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Full faithfulness theorem for torsion
crystalline representations

Yoshiyasu Ozeki

Abstract. Mark Kisin proved that a certain “restriction functor” on
crystalline p-adic representations is fully faithful. In this paper, we prove
the torsion analogue of Kisin’s theorem.
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1. Introduction

Let p > 2 be a prime number and r, r′ ≥ 0 integers. Let K be a complete
discrete valuation field of mixed characteristic (0, p) with perfect residue
field and absolute ramification index e. Let π = π0 be a uniformizer of
K and πn a pn-th root of π such that πpn+1 = πn for all n ≥ 0. Put
K∞ =

⋃
n≥0K(πn) and denote by GK and G∞ absolute Galois groups of

K and K∞, respectively. In Theorem (0.2) of [Kis], Kisin proved that the
functor “restriction to G∞” from crystalline Qp-representations of GK to
Qp-representations of G∞ is fully faithful, which was a conjecture of Breuil
([Br2]). Hence we may say that crystalline Qp-representations of GK are
characterized by their restriction to G∞. It should be noted that there
exists an established theory describing representations of G∞ by easy linear
algebra data, which is called étale ϕ-modules, introduced by Fontaine ([Fo1]
A 1.2). In this paper, we are interested in the torsion analogue of the above
Kisin’s result. For example, Breuil proved in Theorem 3.4.3 of [Br3] that
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the functor “restriction to G∞” from finite flat representations of GK to
torsion Zp-representations of G∞ is fully faithful (Remark 20(2)). Our main
theorem is motivated by his result:

Theorem 1. Suppose er < p− 1 and e(r′ − 1) < p− 1. Let T (resp. T ′) be
a torsion crystalline Zp-representation of GK with Hodge–Tate weights in
[0, r] (resp. [0, r′]). Then any G∞-equivariant morphism T → T ′ is in fact
GK-equivariant.

In particular, the functor from torsion crystalline Zp-representations of
GK with Hodge–Tate weights in [0, r] to torsion Zp-representations of G∞,
obtained by restricting the action of GK to G∞, is fully faithful.

Here a torsion Zp-representation of GK is said to be torsion crystalline
with Hodge–Tate weights in [0, r] if it can be written as the quotient of
two lattices in some crystalline Qp-representation of GK with Hodge–Tate
weights in [0, r]. For example, a torsion Zp-representation of GK is finite
flat if and only if it is torsion crystalline with Hodge–Tate weights in [0, 1]
(Remark 20(2)). If e = 1, the latter part of Theorem 1 has been proven by
Breuil via Fontaine–Laffaille theory (Remark 20(3)). On the other hand, our

proof is based on results on Kisin modules and (ϕ, Ĝ)-modules (the notion

of (ϕ, Ĝ)-modules is introduced in [Li2]). More precisely, we use maximal
models for Kisin modules introduced in [CL1] and results on “the range of

monodromy” for (ϕ, Ĝ)-modules given in Section 4 of [GLS].
It seems natural to ask whether the condition “er < p − 1” in the latter

part of Theorem 1 is necessary and sufficient for the full faithfulness. In
fact, we know that the condition “er < p − 1” is not necessary since our
restriction functor is fully faithful for any e when r = 1 (Remark 20(2)).
(Maybe the necessary and sufficient condition for the full faithfulness is
“e(r − 1) < p − 1” (Remark 20).) In addition, in the last section, we give
some examples such that the restriction functor appeared in Theorem 1 is
not full under some choices of K and r which do not satisfy “er < p − 1”
(more precisely, “e(r − 1) < p − 1”). Examples are mainly given by using
two methods: The first one is direct computations of Galois cohomologies,
which is a purely local method. The second one is based on the classical
Serre’s modularity conjecture, which is a global method.

Acknowledgements. It is a pleasure to thank Wansu Kim for useful com-
ments and correspondences to Theorem 1. The author thanks Naoki Imai
and Akio Tamagawa who gave him useful advice in the proof of his main
theorem. The author thanks also Keisuke Arai, Seidai Yasuda, Shin Hattori
and Yuichiro Taguchi for their helpful comments on Proposition 16.

2. Preliminaries

Throughout this paper, we fix a prime number p > 2. Let r ≥ 0 be an
integer. Let k be a perfect field of characteristic p, W (k) its ring of Witt
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vectors, K0 = W (k)[1/p], K a finite totally ramified extension of K0, K
a fixed algebraic closure of K and GK = Gal(K/K). Fix a uniformizer
π ∈ K and denote by E(u) its Eisenstein polynomial over K0. For any
integer n ≥ 0, let πn ∈ K be a pn-th root of π such that πpn+1 = πn. Let

K∞ =
⋃
n≥0K(πn) and G∞ = Gal(K/K∞).

For any topological group H, we denote by Reptor(H) (resp. RepZp
(H))

the category of finite torsion Zp-representations of H (resp. the category of
finite free Zp-representations of H). We denote by ReprZp

(GK) the category

of lattices in crystalline Qp-representations of GK with Hodge–Tate weights
in [0, r]. We say that T ∈ Reptor(GK) is torsion crystalline with Hodge–Tate
weights in [0, r] if it can be written as the quotient of L′ ⊂ L in ReprZp

(GK),

and denote by Reprtor(GK) the category of them.
Let R = lim←−OK/p where OK is the integer ring of K and the transition

maps are given by the p-th power map. Write π = (πn)n≥0 ∈ R and let [π] ∈
W (R) be the Teichmüller representative of π. Let S = W (k)[[u]] equipped
with a Frobenius endomorphism ϕ given by u 7→ up and the Frobenius
on W (k). We embed the W (k)-algebra W (k)[u] into W (R) via the map
u 7→ [π]. This embedding extends to an embedding S ↪→ W (R), which is
compatible with Frobenius endomorphisms.

A ϕ-module (over S) is an S-module M equipped with a ϕ-semilinear map
ϕ : M→M. A morphism between two ϕ-modules (M1, ϕ1) and (M2, ϕ2) is
an S-linear map M1 →M2 compatible with ϕ1 and ϕ2. Denote by ′Modr/S
the category of ϕ-modules (M, ϕ) of height ≤ r in the sense that M is of
finite type over S and the cokernel of 1 ⊗ ϕ : S ⊗ϕ,S M → M is killed by
E(u)r. Let Modr/S∞ be the full subcategory of ′Modr/S consisting of finite S-

modules which are killed by some power of p and have projective dimension
1 in the sense that M has a two term resolution by finite free S-modules. Let
Modr/S be the full subcategory of ′Modr/S consisting of finite free S-modules.

We call an object of Modr/S∞ (resp. Modr/S) a torsion Kisin module (resp. a

free Kisin module). A Kisin module is a torsion Kisin module or a free Kisin
module. For any Kisin module M, we define a Zp-representation TS(M) of
G∞ by

TS(M) =

{
HomS,ϕ(M,Qp/Zp ⊗Zp S

ur) if M is torsion

HomS,ϕ(M,Sur) if M is free.

Here, a G∞-action on TS(M) is given by (σ.f)(x) = σ(f(x)) for σ ∈ G∞, f ∈
TS(M), x ∈M.

Here we recall the theory of Liu’s (ϕ, Ĝ)-modules (cf. [Li2]). Let S be the
p-adic completion of the divided power envelope of W (k)[u] with respect to
the ideal generated by E(u). There exists a unique Frobenius map ϕ : S → S
defined by ϕ(u) = up. Put SK0 = S[1/p] = K0 ⊗W (k) S. The inclusion
W (k)[u] ↪→ W (R) via the map u 7→ [π] induces ϕ-compatible inclusions
S ↪→ S ↪→ Acris and SK0 ↪→ B+

cris. Fix a choice of primitive pi-root of
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unity ζpi for i ≥ 0 such that ζp
pi+1 = ζpi . Put ε = (ζpi)i≥0 ∈ R× and

t = log([ε]) ∈ Acris. Denote by ν : W (R) → W (k) a unique lift of the
projection R → k, which extends to a map ν : B+

cris → W (k)[1/p]. For any

subring A ⊂ B+
cris, we put I+A = Ker(ν on B+

cris)∩A. For any integer n ≥ 0,

let t{n} = tr(n)γq̃(n)(
tp−1

p ) where n = (p− 1)q̃(n) + r(n) with q̃(n) ≥ 0, 0 ≤
r(n) < p − 1 and γi(x) = xi

i! is the standard divided power. We define a

subring RK0 of B+
cris as below:

RK0 =

{ ∞∑
i=0

fit
{i} | fi ∈ SK0 and fi → 0 as i→∞

}
.

Put R̂ = RK0 ∩W (R) and I+ = I+R̂. Put K̂ =
⋃
n≥0K∞(ζpn) and Ĝ =

Gal(K̂/K). Lemma 2.2.1 in [Li2] shows that R̂ (resp. RK0) is a ϕ-stable S-
algebra as a subring in W (R) (resp. B+

cris), and ν induces RK0/I+RK0 ' K0

and R̂/I+ ' S/I+S ' S/I+S ' W (k). Furthermore, R̂, I+,RK0 and

I+RK0 are GK-stable, and GK-actions on them factors through Ĝ. For

any Kisin module M, we equip R̂ ⊗ϕ,S M with a Frobenius by ϕR̂ ⊗ ϕM.

It is known that the natural map M → R̂ ⊗ϕ,S M given by x 7→ 1 ⊗ x
is an injection ([CL2], Section 3.1). By this injection, we regard M as a

ϕ(S)-stable submodule of R̂ ⊗ϕ,S M.

Definition 2. A (ϕ, Ĝ)-module (of height ≤ r) is a triple M̂ = (M, ϕM, Ĝ)
where:

(1) (M, ϕM) is a Kisin module (of height ≤ r).
(2) Ĝ is a continuous R̂-semilinear Ĝ-action on R̂ ⊗ϕ,S M.

(3) the Ĝ-action commutes with ϕR̂ ⊗ ϕM.

(4) M ⊂ (R̂ ⊗ϕ,S M)HK where HK = Gal(K̂/K∞).

(5) Ĝ acts on the W (k)-module (R̂ ⊗ϕ,S M)/I+(R̂ ⊗ϕ,S M) trivially.

If M is a torsion (resp. free) Kisin module, we call M̂ a torsion (resp. free)

(ϕ, Ĝ)-module.

A morphism between two (ϕ, Ĝ)-modules M̂1 = (M1, ϕ1, Ĝ) and M̂2 =

(M2, ϕ2, Ĝ) is a morphism f : M1 →M2 of ϕ-modules such that

R̂ ⊗ f : R̂ ⊗ϕ,S M1 → R̂⊗ϕ,S M2

is Ĝ-equivariant. We denote by Modr,Ĝ/S∞ (resp. Modr,Ĝ/S ) the category of

torsion (ϕ, Ĝ)-modules of height ≤ r (resp. free (ϕ, Ĝ)-modules of height ≤
r). We often regard R̂⊗ϕ,ϕM as a GK-module via the projection GK � Ĝ.

A sequence 0 → M̂′ → M̂ → M̂′′ → 0 of (ϕ, Ĝ)-modules is exact if it is

exact as S-modules. For a (ϕ, Ĝ)-module M̂, we define a Zp-representation
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T̂ (M̂) of GK by

T̂ (M̂) =

{
HomR̂,ϕ(R̂ ⊗ϕ,S M,Qp/Zp ⊗Zp W (R)) if M is torsion

HomR̂,ϕ(R̂ ⊗ϕ,S M,W (R)) if M is free.

Here, GK acts on T̂ (M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ GK , f ∈
T̂ (M̂), x ∈ R̂ ⊗ϕ,S M. Then, there exists a natural G∞-equivariant map

θ : TS(M)→ T̂ (M̂)

defined by θ(f)(a⊗m) = aϕ(f(m)) for f ∈ TS(M), a ∈ R̂,m ∈M.

Fix a topological generator τ of Gal(K̂/Kp∞) where Kp∞ =
⋃
n≥0K(ζpn).

We may suppose that ζpn = τ(πn)/πn for all n, and this implies τ(u) = [ε]u
in W (R). There exists t ∈W (R) r pW (R) such that ϕ(t) = pE(0)−1E(u)t.
Such t is unique up to units of Zp (cf. Example 2.3.5 of [Li1]). The following
theorems play important rolls in the proof of Theorem 1.

Theorem 3 ([Li2]).

(1) The map θ : TS(M)→ T̂ (M̂) is an isomorphism.

(2) The contravariant functor T̂ induces an anti-equivalence between the

category Modr,ĜS of free (ϕ, Ĝ)-modules of height ≤ r and the cate-
gory of GK-stable Zp-lattices in semi-stable Qp-representations of
GK with Hodge–Tate weights in [0, r].

Theorem 4 ([CL2], Theorem 3.1.3 (4), [GLS], Proposition 5.9). Let T ∈
Reprtor(GK) and take L′ ⊂ L in ReprZp

(GK) such that T ' L/L′.

(1) There exists an exact sequence S : 0→ L̂→ L̂′ → M̂→ 0 of (ϕ, Ĝ)-
modules such that:
(a) L̂ and L̂′ are free (ϕ, Ĝ)-modules of height ≤ r.
(b) M̂ is a torsion (ϕ, Ĝ)-module of height ≤ r.
(c) T̂ (S) is isomorphic to the exact sequence 0→ L′ → L→ T → 0

of Zp[GK ]-modules.

(2) Let M̂ be as in (1). For any x ∈M, we have

τ(x)− x ∈ upϕ(t)(W (R)⊗ϕ,S M).

Proof. The assertion (2) is an easy consequence of [GLS], Proposition 5.9.
Here is one remark: In loc. cit, K is assumed to be a finite extension of Qp,
but arguments in Section 4.1 and 4.2 of loc. cit. proceed even if K is not
only a finite extension of Qp but also any complete discrete valuation field
of mixed characteristic (0, p) with perfect residue field. �

3. Proof of Theorem 1

For any integer α ≥ 0, we denote by m≥αR the ideal of R consisting of

a ∈ R with vR(a) ≥ α, where vR is a valuation of R such that vR(π) = 1
e .
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Note that, if we put t̃ = t mod p ∈ R, then vR(̃t) = 1
p−1 since ϕ(̃t) ∈ πet̃ ·R×

(recall the equation ϕ(t) = pE(0)−1E(u)t).
We note that we have natural inclusions

M ⊂ S⊗ϕ,S M ⊂ R̂ ⊗ϕ,S M ⊂W (R)⊗ϕ,S M

for any M ∈ Modr/S∞ . Denote by Modr,Ĝ,cris/S∞
the full subcategory of Modr,Ĝ/S∞

consisting of torsion (ϕ, Ĝ)-modules M̂ which satisfy the following; for any
x ∈M,

τ(x)− x ∈ upϕ(t)(W (R)⊗ϕ,S M).

We define the full subcategory Repr,Ĝ,cristor (GK) of Reptor(GK) to be the es-

sential image of the functor Modr,Ĝ,cris/S∞
⊂ Modr,Ĝ/S∞

T̂→ Reptor(GK), where T̂

is defined in the previous section. By Theorem 4, we have

Reprtor(GK) ⊂ Repr,Ĝ,cristor (GK).

Remark 5.

(1) The subscript “cris” of Modr,Ĝ,cris/S∞
is plausible since a free (ϕ, Ĝ)-

module M̂ satisfying the condition

τ(x)− x ∈ upϕ(t)(W (R)⊗ϕ,S M)

corresponds to a crystalline representation. See Theorem 21 in the
appendix for more precise information.

(2) Note that objects of Repr,Ĝ,cristor (GK) are not necessarily torsion crys-
talline representations. In fact, we do not know whether torsion
(ϕ, Ĝ)-modules lift to free (ϕ, Ĝ)-modules.

Theorem 1 follows from the following result.

Theorem 6. Let T ∈ Repr,Ĝ,cristor (GK) and T ′ ∈ Repr
′,Ĝ,cris

tor (GK), and sup-
pose er < p− 1 and e(r′ − 1) < p− 1. Then any G∞-equivariant morphism
T → T ′ is in fact GK-equivariant.

Lemma 7. Let a ∈W (R) r pW (R). For any Kisin module M, the map

W (R)⊗ϕ,S M→W (R)⊗ϕ,S M, x 7→ ax

is injective.

Proof. We may suppose that M is a torsion Kisin module. By a dévissage
argument ([Li1], Proposition 2.3.2 (4)), we may assume pM = 0. In this
situation, the statement is clear since W (R) ⊗ϕ,S M is a finite direct sum
of R. �

The following is a key lemma for our proof of Theorem 6:
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Lemma 8. Let r and r′ be nonnegative integers with e(r − 1) < p − 1

(without any assumption on r′). Let M̂ and N̂ be objects of Modr,Ĝ,cris/S∞
and

Modr
′,Ĝ,cris
/S∞

, respectively. Then we have Hom(M̂, N̂) = Hom(M,N).

In particular, if e(r − 1) < p− 1, then the forgetful functor

Modr,Ĝ,cris/S∞
→ Modr/S∞

is fully faithful.

The condition e(r − 1) < p− 1 is essential. See Remark 11 below.

Proof. Let f : M→ N be a morphism of Kisin modules and put

f̂ = W (R)⊗ f : W (R)⊗ϕ,S M→W (R)⊗ϕ,S N.

It suffices to prove that, for any x ∈M, ∆(1⊗x) = 0 where ∆ = τ ◦ f̂− f̂ ◦τ .
We proceed by induction on n such that pnN = 0.

Suppose n = 1, that is, pN = 0. We may identify W (R) ⊗ϕ,S N with

R⊗ϕ,SN. Since ∆(1⊗x) = (τ − 1)(1⊗ f(x))− f̂((τ − 1)(1⊗x)), we obtain
the following implication

(0) For any x ∈M, ∆(1⊗ x) ∈ m
≥c(0)
R (R⊗ϕ,S N)

where c(0) = p
p−1 + p

e . Note that

∆(1⊗ E(u)rx) = τ(ϕ(E(u)))r∆(1⊗ x) = (εu)per∆(1⊗ x) ∈ R⊗ϕ,S N.

On the other hand, since M is of height ≤ r, we can write E(u)rx =∑
i≥0 aiϕ(yi) for some ai ∈ S and yi ∈M. Then we obtain

∆(1⊗ E(u)rx) =
∑
i≥0

τ(ϕ(ai))ϕ(∆(1⊗ yi))

and it is contained in m
≥pc(0)
R (R ⊗ϕ,S N) by the implication (0). Since

R⊗ϕ,S N is free as an R-module, we obtain the implication

(1) For any x ∈M, ∆(1⊗ x) ∈ m
≥c(1)
R (R⊗ϕ,S N)

where c(1) = pc(0)− pr = p2

p−1 + p2

e − pr. By repeating the same argument,

for any s ≥ 0, we see the following implication

(s) For any x ∈M, ∆(1⊗ x) ∈ m
≥c(s)
R (R⊗ϕ,S N)

where c(s) = pc(s− 1)− pr = ps+1

p−1 + ps+1

e − p
sr− · · · − pr. Since e(r− 1) <

p − 1, we know that m
≥c(s)
R goes to zero when s → ∞ and then we obtain

∆(1⊗ x) = 0.
Suppose n > 1. Consider the exact sequence

(∗) 0→ Ker(p)→ N
p→ pN→ 0

of ϕ-modules. By Lemma 2.3.1 and Proposition 2.3.2 of [Li1], we know that

N′ := Ker(p) and N′′ := pN are in Modr
′

/S∞
. Equipping R̂ ⊗ϕ,S N′′ with
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Ĝ-action via the natural identification p(R̂ ⊗ϕ,S N) = R̂ ⊗ϕ,S N′′, we see

that N′′ has a structure as a (ϕ, Ĝ)-module. We can also equip R̂ ⊗ϕ,S N′

with Ĝ-action via the exact sequence

0→ R̂⊗ϕ,S N′ → R̂⊗ϕ,S N→ R̂⊗ϕ,S N′′ → 0

(for the exactness, see [CL2], Lemma 3.1.2). Since the sequence

0→ R̂/I+ ⊗ϕ,S N′ → R̂/I+ ⊗ϕS N→ R̂/I+ ⊗ϕ,S N′′ → 0

is also exact ([Oz], Corollary 2.11), we know that N′ also has a structure as

a (ϕ, Ĝ)-module. Summary, we obtained an exact sequence

0→ N̂′ → N̂
p→ N̂′′ → 0

in Modr
′,Ĝ
/S∞

whose underlying sequence of ϕ-modules is (∗). Remark that

pN′ = 0 and pn−1N′′ = 0. It is clear that N̂′′ ∈ Modr
′,Ĝ,cris
/S∞

. Since

0→ R̂⊗ϕ,S N′ → R̂⊗ϕ,S N→ R̂⊗ϕ,S N′′ → 0

is exact and pn−1N′′ = 0, we obtain ∆(1⊗ x) ∈ R̂⊗ϕ,S N′ ⊂W (R)⊗ϕ,S N′

for any x ∈ M by the induction hypothesis. Moreover, we have in fact
∆(1⊗ x) ∈ upϕ(t)(W (R)⊗ϕ,S N′) since Lemma 7 implies

(W (R)⊗ϕ,S N′) ∩ upϕ(t)(W (R)⊗ϕ,S N) = upϕ(t)(W (R)⊗ϕ,S N′).

Identifying W (R)⊗ϕ,S N′ with R⊗ϕ,S N′, we obtain

∆(1⊗ x) ∈ m
≥c(0)
R (R⊗ϕ,S N′).

By an analogous argument of the case where n = 1, we obtain the implication

(s′) For any x ∈M, ∆(1⊗ x) ∈ m
≥c(s)
R (R⊗ϕ,S N′)

for any s ≥ 0 and this implies ∆(1⊗ x) = 0. �

Before giving the proof of Theorem 6, we have to recall the theory of
maximal Kisin modules. Now we give a very rough sketch of it (for more
precise information, see [CL1]. Our sketch here is the case where “r =∞” in
loc. cit.). For any M ∈ Modr/S∞ , put M[1/u] = S[1/u]⊗SM and denote by

FS(M[1/u]) the (partially) ordered set (by inclusion) of torsion Kisin mod-
ules N of finite height which is contained in M[1/u] and N[1/u] = M[1/u]
as ϕ-modules. Here, a torsion Kisin module is called of finite height if it is
of height ≤ s for some integer s ≥ 0. The set FS(M[1/u]) has a greatest
element (cf. loc. cit., Corollary 3.2.6), which is denoted by Max(M). We say
that M is maximal if it is the greatest element of FS(M[1/u]). The impli-
cation M 7→ Max(M) defines a functor “Max” from the category of torsion
Kisin modules of finite height into the category Max/S∞ of maximal torsion
Kisin modules. Furthermore, the functor TS : Max/S∞ → Reptor(G∞), de-
fined by TS(M) = HomS,ϕ(M,Qp/Zp ⊗Zp W (R)), is fully faithful (cf. loc.
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cit., Corollary 3.3.10). It is not difficult to check that TS(Max(M)) is canon-
ically isomorphic to TS(M) as representations of G∞ for any torsion Kisin
module M.

Lemma 9. Suppose er < p− 1. Then any M ∈ Modr/S∞ is maximal.

Proof. We prove by induction on n such that pnM = 0. If n = 1, then the
assertion follows by Lemma 3.3.4 of [CL1]. Suppose n > 1 and pnM = 0.
Take any N ∈ FS(M[1/u]) such that M ⊂ N and put M = M[1/u] =
N[1/u]. Denote by pr the natural surjection M → M/pM . Putting M′ =
pM ∩M,M′′ = pr(M),N′ = pM ∩N and N′′ = pr(N), we see that M′ and
M′′ are objects of Modr/S∞ , and N′ and N′′ are torsion Kisin modules of

finite height. Furthermore, we see that natural sequences

0→M′ →M
pr→M′′ → 0,

0→ N′ → N
pr→ N′′ → 0,

of ϕ-modules are exact. By the induction hypothesis, we know that M′ and
M′′ are maximal and thus N′ = M′ and N′′ = M′′ (remark that M′[1/u] =
N′[1/u] = pM and M′′[1/u] = N′′[1/u] = M/pM). This implies N = M. �

Proof of Theorem 6. Suppose that er < p− 1 and e(r′ − 1) < p− 1. Let

T ∈ Repr,Ĝ,cristor (GK) (resp. T ′ ∈ Repr
′,Ĝ,cris

tor (GK)) and take M̂ ∈ Modr,Ĝ,cris/S∞

(resp. M̂′ ∈ Modr
′,Ĝ,cris
/S∞

) such that T = T̂ (M̂) (resp. T ′ = T̂ (M̂′)). Note

that M = Max(M) by Lemma 9. By Theorem 3(1), we have the following
commutative diagram:

HomGK
(T, T ′) �

�
// HomG∞(T, T ′)

Hom(M̂′, M̂)

T̂

OO

forgetful
// Hom(M′,M)

Max // Hom(Max(M′),M).

TS

OO

The first bottom horizontal arrow is bijective by Lemma 8 and the second
is also by an easy argument. Since the right vertical arrow is bijective, the
top horizontal arrow must be bijective. �

Remark 10. By Lemma 8, we can prove the latter part of Theorem 1
directly without using the former part of Theorem 1 as below: Suppose that
er < p− 1. Let T ∈ Reprtor(GK) (resp. T ′ ∈ Reprtor(GK)) and take M̂ (resp.

M̂′) be as in Theorem 4, which is an object of Modr,Ĝ,cris/S∞
. By Theorem 3(1),

we have the commutative diagram

HomGK
(T, T ′) �

�
// HomG∞(T, T ′)

Hom(M̂′, M̂)

T̂

OO

forgetful
// Hom(M′,M)

TS

OO
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and then we obtain the desired result by an analogous argument before this
remark.

Remark 11. The condition e(r − 1) < p − 1 in Lemma 8 is essential for

the fullness of the forgetful functor Modr,Ĝ,cris/S∞
→ Modr/S∞ (note that this

functor is always faithful). In fact, we have an example which implies that
this forgetful functor is not full even if e(r − 1) = p − 1. We show below

that the forgetful functor Modr,Ĝ,cris/S∞
→ Modr/S∞ is not full when K = Qp

and r = p.
Suppose K = Qp. Let Eπ be the Tate curve over Qp associated with π.

Lemma 18 in the next section says that the 2-dimensional Fp-representation
Eπ[p] of GQp is torsion crystalline with Hodge–Tate weights in [0, p]. In

particular, by Theorem 4, there exists a (ϕ, Ĝ)-module M̂ ∈ Modp,Ĝ,cris/S∞

such that T̂ (M̂) ' Eπ[p]. On the other hand, for any nonnegative integer `,

define the (ϕ, Ĝ)-module Ŝ1(`) = (S1(`), ϕ, Ĝ) as below: S1(`) = k[[u]] · f`
is the rank-1 free k[[u]]-module equipped with the Frobenius ϕ(f`) = c−`0 ue` ·
f`, and define a Ĝ-action on R̂ ⊗ϕ,S S1(`) by τ(f`) = ĉ` · f`. Here, ĉ =∏∞
n=1 ϕ

n( E(u)
τ(E(u))), which is contained in R̂× (cf. Example 3.2.3 of [Li4]).

Then Example 3.2.3 of loc. cit. says that T̂ (Ŝ1(`)) ' Fp(`). On the other

hand, we define the (ϕ, Ĝ)-module Ŝ1(`)0 = (S1(`)0, ϕ, Ĝ) as below: Put
`0 = max{`′ ∈ Z≥0; e`− (p− 1)`′ ≥ 0}. We denote by S1(`)0 = k[[u]] · g` the

rank-1 free k[[u]]-module equipped with the Frobenius ϕ(f`) = c−`0 ue`−(p−1)`0 ·
g`, and define a Ĝ-action on R̂ ⊗ϕ,S S1(`) by τ(g`) = ε−p`0 ĉ` · g`. (The

generator g` is taken to behave as u−`0f`.) Then we see that Max(S1(`)) =

S1(`)0, and Ŝ1(`)0 (and Ŝ1(`)) are objects of Mod`,Ĝ,cris/S∞
. We also see

T̂ (Ŝ1(`)0) ' T̂ (Ŝ1(`)) ' Fp(`). Now we consider the following commutative
diagram (here we remark that S1(0)⊕S1(1)0 is maximal):

HomGQp
(Fp ⊕ Fp(1), Eπ[p]) �

�
// HomG∞(Fp ⊕ Fp(1), Eπ[p])

Hom(M̂, Ŝ1(0)⊕ Ŝ1(1)0)

T̂

OO

forgetful

��

Hom(M,S1(0)⊕S1(1)0)
Max // Hom(Max(M),S1(0)⊕S1(1)0).

TS

OO

The bottom horizontal arrow and the right vertical arrow are bijective since
S1(0) ⊕ S1(1)0 is maximal. On the other hand, it is well-known that the
inclusion HomGQp

(Fp ⊕ Fp(1), Eπ[p]) ⊂ HomG∞(Fp ⊕ Fp(1), Eπ[p]) is not

equal. Therefore,

Hom(M̂, Ŝ1(0)⊕ Ŝ1(1)0)
forgetful−−−−−→ Hom(M,S1(0)⊕S1(1)0)
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is not surjective. This implies that the forgetful functor

Modp,Ĝ,cris/S∞
→ Modp/S∞

is not full.

Remark 12. Combining Theorem (2.3.5) of [Kis], Theorem 4 and Lemma 8,

we see that the forgetful functor Mod1,Ĝ,cris
/S∞

→ Mod1
/S∞

is an equivalence of

categories.

4. Nonfullness: Examples

In the previous section, we showed that the restriction functor

Reprtor(GK)
res−→ Reptor(G∞)

is fully faithful under the condition that er < p − 1. However, the full
faithfulness may not hold if er ≥ p − 1. In this section, we give some
examples of this phenomenon. It should be noted that all our examples
appearing in this section are given under the condition e(r − 1) ≥ p− 1.

Let µpn be the set of pn-th roots of unity in K, µp∞ :=
⋃
n≥0 µpn and

denote by G1 ⊂ GK the absolute Galois group of K(π1). Remark that,
if the restriction functor C → Reptor(G1) is not fully faithful for a full
subcategory C of Reptor(GK), then the restriction functor C → Reptor(G∞)
is not fully faithful. Furthermore, we also remark that restriction functors
C → Reptor(G∞) and C → Reptor(G1) are always faithful.

Proposition 13. Let K be a finite extension of Qp. Let s be the largest
integer n such that µpn ⊂ K. Suppose that s ≥ 1 and K(µps+1)/K is
ramified. Then the functor from torsion crystalline Zp-representations of
GK with Hodge–Tate weights in [0, p + 1] to torsion Zp-representations of
G1, obtained by restricting the action of GK to G1, is not full.

The lemma below follows from direct calculations.

Lemma 14. Let s ≥ 1 be an integer and ψ : GK → Z×p an unramified
character with the property that s is the largest integer n such that ψ mod pn

is trivial. Define βψ : GK → Zp by the relation ψ = 1+psβψ and put β̄ψ = β
mod p. Denote by δ0ψ : H0(GK ,Qp/Zp(ψ)) → H1(GK ,Fp) the connection

map coming from the exact sequence 0→ Fp → Qp/Zp(ψ)
p→ Qp/Zp(ψ)→ 0

of GK-modules. Then β̄ψ ∈ H1(GK ,Fp) and Im(δ0ψ) = Fp.β̄ψ.

Proof of Proposition 13. Let ε : GK → Z×p be the p-adic cyclotomic char-
acter and ε̄ := ε mod p the mod p cyclotomic character. Let K and s ≥ 1
be as in Proposition 13. Let χ : GK → Z×p be an unramified character
such that χ mod ps is trivial. It suffices to show that, for some choice
of χ, there exist ρ : GK → GL2(Zp) and 2 ≤ r ≤ p + 1 with an ex-
act sequence 0 → χεr → ρ → 1 → 0 of representations of GK such
that ρ mod p is not trivial on GK but is trivial on G1. Here, 1 in the
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above exact sequence means the trivial character. Note that such ρ is al-
ways crystalline (cf. [BK, Example 3.9]). Since µp ⊂ K, we can define

f0 ∈ H1(GK ,Fp) such that f0 factors through Ĝ, f0(τ) = 1 and f0|HK
= 0,

where HK is defined in Definition 2. The kernel of the restriction map
H1(GK ,Fp) → H1(G1,Fp) is a one dimensional Fp-vector space which is
generated by f0. Let H ⊂ H1(GK ,Fp) be an annihilator of f0 under the Tate

paring. For any integer `, denote by δ1χ,` : H
1(GK ,Fp) → H2(GK ,Zp(χε`))

(resp. δ0χ,` : H
0(GK ,Qp/Zp(χ−1ε1−`)) → H1(GK ,Fp)) the connection map

coming from the exact sequence 0 → Zp(χε`)
p→ Zp(χε`) → Fp → 0 (resp.

0 → Fp → Qp/Zp(χ−1ε1−`)
p→ Qp/Zp(χ−1ε1−`) → 0) of GK-modules. By

Tate local duality, the condition that f0 lifts to H1(GK ,Zp(χε`)) is equiv-
alent to the condition that Im(δ0χ,`) ⊂ H. Hence it is enough to choose χ
which satisfies the latter condition for some 2 ≤ ` ≤ p+ 1.

Since K(µps+1)/K is ramified, we know that s is the largest integer n such

that χ−1ε−1 mod pn is trivial. Take βχ−1ε−1 and β̄χ−1ε−1 as in Lemma 14.

For simplicity, we write αχ := βχ−1ε−1 and ᾱχ := β̄χ−1ε−1 . By Lemma 14,

Im(δ0χ,2) is generated by ᾱχ. If ᾱ1 is contained in H, then we finish the proof

(choose χ as the trivial character 1). Suppose ᾱ1 is not contained in H. From
now on, we fix χ as follows; χ is the unramified character GK → Z×p with

χ(FrobK) = (1 + ps)−1, where FrobK is the arithmetic Frobenius of K. Let
u1 : GK → Fp be the unramified homomorphism with u1(FrobK) = 1. Then
we obtain ᾱχ = u1 + ᾱ1. Since K(µps+1)/K is ramified, we see that ᾱ1|IK is
not zero where IK is the inertia subgroup of GK . This implies u1 /∈ Fp.ᾱ1.
Noting that H1(GK ,Fp) = H ⊕ Fp.ᾱ1, we have ᾱχ + āᾱ1 ∈ H for some
ā ∈ Fp. Let 0 ≤ a ≤ p− 1 be the integer such that a mod p is ā. Under the

modulo p2s, we have χ−1ε−(1+a) = χ−1ε−1 · ε−a = (1 + psαχ)(1 + psaα1) =
1 + ps(αχ + aα1). Since ᾱχ + āᾱ1 = u1 + (ā + 1)ᾱ1 6= 0, we see that s is

the largest integer n such that χ−1ε−(1+a) mod pn is trivial. Hence, defining
βχ−1ε−(1+a) as in Lemma 14, we obtain β̄χ−1ε−(1+a) = ᾱχ + āᾱ1. Therefore,

we obtain that Im(δ0χ,2+a) = Fp.β̄χ−1ε−(1+a) ⊂ H and we are done. �

Unfortunately, Proposition 13 can not be applied even when K = Qp. On
the other hand, the following proposition is effective for K = Qp, but we
need a certain restriction on the choice of the uniformizer π. Let L be the
unique degree p extension of K which is contained in K(µp∞).

Proposition 15. Let K be a finite extension of Qp. Suppose that π is con-
tained in NormL/K(L×). (Thus the extension L/K must be totally ramified
in this case.) Then the functor from torsion crystalline Zp-representations
of GK with Hodge–Tate weights in [0, p] to torsion Zp-representations of G1,
obtained by restricting the action of GK to G1, is not full.

Proof. Let s be the largest integer n such that µpn ⊂ K. Then we can write
ε1−p = 1 + pψ with some map ψ : GK → Zp. Putting ψ̄ = ψ mod p : GK →
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Fp, we see that ψ̄ is nontrivial homomorphism with kernel Gal(K/L). Let
δ0 : H0(GK ,Qp/Zp(1 − p)) → H1(GK ,Fp)) be the connection map arising

from the exact sequence 0→ Fp → Qp/Zp(1−p)
p→ Qp/Zp(1−p)→ 0. Under

the isomorphism K×/(K×)p ' H1(GK ,Fp(1)) via Kummer theory, π mod

(K×)p corresponds to the 1-cocycle [π] defined by σ 7→ σ(π1)
π1

for σ ∈ GK ,
which is clearly trivial on G1. By Tate local duality and the fact that the
image of δ0 is generated by ψ̄ (cf. Lemma 14), it suffices to show that ([π], ψ̄)
maps to zero under the Tate pairing H1(GK ,Fp(1)) ×H1(GK ,Fp) → Q/Z
(in fact, this implies that [π] lifts to H1(GK ,Zp(p)) and we obtain the desired

result). Let φL/K : K×/NormL/K(L×)
∼→ Gal(L/K) be the isomorphism of

local class field theory. It is enough to show that ψ̄(φL/K(π)) = 0. Our
assumption of π implies that this equality certainly holds. �

Now we give an example for the nonfullness of our restriction functor
without any assumption on the choice of the uniformizer π.

Proposition 16. The functor from torsion crystalline Zp-representations
of GQp with Hodge–Tate weights in [0, p] to torsion Zp-representations of
G1, obtained by restricting the action of GQp to G1, is not full.

Lemma 17. Let F be a finite extension of Qp or Fp. Then any 2-dimen-
sional irreducible F -representation of GQ whose determinant is the p-adic
cyclotomic character is absolutely irreducible.

Proof. Let ρ : GQ → GL2(F ) be as in the statement and denote by V the
underlying F -vector space. Suppose that, for some finite extension F ′ over
F , there exists a GQ-stable F ′-subvector space W of F ′⊗F V of dimension 1.
If we denote by c ∈ GQ the complex conjugation, then ρ(c)2 is the identity
matrix and det(ρ)(c) = −1. Hence it follows that ρ(c) is conjugate (over

F ) with

(
1 0
0 −1

)
(note that p is odd). By this fact and the fact that ρ(c)

preserves W , we see that W is defined over F . This is a contradiction. �

Lemma 18. Let K be a finite extension of Qp and q ∈ Q×p (K×)p. Let
Eq[p] be the Tate curve over K associated with q. If p - vK(q), then Eq[p] is
torsion crystalline with Hodge–Tate weights in [0, p].

Proof. We have a decomposition q = q′q′′, where q′ ∈ Q×p , vK(q′) > 0

and q′′ ∈ (K×)p. Let Eq′ be the Tate curve over Qp associated with q′.
Then Eq′ [p] is a representation of GQp and we have an isomorphism Eq[p] '
(Eq′ [p])|GK

. Hence we can reduce the case where K = Qp. Let ` > 3
be a prime number different from p such that −` is not a square in F×p
(recall that p is odd). Choose an elliptic curve E(`) over Q` which has good
supersingular reduction. Since ` > 3, we have #E(`)(F`) = 1 + `. Thus
the characteristic polynomial of E(`)[p] for the arithmetic Frobenius of ` is

X2 + ` ∈ Fp[X], which does not have a root in Fp. Hence E(`)[p] is an
irreducible representation of GQ`

where GQ`
is the absolute Galois group of
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Q`. We define S to be the set of Q-isomorphism classes of elliptic curves E
defined over Q which satisfy the following conditions:

(a) E has multiplicative reduction at p and

vp(j(E)) = vp(j(Eq))(= −vp(q))
where j(E) is the j-invariant of E.

(b) E[p] ' Eq[p] as Fp-representations of GQp .
(c) E[p] ' E(`)[p] as Fp-representations of GQ`

.

The set S is infinite since elliptic curves over Q, whose coefficients of their
defining equations are p-adically close enough to that of Eπ and also `-
adically close enough to that of E(`), are contained in S. Now we take any
elliptic curve E over Q whose Q-isomorphism class is in the set S. By the
condition (c), E[p] is irreducible as a representation of GQ. It is moreover
absolutely irreducible by Lemma 17. By the classical Serre’s modularity con-
jecture (proved by Khare and Wintenberger) and the well-known fact that
p-adic representations arising from Hecke eigencusp forms of level prime to
p are crystalline, we know that (E[p]⊗Fp Fp)|GQp

is the reduction of a lattice

in some crystalline Qp-representation. Furthermore, by the condition (a)
and Proposition 5(2) of [Se], we know that (E[p])|GQp

is torsion crystalline

with Hodge–Tate weights in [0, p]. Therefore, so is Eq[p] by (b). �

Proof of Proposition 16. Put T = Eπ[p] and T ′ = Fp ⊕ Fp(1). We know
that T and T ′ are in Repptor(GQp) by Lemma 18. They are not isomorphic as
representations of GQp but isomorphic as representations of G1. This gives
the desired result. �

Here we suggest the following question.

Question 19. What is the necessary and sufficient condition for that the
functor

Reprtor(GK)
res−→ Reptor(G∞), T 7→ T |G∞

is fully faithful? Furthermore, does this condition depend only on e and r?

Remark 20.

(1) We do not know whether the full faithfulness of the functor in Ques-
tion 19 depends on the choice of the system (πn)n≥0 or not (see
Proposition 15). However, it is not difficult to see the following:
Take two systems (πn)n≥0 and (π′n)n≥0 of pn-th roots of a fixed uni-
formizer π of K (thus we have π0 = π′0 = π). Put K∞ =

⋃
n≥0K(πn)

(resp. K ′∞ =
⋃
n≥0K(π′n)) and G∞ = Gal(K/K∞) (resp. G′∞ =

Gal(K/K ′∞)). Then, the restriction functor

Reprtor(GK)
res−→ Reptor(G∞)

is fully faithful if and only if the restriction functor

Reprtor(GK)
res−→ Reptor(G

′
∞)
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is. In fact, we can check this from the fact that G∞ and G′∞ are
conjugate with each other by some element of GK .

(2) A torsion Zp-representation of GK is called finite flat if it is isomor-

phic to G(K) as Zp-representations of GK for some p-power order
finite flat commutative group scheme G over the integer ring of K.
If r = 1, then the category Reprtor(GK) = Rep1

tor(GK) coincides with
the category of finite flat representations of GK (this can be checked
by, for example, Theorem 3.1.1 of [BBM]). Breuil proved in Theorem
3.4.3 of [Br3] that the restriction functor

Rep1
tor(GK)

res−→ Reptor(G∞)

is fully faithful for any K without any restriction on e. In fact,
this assertion is true even if p = 2 (cf. [Kim], [La], [Li4], proved
independently. Explicitly, see Corollary 4.4 of [Kim]).

(3) If e = 1 and r < p − 1, then the fact that the restriction functor

Reprtor(GK)
res−→ Reptor(G∞) is fully faithful has been already known

([Br2], the proof of Théorèm 5.2).
(4) Observing known results as above and results shown in this paper,

it seems that the answer of Question 19 should be “e(r−1) < p−1”.

Appendix A. (ϕ, Ĝ)-modules associated with crystalline
representations

In Proposition 5.9 of [GLS], a necessary condition for representations

arising from free (ϕ, Ĝ)-modules to be crystalline is given. In this appendix,
we show that the converse holds. The result here justifies the subscript

“cris” of the category Modr,Ĝ,cris/S∞
defined in Section 3.

We continue to use the same notation as in Section 2. For any integer
n ≥ 0, we define ideals of W (R) as below:

I [n]W (R) := {a ∈W (R);ϕm(a) ∈ FilnAcris for every m ≥ 0},

I [n
+]W (R) := I [n]W (R)I+W (R)

(see Section 5 of [Fo2] for more precise information). The proof of Lemma

3.2.2 of [Li2] shows that I [n]W (R) is a principal ideal of W (R) generated by
ϕ(t)n. In particular we see that upϕ(t) is contained in

I [1
+]W (R) = ϕ(t)I+W (R).

Recall that T̂ (M̂)⊗ZpQp is a semi-stable Qp-representation of GK (Theorem
3(2)) and τ(x)− x ∈ I+W (R)⊗ϕ,S M for any x ∈M. The main purpose of
this appendix is to prove the following:

Theorem 21. Let M̂ ∈ Modr,Ĝ/S be a (ϕ, Ĝ)-module. The following are

equivalent:

(1) T̂ (M̂)⊗Zp Qp is crystalline.
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(2) For any x ∈M, we have τ(x)− x ∈ I [1+]W (R)⊗ϕ,S M.
(3) For any x ∈M, we have τ(x)− x ∈ upϕ(t)(W (R)⊗ϕ,S M).

Before giving a proof of this theorem, we shall recall some known facts

about (ϕ, Ĝ)-modules. Let M̂ ∈ Modr,Ĝ/S be a (ϕ, Ĝ)-module, and put D =

SK0 ⊗ϕ,SM. Then D has a structure as a Breuil module which corresponds

to the semi-stable representation T̂ (M̂)⊗Zp Qp of GK . (Breuil modules here
are objects of “MFS(ϕ,N)” defined in Section 6.1 of [Br1]. It is useful for
the reader to refer also Section 5 of [Li1].) Denote by ND the monodromy
operator of D and define a GK-action on B+

cris ⊗S D = B+
cris ⊗ϕ,S M by

g(a⊗ x) =
∞∑
i=0

g(a)γi(−log([ε]))⊗ND(x)

for g ∈ GK , a ∈ B+
cris, x ∈ D. By the construction of the quasi-inverse of

the functor T̂ of Theorem 3(2) ([Li2], Section 3.2), this GK-action is stable

on R̂ ⊗ϕ,S M ⊂ B+
cris ⊗ϕ,S M and it factors through Ĝ, which gives the

original Ĝ-action of the (ϕ, Ĝ)-module M̂. For any n ≥ 0 and any x ∈ D,
an induction on n shows that

(τ − 1)n(x) =

∞∑
m=n

 ∑
i1+···in=m,ij≥0

m!

i1! · · · in!

 γm(t)⊗Nm
D (x) ∈ B+

cris ⊗S D

and in particular (τ−1)n
n (x)→ 0 p-adically as n→∞. Hence we can define

log(τ)(x) =
∞∑
n=1

(−1)n−1
(τ − 1)n

n
(x) ∈ B+

cris ⊗S D.

It is not difficult to check the equation log(τ)(x) = t⊗ND(x). Consequently
the monodromy operator ND can be reconstructed from the τ -action of
M̂ by the relation 1

t log(τ)(x) = ND(x). Put D = D/I+SK0D. Then D
has a structure as a filtered (ϕ,N)-module over K0 which corresponds to

T̂ (M̂) ⊗Zp Qp and the monodromy operator ND of D is given by ND mod

I+SK0D ([Br1], Section 6). Hence T̂ (M̂)⊗Zp Qp is crystalline if and only if
ND mod I+SK0D is zero.

Proof of Theorem 21. The implication (1) ⇒ (3) follows from Proposi-
tion 5.9 of [GLS]. It is clear that (3) implies (2). Thus it suffices to show the
implication (2)⇒ (1). Assume the condition (2). We use the same notation
D, ND, D,ND as the above. We often regard M as a ϕ(S)-submodule of D.
Let x ∈ M. For any integer n > 0, it is shown in the proof of Proposition
2.4.1 of [Li3] that:

(A) (τ − 1)n(x) ∈ I [n]W (R)⊗ϕ,S M.
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(B) (τ−1)n
nt (x) is well-defined in Acris⊗ϕ,SM and (τ−1)n

nt (x)→ 0 p-adically
as n→∞. Therefore, we have

1

t
log(τ)(x) ∈ Acris ⊗ϕ,S M ⊂ B+

cris ⊗ϕ,S M.

By (A), we can take yn ∈ W (R) ⊗ϕ,S M such that (τ − 1)n(x) = ϕ(t)nyn.
Then we have the equation

(∗) cND(x) = c · 1

t
log(τ)(x) =

τ − 1

ϕ(t)
(x) +

∞∑
n=2

(−1)n−1
ϕ(t)n−1

n
yn.

Here c = t
ϕ(t) , which is a unit of Acris ([Li2], Example 3.2.3). Note that

τ−1
ϕ(t) (x) is contained in I+W (R)⊗ϕ,S M by the assumption (2).

Now we claim that there exists an integer n0 > 1 such that (n−2)!
n is in Zp

for any n > n0. Admitting this claim, we proceed a proof of Theorem 21.
Consider the decomposition

∞∑
n=2

(−1)n−1
ϕ(t)n−1

n
yn =

ϕ(t)

n0∑
n=2

(−1)n−1
ϕ(t)n−2

n
yn + ϕ(t)

∞∑
n=n0+1

(−1)n−1
ϕ(t)n−2

n
yn.

By the claim, we see that ϕ(t)n−2

n = ϕ(t)n−2

(n−2)! ·
(n−2)!
n = c−(n−2)γn−2(t)

(n−2)!
n is

contained in Acris for any n > n0 and it goes to zero p-adically as n→∞. In
particular, (the first term and) the second term of the above decomposition
are contained in ϕ(t)(B+

cris ⊗ϕ,S M), which is contained in I+B
+
cris ⊗ϕ,S M.

Hence
∑∞

n=2(−1)n−1 ϕ(t)
n−1

n yn is also contained in I+B
+
cris⊗ϕ,SM. Note that

ν(c) = 1 since c = t
ϕ(t) =

∏∞
n=0 ϕ

n(
c−1
0 E(u)
p ) and ν(u) = 0, and furthermore

ν(t) = 0. Therefore, by (∗) modulo I+B
+
cris ⊗ϕ,S M, we obtain the relation

ND(x̄) = 0 in D = D/I+SK0D ⊂ (B+
cris ⊗ϕ,S M)/(I+B

+
cris ⊗ϕ,S M) where x̄

is the residue class of x. Since the image of M in D = D/I+SK0D generates
D as a K0-vector space, we obtain that ND = 0. This implies (1). Hence
it suffices to show the claim. Let vp be the p-adic valuation with vp(p) = 1.
For any positive integer n, write n = psm with p 6 |m. If s = 0, it is clear that
(n−2)!
n ∈ Zp. Suppose s ≥ 1. If m ≥ 2, we have vp((n−2)!) ≥ vp((2ps−2)!) ≥

vp(p
s!) ≥ s = vp(n). If m = 1 and s ≥ 3, we have

vp((n− 2)!) ≥ vp(ps−1!) =
1

2
s(s− 1) ≥ s = vp(n).

This finishes the proof. �
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