, such as U = N . Then the tensor, coten-
sor, hom adjunctions (as for example in (3.1)) are enriched over U . We
have analogous adjunctions relating the tensor, cotensor, and hom functors

(⊗̂, [̂ , ], ĥom) on the arrow categories of N and U defined using pushouts
and pullbacks (see, e.g., [Rie14, §11.1]) and they too are enriched over U .
The strong monoidal adjunction V //Uoo is used to enrich these adjunc-
tions over V . In our applications, we will take V = VR and take V //Uoo

to be

VR
//MRoo or VR

//MRoo
//MAoo

for the enriched and monoidal cases, respectively; in the latter enrichment,

the arrow ĥom(i, p) is the map ε of (2.6).

Lemma 6.15. Suppose I,J ,K are sets of arrows in N with the property
that (I⊗̂J ) ⊂ K. Abbreviating S = �(S�), we have

(I⊗̂J ) ⊂ K.

Proof. The V -enriched (⊗̂, [̂ , ], ĥom) adjunctions respect the V -enriched
lifting properties in the expected sense:

(i⊗̂j)�f iff i�[̂j, f ] iff j� ĥom(i, f).

Because (I⊗̂J ) ⊂ K ⊂ K, we have (I⊗̂J )�K�. By adjunction, we then

have I ⊂ � ĥom(J ,K�) and thus I� ĥom(J ,K�). Again using adjunction

we see that I⊗̂J ⊂ K. Now apply the dual argument to J to arrive at the
claim. �

Proof of Theorems 6.13 and 6.14. We give the proof of Theorem 6.13,
as that of Theorem 6.14 is completely analogous. Denoting the generating
cofibrations and generating trivial cofibrations in M by I and J respec-
tively, Lemma 6.15 shows that it is enough to check the pushout-product
axiom on the generators on N ; see [SS00]. Since F is monoidal and a left
adjoint, F preserves the pushout-product, that is, F(f)⊗̂F(g) ∼= F(f⊗̂g).
Therefore, since F is left Quillen,

F(I)⊗̂F(I) ∼= F(I⊗̂I) ⊂ F(CM ) ⊂ CN ,
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where CM and CN are the cofibrations in M or N . Similarly, we obtain

F(I)⊗̂F(J ) ⊂ WN ∩ CN .

The result follows. �

By specializing Theorems 6.13 and 6.14 to V = VR, U = M = MR, and
N = MA, we obtain the results we need to complete our work on the q-
and r-model structures.

Corollary 6.16. The q- and r-model structures on MA are MR-model
structures, where MR is equipped with the q- and r-model structures, re-
spectively. If A is commutative, then both model categories are monoidal.

6.4. The algebraic small object argument. Garner’s version of the
SOA is an “algebraization” of the Quillen SOA: the functorial factorization
it produces defines an algebraic weak factorization system, which is a weak
factorization system with additional structure that leads to better categori-
cal properties. Garner’s categorical description of this construction suggests
the possibility of a generalization to classes and even (large!) categories of
generating arrows—provided that the right lifting property so-encoded can
be controlled algebraically in a sense we will make precise.

These ideas were first developed in a topological context in [BR13] to con-
struct functorial factorizations for the h-model structures discussed there.
In parallel with Remark 4.7, such model structures had been previously as-
serted in the literature, but the proofs of the factorization axioms given in
[Col06b, MP12] fail. Here we introduce a generalized form of what we will
call the algebraic SOA not simply because we find these ideas compelling:
again, we know of no other proof that MA has the factorizations necessary to
define the h-model structure. There are many other prospective applications
of the work here and in [BR13].

Let M 2 denote the arrow category of M . Roughly speaking, a WFS
(L,R) on M is said to be algebraic if there exists a comonad L and a monad
R on M 2 defining a functorial factorization f = Rf ◦Lf such that L and R
are the retract closures of CoalgL and AlgR, respectively. Here CoalgL and
AlgR denote the categories of coalgebras and algebras for the comonad and
monad. In order for L and R to define a functorial factorization, we require
the functor R to commute with the codomain projection M 2 −→ M and
we require the codomain components of the unit and multiplication natural
transformations to be identities. The monad L has dual requirements. We
refer the reader to [BR13, Rie14, Rie11] for the precise definitions and further
discussion.

The idea is that the extra algebraic structure present in an algebraic WFS
ensures a very close relationship between the given factorizations and the
lifting properties of the classes L and R. We shall see that the algebraic
description of the class R, as (retracts of) algebras for a monad or some-
thing similar, provides a useful replacement for the kind of characterization



SIX MODEL STRUCTURES FOR DG-MODULES OVER DGAS 1119

R = I� present in the cofibrantly generated case. More precisely, we will
characterize the right class R of an algebraic WFS as algebras for a pointed
endofunctor R of M 2 over cod: i.e., an endofunctor R admitting a natural
transformation id −→ R whose codomain component is the identity.9 The
notion of an algebra for a pointed endofunctor is analogous to the notion of
an algebra for a monad, except that there is no associativity requirement.

The definition of I� can be extended in two directions: Instead of a class
of morphisms I we can take as input a subcategory I ↪→M 2 of the arrow
category, and instead of a class of morphisms with the right lifting property
we can construct a category of such morphisms. To this end, let I ↪→M 2 be
a (typically non-full) subcategory. Define a category I� in which an object
is an arrow f of M equipped with a function φf specifying a solution to
any lifting problem against a map in I, subject to the following condition:
these chosen lifts are natural with respect to morphisms j′ −→ j ∈ I in the
sense that the following diagram of lifts commutes

J ′ //

j′

��

J
j

��

// X

f
��

K ′ //

77

K

>>

// Y.

Morphisms (u, v) : (f, φf ) −→ (f ′, φf ′) in the category I� are commutative
squares so that the triangle of lifts displayed below commutes

J

j
��

// K

f
��

u // X ′

f ′

��

B

??

//

77

Y v
// Y ′.

The left class �I can be categorified similarly.10

In general, the category I� is too large to be of practical use. However,
in the examples considered in [BR13] and also here, the lifting function φf
associated to a morphism f can be encoded in an alternative way: the data
of the lifting function φf is equivalent to the data of an R-algebra structure
on the morphism f , where R is a certain pointed endofunctor over cod, as
described above. In the proof of Proposition 3.17, we will show that I� is
isomorphic to the category AlgR of R-algebras for such an R. This is an
ordinary locally small category with a class of objects. There are no higher
universes needed.

In order for the algebraic version of the SOA to apply, the endofunctor R
must satisfy a smallness condition, the precise general statement of which
requires just a little terminology. An orthogonal factorization system (E ,M)

9The notation R for an arbitrary endofunctor should not be confused with the symbol
R, which is reserved for monads, as for example the algebraically free monad on R.

10There are standard set-theoretic foundations that permit the definition of a function
whose domain is a class, rather than a set (e.g., a pair of nested Grothendieck universes).
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in a category M is a WFS for which both the factorizations and the liftings
are unique. It is called well-copowered if every object has a mere set of
E-quotients, up to isomorphism. When M is cocomplete it follows that
the maps in E are epimorphisms [Kel80, 1.3]. This general context gives a
technically convenient class of maps M that behave like monomorphisms,
although they need not always be such.

Consider a well-copowered orthogonal factorization system (E ,M) on a
given bicomplete category M . A colimit cocone in M whose morphisms
to the colimit object are in the right class M is called an M-colimit. This
implies that the morphisms in the colimit diagram also lie in M, by the
right cancellation property, but the converse is not true in general. In what
follows, we will implicitly identify a regular cardinal α with its initial ordinal,
so that α indexes a (transfinite) sequence whose objects are β < α. We
consider the following smallness condition on an endofunctor R on M . It
was introduced in [Kel80].

(†) There is a well-copowered orthogonal factorization system (E ,M) on
M and a regular cardinal α such that R sends α-indexedM-colimits
to colimits.

In any category, there is a notion of a strong epimorphism; it is discussed
in detail in [Bor94a, §4.3]. As assured by [Bor94a, 4.4.3], in all categories
M that one meets in practice there is a canonical orthogonal factorization
system (E ,M) such that the morphisms in E are the strong epimorphisms
and the morphisms in M are the monomorphisms. Then every morphism
in M factors uniquely as the composite of a strong epimorphism and a
monomorphism. In particular, we have this if M is locally presentable,
in which case this orthogonal factorization system is automatically well-
copowered by a result of [AR94, 1.61].

Since all categories considered in this paper are locally presentable, we
implicitly work with the canonical well-copowered orthogonal factorization
system given by strong epimorphisms and monomorphisms. The extra flexi-
bility added by allowing different choices is required for applications to other
contexts, for example, to topological categories. We are ready to state an
abstract version of the main argument of [BR13, Gar09]. Here (†) is applied
to an endofunctor R of the arrow category M 2.

Theorem 6.17. Let M be a bicomplete and locally small category and
I ↪→ M 2 be a subcategory of the arrow category. Assume that there is
an isomorphism of categories I� ∼= AlgR over M 2 for some pointed end-
ofunctor R over cod. If R satisfies the smallness condition (†), then there
exists an algebraic weak factorization system (L,R) on M with underly-
ing weak factorization system (�(I�), I�). In particular, every morphism
f : X −→ Y can be factored as

X
Lf
// Z

Rf
// Y
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where Lf ∈ �(I�) and Rf ∈ I�.

Idea of proof. On the one hand, smallness (†) allows the construction of
the algebraically free monad on R, which is a monad R together with a
natural isomorphism AlgR

∼= AlgR over M 2. On the other hand, by as-
sumption there is also an isomorphism of categories I� ∼= AlgR, which can
be used to show that the category of algebras for R encodes the structure of
an algebraic weak factorization system. The desired lifting properties follow
formally. �

Just as in [BR13], Theorem 6.17 can be used to construct factorizations
for the h-model structure on MA.

Proof of Proposition 3.17. Define Jh to be the subcategory of the arrow
category M 2

A whose objects are the maps i0 : W −→ W ⊗ I for W ∈ MA

and whose morphisms are the maps of arrows induced in the evident way by
maps W ′ −→ W in MA. Then J �

h is isomorphic over M 2
A to the category

AlgR of algebras for the pointed endofunctor R : M 2
A −→ M 2

A over cod
constructed as follows. First, note that, for a fixed f : X −→ Y , the functor
M op

A −→ Set that sends an object W ∈MA to the collection of squares

(6.18) W //

i0
��

X

f
��

W ⊗ I // Y

is represented by the mapping cocylinder Nf . Thus every such square fac-
tors as

W //

i0
��

Nf

i0
��

// X

Lf

��

X

f

��

W ⊗ I // Nf ⊗ I // Ef
Rf
//

s
>>

Y,

where Ef is the pushout in the central square. This gives the definition of
the endofunctor R, and the indicated lift s provides an R-algebra structure
on f . An easy check shows that such an algebra structure corresponds to
lifts in all squares (6.18), satisfying the compatibility conditions present in
J �
h . The details of the analogous proof in the topological setting can be

found in [BR13, 5.10], and the details here are essentially the same.
We are left with the verification of the smallness hypothesis (†). Since lim-

its and filtered colimits in MA are computed degreewise, sequential colimits
commute with pullbacks. This and the fact that MA is locally presentable
imply by [BR13, 5.20] that the smallness condition (†) is satisfied for the
functor R constructed above. Applying Theorem 6.17 to J �

h
∼= AlgR com-

pletes the proof. �

Remark 6.19. Note that MA is a Grothendieck abelian category: it has
the generator A, and filtered colimits are exact. Therefore it is locally
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presentable [Bek00, 3.10] and every object is small [Hov01, 1.2]. This gives
another proof that the smallness condition (†) is satisfied.

Remark 6.20. Garner’s work on the small object argument can be inter-
preted as saying that the cofibrantly generated case fits into the above frame-
work. To be precise, if J ⊂ M 2 is either a set or, more generally, a small
category, then there exists a pointed endofunctor R such that J � ∼= AlgR
over M 2 [Gar09, 4.22]. In this sense, Theorem 6.17 contains Garner’s vari-
ant of Quillen’s SOA as a special case.

Remark 6.21. The methods in this section can be generalized to take
enrichments into account, thereby producing an enriched algebraic small
object argument ; cf. Example 2.9.

Part 2. Cofibrant approximations and homological
resolutions

7. Introduction

Having completed our model theoretic work, we turn to a more calcu-
lational point of view. The theme is to give calculationally useful concrete
constructions of cofibrant approximations, starting from homological algebra
and different types of homological resolutions. The motivation is to under-
stand differential homological algebra conceptually and calculationally. In
fact, the pre model theoretical literature gives different definitions of dif-
ferential Tor and Ext functors based on different kinds of resolutions, and
our work gives the first proof that these definitions agree. The early defini-
tions are given in terms of what we now recognize to be different cofibrant
approximations of the same DG A-modules, and these explicit cofibrant
approximations give tools for calculation.

7.1. The functors Tor and Ext on DG A-modules. We begin with
conceptual definitions of the differential Tor and Ext functors. Of course,
we define Tor and Ext exactly as in (5.3) for graded R-algebras and their
modules. These are then bigraded. In bigrading (p, q), p is the homological
degree, q is the internal degree, and p+q is the total degree. The differential
Tor and Ext are graded, not bigraded.

Definition 7.1. Define the differential Tor and Ext functors by

(7.2) TorA∗ (N,M) = H∗(N ⊗A X)

and

(7.3) Ext∗A(M,N) = H∗HomA(X,N),

where X −→M is a q-cofibrant approximation of the DG A-module M .
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Conceptually, for Tor, we are taking a derived tensor product (−)⊗AM
with respect to the q-model structure and then applying homology. Simi-
larly, for Ext, we are taking a derived Hom functor HomA(M,−) and then
applying homology. We shall say very little more about Ext here, but the
parallel should be clear.

Since any two q-cofibrant approximations of M are h-equivalent over M ,
we can use any q-cofibrant approximation of M in the definition. Using
Theorem 3.3, we see that the functor (−) ⊗A X preserves q-equivalences
when X is q-cofibrant. This implies that we can equally well derive the
functor N ⊗A (−).

Lemma 7.4. If β : Y −→ N is a q-cofibrant approximation of N and
α : X −→M is a q-cofibrant approximation of M , then the maps

H(N ⊗A X)←− H(Y ⊗A X) −→ H(Y ⊗AM)

induced by α and β are isomorphisms.

We have long exact sequences that are precisely analogous to the long
exact sequences of the classical Tor functors. We defer the proof to §7.2.

Proposition 7.5. Short exact sequences

0 −→ N ′ −→ N −→ N ′′ −→ 0

of DG A-modules naturally induce long exact sequences

· · · → TorAn (N ′,M) −→TorAn (N,M) −→
TorAn (N ′′,M) −→ TorAn−1(N

′,M)→ · · · .

The functors Tor and Ext might well be denoted qTor and qExt. There
are relative analogues rTor and rExt.

Definition 7.6. Define the relative differential Tor and Ext functors by

(7.7) rTorA∗ (N,M) = H∗(N ⊗A X)

and

(7.8) rExt∗A(M,N) = H∗HomA(X,N),

where X −→M is an r-cofibrant approximation of the DG A-module M .

Lemma 7.4 and Proposition 7.5 apply equally well to rTor, with the
same proofs. Probably the most standard calculational tool in differential
homological algebra is the bar construction, and we shall see both that it
is intrinsic to the relative functor rTor and that its properties imply that
qTor and rTor agree unexpectedly often.



1124 TOBIAS BARTHEL, J.P. MAY AND EMILY RIEHL

7.2. Outline and conventions. We summarize the content of Part 2 and
fix some conventions that we will use throughout. In §8, we construct
q-cofibrant approximations in terms of differential graded projective res-
olutions, reinterpreting the early work of Cartan, Eilenberg, and Moore
[CE56, EM65, Mor59] model theoretically.

We characterize q-cofibrant and r-cofibrant DGA-modules in §9, where we
also place them in the more general cellular context of split DG A-modules.
Shifting gears, in §10 we start from the Eilenberg–Moore spectral sequence
and relate resolutions to cofibrant approximations. We also show how the
bar construction and matric Massey products fit into the picture there.

Finally, in §11, we show how to construct q-cofibrant approximations from
classical projective resolutions of homology modules H∗(M) over homology
algebras H∗(A) and how to apply the construction to make explicit calcula-
tions.

Convention. Since we shall be making more and more reference to ho-
mology as we proceed, we agree henceforward to abbreviate notation con-
sistently by writing HA and HM instead of H∗(A) and H∗(M), following
[GM74]. We sometimes regard these as bigraded, and then Hq is understood
to have bidegree (0, q). When focusing on a specific degree, we write Hn(M)
as usual.

To mesh the model categorical filtrations of cell complexes with the stan-
dard gradings in homological algebra, we must slightly change the filtration
conventions on cell objects from Definitions 6.2 and 6.9. There the conven-
tion is the standard one in model category theory that, for a relative cell
complex W −→ Y , F−1Y = 0 and F0Y = W . Then a cell complex X, such
as Y/W , has F0X = 0. It is harmless mathematically to change the conven-
tion to F−2Y = 0 and F−1Y = W , leading to the following convention on
cell complexes X.

Convention. We agree to refilter cell complexes X so that F−1X = 0 and
the non-trivial terms start with a possibly non-zero F0X.

In terms of classical homological algebra, F0X relates to the 0th term
of projective resolutions, as we shall see, and that motivates the shift. We
adopt this change throughout the rest of the paper.

Notation. For brevity of notation, we call enriched FIR-cell complexes r-
cell complexes henceforward, and we call their specialization to ordinary cell
complexes q-cell complexes. Their filtrations are understood to conform with
the conventions just introduced.

By our variants of the SOA, every DG A-module admits a cofibrant ap-
proximation by a q-equivalent q-cell complex and by an r-equivalent r-cell
complex, not just by a retract thereof. The following proof illustrates how
convenient that is.
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Proof of Proposition 7.5. Let α : X −→ M be q-cofibrant approxima-
tion, where X is a q-cell complex. Then X is isomorphic as an A-module to
A⊗X̄ for a degreewise free graded R-module X̄, hence N⊗AX is isomorphic
to N ⊗ X̄. Thus the sequence

0 −→ N ′ ⊗A X −→ N ⊗A X −→ N ′′ ⊗A X −→ 0

of DG R-modules is isomorphic to the sequence

0 −→ N ′ ⊗ X̄ −→ N ⊗ X̄ −→ N ′′ ⊗ X̄ −→ 0,

which is exact since X̄ is degreewise free. The resulting long exact sequence
of homology groups gives the conclusion. �

8. Projective resolutions and q-cofibrant approximations

There is both tension and synergy between model category theory and
classical homological algebra. We explore the relationship in this section.
We first show that the classical projective resolutions of chain complexes,
which are due to Cartan and Eilenberg [CE56, §XVII.1] and which generalize
directly to DG R-modules, are q-cofibrant approximations.

Building on [CE56], Moore [Mor59] developed projective resolutions of
DG A-modules. This is more subtle, but Moore found definitions that make
the generalization transparently simple, as we shall recall. We will show
that his projective resolutions are also q-cofibrant approximations.

In Moore’s work and throughout the early literature, there are bounded
below hypotheses on the DG algebras and modules. These are not satisfied
in the most interesting examples, which are bounded above with our grading
conventions. We avoid this condition wherever possible.

8.1. Projective classes and relative homological algebra. As we have
already noted, the following notion of a projective class is the starting
point of relative homological algebra, as developed by Eilenberg and Moore
[EM65]. It gives a general context for Moore’s projective resolutions. Much
later, the notion also served as the starting point for a model theoretic de-
velopment of relative homological algebra in work of Christensen and Hovey
[CH02]. The notion is usually restricted to abelian categories, but it applies
more generally.

Definition 8.1. Let p : E −→ M be a map in a category M and let P
be an object of M . Say that p is P -surjective or that P is p-projective if
p∗ : M (P,E) −→M (P,M) is a surjection. A projective class (P,E ) in M
is a class P of objects and a class E of maps such that:

(i) E is the class of all maps that are P -surjective for all P ∈P.
(ii) P is the class of all objects that are p-projective for all p ∈ E .
(iii) For each object M in M , there is a map p : P −→ M with P ∈ P

and p ∈ E .
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The notion of a projective class is useful in categories with kernels but
not in general. The presence of kernels allows the construction of projective
resolutions.

Remark 8.2. The original definition of [CE56, p. 5] was a little different,
but it is essentially equivalent to Definition 8.1 in the presence of an initial
object and kernels. The point is that (iii) then allows one to construct a map
P −→ K in E , where K is the kernel of an arbitrary map f : X −→ Y . From
here, it is straightforward to use (P,E ) to construct projective resolutions
of objects of M .

Projective classes are analogous to what one sees in model categories if one
considers cofibrant objects but does not introduce cofibrations in general. If
(W ,C ,F ) is a model structure on M , Q is the class of cofibrant objects,
and A Q is the class of acyclic cofibrant objects (those X such that ∅ −→ X
is an acyclic cofibration), then (Q,W ∩ F ) and (A Q,F ) are candidates
for projective classes in M . Certainly (ii) and (iii) are satisfied, but there
might be too few maps in F for (i) to be satisfied: the lifting condition
against cofibrations might be more restrictive than just the lifting condition
against cofibrant objects. Projective classes that are not parts of model
categories appear naturally, and their associated projective resolutions can
often be interpreted model categorically as cofibrant approximations. We
are not interested here in the general theory, but the examples that Cartan,
Eilenberg, Mac Lane, and Moore focused on in [CE56, EM65, Mac63, Mor59]
are directly relevant to our work.

For a DG R-module M , let Bn(M) ⊂ Zn(M) ⊂ Mn be the boundaries
and cycles of M . Identifying Mn/Zn(M) with Bn−1(M), we have exact
sequences

(8.3) 0 −→ Bn(M) −→ Zn(M) −→ Hn(M) −→ 0

(8.4) 0 −→ Zn(M) −→Mn −→ Bn−1(M) −→ 0.

Definition 8.5. A DG R-module P is s-projective11 if the R-modules Bn(P )
and Hn(P ), and therefore also the R-modules Zn(P ), Pn/Bn(P ), and Pn,
are projective. Let Ps denote the class of s-projective DG R-modules.

Lemma 8.6. A DG R-module P is s-projective if and only if it is isomorphic
to a direct sum over n ∈ Z of DG R-modules SnR ⊗Hn and Dn

R ⊗ Bn−1 for
projective R-modules Hn and Bn−1. Therefore, s-projective DG R-modules
are q-cofibrant.

Proof. Clearly DG R-modules of the specified form are s-projective. For
the converse, a splitting of the sequence (8.3) gives an identification of Zn(P )
with Hn(P ) ⊕ Bn(P ). A splitting σ : Bn−1(P ) −→ Pn of (8.4) then gives
an identification of Pn with Zn(P ) ⊕ σBn−1(P ). The differential identifies
σBn−1(P ) ⊂ Pn with Bn−1 ⊂ Pn−1. �

11The s stands for strong or strongly, as in [EM65]; the term “proper” is also used.
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Definition 8.7. A map p : E −→M of DG R-modules is an s-epimorphism
if pn : En −→ Mn and pn : Zn(E) −→ Zn(M) are epimorphisms for all n;
then pn : Hn(E) −→ Hn(M) and pn : Bn(E) −→ Bn(M) are also epimor-
phisms for all n. Let Es denote the class of s-epimorphisms.

Proposition 8.8. The pair (Ps,Es) is a projective class in MR.

Proof. We must verify conditions (i)–(iii) of Definition 8.1. If P is s-
projective, p : E −→ M is an s-epimorphism, and f : P −→ M is a map
of DG R-modules, then we can lift f to a map f̃ : P −→ E by lifting
each fn : Zn(P ) −→ Zn(M) to Zn(E) and lifting the restriction of f to
σBn−1(P ) ⊂ Pn, using the epimorphism p : En −→ Mn. Since SnR and Dn

R
are s-projective, a map that is P -surjective for all P ∈ P is in E , which
verifies (i).

We next prove (iii). Thus let M be any DG R-module. For each n, choose
epimorphisms ηn : Bn −→ Bn(M) and ζn : Hn −→ Hn(M), where Bn and
Hn are projective. Let Zn = Bn ⊕Hn and define εn : Zn −→ Zn(M) to be
ηn on Bn and a lift of ζn to a map Hn −→ Zn(M) on Hn. Then define
Pn = Zn ⊕Bn−1 and define ε : Pn −→Mn to be εn on Zn and a lift of ηn−1
to a map Bn−1 −→Mn on Bn−1. Then ε : Zn −→ Zn(M) and ε : Pn −→Mn

are epimorphisms. Define d : Pn −→ Pn−1 to be zero on Zn and the identity
from Bn−1 ⊂ Pn to Bn−1 ⊂ Pn−1. Then ε is a map of DG R-modules and
ε ∈Ps. Finally, for (ii), if M is s-projective, then a lift of the identity map
of M along ε displays M as a retract of the s-projective DG R-module P ,
and it follows that M is s-projective. �

Corollary 8.9. The class AqQq of q-acyclic q-cofibrant objects in MR coin-
cides with the class AqPs of s-projective complexes P such that H∗(P ) = 0.

Proof. Clearly P is in AqQq if and only if P is p-projective for all p ∈ Fq.
Since E ⊂ Fq, P is then in Ps. Conversely, if P is in Ps and H∗(P ) = 0,
then P is in AqQq by Lemma 8.6. �

8.2. Projective resolutions are q-cofibrant approximations: MR.
Projective resolutions relate the projective class (Ps,Es) to the class Qq

of q-cofibrant R-chain complexes. With our grading conventions, [CE56,
XVII.1] defines a projective resolution ε : P −→ M to be a right-half-plane
bicomplex P augmented over M such that the induced chain complexes
H∗,q(P ) and B∗,q(P ) are projective resolutions of Hq(M) and Bq(M). It
follows that the induced chain complexes Z∗,q(P ) and P∗,q are projective
resolutions of Zq(M) and Mq.

We construct a projective resolution ε : P −→ M of a DG R-module M
in the usual way. Via the proof of Proposition 8.8, we first construct an
s-projective DG R-module P0,∗ and an s-epimorphism ε : P0,∗ −→ M with
kernel K0,∗. Inductively, we construct an s-projective DG R-module Pp,∗
and an s-epimorphism Pp,∗ −→ Kp−1,∗ with kernel Kp,∗, and we have the
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differential

d : Pp,∗ −→ Kp−1,∗ ⊂ Pp−1,∗.
It is a map of DG R-modules. Then {Pp,q} and the maps ε : P0,∗ −→ M
specify a bicomplex over M whose vertical differential d0 : Pp,q −→ Pp,q−1
is given by the differentials on the Pp,∗ and whose horizontal differential is
given by (−1)qd1 : Pp,q −→ Pp−1,q. We have inserted the sign to ensure that
d0d1 + d1d0 = 0.12

This construction gives a projective resolution in the sense of [CE56,
XVII.1], as we see by inspection of the proof of Proposition 8.8. This proves
the first statement of the following result; it is [CE56, XVII.1.2], which gives
details of the rest of the proof.

Proposition 8.10. Every DG R-module M admits a projective resolution
P . If P and Q are projective resolutions of M and N and f : M −→ N
is a map of DG R-modules, then there is a map f̃ : P −→ Q of projective
resolutions over f . If f̃ and g̃ are maps over homotopic maps f and g, then
f̃ and g̃ are homotopic.

The total complex of a bicomplex {Pp,q} is the DG R-module TP specified
by TPn =

∑
p+q=n Pp,q with differential d0+d1. If ε : P −→M is a projective

resolution, we continue to write ε : TP −→ M for the induced map of DG
R-modules from the total complex of P to M .

As a bicomplex, P has two filtrations. We are more interested in the
filtration by the homological degree p. With it, FpP is the sum of the Pp−r,∗
for 0 ≤ r ≤ p. The filtration quotient FpP/Fp−1P is Pp,∗, and its differential
is rarely zero. However, we have the following key observation.

Lemma 8.11. The total complex TP of a projective resolution is q-cofibrant.

Proof. We cannot apply Proposition 1.7 since we are not assuming that P is
bounded below. However, the filtration quotients are q-cofibrant by Lemma
8.6, hence the inclusions Fp−1P −→ FpP are q-cofibrations by Proposition
1.9. By induction, each FpP is q-cofibrant, hence so is their colimit P . �

This is more surprising than it may look. The cellular filtration quotients
FpP/Fp−1P of a q-cell complex P are direct sums of sphere complexes Sq+1

R
and have differential zero. Moreover, the attaching maps SqR −→ Fp−1X
can have components in filtration Fp−rP where r > 1, hence the differential
on FpP can have components in Fp−rP for 1 < r ≤ p. In retrospect, the
theory of [GM74, May68, MN02] that first motivated this paper starts from
that insight. Lemma 8.11 implies that the total complexes TP of projective
resolutions can be equipped both with a structure of bicomplex and with an
entirely different filtration as a retract of a q-cell complex.

12Warning: bicomplexes are symmetric structures. For purposes of comparison with
q-cell complexes we have reversed the roles of p and q from those they play in [CE56,
EM65, Mor59].
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Theorem 8.12. A projective resolution ε : TP −→ M is a q-cofibrant ap-
proximation.

Proof. By construction ε : TP −→ M is a degreewise epimorphism and
thus a q-fibration. By Lemma 8.11, it suffices to show that ε : TP −→M is
q-acyclic. There is an easy spectral sequence argument when M and P are
bounded below. We will prove a generalization without any such hypothesis
in Theorem 8.26 below, using a model theoretic approach. �

For a DG R-module N of right R-modules, we give N ⊗ P the bigrading

(N ⊗ P )p,q =
∑
i+j=q

Ni ⊗ Pp,j .

If we filter by the internal degree q, we obtain a spectral sequence Erp,q with
differentials dr : Erp,q −→ Erp+r−1,q−r. With our (perhaps peculiar) notations,

the differential d0 is induced by the bicomplex differential d1 on P , which
gives a projective resolution P∗,j of Mj for each fixed j. Therefore

E1
p,q = TorRp,q(N,M) =

∑
i+j=q

TorRp (Ni,Mj)

with differential d1 induced by the bicomplex differential d0. Assuming that
either N or M is a complex of flat R-modules, E2

p,q(N,M) = 0 for p > 0
and

(8.13) E2
0,q = E∞0,q = Hq(N ⊗M).

In Boardman’s language [Boa98], this spectral sequence has entering dif-
ferentials and it need not converge. In fact, Remark 10.11 gives a striking
example where convergence fails. In that example, E2

0,q = Z/2 for all integers
q and yet the desired target is zero. This is where boundedness hypotheses
enter classically.

Lemma 8.14. If N or M is degreewise R-flat and both are bounded below,
then

(id⊗ε)∗ : H(N ⊗ P ) −→ H(N ⊗M)

is an isomorphism. In particular, taking N = R, ε : P −→ M is a q-
equivalence.

Now consider the filtration on N ⊗RP induced by the homological degree
p. Here we have

dr : Erp,q −→ Erp−r,q+r−1

in the resulting spectral sequence, with d0 induced by the differential on N
and the bicomplex differential d0. Since the Pp,j are all projective, we have

E1
p,q =

∑
i+j=q

Hi(N)⊗Hj(Pp,∗)
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with differential induced by the bicomplex differential d1. Since H∗(P∗,j) is
a projective resolution of Hj(M),

(8.15) E2
p,q = TorRp,q(HN,HM) =

∑
i+j=q

TorRp (Hi(N), Hj(M)).

In Boardman’s language [Boa98], this spectral sequence has exiting differ-
entials and converges to H∗(N ⊗P ), without bounded below hypotheses. In
view of Lemma 8.14, this gives the following version of the Künneth spectral
sequence.

Theorem 8.16. If N or M is degreewise R-flat and both are bounded be-
low, the spectral sequence {Er} converges from E2

∗,∗ = TorR∗,∗(HN,HM) to
H(N ⊗ P ).

8.3. The projective class (Ps, Es) in MA. This section is parallel to
§8.1. It will lead us to q-cofibrant approximations in the next. Recall the
projective class (Ps,Es) of DG R-modules from §8.1.

Definition 8.17. A DG A-module P is s-projective if it is a retract of
A ⊗ Q for some s-projective DG R-module Q. Let Ps denote the class of
s-projective DG A-modules.

Non-trivial retracts can appear, for example, if A itself is the direct sum
of sub DG A-modules. Lemma 8.6 directly implies the following analogue.

Lemma 8.18. A DG A-module P is s-projective if and only if it is isomor-
phic to a retract of a direct sum over n ∈ Z of DG A-modules A⊗ SnR ⊗Hn

and A ⊗ Dn
R ⊗ Bn−1 for projective R-modules Hn and Bn−1. Therefore

s-projective DG A-modules are q-cofibrant.

Definition 8.19. A map p : E −→ B of DG A-modules is an s-epimorphism
if Up is an s-epimorphism of DG R-modules. Let Es denote the class of s-
epimorphisms of DG A-modules.

The action map f : A ⊗ M −→ M of any DG A-module M is an s-
epimorphism since the unit of the adjunction gives that UM is a retract of
U(A⊗M). Similarly, if p : E −→ UM is an s-epimorphism of DG R-modules,
its adjoint p̃ : A⊗ E −→M is an s-epimorphism of DG A-modules.

Proposition 8.20. The pair (Ps,Es) is a projective class in MA.

Proof. We must verify (i)–(iii) of Definition 8.1. We first show that if P is
s-projective, p : E −→ M is an s-epimorphism, and f : P −→ M is a map
of DG A-modules, then f lifts to a map f̃ : P −→ E. Since this property
is inherited by retracts, we may assume that P = A ⊗Q, where Q is an s-
projective R-module. Then the conclusion is immediate by adjunction from
the analogue for DG R-modules. If a map p : E −→ M is P -surjective for
all P ∈Ps, then, again by adjunction from the examples P = A⊗Q, Up is
an s-epimorphism. This verifies (i). If a DG A-module P is p-projective for
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all p ∈ Es and Q −→ UP is an s-epimorphism of DG R-modules, where Q
is s-projective, then P is a retract of A ⊗ Q and is thus s-projective. This
verifies (ii). If M is a DG A-module and Q −→ UM is an s-epimorphism of
DG R-modules where Q is s-projective, then its adjoint A⊗Q −→M is an
s-epimorphism of DG A-modules, verifying (iii). �

Exactly as in Corollary 8.9, this has the following consequence.

Corollary 8.21. The class AqQq of q-acyclic q-cofibrant objects in MA

coincides with the class AqPs of q-acyclic s-projective DG A-modules P .

Remark 8.22. Note that it is unreasonable to take Es to be the class of
fibrations in a model structure on MA since 0 → FSnR would then be an
acyclic cofibration.

The following result was used without proof when A = R, where it is
elementary, but we make it explicit here. It is [Mor59, 2.1].

Lemma 8.23. If N is a right DG A-module and P is an s-projective left
DG A-module, then

H(N ⊗A P ) ∼= HN ⊗HA HP.

Proof. We may assume that P = A ⊗ Q where Q is an s-projective DG
R-module. Then N⊗AP ∼= N⊗Q, hence H(N⊗AP ) ∼= HN⊗HQ. On the
other hand, H(A⊗Q) ∼= HA⊗HQ, hence HN ⊗HAHP ∼= HN ⊗HQ. �

8.4. Projective resolutions are q-cofibrant approximations: MA.
We mimic §8.2. We ignore the retracts in Definition 8.17 and use only
s-projective DG A-modules of the form P = A ⊗ Q for an s-projective R-

module Q. Let us say that a sequence L
f
//M

g
//N of DG A-modules is

s-exact if f is the composite of an s-epimorphism L −→ K and the inclusion
K −→M of a kernel of g. Then we can define a projective resolution of M
to be an s-exact sequence

· · · −→ Pp,∗ −→ Pp−1,∗ −→ · · · −→ P1,∗ −→ P0,∗ −→M −→ 0

such that each Pp,∗ is s-projective.
We construct projective resolutions P of DG A-modules M as in §8.2.

Their terms are of the form Pp,∗ = A⊗Qp,∗. Here Pp,q =
∑

i+j=q Ai ⊗Qp,j .
We first construct an s-projective DG R-module Q0,∗ and an s-epimorphism
Q0,∗ −→ UM . We take its adjoint to be ε : P0,∗ −→ M , with kernel
K0,∗. Inductively, we construct an s-projective chain complex Pp,∗ and an
s-epimorphism Pp,∗ −→ Kp−1,∗ with kernel Kp,∗ in the same way, and we
have the differential

d : Pp,∗ −→ Kp−1,∗ ⊂ Pp−1,∗.
It is a map of DG A-modules. As in §8.2, {Pp,q} and the maps ε : P0,∗ −→M
specify a bicomplex over M with vertical differential d0 : Pp,q −→ Pp,q−1
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and horizontal differential d1 : Pp,q −→ Pp−1,q. The differentials on the Pp,∗
specify d0. To ensure that d0d1 + d1d0 = 0 we set d1 = (−1)qd on Pp,q.

This proves the first statement of the following result, which is stated as
[Mor59, 2.1]. Moore leaves the rest of the proof to the reader, and so shall
we.

Proposition 8.24. Every DG A-module M admits a projective resolution
P . If P and Q are projective resolutions of M and N and f : M −→ N
is a map of DG A-modules, then there is a map f̃ : P −→ Q of projective
resolutions over f . If f̃ and g̃ are maps over homotopic maps f and g, then
f̃ and g̃ are homotopic.

We apply the general discussion of bicomplexes in §8.2. As before, we
write TP for the total complex of a projective resolution ε : P −→ M . As
a bicomplex, P has two filtrations. We are again more interested in the
filtration by the homological degree p. With it, FpP is the sum of the Pp−r,∗
for 0 ≤ r ≤ p. The filtration quotient FpP/Fp−1P is Pp,∗. Using Lemma 8.18
and Theorem 9.12, the proof of Lemma 8.11 applies to give the following
analogue.

Lemma 8.25. The total complex TP of a projective resolution is q-cofibrant.

We conclude that the total complexes of P of projective resolutions can be
equipped both with a structure of bicomplex and with an entirely different
filtration as a retract of a q-cell complex. We shall now prove the following
theorem, generalizing Theorem 8.12.

Theorem 8.26. A projective resolution ε : TP −→ M is a q-cofibrant ap-
proximation.

Proof. By construction ε : TP −→ M is a degreewise epimorphism and
thus a q-fibration. By Lemma 8.25, it suffices to show that ε : TP −→ M
is a q-equivalence. We might like to use the spectral sequence obtained by
filtering by internal degree, but we have made no boundedness assumption,
hence that spectral sequence need not converge. Instead, we construct a
solution to any lifting problem

FSnR
p
//

��

TP

ε

��

FDn+1
R m

//

`
;;

M.
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By the adjunction F : MR
//MA : Uoo , this is equivalent to solving the lift-

ing problem for the underlying map of DG R-modules ε : TP −→M :

(8.27) SnR
p
//

��

TP

ε

��

Dn+1
R m

//

`
<<

M.

Thus we are free to work in the underlying context of DG R-modules.
A commutative square of the form (8.27) corresponds to a pair of elements

m ∈ Mn+1 and p ∈ ZnTP such that d(m) = ε(p). Write p =
∑

i+j=n pi,j
with pi,j ∈ Pi,j . Then ε(p) = ε(p0,n) = d(m) and the condition p ∈ ZnTP
holds if and only if

d0(pi,j) = (−1)jd(pi+1,j−1).

By the definition of a direct sum, we must have pi,n−i = 0 for i� 0.
A solution to the lifting problem (8.27) is given by an element ` ∈ TPn+1

such that ε(`) = m and d(`) = p. Writing ` =
∑

i+j=n+1 `i,j , the first

condition is that ε(`0,n+1) = m and the second condition is that

d0(`i,j+1) + (−1)jd(`i+1,j) = pi,j ∀ i+ j = n.

We must also ensure that we can choose `i,j+1 = 0 for i� 0.
Since ε : P0,n+1 →Mn+1 is surjective, we may choose `0,n+1 ∈ P0,n+1 such

that ε(`0,n+1) = m. The next step is to find `1,n ∈ P1,n such that

(−1)nd(`1,n) = p0,n − d0(`0,n+1).

By the exactness of the resolution P∗,n →Mn at P0,n, the calculation

ε(p0,n)− εd0(`0,n+1) = d(m)− dε(`0,n+1) = 0

implies that this can be done.
Continuing inductively, we use the exactness of P∗,j →Mj at Pi,j to find

`i+1,j ∈ Pi+1,j such that

(8.28) (−1)jd(`i+1,j) = pi,j − d0(`i,j+1).

The calculation

d(pi,j)− dd0(`i,j+1) = (−1)j+1d0(pi−1,j+1)− d0d(`i,j+1)

= ±d0d0(`i−1,j+2) = 0

implies that this can be done.
To show that the sum ` =

∑
p+q=n+1 `p,q is finite, we refine our construc-

tion for p � 0. Let i be maximal such that pi,j 6= 0. Then the right-hand
side of (8.28) is in Zj(Pi,∗) ⊂ Pi,j because d0(pi,j) = (−1)jd(pi+1,j−1) = 0.
By the exactness of Zj(P∗,j) → ZjM , we can choose `i+1,j to be a vertical
cycle, so that d0(`i+1,j) = 0. This implies that we may take `p,q = 0 for all
p > i+ 1. �
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Now consider N ⊗A P for a right DG A-module N . We again have two
spectral sequences. First consider the spectral sequence obtained by filtering
by internal degree. When N = A, the E0-term is a projective resolution of
the A-module M . Therefore, for general N ,

E1
p,q = TorAp,q(N,M),

where the ordinary Tor functor defined without use of the differentials on
A, N , and M is understood. If the underlying A-module of either N or M
is flat, then E1

p,q(N,M) = 0 for p > 0 and

(8.29) E2
0,q = E∞0,q = Hq(N ⊗AM).

Under boundedness assumptions, this gives a more familiar second proof
and a generalization of Theorem 8.26.

Theorem 8.30. If N or M is A-flat and A, N , and M are bounded below,
then

(id⊗ε)∗ : H(N ⊗A TP ) −→ H(N ⊗AM)

is an isomorphism. In particular, taking N = A, ε : TP −→ M is a q-
equivalence.

It follows that H(N⊗ATP ) = TorA∗ (M,N), hence that Theorem 8.30 has
the following reinterpretation. It generalizes [Mor59, p. 7-09]. We do not
know how to prove it using q-cofibrant approximations constructed by either
the SOA or the methods of [GM74], and we will use it in our discussion of
semi-flat DG A-modules and the bar construction.

Corollary 8.31. If M or N is A-flat and A, N , and M are bounded below,
then

TorA∗ (N,M) ∼= H(N ⊗AM).

Now consider the induced homological filtration on N⊗AP . Since the Pp,∗
are all s-projective, Lemma 8.23 applies, and we see that HP is a projective
resolution of the HA-module HM . Therefore

(8.32) E2
p,q = TorHAp,q (HN,HM).

We can think of this as a generalized Künneth spectral sequence since we
now have the following analogue of Theorem 8.16.

Theorem 8.33. If N or M is A-flat and A, N , and M are bounded be-
low, the spectral sequence {Er} converges from E2

∗,∗ = TorHA∗,∗ (HN,HM) to
H(N ⊗AM).

In general, without the flatness or bounded below hypotheses, the spectral
sequence converges to H(N ⊗A P ). Since H(N ⊗A P ) = TorA∗ (N,M), this
gives a version of the Eilenberg–Moore spectral sequence.
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9. Cell complexes and cofibrant approximations

In this section, we describe ways of recognizing cofibrant DG MA-modules
when we see them. To do this, we first give characterizations of q- and r-
cofibrant objects and cofibrations and then develop a general cellular frame-
work, starting from what we call split DG A-modules. We focus on those
model categorical cell complexes whose filtrations relate to the degrees of
flat or projective resolutions. This should be viewed as analogous to sin-
gling out the CW complexes among the cell complexes seen in the standard
q-model structure on topological spaces. However, it is considerably more
subtle in that the relevant filtrations need not be the filtrations of model
theoretic cell complexes.

9.1. Characterization of q-cofibrant objects and q-cofibrations.
The goal of this section is to give more explicit descriptions of the q-

cofibrant objects and the q-cofibrations in MA. By Theorem 3.3, we know
that q-cofibrations are retracts of relative q-cell complexes, but we want a
more tractable characterization analogous to Propositions 1.7 and 1.9. The
results here will serve as models for analogous results about the r-model
structure.

Definition 9.1. A DG A-module X is q-semi-projective if its underlying
A-module is projective and if the DG R-module HomA(X,Z) is q-acyclic for
all q-acyclic DG A-modules Z.

Definition 9.2. A monomorphism i : W −→ X of DG A-modules is a
q-semi-projective extension if X/W is q-semi-projective. Note that the ex-
tension is then A-split.

The following observations are immediate from the definitions.

Lemma 9.3. A retract of a q-semi-projective A-module is q-semi-projective.
A retract of a q-semi-projective extension is a q-semi-projective extension.

Proposition 9.4. If a map i : W −→ Y of DG A-modules is a q-semi-
projective extension, then it is a q-cofibration. In particular, a q-semi-
projective A-module X is q-cofibrant.

Proof. Let X = Y/W , where X is q-semi-projective, and let p : E −→ B
be a q-acyclic q-fibration. We must find a lift λ in any lifting problem

W
g
//

i
��

E

p

��

Y

λ
==

f
// B.

Since X is projective, we can write Y = W ⊕X as A-modules, and we can
then write the differential on Y in the form

d(w, x) = (d(w) + t(x), d(x))
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where t is a degree −1 map of A-modules, so that t(ax) = (−1)deg at(x),
such that dt+ td = 0. The first formula is forced by the assumption that d
on Y is a degree −1 map of A-modules, and the second is forced by d2 = 0.
We write f = f1 + f2, where f1 : W −→ B and f2 : X −→ B, and we write
λ = λ1 +λ2 similarly. We can and must define λ1 = g to ensure that g = λi.
We want pλ2(x) = f2(x) and

dλ2(x) = λd(0, x) = λ(t(x), d(x)) = gt(x) + λ2d(x).

Since X is a projective A-module and p is an epimorphism of A-modules,
there is a map f̃2 : X −→ E of A-modules, but not necessarily DG A-
modules, such that pf̃2 = f2. The map f̃2 is a first approximation to the
required map λ2.

Let Z = ker(p). Since p is a q-equivalence, Z is q-acyclic. Since X is
q-semi-projective, HomA(X,Z) is q-acyclic. Define k : X −→ E by

k = df̃2 − f̃2d− gt.
We claim that pk = 0, so that k may be viewed as a map X −→ Z of degree
−1. To see this, note that df = fd implies df2 = f1t+ f2d. Since pd = dp,

pk = dpf̃2 − pf̃2d− pgt = df2 − f2d− f1t = 0.

Moreover,
dk + kd = −df̃2d− dgt+ df̃2d− gtd = 0,

so that k is a cycle of degree −1 in HomA(X,Z). Therefore k is a boundary.
Thus there is a degree 0 map of A-modules ` : X −→ Z ⊂ E such that
d`− `d = k. The map λ2 = f̃2 − ` is as required. �

To obtain a converse to the theorem, we use a definition that encodes a
reformulation and generalization of the notion of a q-cell complex.

Definition 9.5. A q-split filtration of a DG A-module X is an increasing
sequence {FpX} of DG A-submodules such that F−1X = 0, X = ∪pFpX,
and each FpX/Fp−1X is isomorphic as a DG A-module to A⊗Kp for some
degreewise free DG R-module Kp. Then the inclusions Fp−1X −→ FpX
are A-split (but not DG A-split). The filtration is cellularly q-split if the
differential on each Kp is zero.

Lemma 9.6. The cellular filtration of a q-cell complex is cellularly q-split.

Proof. This holds since FpX/Fp−1X is a direct sum of sphere DG A-
modules A ⊗ SnR and is thus of the form A ⊗ Vp for a free R-module Vp
with zero differential. �

Remark 9.7. Even if we weaken the requirement on the quotients

FpX/Fp−1X

by allowing them to be retracts of DG A-modules A ⊗ Kp such that the
Kp are degreewise projective DG R-modules, it is not true that the induced
filtration W ∩ FpX on a retract W of X is q-split.
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Remark 9.8. The term “semi-free” is sometimes used in the literature for
a DG A-module with a cellularly q-split filtration. As we shall see, these are
essentially the same as the q-cell complexes.

Proposition 9.9. If a DG A-module X admits a cellularly q-split filtration
or if X is bounded below and admits a q-split filtration, then X is q-semi-
projective.

Proof. Assume that X has a q-split filtration. Successive splittings of fil-
tration subquotients imply that X is isomorphic as an A-module (but not
as a DG A-module) to ⊕FpX/Fp−1X. Therefore X is A-free. More gen-
erally, each X/FpX splits correspondingly and we have A-split short exact
sequences of DG A-modules

0 −→ FpX/Fp−1X −→ X/Fp−1X −→ X/FpX −→ 0.

These give rise to short exact sequences of chain complexes

HomA(X/FpX,Z) −→ HomA(X/Fp−1X,Z) −→ HomA(FpX/Fp−1X,Z).

Observe that HomA(A ⊗ K,Z) ∼= Hom(K,UZ) for a DG R-module K
and a DG A-module Z. Now let Z be q-acyclic. We claim that each
HomA(FpX/Fp−1X,Z) is q-acyclic under either of our hypotheses. If K
is degreewise projective with zero differential, then Hom(K,UZ) is q-acyclic
since the functor Hom(−,UZ) converts direct sums to cartesian products
and since Hom(R,UZ) ∼= Z. This implies the claim when the filtration on
X is cellularly q-split. If X is bounded below, then each Kp is bounded
below. By Proposition 1.7, each Kp is therefore q-cofibrant or equivalently
q-semi-projective in MR. In particular, Hom(Kp,UZ) is q-acyclic and thus
again each HomA(FpX/Fp−1X,Z) is q-acyclic.

By the long exact homology sequences of our short exact sequences of
chain complexes, each map

H∗(HomA(X/FpX,Z)) −→ H∗(HomA(X/Fp−1X,Z))

is an isomorphism. It is not obvious that this implies H∗(HomA(X,Z)) = 0,
but it does, by an application of Boardman’s [Boa98, 7.2]. In detail, with

D1
p,q = Hp+q(HomA(X/Fp−1X,Z)) and

E1
p,q = Hp+q(HomA(FpX/Fp−1X,Z)),

our long exact sequences give an exact couple, and it gives rise to a right
half-plane spectral sequence Erp,q with differentials dr : Erp,q −→ Erp+r,q−r−1
and with E2 = 0. In Boardman’s language, since we clearly have that
limpD

1
p,∗−p = 0 and RE∞ = 0 (see [Boa98, pp. 65, 67]), the spectral se-

quence converges conditionally to colimH∗D
1
p,∗−p, which is realized at p = 1

by H∗(HomA(X,Z)) = 0. Applying [Boa98, 7.2] to compare our spectral
sequence to the spectral sequence of the identically zero exact couple, we
see that H∗(HomA(X,Z)) = 0. �
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Note that requiring X to be bounded below implicitly requires A to be
bounded below. We put things together to prove the following results.

Theorem 9.10. Consider the following conditions on a DG A-module X.

(i) X is q-semi-projective.
(ii) X is q-cofibrant.
(iii) X is a retract of a DG A-module that admits a cellularly q-split

filtration.
(iv) X is a retract of a DG A-module that admits a q-split filtration.

Conditions (i), (ii), and (iii) are equivalent and imply (iv). Moreover, if X
is bounded below, then (iv) implies (i).

Proof. Proposition 9.4 shows that (i) implies (ii), Lemma 9.6 implies that
(ii) implies (iii), and (iii) trivially implies (iv). By Lemma 9.3 and Proposi-
tion 9.9, (iii) and if X is bounded below (iv) imply (i). �

Remark 9.11. In view of Remark 1.8, the equivalent conditions (i), (ii),
and (iii) are strictly stronger than (iv). This should be contrasted with the
analogous result for the r-model structure, Theorem 9.20 below.

Theorem 9.12. A map W −→ Y of DG A-modules is a q-cofibration if
and only if it is a monomorphism with q-cofibrant cokernel.

Proof. The forward implication is evident and the reverse implication holds
by Theorems 9.4 and 9.10. �

9.2. Characterization of r-cofibrant objects and r-cofibrations.
This section is parallel to §9.1. Its goal is to give more explicit descriptions

of the r-cofibrant objects and r-cofibrations in MA. By Theorem 4.5, these
are retracts of enriched r-cell complexes, but we want a more tractable
characterization.

Definition 9.13. A DG A-module X is r-semi-projective if its underlying
A-module is relatively projective and if HomA(X,Z) is a q-acyclic DG R-
module for any r-acyclic DG A-module Z.

Definition 9.14. An R-split monomorphism i : W −→ X of DG A-mod-
ules is an r-semi-projective extension if X/W is r-semi-projective. By Lem-
ma 4.1, the extension is then A-split.

Lemma 9.15. A retract of an r-semi-projective A-module is r-semi-pro-
jective. A retract of an r-semi-projective extension is an r-semi-projective
extension.

Proposition 9.16. If a map i : W −→ X of DG A-modules is an r-semi-
projective extension, then it is an r-cofibration. In particular, an r-semi-
projective A-module X is r-cofibrant.

Proof. Changing q to r and projective to relatively projective, the argument
is the same as the proof of Proposition 9.4. �
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Just as r-cell complexes generalize q-cell complexes, we have the following
generalization of a q-split filtration.

Definition 9.17. An r-split filtration of a DG A-module X is an increasing
sequence of R-split inclusions Fp−1X −→ FpX of DG A-submodules such
that F−1X = 0, X = ∪pFpX, and each FpX/Fp−1X is isomorphic as a DG
A-module to a direct summand of A ⊗Kp for some DG R-module Kp. By
Lemma 4.1 applied to the R-split quotient maps FpX −→ FpX/Fp−1X, the
inclusions Fp−1X −→ FpX are A-split (but not DG A-split). The filtration
is cellularly r-split if the differential on each Kp is zero.

By the same proof as that of Lemma 9.6, this generalizes r-cell complexes.

Lemma 9.18. The cellular filtration of an r-cell complex is cellularly r-split.

The following result is considerably stronger than its analogue Proposi-
tion 9.9.

Theorem 9.19. If a DG A-module X admits an r-split filtration then X is
r-semi-projective.

Proof. The argument is exactly like the proof of Proposition 9.9. The key
change is that HomA(A ⊗ K,Z) ∼= Hom(K,UZ) is q-acyclic for any DG
R-module K, not necessarily degreewise R-projective, since UZ is r-acyclic
and thus chain homotopy equivalent to 0. This eliminates the need for a
bounded below hypothesis. �

Theorem 9.20. The following conditions on a DG A-module X are equiv-
alent.

(i) X is r-semi-projective.
(ii) X is r-cofibrant.
(iii) X is a retract of a DG A-module that admits a cellularly r-split

filtration.
(iv) X is a retract of a DG A-module that admits an r-split filtration.

Proof. Proposition 9.16 shows that (i) implies (ii), Lemma 9.18 implies
that (ii) implies (iii), and (iii) trivially implies (iv). By Theorem 9.19, (iv)
implies (i). �

Theorem 9.21. A map W −→ Y of DG A-modules is an r-cofibration if
and only if it is an R-split monomorphism with r-cofibrant cokernel.

Proof. The forward implication is evident and the reverse implication holds
by Theorems 9.16 and 9.20. �

9.3. From r-cell complexes to split DG A-modules. The following
definition combines [GM74, 1.2 and 1.4]. It is implicit in [May68].13 It
specifies a generalized variant of the notion of an r-split filtered DG A-
module, as we shall see. The generalization will allow explicit descriptions

13[May68] was submitted in 1967, the year that model categories first appeared [Qui67].
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of cofibrant approximations that do not come in nature as retracts of q- or r-
cell complexes. We now focus more on the splitting than the filtration since
that gives us more precise calculational control. Up to minor streamlining,
we adopt the terminology of [GM74].

Definition 9.22. A DG A-module X is split if the following properties hold.
As an A-module,

X =
∑
p≥0

A⊗ X̄p,∗

for a sequence of graded R-modules X̄p,∗ (not DG R-modules) graded so
that the component of X̄p,∗ in degree p+ q is X̄p,q. Then

Xn =
∑

i+p+j=n

Ai ⊗ X̄p,j .

We view X̄ as a bigraded R-module, and then X itself is bigraded by

Xp,q =
∑
i+j=q

Ai ⊗ X̄p,j .

We require X to be a filtered DG A-module with

FpX =
∑

0≤k≤p
A⊗ X̄k,∗.

Then the differential on X necessarily has the form

(9.23) d =
∑
r≥0

dr, dr : Xp,q −→ Xp−r,q+r−1, where
∑
i+j=r

didj = 0.

Since X is a DG A-module, it follows that
(9.24)

d0(ax) = d(a)x+ (−1)deg aad0(x) and dr(ax) = (−1)deg aadr(x) for r ≥ 1,

where a ∈ A and x ∈ X̄. We say that X is cell-like if d0 = 0 on X̄. We say
that X is distinguished if it is cell-like and each X̄p,q is a free R-module.

Example 9.25. The total complex TP of a projective resolution in the
sense of §8.4 is a split DG A-module, but it is not cellular in general.

It is no accident that the dr look like differentials in a spectral sequence,
as we shall see in §10.1. It is tempting to require d0(X̄) = 0 in the definition
of split, but that would rule out the bar construction and projective reso-
lutions; see §10.2 and §8.4. We cannot resist inserting the following quotes
from [GM74, pp. 3–4] about split DG A-modules. “These objects are pre-
cisely the most general filtered DG A-modules that can be expected to be
of computational value. . . . For historical reasons, differential homological
algebra has been developed using only those split objects such that dr = 0
for r > 1 (d0 and d1 are usually called the ‘internal’ and ‘external’ differ-
entials). This restriction is unnecessary and, in our view, undesirable.” We
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now see that use of multicomplexes, as defined by Wall [Wal61], is dictated
by model category theory.

Proposition 9.26. An r-cell complex X in MA has a canonical structure
of a cell-like split DG A-module. The q-cell complexes X are characterized
as those r-cell complexes that are distinguished when considered as split DG
A-modules.

Proof. Our convention is that F−1X = 0. We first note that the splitting

Fp+1X ∼= FpX ⊕ Fp+1X/FpX, p ≥ 0,

of underlying A-modules is canonical, although not functorial. The inclu-
sions in : Sn−1R ⊂ Dn

R have the obvious retractions rn of graded R-modules
that send the copy of R in degree n to 0. Applying F and tensoring with
R-modules Vi, there result canonical retractions of all of the canonical in-
clusions ∑

i

FSni−1R ⊗ Vi −→
∑
i

FDni
R ⊗ Vi.

For q-cell complexes, we take all Vi to be R. For each p, we have such
a canonical inclusion ip : Cp −→ Dp with a retraction rp and, for some
attaching map jp of DG A-modules, we have a pushout square in the diagram

Cp

ip

��

jp
// FpX

��

Dp
//

jprp
))

Fp+1X

$$

FpX.

The dotted arrow is given by the universal property of pushouts, and its ker-
nel maps isomorphically onto Fp+1X/FpX. This gives the promised canon-
ical splitting.

Since FpX/Fp−1X is relatively A-free for p ≥ 0, we can write it as A⊗X̄p,∗
as an A-module, ignoring the differential. Specifying the bigrading as in
Definition 9.22, we see that X is indeed a split DG A-module. To see that it
is cell-like, consider the generating R-module Dn

R⊗V of a cell mapping into

Fp+1X. Since its boundary Sn−1R ⊗ V maps into FpX, d sends the image of
Dn
R ⊗ V into FpX, hence d0(X̄) = 0.
Now suppose given a distinguished split DG A-module X, so that each

X̄p,q a free R-module. Let {xi} be an R-basis for X̄. For xi ∈ X̄p+1,q, let yi
be a basis element for a copy of Sp+qR , and let Cp be the direct sum of the

FSp+qR for those yi of bidegree (p, q) for some q. Define jp : Cp −→ FpX by
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jp(yi) = d(xi). Then it is easy to see that the diagram

Cp

ip

��

jp
// FpX

��

Dp
// Fp+1X

is a pushout, showing that X is a q-cell complex with the jp as attaching
maps. The converse is clear. �

It is not clear whether or not every cell-like split DG A-module arises this
way from an r-cell complex, but we expect not.

9.4. From relative cell complexes to split extensions. In a less obvi-
ous way, [GM74] also considers relative cell complexes W −→ Y . In effect, it
shows that they are essentially the same thing as maps X −→M out of cell
complexes. To see this, we first extend our two notions of semi-projective
extensions.

Definition 9.27. A split extension is anR-split monomorphism i : W −→ Y
of DG A-modules such that X = Y/W is a cell-like split DG A-module.
Then the quotient map Y −→ X is R-split, hence i is A-split by Lemma
4.1. Therefore the underlying A-module of Y is isomorphic to W⊕X. Fixing
the splitting, the differential on Y necessarily has the form

d(w, x) = (d(w) + β(x), d(x)) for w ∈W and x ∈ X,

where β : X −→ W is a degree −1 map of DG A-modules, meaning that β
maps Xn to Wn−1 and satisfies

(9.28) dβ = −βd and β(ax) = (−1)deg aaβ(x) for a ∈ A and x ∈ X.

These formulas are forced by d2 = 0 and the Leibniz formula

d(aw) = d(aw, ax) = d(a)(w, x) + (−1)deg aad(w, x).

Moreover, Y is a filtered DG A-module with

F−1Y = W and FpY = W ⊕ FpX for p ≥ 0.

Observe that i : W −→ Y determines and is determined by β : X −→ W .
We call Y the split extension determined by β.

The following model theoretic interpretation is immediate from the defi-
nitions, Theorems 9.12 and 9.21, and Theorems 9.10 and 9.20.

Proposition 9.29. Let i : W −→ Y be a split extension with quotient X. If
X is an r-cell complex, then i is an r-semi-projective extension and is thus
an r-cofibration. If X is a q-cell R-module, then i is a q-semi-projective
extension and is thus a q-cofibration.
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To relate split extensions to maps X −→ M (of degree 0), we use a
construction suggested by (9.28). For any integer q, we have the usual qth
suspension functor Σq : MA −→ MA defined by ΣqM = M ⊗ SqR. It is an
isomorphism of categories with inverse Σ−q. We introduce a signed variant
of Σ−1.

Definition 9.30. Define an isomorphism of categories Υ: MA −→MA by
letting (ΥM)n = Mn+1, writing elements in the form m ∈ ΥM for m ∈M .

Define d(m) = −d(m) and define the action of A by am = (−1)deg aam.
A quick check of signs shows that ΥM is a DG A-module. For a map
φ : M −→ N of DG A-modules, define a map Υφ : ΥM −→ ΥN of DG
A-modules by (Υf)n = fn+1.

Observe that a map α : X −→ M of DG A-modules can be identified
with the degree −1 map β : X −→ ΥM of DG A-modules specified by
β(x) = α(x). The following is now a conceptual version of [GM74, 1.1],
which was the ad hoc starting point of [GM74]. It constructs a split extension
from a map with domain X. Since every DG A-module W is of the from
ΥM for some M , Definition 9.27 gives the inverse construction of a map α
with domain X from a split extension and thus from a relative cell complex.

Definition 9.31. For a map α : X −→M of DG A-modules, where X is a
cell-like split DG A-module, let i : ΥM −→ Xα denote the split extension
determined by β : X −→ ΥM , as specified in Definition 9.27 (thus Xα here
corresponds to Y there). We extend (9.23) and (9.24) by defining

(9.32) d0 = −d : M −→M and dp+1 = α : Xp,q −→Mp+q.

Setting X−1,q = (ΥM)q−1 = Mq, the equation

dα = αd : Xp,q −→Mp+q−1 = X−1,p+q

becomes

−d0dp+1 =
∑

0≤j≤p
dp+1−jdj , hence

∑
i+j=p+1

didj = 0.

Remark 9.33. The notation Fα for Xα might be reasonable14 since we
have a rough analogy with topological fiber sequences

ΩM
i //Fα //X

α //M.

10. From homological algebra to model category theory

Calculationally, our work begins with the Eilenberg–Moore spectral se-
quence, abbreviated EMSS. Split DG A-modules give rise to spectral se-
quences that are candidates for the EMSS. In §10.1 we define resolutions
α : X −→M and in particular distinguished and Künneth resolutions of DG
A-modules M . Distinguished resolutions are particularly nice q-cofibrant

14Xα was misleadingly called a mapping cylinder in [GM74].
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approximations, whereas Künneth resolutions are tailored to give the weak-
est data sufficient to construct the EMSS with the correct E2-term and the
correct target. The target is given by differential torsion products. Even
weaker kinds of resolutions, namely semi-flat resolutions, give the correct
target even though they need not give the correct E2-term, and these too
are defined in §10.1.

In §10.2, we show that the classical bar construction gives r-cofibrant ap-
proximations of all DG A-modules M for any DG R-algebra A, even though
the bar construction is never itself an r-cell complex when the differential
on A is non-zero. Under mild hypotheses, the bar construction also gives
semi-flat resolutions, which means that it behaves homologically as if it were
a q-cofibrant rather than just an r-cofibrant approximation. This implies
that Tor (= qTor) and rTor agree far more often than one would expect
from model considerations alone.

The fact that our preferred resolutions are given by multicomplexes and
not just bicomplexes has structural implications for the EMSS in terms of
matric Massey products. We indicate briefly how that works in §10.3.

10.1. Split, Künneth, and semi-flat DG A-modules; the EMSS.
A filtered DG R-module Y gives rise to a spectral sequence ErY of DG
R-modules starting from

E0
p,qY = (FpY/Fp−1Y )p+q.

We are interested in the cases Y = X and Y = Xα for a map α : X −→M
of DG A-modules, where X is split. In the latter case, we have

E1
−1,qX

α = Hq(M) and E1
p,qX

α = E1
p,qX for p ≥ 0.

The differentials are of the form dr : Erp,q −→ Erp−r,q+r−1, and d0 is given by

the summand d0 of d. The complex E1
∗,∗X

α takes the form

(10.1) · · · −→ E1
p,∗X −→ E1

p−1,∗X −→ · · · −→ E1
0,∗X −→ H∗(M) −→ 0.

Definition 10.2 ([GM74, 1.1]). We say that α : X −→M is a resolution of
M if the sequence (10.1) is exact. We say that α is a distinguished resolution
of M if α is a resolution and X is a distinguished DG A-module, that is, a
q-cell complex.

Since {Er∗,∗Xα} is a right-half plane spectral sequence with homological
grading, there is no convergence problem [Boa98, §6]. Filtering M itself
by F−1M = 0 and FpM = M for p ≥ 0, we can reinterpret (10.1) as the
E1-term of a map of spectral sequences ErX −→ ErM induced by α. Using
the convergence [Boa98, 7.2], we have the following result.

Proposition 10.3. If α : X −→ M is a resolution of M , then α is a q-
equivalence.
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Remark 10.4. We emphasize that we do not have a converse to Proposition
10.3. In particular, we have no reason to believe that a general q-cofibrant
approximation α : X −→ M is a resolution. We shall be giving three dif-
ferent homological constructions of resolutions that have q- or r-cofibrant
domains.

Definition 10.5 ([GM74, 1.1]). For a right DG A-module N and a split DG
A-module X, give N⊗AX the induced filtration, Fp(N⊗AX) = N⊗AFpX.
There is an evident Künneth map

κ : HN ⊗HA E1X −→ E1(N ⊗A X).

A split DG A-module X is Künneth if each E1
p,∗X is a flat HA-module and

κ is an isomorphism for every N . We say that α : X −→ M is a Künneth
resolution of M if α is a resolution and X is Künneth. When this holds,
(10.1) is a resolution of HM by flat HA-modules and therefore

E2
p,q(N ⊗A X) = TorHAp,q (HN,HM).

Example 10.6. The total complex TP of a projective resolution in the
sense of §8.4 is Künneth.

Definition 10.7. If α : X −→M is a Künneth resolution, we call the spec-
tral sequence {Erp,q(N⊗AX)} an Eilenberg–Moore spectral sequence (EMSS).

We have identified the E2-term as a classical Tor functor. The target is
the differential Tor functor of Definition 7.1. Similarly, if X is distinguished
and N is a left DG A-module, then

H∗,∗HomHA(E1
∗,∗X,HN) = Ext∗,∗HA(HM,HN)

and we have a cohomological EMSS whose target is the differential Ext
functor. We shall not consider it in any detail here.

In what follows, we repeatedly use the isomorphism of DG R-modules

(10.8) E1
p,∗ = (N ⊗A Xp,∗; d

0) ∼= (N ⊗ X̄p,∗; d⊗ id + id⊗d0),

for a split DG A-module X, where we do not always assume that d0 = 0 on
X̄ but we do assume that d0(X̄) ⊂ X̄. The d0 on the left is the differential
on N ⊗AXp,∗ viewed as the E0 term of the spectral sequence. On the right,
the d is the differential on N and the d0 is the differential on X̄ under our
assumption that d0(X̄) ⊂ X̄.

Lemma 10.9. If X is a cell-like DG A-module such that each X̄p,q is a flat
R-module, then X is a Künneth DG A-module. In particular, distinguished
DG A-modules are Künneth.

Proof. Here d0 = 0 on the right side of (10.8). Since homology commutes
with tensor products with flat R-modules, the conclusion is immediate. �
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We next describe a more general kind of resolution that will lead to sur-
prising invariance properties of the target of the EMSS. We need the gener-
ality to deal with the bar construction in §10.2. When A = R, the following
definition is due to [Ch13]. Recall that, ignoring differentials, a graded A-
module X is A-flat if the functor (−) ⊗A X on graded right A-modules N
is exact.

Definition 10.10. A DG A-module X is semi-flat if the underlying A-
module of X is A-flat and the functor (−) ⊗A X on right DG A-modules
preserves q-equivalences. We say that α : X −→M is a semi-flat resolution
of M if α is a resolution and X is semi-flat.

Remark 10.11. Degreewise free DG R-modules need not be semi-flat. If
R = Z/4 and X is the degreewise free DG R-module of Remark 1.8, then X
is not semi-flat. In fact if ε : P −→ Z/2 is a classical R-projective resolution,
then H∗(P ⊗R X) = 0 but H∗(Z/2⊗R X) is Z/2 in every degree.

The following result shows that split DG A-modules are very often Kün-
neth or semi-flat DG A-modules even when they are not cellular.

Proposition 10.12. Let X be a split DG A-module such that d0(X̄) ⊂ X̄
and each X̄p,q is R-flat. Then X is semi-flat under either of the following
hypotheses:

(i) R is a PID.
(ii) A and each X̄p,∗ is bounded below.

If, further, each Hp,q(X̄, d
0) is R-flat, then X is Künneth.

Proof. Since N ⊗A X ∼= N ⊗R X̄ as graded R-modules and exactness is
seen degreewise, it is clear that X is A-flat. We use (10.8) to see that the
functor (−)⊗A X preserves q-equivalences. The classical Künneth theorem
in case (i) and the Künneth spectral sequence, Theorem 8.16, in case (ii)
ensure that E1(N ⊗AX) depends functorially on HN and HX̄, although it
need not reduce to HN ⊗HX̄ in general. By the naturality of the Künneth
theorem or the naturality and convergence of the Künneth spectral sequence,
together with the convergence of the spectral sequence {Er(N ⊗A X)}, we
conclude (as in [Boa98, 7.2]) that the functor E1((−) ⊗A X) and therefore
the functor (−)⊗AX preserve q-equivalences if (i) or (ii) holds. When HX̄
is degreewise R-flat, E1(N ⊗AX) ∼= HN ⊗HX̄. Taking N = A we see that
E1X is HA-flat and that

HN ⊗HA E1X = HN ⊗HA (HA⊗H(X̄; d0)) = E1(N ⊗A X). �

Remark 10.13. If R is a Noetherian ring and C is a projective R-module,
then HomR(C,R) is a flat R-module, but it need not be projective. For
example, each Cq(X;R) is a flat R-module for any space X. Since examples
of the form A = C∗(X;R) appear naturally in algebraic topology, this gives
concrete motivation for considering degreewise R-flat DG R-algebras A and
DG A-modules M ; see §11.3.
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Definition 10.14. Let γ : TorA(N,M) −→ H(N⊗AM) denote the natural
map induced by β ⊗ α or, equivalently, β ⊗ id or id⊗α, as in Lemma 7.4.

Classically, when there are no differentials on A, M , and N , γ reduces to
the natural isomorphism

TorA0,∗(N,M) = N ⊗AM.

In the absence of differentials, we also have that TorAp,∗(N,M) = 0 if N or
M is A-flat. The following direct consequence of the definition of a semi-flat
DG A-module is the closest we can get to these assertions in the differential
graded case.

Proposition 10.15. If M or N is semi-flat, then

γ : TorA∗ (N,M) −→ H(N ⊗AM)

is an isomorphism.

Of course, we can compute TorA∗ (N,M) using arbitrary Künneth reso-
lutions, as reflection on the EMSS makes clear. But in fact we have the
following more general result, which will become relevant when we consider
the bar construction in §10.2.

Proposition 10.16. If α : X −→ M is a q-equivalence, where X is semi-
flat, then TorA∗ (N,M) can be computed as H(N ⊗A X).

Proof. Let β : Y −→ N be a q-cofibrant approximation. By Lemma 7.4
and the definition of semi-flat, α and β induce isomorphisms

H(Y ⊗AM)←− H(Y ⊗A X) −→ H(N ⊗A X). �

Remark 10.17. In this generality, we do not even know that X is a split
DG A-module, although we do not know examples where that fails. Even
when that holds, we cannot expect E2(N ⊗A X) to be TorHA∗,∗ (HN,HM).
However, in view of the existence of Künneth resolutions of any M , we
conclude from Proposition 10.16 that we do have an EMSS with that E2-
term that converges to H(N ⊗A X).

10.2. The bar construction and the r-model structure. We assume
familiarity with the two-sided bar construction B(N,A,M) for a DG algebra
A and right and left A-modules N and M . It is the total complex associated
to the evident simplicial DG R-module with p-simplices N ⊗A⊗p ⊗M ; see
for example [GM74, App A]. The following result is a reinterpretation of
[GM74, A.8]. Let JA denote the cokernel A/R of the unit of A; it is a
quotient DG R-module of A. Usually A is augmented, and then JA may be
identified with the augmentation ideal IA.

Proposition 10.18. For any DG R-algebra A and DG R-module M , the
standard map ε : B(A,A,M) −→ M is an r-cofibrant approximation of M .
It is functorial in both A and M .
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Proof. Give B(A,A,M) its simplicial filtration. The filtration quotient
Fp/Fp−1 is the relatively free A-module A ⊗ (JA)p ⊗M . As an A-module,
B(A,A,M) is A⊗B̄, where B̄p,∗ = (JA)⊗p⊗M , and it is the direct sum of its
filtration quotients Fp/Fp−1. Thus the filtration is r-split and B(A,A,M) is
r-cofibrant by Theorem 9.20. Moreover, ε : B(A,A,M) −→M is an R-split
epimorphism and thus an r-fibration; the unit ι : M −→ A⊗M = F0 gives
the splitting. The standard homotopy between the identity and ι ◦ ε shows
that ε is an r-equivalence. �

Since B(A,A,M) is r-cofibrant, it is a retract of an r-cell complex. While
that is obvious from our model categorical work, it is nevertheless a lit-
tle mysterious: we have no direct way of seeing it using just homological
methods and the simplicial filtration. The following result complements the
previous one.

Proposition 10.19. If JA and M are degreewise R-flat, then B(A,A,M)
is semi-flat under either of the following hypotheses:

(i) R is a PID.
(ii) A and M are bounded below.

If, further, HJA and HM are degreewise R-flat, then B(A,A,M) is Kün-
neth and ε : B(A,A,M) −→M is a Künneth resolution of M .

Proof. Observe that A is R-flat if JA is R-flat and HA is R-flat if HJA
is R-flat. Except for the last clause, this is immediate from the proofs
of Propositions 10.12 and 10.18. The differential d0 on B̄ is the internal
differential induced by the differentials on JA and M . The Künneth theorem
gives that if JA, M , HJA, and HM are degreewise R-flat, then (10.1) for
X = B(A,A,M) is the flat HA-resolution B(HA,HA,HM) of HM . �

Since ε : B(A,A,M) −→M is an r-equivalence and thus a q-equivalence,
Proposition 10.16 gives that

TorA∗ (N,M) = H(N ⊗A B(A,A,M)) = HB(N,A,M)

whenever B(A,A,M) is semi-flat. By Remark 10.17, we then have an EMSS
converging from E2 = TorHA∗,∗ (HN,HM) to HB(N,A,M), even though it
may not come from the simplicial filtration of B(N,A,M). However, when
B(A,A,M) is Künneth, the spectral sequence does come from that filtration,
which then gives the correct E2-term.

Observe that Proposition 10.18 gives

rTorA∗ (N,M) = HB(N,A,M)

for a right DG A-module N and

rExt∗A(N,M) = H HomA(B(A,A,M), N)

for a left DG A-module N . The simplicial filtration gives a spectral sequence
converging to rTorA(N,M). By [Mac63, §IX.8], we can define relative clas-
sical Tor functors rTorHA∗,∗ (HN,HM) starting from Lemma 4.1. We do not
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have an identification of E2(N,A,M) with rTorHA(HN,HM) in general.
However, it is now clear that rTor and Tor agree under surprisingly mild
hypotheses.

Theorem 10.20. Assume that A and M are degreewise R-flat and (i) or
(ii) of Proposition 10.19 holds. Then

TorA(N,M) = rTorA(N,M)

for all right DG A-modules N .

Under these hypotheses, we can use the bar construction exactly as if
B(A,A,M) were a q-cofibrant approximation ofM , even though B(A,A,M)
is not cell-like and need not be q-cofibrant. Of course, B(A,A,M) admits
a q-cofibrant approximation ζ : X −→ B(A,A,M) by the SOA. When we
can find such a ζ which is an r-equivalence over M , we can conclude that
B(A,A,M) is h-equivalent to X and is thus a (q, h)-cofibrant approximation
of X. That is presumably not possible in general. However, when R is a
field (or semi-simple), the q-, r-, and h-model structures on MR coincide,
hence the q- and r-model structures on MA coincide. In that case, the map
ε : B(A,A,M) −→ M is a q-cofibrant approximation of M even though
B(A,A,M) is not cell-like, hence not distinguished and not a q-cell complex.

10.3. Matric Massey products and differential torsion products.
Let us return to the map γ : TorA∗ (N,M) −→ H(N ⊗A M) of Definition
10.14. It is not an isomorphism in general. The following curious substitute
for this isomorphism relies on matric Massey products, as defined in [May69]
and recalled in [GM74, §5].

Theorem 10.21 ([GM74, 5.9]). The image of γ is the set D(N,A,M) of all
elements of all matric Massey products 〈V0, V1, · · · , Vp, Vp+1〉, p ≥ 0, where
V0 is a row matrix in HN , the Vi for 1 ≤ i ≤ p are matrices with entries in
HA, and Vp+1 is a column matrix with entries in HM .

The letter D stands for “decomposable.” When p = 0, we understand
〈V0, V1〉 to be the image (up to signs) of V0 ⊗ V1 in H(N ⊗AM). The proof
uses nothing but the homological material we have summarized. The es-
sential point, explained in detail in [GM74, pp 49–57], is that the formula
d2 = 0 for the differentials of the multicomplex N ⊗A X is so similar to
the boundary conditions that specify defining systems for matric Massey
products that the entire spectral sequence {Er(N ⊗AX)} can be described
in terms of matric Massey products. That discussion starts from a distin-
guished resolution X of M , but it applies to any q-cell approximation.

When A has an augmentation ε : A −→ R, so that R is a DG A-module,
the special cases M = R (or N = R) and M = N = R are of particular
importance in the applications. We then let IA = ker ε and IHA = ker Hε.
The inclusion ι : IA −→ A induces

H(ι⊗ id) : H(IA×AM) −→ H(A⊗AM) = HM
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and we let D(HA;HM) denote the image of D(IA,A,M) in HM . We have
a natural map

π : HM −→ TorA∗ (R,M),

namely the “edge homomorphism”

R = R⊗HM −→ R⊗HA HM = E2
0,∗ −→ E∞0,∗ = F0 TorA∗ (R,M).

By [GM74, 5.12], Theorem 10.21 implies the following special case.

Corollary 10.22. The kernel of π : HM −→ TorA∗ (R,M) is D(HA;HM).

Specializing further, we have a suspension homomorphism [GM74, 3.7]

σ : IHA −→ E2
1,∗ −→ E∞1,∗ ⊂ TorA∗ (R,R).

The inclusion results from the fact that R = F0 TorA∗ (R,R) is a direct sum-
mand of TorA∗ (R,R). The inclusion ι⊗ ι : IA⊗A IA −→ A⊗A A induces a
map

H(IA⊗A IA) −→ HA,

and we let DHA denote the image of D(IA,A, IA) in HA. By [GM74,
5.13], Corollary 10.22 implies the following further special case.

Corollary 10.23. The kernel of σ : IHA −→ TorA∗ (R,R) is DHA.

10.4. Massey products and the classical Ext functor. We record an
application of §10.3. We show that all elements of the Ext groups of a con-
nected algebra A over a field are decomposable in terms of matric Massey
products, starting from the indecomposable elements of A itself. An anal-
ogous result holds for A-modules. Thus we assume here that R is a field
and we consider a connected graded R-algebra A (so that An = 0 for n < 0
and A0 = R) and an A-module M , both of finite type over R. These do not
have differentials. We are thinking, for example, of the Steenrod algebra
A and the cohomology M of a spectrum. The augmentation ε : A −→ R
makes R an A-module, and we have the bar construction B(R,A,M). We
write B(A) = B(R,A,R). The dual of B(A) is the cobar construction C(A),
which is a DG R-algebra, and we write C(A;M) for the dual of B(R,A,M),
which is a (left) DG C(A)-module. Then

HC(A) = Ext∗,∗A (R,R) and HC(A;M) = Ext∗,∗A (M,R).

The R-module Ext1,∗A (R,R) is dual to the R-module IA/(IA)2of inde-

composable elements of A, and the R-module Ext0,∗A (M,R) is dual to the
R-module M/(IA)M of indecomposable elements of the A-module M . We
sketch how a version of the EMSS proves the following result [GM74, 5.17].

Theorem 10.24. Ext∗,∗A (R,R) is generated by Ext1,∗A (R,R) under matric

Massey products. Ext∗,∗A (M,R) is generated by Ext0,∗A (M,R) under matric
Massey products.
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We use Tor∗C(A)(C(A;M), R) to prove this; the special case R = M

leads to the first statement. We have the algebraic EMSS converging from
Tor∗,∗HA(HC(A;M), R) to Tor∗C(A)(C(A;M), R). A standard relation be-

tween the bar and cobar constructions evaluates the target [GM74, 5.16].
Let M∗ denote the dual of M .

Proposition 10.25. Tor0C(A)(C(A;M), R) = M∗ and TornC(A)(C(A;M), R)

is zero for n 6= 0.

This is a consequence of the fact that, ignoring differentials, C(A;M) is
free as a right C(A)-module. Filtering B(C(A;M), C(A), R) so that d0 is
given by the simplicial (external) differential, we get a spectral sequence
converging from the classical Tor, with internal differentials ignored, to
Tor∗C(A)(C(A;M), R). It trivializes to give the stated conclusion. From

here, the deduction of Theorem 10.24 from 10.22 and 10.23 is easy [GM74,
p. 61]. The point is that all elements except the specified generators are in
the kernels identified as matric Massey product decomposables in the cited
results. In fact, by the precursor [May66] to [May69], the EMSS here is
itself an algorithm for the computation of Ext∗,∗A (N,R) and, in particular,
Ext∗,∗A (R,R).

11. Distinguished resolutions and the topological EMSS

Here we construct distinguished resolutions of arbitrary DG A-modules
M , as defined in Definition 10.2. These are Künneth resolutions by Lemma
10.9. We emphasize that these are generally not q-cofibrant approxima-
tions and that, as far as we know, q-cofibrant approximations need not give
Künneth resolutions.

Resolutions α : X −→ M must be q-equivalences, but they need not be
epimorphisms, hence they need not be q-cofibrant approximations even when
X is q-cofibrant, as holds by Proposition 9.26 for distinguished resolutions.
On the other hand, q-cofibrant approximations need not have the control
over E1X needed to give resolutions as defined in terms of (10.1), let alone
Künneth resolutions.

However, if X is q-cofibrant and γ : Y −→M is a q-cofibrant approxima-
tion in the usual sense that γ is a q-acyclic q-fibration, then we obtain a lift
λ : X −→ Y over M . Since λ is then a q-equivalence between q-bifibrant
objects, it is an h-equivalence. Thus we may use distinguished resolutions
just as if they were model theoretical q-cofibrant approximations.

As we explain in §11.1, [GM74] gives a purely homological construction of
a distinguished resolution of any M . These resolutions can be small enough
to actually compute with, as we illustrate in §11.2 in the case when H∗(A)
is a polynomial algebra. The smallness is directly correlated with the fact
that α need not be a q-fibration: for calculations, that is an advantage rather
than a disadvantage.
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We then reap the harvest and show in §11.3 how our work, especially
Theorem 11.8, applies to give explicit calculations in algebraic topology. In
particular, we explain the proof of Theorem 0.1. On a more theoretical
level, we show that the kernels of various maps of cohomological interest are
determined by matric Massey products.

11.1. The existence and uniqueness of distinguished resolutions.
We all know how to construct classical projective HA-resolutions of HA-
modules, and there is an ample arsenal of known examples. The following re-
sult is an analogue of the classical existence result for projective resolutions.
It allows us to lift projective HA-resolutions to distinguished A-resolutions.

Theorem 11.1 ([GM74, 2.1]). Let M be a DG A-module and let
(11.2)
· · · −→ HA⊗ X̄p,∗ −→ HA⊗ X̄p−1,∗ −→ · · · −→ HA⊗ X̄0,∗ −→ HM −→ 0

be a projective HA-resolution of HM , where each X̄p,q is a projective R-
module. Then the filtered A-module X = A⊗ X̄ with filtration

FpX =
∑
k≤p

A⊗ X̄k,∗

admits a differential d and a map α : X −→M such that α is a distinguished
resolution of M and the complex (10.1) coincides with the complex (11.2).

Proof. The paper [GM74] works with right rather than left DG A-modules
(with A denoted U) and its signs and details have several times been checked
with meticulous care. The description of Xα as a bigraded A-module is
forced, and so is the definition of d0. One first uses projectivity to define d1

so that the complexes (10.1) and (11.2) agree. One then uses projectivity to
define the dr on X̄p,∗ for r ≥ 2 and p ≥ 1 by induction on p and, for fixed p,
by induction on r in such a way that (9.23) is satisfied. The construction of
dp+1 on X̄p,∗ gives α. The details [GM74, pp. 12-15] are a bit tedious, but
they are entirely straightforward. �

To state our result on comparisons of resolutions, we need an implication
of Definitions 9.22 and 9.31, as in [GM74, 1.3].

Remark 11.3. Let α : X −→ M and α′ : X ′ −→ M ′ be maps of DG A-
modules where X and X ′ are split and let g : Xα −→ (X ′)α

′
be a map of

filtered DG A-modules. On filtration −1, g specifies a map k : M −→M ′ of
DG A-modules. On Xp,q for p ≥ 0, g has components gr : Xp,q −→ X ′p−r,q+r
for 0 ≤ r ≤ p and t : Xp,q −→M ′p+q+1. Let

K =
∑

0≤r≤p
gr : Xp,∗ −→ FpX

′.

Then K : X −→ X ′ is a map of filtered DG A-modules such that

dt+ td = α′K − kα.
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Therefore, g determines and is determined by the homotopy commutative
diagram

X
K //

α
��

X ′

α′

��

M
k
// M ′

of DG A-modules and the specific homotopy t. We write g = (K, k, t).

Again remembering that the classical Tor functor can be computed by
use of flat resolutions, the remark implies the following result by tensoring
with a right DG A-module N and passing to the resulting map of spectral
sequences.

Lemma 11.4. Let α : X −→M and α′ : X ′ −→M ′ be Künneth resolutions
and let g = (K, k, t) : Xα −→ (X ′)α

′
be a map of filtered DG A-modules.

Then, for any right DG A-module N ,

E2(id⊗K) : E2(N ⊗A X) −→ E2(N ⊗A X ′)

can be identified with

TorHA(id, Hk) : TorHA(HN,HM) −→ TorHA(HN,HM ′).

Therefore, if Hk : HM −→ HM ′ is an isomorphism, then

H(id⊗AK) : H(N ⊗A X) −→ H(N ⊗A X ′)

is an isomorphism.

The following result is the analogue of the comparison result between
projective complexes and resolutions in classical homological algebra. It
allows us to compare distinguished resolutions to general resolutions.

Theorem 11.5 ([GM74, 1.7]). Let α : X −→M be a map of DG A-modules,
where X is distinguished, let α′ : X ′ −→ M ′ be a resolution of a DG A-
module M ′, and let k : M −→ M ′ be a map of DG A-modules. Then there
is a map g = (K, k, t) : Xα −→ (X ′)α

′
of filtered DG A-modules. If, further,

g′ = (K ′, k, t′) is another such map, then there is a homotopy s : g ' g′ of

DG A-modules such that s(M) = 0 and s(FpX
α) ⊂ Fp+1(X

′)α
′

for p ≥ 0.

Proof. The proof proceeds by induction on p, using the requirement that
dg = gd. It can be better written than the argument of [GM74, pp. 7-8],
but it is straightforward. �

Corollary 11.6. If α : X −→M and α′ : X ′ −→M are distinguished reso-
lutions of M , then X and X ′ are h-equivalent over M .

Of course, since distinguished DG A-modules are q-cofibrant, the corollary
is also immediate from model category theory.
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11.2. A distinguished resolution when H∗(A) is polynomial. Many
of the applications of [GM74, May68, MN02] are based on an explicit exam-
ple of Theorem 11.1. We assume in this section that HA is a polynomial
algebra on generators xi indexed on some ordered set I. Since 2x2 = 0 if
x has odd degree, the xi must have even degree unless R has characteristic
2. When HA is commutative, it usually is so because A is chain homotopy
commutative via a homotopy ∪1 : A⊗ A −→ A. Very often ∪1 satisfies the
Hirsch formula, which means that it is a graded derivation. We assume that
we have such a “∪1-product” on A. Explicitly, for a ∈ Ap, b ∈ Aq, and
c ∈ Ar, we require

d(a ∪1 b) = ab− (−1)pqba− d(a) ∪1 b− (−1)pa ∪1 d(b)

and

(ab) ∪1 c = (−1)pa(b ∪1 c) + (−1)qr(a ∪1 c)b.
We also assume that we have an augmentation A −→ R that induces the
standard augmentation ε : HA −→ R, ε(xi) = 0.

We have the Koszul resolution K(HA) of R. It is the differential HA-
algebra HA ⊗ E{yi}, where the bidegree of yi is (1, deg xi). Here E de-
notes an exterior algebra and d(yi) = xi. Let K(A) = A ⊗ E{yi} and let
ε : K(A) −→ R be the evident augmentation. Theorem 11.1 gives a differen-
tial d on K(A), but in this case we do not need to rely on that result: we can
construct the differential explicitly so that ε is a distinguished resolution of
R. We shall not give full details, since the only problem is to get the signs
right and that was done with care in [GM74, pp. 16-17], although working
with right rather than left modules.15 Let ai ∈ Ai be a representative cycle
of xi. For an ordered sequence of indices S = {i1 < · · · < ip}, let `(S) = p
and define aS and yS by induction on p. If S = {i}, then aS = ai and
yS = yi. If S = {i, T}, then aS = ai ∪1 aT and yS = yiyT . We require K(A)
to be a DG A-algebra, hence to define d on K(A), we need only define the
d(yS). We consider all partitions of S as S = U ∪ V where U ∩ V = ∅ and
U and V are nonempty. Then

(11.7) d(yS) =
∑
U,V

σ(U, V ) aU ⊗ yV

for appropriate signs σ(U, V ), so chosen that dd = 0 and σ(U, V ) is as
dictated by E1

∗,∗K(A) = K(HA) when `(U) = 1.
Now assume that N is another augmented DG R-algebra that is homo-

topy commutative via a ∪1-product that satisfies the Hirsch formula and let
f : A −→ N be a map of DGAs that commutes with the ∪1-product. Give

15One lengthy check of signs was left to the reader, but the senior author still has
handwritten full details. Using the transposition isomorphism

t : E{yi} ⊗A −→ A⊗ E{yi}, t(x⊗ a) = (−1)deg a deg x(a⊗ x),

and defining d = tdt on A⊗ E{yi} gives correct signs for our left A-module resolution.
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N a structure of right DG A-module via f and give HN the zero differential.
We then have the following result [GM74, 2.3].

Theorem 11.8. Suppose that there is a map g : N −→ HN of DG R-
algebras such that Hg : HN −→ HN is the identity map and g annihilates
all ∪1-products. Then

TorA∗ (N,R) = TorHA∗ (HN,R),

where TorHA∗ (HN,R) is graded by total degree.

Proof. Regard HN as a DG A-module via gf : A −→ HN . The map

TorA∗ (g, id) : TorA∗ (N,R) −→ TorA∗ (HN,R)

is an isomorphism. We may compute the target by use of the DG HN -
algebra

HN ⊗A K(U) = HN ⊗ E{yi}
with differential

d(n⊗ yS) = (−1)deg nn⊗ d(yS) =
∑
U,V

(−1)deg nσ(U, V )ngf(aU )⊗ yV .

Since f commutes with ∪1 and g annihilates ∪1, the only non-zero terms
occur with `(U) = 1, so that d = id⊗d1 on HN ⊗A KA. Therefore

HN ⊗A K(A) = HN ⊗A K(HA)

as DG R-modules, and the conclusion follows. �

As emphasized in [GM74, MN02], this is not merely a statement about
the EMSS. Of course, it implies that E2 = E∞, but it also implies that there
are no non-trivial additive extensions from E∞ to TorA∗ (N,R). A spectral
sequence argument would leave open the possibility of such extensions.

11.3. The topological Eilenberg–Moore spectral sequence.
We briefly indicate how Theorem 11.8 applies to algebraic topology. Here

we assume that our commutative ring R is Noetherian and that all spaces
in sight have integral homology of finite type.

Consider a pullback square

D

��

//

��

E

p

��

X
f
// Y,

where p is a q-fibration with fiber F and and π1(Y ) acts trivially on F .
Eilenberg and Moore [EM66] prove that

H∗(D;R) ∼= Tor∗C∗(Y ;R)(C
∗(X;R), C∗(E;R)),

where Tor is regraded cohomologically; see also [GM74, 3.3]. Here C∗ is
the (normalized) singular cochain functor. It takes values in DG R-algebras
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with a ∪1-product satisfying the Hirsch formula. The associated EMSS is a
spectral sequence of DG R-algebras which converges to the algebraH∗(D;R)
[GM74, 3.5]. The hypothesis on N in Theorem 11.8 is satisfied by C∗(X;R)
for certain products of Eilenberg Mac Lane spaces X and in particular
for X = BTn, the classifying space of the n-torus Tn [GM74, 4.1, 4.2].
This leads to the following corollary of Theorem 11.8 [GM74, 4.3], of which
Theorem 0.1 is a special case. The essential additional ingredient is that,
if Tn is a torus, then there is a q-equivalence C∗(BTn;R) −→ H∗(BTn;R)
that annihilates ∪1-products [GM74, 4.1].

We assume that E is contractible, so that D is homotopy equivalent to
the fiber Ff of f .

Theorem 11.9. Assume that H∗(Y ;R) is a polynomial algebra and that
there is a map e : BTn −→ X such that H∗(BTn;R) is a free H∗(X;R)
module via e∗. Then for any map f : X −→ Y ,

H∗(Ff ;R) ∼= Tor∗H∗(Y ;R)(H
∗(X;R), R)

as a graded R-module, and H∗(Ff ;R) admits a filtration such that its associ-
ated graded algebra is isomorphic to Tor∗,∗H∗(Y ;R)(H

∗(X;R), R) as a bigraded

R-algebra.

The proof proceeds by reduction to the case X = BTn, where one shows
that

Tor∗C∗(Y ;R)(C
∗(X;R), R) = Tor∗H∗(Y ;R)(H

∗(X;R), R)

since they both can be computed by the same DG R-modules. The hy-
pothesis on X is often satisfied when X = BG for a compact Lie group G
with maximal torus Tn. by [GM74, 4.5, 4.6], it holds if H∗(G;Z) has no
p-torsion for any prime p that divides the order of R. In particular, it holds
for any R if G = U(n), SU(n), Sp(n) and, if R has odd characteristic, O(n)
and SO(n). It also often holds when G is a suitable finite H-space [MN02].
Therefore the theorem has many applications [GM74, MN02].

Remark 11.10. The explicit construction (11.7) of the differential in terms
of ∪1-products on the distinguished resolution in §11.2 allows it to be used
to obtain explicit calculations even when Theorem 11.9 does not apply. In
[Sch71], Schochet used it to exhibit a two-stage Postnikov system with non-
trivial differentials in its Eilenberg–Moore spectral sequence.

The relationship between Tor and matric Massey products in Theorem
10.21 leads to the following applications to special cases of our pullback
diagram.

Corollary 11.11. If i : F −→ E is the inclusion of the fiber of p : E −→ Y ,
then ker i∗ = D(H∗(E;R);H∗(Y ;R)). The kernel of the suspension

σ∗ : H̃∗(Y ;R) −→ H∗−1(ΩY ;R)

is DH∗(Y ;R).
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There is a conceptually dual application of Theorem 10.21 to the calcu-
lation of H∗(B(Y,G,X);R) for a topological group G, a right G-space Y ,
and a left G-space X, where B(Y,G,X) is the topological two-sided bar
construction (e.g [GM74, 3.9]). It gives a dual to the last result.

Corollary 11.12. For a topological group G, the kernel of the suspension

σ∗ : H̃∗(G;R) −→ H∗+1(BG;R)

is DH∗(G;R).
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Séminaire Henri Cartan, 12 no. 1 (1959–1960), Exp. No. 7, 37 p. Zbl 0115.17205.
https://eudml.org/doc/112401.

[Qui67] Quillen, D.G. Homotopical algebra. Lect. Notes in Math., 43, Springer-Verlag,
Berlin, 1967. iv+156 pp. MR0223432 (36 #6480), Zbl 0168.20903.

[Rad06] Radulescu-Banu, A. Cofibrations in homotopy theory. arXiv:math/0610009.

http://www.ams.org/mathscinet-getitem?mr=1148590
http://zbmath.org/?q=an:1242.01040
http://www.ams.org/mathscinet-getitem?mr=1944041
http://zbmath.org/?q=an:1017.55001
http://zbmath.org/?q=an:1017.55001
http://www.ams.org/mathscinet-getitem?mr=1650134
http://zbmath.org/?q=an:0909.55001
http://www.ams.org/mathscinet-getitem?mr=1814077
http://zbmath.org/?q=an:0969.18010
http://zbmath.org/?q=an:0969.18010
http://www.ams.org/mathscinet-getitem?mr=2342834
http://zbmath.org/?q=an:1138.55016
http://www.ams.org/mathscinet-getitem?mr=589937
http://zbmath.org/?q=an:0437.18004
http://www.ams.org/mathscinet-getitem?mr=1344215
http://zbmath.org/?q=an:0133.26502
http://zbmath.org/?q=an:0133.26502
http://www.ams.org/mathscinet-getitem?mr=1922205
http://zbmath.org/?q=an:1025.55002
http://www.ams.org/mathscinet-getitem?mr=0192496
http://zbmath.org/?q=an:0138.01802
http://www.ams.org/mathscinet-getitem?mr=0239596
http://zbmath.org/?q=an:0153.53402
http://www.ams.org/mathscinet-getitem?mr=0238929
http://zbmath.org/?q=an:0192.34302
http://www.ams.org/mathscinet-getitem?mr=1855645
http://zbmath.org/?q=an:0987.57019
http://www.ams.org/mathscinet-getitem?mr=2884233
http://zbmath.org/?q=an:1249.55001
http://www.ams.org/mathscinet-getitem?mr=2271789
http://zbmath.org/?q=an:1119.55001
http://www.ams.org/mathscinet-getitem?mr=0100267
http://zbmath.org/?q=an:0084.39002
http://zbmath.org/?q=an:0115.17205
https://eudml.org/doc/112401
http://www.ams.org/mathscinet-getitem?mr=0223432
http://zbmath.org/?q=an:0168.20903
http://arXiv.org/abs/math/0610009


SIX MODEL STRUCTURES FOR DG-MODULES OVER DGAS 1159

[Rie11] Riehl, E. Algebraic model structures. New York J. Math. 17 (2011) 173–231.
MR2781914 (2012g:55030), Zbl 1222.55016. http://nyjm.albany.edu/j/2011/
17_173.html.

[Rie14] Riehl, E. Categorical homotopy theory. New Mathematical Monographs. Cam-
bridge University Press. 2014.

[Sch71] Schochet, C. A two-stage Postnikov system where E2 6= E∞ in the Eilenberg–
Moore spectral sequence. Trans. Amer. Math. Soc. 157 (1971), 113–118.
MR0307242 (46 #6362), Zbl 0214.21902.

[SV02] Schwänzl, R.; Vogt, R.M. Strong cofibrations and fibrations in enriched
categories. Arch. Math. 79 (2002), 449–462. MR1967263 (2003m:55007), Zbl
1016.55003.

[SS00] Schwede, S.; Shipley, B. Algebras and modules in monoidal model categories.
Proc. London Math. Soc. 80 (2000), 491–511. MR1734325 (2001c:18006), Zbl
1026.18004.

[Wal61] Wall, C.T.C. Resolutions for extensions of groups. Math. Proc. Camb. Phil.
Soc. 57 (1961), 251–255. MR0178046 (31 #2304), Zbl 0106.24903.

[Wei94] Weibel, C. An introduction to homological algebra. Cambridge studies in
advanced mathematics, 38. Cambridge University Press, Cambridge, 1994.
xiv+450 pp. ISBN: 0-521-43500-5; 0-521-55987-1. MR1269324 (95f:18001), Zbl
0834.18001.

(Tobias Barthel) Department of Mathematics, Harvard University, Cambridge,
MA 02138
tbarthel@math.harvard.edu

(J.P. May) Department of Mathematics, University of Chicago, Chicago, IL
60637
may@math.uchicago.edu

(Emily Riehl) Department of Mathematics, Harvard University, Cambridge, MA
02138
eriehl@math.harvard.edu

This paper is available via http://nyjm.albany.edu/j/2014/20-53.html.

http://www.ams.org/mathscinet-getitem?mr=2781914
http://zbmath.org/?q=an:1222.55016
http://nyjm.albany.edu/j/2011/17_173.html
http://nyjm.albany.edu/j/2011/17_173.html
http://www.ams.org/mathscinet-getitem?mr=0307242
http://zbmath.org/?q=an:0214.21902
http://www.ams.org/mathscinet-getitem?mr=1967263
http://zbmath.org/?q=an:1016.55003
http://zbmath.org/?q=an:1016.55003
http://www.ams.org/mathscinet-getitem?mr=1734325
http://zbmath.org/?q=an:1026.18004
http://zbmath.org/?q=an:1026.18004
http://www.ams.org/mathscinet-getitem?mr=0178046
http://zbmath.org/?q=an:0106.24903
http://www.ams.org/mathscinet-getitem?mr=1269324
http://zbmath.org/?q=an:0834.18001
http://zbmath.org/?q=an:0834.18001
mailto:tbarthel@math.harvard.edu
mailto:may@math.uchicago.edu
mailto:eriehl@math.harvard.edu
http://nyjm.albany.edu/j/2014/20-53.html

	Introduction
	Part 1. Six model structures for DG-modules over DGAs
	1. The q- and h-model structures on the category MR
	1.1. Preliminaries
	1.2. The q-model structure
	1.3. The h-model structure

	2. The r-model structure on MR for commutative rings R
	2.1. Compact generation in the R-module enriched sense
	2.2. The enriched lifting properties
	2.3. Enriching the r-model structure

	3. The q- and h-model structures on the category MA
	3.1. Preliminaries and the adjunction FU
	3.2. The q-model structure
	3.3. The h-model structure

	4. The r-model structure on MA
	4.1. Relatively projective A-modules
	4.2. Construction of the r-model structure

	5. The six model structures on MA
	5.1. Mixed model category structures in general
	5.2. The mixed model structure on MR
	5.3. Three mixed model structures on MA

	6. Enriched and algebraic variants of the small object argument
	6.1. The classical small object argument
	6.2. Enriched WFSs and relative cell complexes
	6.3. The two kinds of enriched model categories
	6.4. The algebraic small object argument


	Part 2. Cofibrant approximations and homological resolutions
	7. Introduction
	7.1. The functors Tor and Ext on DG A-modules
	7.2. Outline and conventions

	8. Projective resolutions and q-cofibrant approximations
	8.1. Projective classes and relative homological algebra
	8.2. Projective resolutions are q-cofibrant approximations: MR
	8.3. The projective class (Ps,Es) in MA
	8.4. Projective resolutions are q-cofibrant approximations: MA

	9. Cell complexes and cofibrant approximations
	9.1. Characterization of q-cofibrant objects and q-cofibrations
	9.2. Characterization of r-cofibrant objects and r-cofibrations
	9.3. From r-cell complexes to split DG A-modules
	9.4. From relative cell complexes to split extensions

	10. From homological algebra to model category theory
	10.1. Split, Künneth, and semi-flat DG A-modules; the EMSS
	10.2. The bar construction and the r-model structure
	10.3. Matric Massey products and differential torsion products
	10.4. Massey products and the classical Ext functor

	11. Distinguished resolutions and the topological EMSS
	11.1. The existence and uniqueness of distinguished resolutions
	11.2. A distinguished resolution when H*(A) is polynomial
	11.3. The topological Eilenberg–Moore spectral sequence

	References


