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Hopf Galois structures on primitive
purely inseparable extensions

Alan Koch

Abstract. Let L/K be a primitive purely inseparable extension of
fields of characteristic p, [L : K] > p, p odd. It is well known that
L/K is Hopf Galois for some Hopf algebra H, and it is suspected that
L/K is Hopf Galois for numerous choices of H. We construct a family of
K-Hopf algebras H for which L is an H-Galois object. For some choices
of K we will exhibit an infinite number of such H. We provide some
explicit examples of the dual, Hopf Galois, structure on L/K.
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Let K be a field of characteristic p ≥ 3. Let L be a field which is a tensor
product of simple field extensions over K. Then L/K is called modular. In
[1], Chase shows that L is a principal homogeneous space for some infini-
tesimal K-group scheme G. If G = SpecH then H is a finite dimensional,
commutative, cocommutative K-Hopf algebra which is local with local lin-
ear dual (hereafter, “local-local”), and L is an H-Galois object. Interpreted
using duality, this shows that L/K is a Hopf Galois extension for H∗, the
dual Hopf algebra to H, which is also a finite dimensional, commutative,
cocommutative, local-local K-Hopf algebra.

A natural question arises: for a given extension L/K, is it Hopf Galois for
a unique choice of H? It is well-known that the answer to this question is
“no”. Modular extensions are, by their definition, purely inseparable. In the
work cited above, Chase writes “[s]crutiny of the simplest examples shows
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that a modular extension can be a PHS for many different truncated [K]-
group schemes G.” This comment suggests that L is an H-Galois object for
many choices of H.

The question is then modified: for a given extension L/K, can we de-
scribe all of the Hopf algebras which make it Hopf Galois? The separable
analogue, where L/K is a separable extension, is definitively answered in
[4], which describes all such H using group theory. The Hopf algebras
in the separable case correspond to a certain class of regular subgroups
of the group of permutations Perm(Gal (E/K) /Gal (L/K)) ∼= Sn, where
n = [L : K] and E is a Galois closure of L/K, which are normalized by
the subgroup of Perm(Gal (E/K) /Gal (L/K)) obtained by the left trans-
lations by Gal (E/K). This elegant result shows that the classification of
Hopf Galois structures depends not on the fields but on the group. Clearly
the number of such Hopf algebras is finite.

In this work, we focus primarily on the simplest class of modular ex-
tensions, namely the primitive extensions. We will construct a family of
monogenic K-Hopf algebras (“monogenic” means generated as a K-algebra
by a single element) of dimension equal to [L : K] = pn, n ≥ 2, and show that
each makes L into a Hopf Galois object. These Hopf algebras fall into n− 1

classes, and the rth class is parameterized by elements of K×/(Kpr+1−1)×.
Not only is L an H-Galois object for each of our constructed Hopf algebras,
the realization of L as an H-Galois object can be done in multiple ways:
we will explicitly describe pn−1 (p− 1) such coactions. Unlike the separable
case, the number of Hopf Galois extensions evidently depends on the fields;
in particular, our work will produce examples where the extension L/K is
Hopf Galois for an infinite number of Hopf algebras.

We will also briefly discuss general modular extensions. The work pre-
sented in the simple case extends to modular extensions quite easily, however
we will show that there are modular extensions which are H-Galois objects
for Hopf algebras which cannot be constructed in the manner presented here.

It should be noted that these constructions can also be done geometri-
cally, using the language of group schemes and principal homogeneous spaces
(or “torsors”). Indeed, the Hopf algebras we construct represent certain
subgroups of group schemes of finite length Witt vectors. We have opted
to present our results using a purely algebraic approach for three reasons.
First, the language in [4] is one of Hopf algebras and Hopf-Galois extensions,
and as we are investigating an inseparable analogue to the results in that
paper it seems natural to try to use the same language as much as possible.
Second, we feel the question is stated more naturally using Hopf algebras
— “given a field extension L/K, for which Hopf algebras is it a Hopf Galois
extension” makes the point more directly than “for SpecK → SpecL, L a
field, for which group schemes G does SpecL appear as a torsor?” does.
Third, in [8] we use these Hopf algebras to describe the ring of integers in
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the case where L and K are local fields; an explicit description of the Hopf
algebra action is necessary in that work.

Throughout, p is a fixed odd prime and K is an imperfect field containing
a perfect field k of characteristic p. (For example, K could be the function
field Fp (t) or the field of Laurent series Fp ((t)).) All unadorned tensors are

over K. We denote by Kp−∞ the perfect closure of K in some algebraic
closure. All rings (and algebras) are assumed to be commutative. All Hopf
algebras are assumed to be finite, commutative, cocommutative, of p-power
rank, and local-local.

Acknowledgements. The author would like to thank Nigel Byott and
Lindsay Childs for their input during the creation of this paper, as well
as the referee for his detailed comments on the original version of this man-
uscript.

1. Background

We briefly describe the notion of Hopf Galois extensions and Hopf Galois
objects. More details can be found, e.g., in [2]. Let H be a K-Hopf algebra,
comultiplication ∆ and counit ε. We say that L is an H-module algebra if
L is an H-module such that for all a, b ∈ L and f ∈ K we have

h (ab) = mult ∆ (h) (a⊗ b)
h (f) = ε (h) f.

If furthermore theK-linear map L⊗H → EndK (L) , (a⊗ h) 7→ (b 7→ ah (b))
is an isomorphism, then we say L/K is an H-Galois extension, or sim-
ply Hopf Galois if the Hopf algebra is understood. This can be seen as
a generalization of the usual Galois theory: if E/F is a Galois extension,
Γ = Gal (E/F ) then E/F is Hopf Galois via the group algebra F [Γ].

Loosely, the notion of a Hopf Galois object is dual to that of a Hopf Galois
extension. Given a K-Hopf algebra H, suppose there is a K-algebra map
α : L→ L⊗H such that

(α⊗ 1)α = (1⊗∆)α : L→ L⊗H ⊗H
mult (1⊗ ε)α = idL.

Then L is said to be an H-comodule algebra. If furthermore the map γ :
L ⊗ L → L ⊗H given by γ (a⊗ b) = (a⊗ 1)α (b) is an isomorphism, then
L is an H-Galois object (or H-principal homogeneous space). It can be
shown that L/K is H-Galois if and only if L is an H∗-Galois object, where
H∗ = HomK (H,K) is the linear dual to H.

In the sections that follow, we construct Hopf algebras H for which L is
an H-Galois object. Dualizing will put H∗-Galois structures on L/K.

The construction of both the comultiplication maps ∆ and coaction maps
α that follow rely heavily on Witt vector addition. Much of the background
on Witt vectors can be found in [5]. For the convenience of the reader we
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will briefly recall the construction and illustrate some its properties which
will be necessary for the rest of the paper.

For each positive integer d, define

wd (Z0, . . . , Zd) = Zp
d

0 + pZp
d−1

1 + · · ·+ pdZd ∈ Z [Z0, . . . , Zd] .

The polynomials wd are called Witt polynomials. Define

Sd := Sd ((X0, . . . , Xd) ; (Y0, . . . , Yd))

recursively by

wd (S0, . . . , Sd) = wd (X0, . . . , Xd) + wd (Y0, . . . , Yd) ,

i.e.,

Sd =
1

pd

(
wd (X0, . . . , Xd) + wd (Y0, . . . , Yd)− Sp

d

0 − S
pd−1

1 − · · · − Spd−1
)
.

Clearly Sd ∈ Q [X0, . . . , Xd, Y0, . . . , Yd]; a less obvious, but fundamental,
result is that we in fact have Sd ∈ Z [X0, . . . , Xd, Y0, . . . , Yd]. To give two
explicit examples of these polynomials,

S0 (X0;Y0) = X0 + Y0

S1 ((X0, X1) ; (Y0, Y1)) = X1 + Y1 −
p−1∑
i=1

(p− 1)!

i! (p− i)!
Xi

0Y
p−i
0 .

Let W (Z) = {(a0, a1, . . . ) : ai ∈ Z}, and define a binary operation on W (Z)
by

(a0, a1, . . . ) + (b0, b1, . . . ) = (S0 (a0; b0) , S1 ((a0, a1) ; (b0, b1)) , . . . ) .

Then W (Z) is a group: the identity is (0, 0, . . . ) and the additive inverse is
obtained by negating the components. This is typically proved by observing
that the map

W (Z)→
∞∏
i=0

Z

(a0, a1, . . . )→ (w0 (a0) , w1 (a0, a1) , . . . )

is a bijection from which W (Z) inherits its structure from the product on
the right. As W (Z) is a group, the component operation Sd is associative
for all d.

By replacing Z with a Z-algebra R, we obtain the group W (R). The
polynomials Sd can then be viewed as elements of R [X0, . . . , Xd, Y0, . . . , Yd].
In fact, for any commutative ring R we may view W as an R-group scheme.

We conclude this section by recording two well-known observations which
will be needed later. The first equality holds because Sd is a polyno-
mial expression in x0, . . . , xd, y0, . . . , yd. The second follows from that fact
that Sd ((X0, . . . Xd) ; (Y0, . . . Yd)) is a homogeneous polynomial of degree pd,
where Xi and Yi each have weight pi, 0 ≤ i ≤ d.
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Lemma 1.1. Let A and B be K-algebras. Let f : A → B be a K-algebra
map. Then, for (x0, x1 . . . ) , (y0, y1, . . . ) ∈W (A), c ∈ K we have, for all d,

f(Sd((x0, . . . , xd);(y0, . . . , yd)))

= Sd ((f (x0) , . . . , f (xd)) ; (f (y0) , . . . , f (yd))) ∈ B
cSd((x0, . . . , xd);(y0, . . . , yd))

= Sd

((
cp
−d
x0, . . . , cxd

)
;
(
cp
−d
y0, . . . , cyd

))
∈ A

Remark 1.2. Since K is not perfect, it is possible that cp
−i
/∈ K. However,

we may view these as elements of Kp−∞ .

2. Monogenic Hopf algebras

The objective of this section is to introduce a new family of monogenic
K-Hopf algebras. We will accomplish this by generalizing a classification of
monogenic k-Hopf algebras (recall k is perfect). We do not claim that our
adaptation to K yields all monogenic Hopf algebras.

First, we briefly describe the collection of monogenic Hopf algebras over
k. This classification appears in Dieudonné module form in [6] and explicit
Hopf algebra descriptions are given in [7].

Fix a positive integer n. By [9, 14.4], all monogenic Hopf algebras of rank
pn share the same k-algebra structure, namely H = k [t] /

(
tp

n)
, so a study

of Hopf algebra structures reduces to studying the various comultiplications
one can put on this k-algebra. The simplest comultiplication can be obtained
by letting ∆ (t) = t ⊗k 1 + 1 ⊗k t — that is, t is a primitive element. The
others are best described using Witt vector addition polynomials.

Let 0 < r < n. For η ∈ k×, define a sequence {ηi : i ∈ Z+} recursively by

η1 = η

ηi = ηp
1−i
ηp

r

i−1.

Notice that the ηi implicitly depend on r. Explicitly, we have ηi = ηei ,
where

(1) ei = p−(i−1) + pr−(i−2) + p2r−(i−3) + · · ·+ p(i−1)r =

i−1∑
j=0

pjr−(i−j−1).

Let H = k [t] /
(
tp

n)
, and let d = dn/re − 1. Define ∆ : H → H ⊗k H by

∆ (t) = Sd

((
ηdt

pdr ⊗k 1, . . . , η1t
pr ⊗k 1, t⊗k 1

)
;(

1⊗k ηdtp
dr
, . . . , 1⊗k η1tp

r
, 1⊗k t

))
.

This gives H the structure of a k-Hopf algebra with counit ε (t) = 0 and
antipode λ (t) = −t. We will denote this Hopf algebra by Hn,r,η. To see
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that the Hopf algebra axioms are satisfied, first notice that coassociativity
follows from the associativity of Sd. Also we use Lemma 1.1 to obtain

mult (1⊗ ε) ∆ (t) = Sd

((
ηdt

pdr , . . . , t
)

;
(
ηdε (t)p

dr

, . . . , ε (t)
))

(2)

= Sd

((
ηdt

pdr , . . . , t
)

; (0, . . . 0)
)

= 0,

mult (1⊗ λ) ∆ (t) = Sd

((
ηdt

pdr , . . . , t
)

;
(
ηdλ (t)p

dr

, . . . , λ (t)
))

= Sd

((
ηdt

pdr , . . . , t
)

;
(
−ηdtp

dr
, . . . ,−t

))
= 0

= ιε (t) ,

where ι : K → H is the K-algebra structure map.
It is shown in [6] that all of the monogenic local-local Hopf algebras of

dimension pn are of the form Hn,r,η. Furthermore, Hn,r′,η′
∼= Hn,r,η if and

only if r = r′ and η′/η = βp
r−p−1

for some β ∈ k. In the case where k is
finite, this allows us to count the number of monogenic Hopf algebras [6,
Cor. 3.2]. On the other hand, if k is algebraically closed, there are exactly
n monogenic Hopf algebras of rank pn.

Now, we adapt the classification in the perfect field case to the case where
K contains k and is imperfect. Certainly, Hn,r,η⊗kK is a K-Hopf algebra of
dimension pn. However, a careful reading of the results above reveals that
η can be replaced by a more general element of K.

Pick 0 < r < n . Let g ∈
(
Kp−∞

)×
and define

g1 = g, gi = gp
1−i
gp

r

i−1, i > 1.

Note that gi /∈ K in general, even if g ∈ K. However, it can easily be shown

that if gp ∈ K then gp
i

i ∈ K.
Our strategy will be to construct a comultiplication ∆ onH = K [t] /

(
tp

n)
such that

∆ (t)

= Sd

((
gdt

pdr ⊗ 1, . . . , g1t
pr ⊗ 1, t⊗ 1

)
;
(

1⊗ gdtp
dr
, . . . , 1⊗ g1tp

r
, 1⊗ t

))
for g ∈ K1/p (although the final form will differ slightly from this). In order
to do so, we need to prove that the expression above is an element of H⊗H.
The following result accomplishes this.

Lemma 2.1. Let g ∈ K1/p, and let {gi} be defined as above. Then for all
d ≥ 0,

Sd

((
gdu

pdr , . . . , g1u
pr , u

)
;
(
gdv

pdr , . . . , g1v
pr , v

))
∈ K [u, v] .
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Proof. In a manner similar to Equation (1) we have

gi = gei , ei = p−i+1
i∑

j=1

p(j−1)(r+1)

for all 1 ≤ i ≤ d. Thus,

gi = gp
−i+1

g
∑i

j=1 p
(j−1)(r+1)

,

and the second factor, which we will denote by g′i, is in K. Then

gi = (gp)p
−i

g′i,

and by Lemma 1.1 we can factor gp out of

Sd

((
gdu

pdr , . . . , g1u
pr , u

)
;
(
gdv

pdr , . . . , g1v
pr , v

))
and obtain

Sd

((
gdu

pdr , . . . , g1u
pr , u

)
;
(
gdv

pdr , . . . , g1v
pr , v

))
= Sd

((
gdu

pdr , . . . , g1u
pr , gpg−pu

)
;
(
gdv

pdr , . . . , g1v
pr , gpg−pv

))
= gpSd

((
g′du

pdr , . . . , g′1u
pr , g−pu

)
;
(
g′dv

pdr , . . . , g′1v
pr , g−pv

))
Since gp, g−p, g′i ∈ K for all i,

Sd

((
gdu

pdr , . . . , g1u
pr , u

)
;
(
gdv

pdr , . . . , g1v
pr , v

))
∈ K [u, v] . �

By picking g ∈ K1/p we get a well-defined algebra map on H using the
lemma above with u = t⊗ 1, v = 1⊗ t. However, we obtain a nicer param-
eterization of these maps by letting f = gp ∈ K×. Let

f1 = f1/p, fi = fp
1−i

1 fp
r

i−1 = fp
−i
fp

r

i−1.

Proposition 2.2. Let 0 < r < n be integers. Let d = dn/re − 1. Let
f ∈ K×. Let f1, f2, . . . , fd be the sequence given recursively by

f1 = f1/p, fi = fp
−i
fp

r

i−1, i ≥ 2

as above. Let Hn,r,f be the K-algebra K [t] /
(
tp

n)
, and let

∆ (t) = Sd

((
fdt

pdr ⊗ 1, . . . , f1t
pr ⊗ 1, t⊗ 1

)
;(

1⊗ fdtp
dr
, . . . , 1⊗ f1tp

r
, 1⊗ t

))
ε (t) = 0

λ (t) = −t

Then these maps endow Hn,r,f with the structure of a K-Hopf algebra.
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Proof. Since the comultiplication is accomplished using Witt vector sums,
the computations here are the same as in Equation (2). Alternatively,

we could use the facts that Hn,r,f ⊗ Kp−∞ is a Hopf algebra by [6], and
∆ (t) , ε (t) , and λ (t) are defined over K. �

3. Isomorphism questions

The Hopf algebras {Hn,r,f : 0 < r < n, f ∈ K×} constructed in Propo-
sition 2.2 are not all unique. While n and r are isomorphism invariants,
different choices of f can lead to isomorphic Hopf algebras. Here, we will
give a sufficient condition on f, f ′ for Hn,r,f

∼= Hn,r,f ′ . Additionally, if r
is sufficiently large (with respect to n) then we will see this condition is
necessary as well.

Suppose Hn,r,f = K [t] /
(
tp

n)
. Pick g ∈ K×, and let u = gt. Then, as a

K-algebra, Hn,r,f = K [u] /
(
up

n)
; with the help of Lemma 1.1 we have

∆ (u) = g∆ (t)

= gSd

((
fdt

pdr ⊗ 1, . . . , f1t
pr ⊗ 1, t⊗ 1

)
;(

1⊗ fdtp
dr
, . . . , 1⊗ f1tp

r
, 1⊗ t

))
= Sd

((
gp
−d
fdt

pdr ⊗ 1, . . . , gp
−1
f1t

pr ⊗ 1, gt⊗ 1
)

;(
1⊗ gp−d

fdt
pdr , . . . , 1⊗ gp−1

f1t
pr , 1⊗ gt

))
= Sd

((
gp
−d−pdrfd (gt)p

dr

⊗ 1, . . . , gp
−1−prf1 (gt)p

r

⊗ 1, gt⊗ 1
)

;(
1⊗ gp−d−pdrfd (gt)p

dr

, . . . , gp
−1−prf1 (gt)p

r

tp
r
, 1⊗ gt

))
= Sd

((
gdfdu

pdr ⊗ 1, . . . , g1f1u
pr ⊗ 1, u⊗ 1

)
;(

1⊗ gdfdup
dr
, . . . , g1f1u

pr , 1⊗ u
))
,

where gi = gp
−i−pir . Now

gp
1−i

1 gp
r

i−1 =
(
gp
−1−pr

)p1−i (
gp
−(i−1)−p(i−1)r

)pr
= gp

−i−pr+1−i
gp

r+1−i−pir−r+r

= gp
−i−pir

= gi,

and

gp1 =
(
gp
−1−pr

)p
= g1−p

r+1
.

Thus, replacing f with fg1−p
r+1

results in the same comultiplication. From
this it follows that Hn,r,f

∼= H
n,r,(g1−pr+1)f . More generally,
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Proposition 3.1. Let f, f ′ ∈ K×. Then Hn,r,f
∼= Hn,r,f ′ if and only if

f/f ′ ∈ (K×)
pr+1−1

.

Proof. The statement that Hn,r,f
∼= Hn,r,f ′ whenever f/f ′ ∈ (K×)

pr+1−1

has been proven already. Conversely, suppose Hn,r,f
∼= Hn,r,f ′ . Then

Hn,r,f ⊗Kp−∞ ∼= Hn,r,f ′ ⊗Kp−∞ ,

of course, and, by [6, Sec. 3],

f/f ′ ∈
((

Kp−∞
)×)pr+1−1

.

Thus, the equation

xp
r+1 − f

f ′
x = 0

has a solution in Kp−∞ . If g is such a solution, then K (g) is a separable

extension of K contained in Kp−∞ . Since Kp−∞/K is purely inseparable we

have g ∈ K, hence f/f ′ ∈ (K×)
pr+1−1

. �

Note the parallel with the result in [6] if we replace β with βp
−1

— of
course, if f and f ′ are elements of k (a perfect field contained in K) these
Hopf algebras are defined over k and we expect the isomorphism condition
above to hold.

4. Hopf Galois objects

Let L = K (x) , xp
n

= b ∈ K. If H is the monogenic Hopf algebra
with primitive generator, then L is an H-Galois object: this is the Hopf
algebra used in the construction of [1], where Chase shows that all modular
extensions of K are Hopf Galois objects. The purpose of this section is to
show that each of the rank pn Hopf algebras constructed above can be used
to make L a Hopf-Galois object.

Let H = Hn,r,f for some choice of 0 < r < n and f ∈ K×. Define
α (x) ∈ L⊗H by

α (x) =

Sd

((
fdx

pdr ⊗ 1, . . . , f1x
pr ⊗ 1, x⊗ 1

)
;
(

1⊗ fdtp
dr
, . . . , 1⊗ f1tp

r
, 1⊗ t

))
.

We claim that this can be extended to a K-algebra map α : L→ L⊗H; to
establish this it suffices to show α (b) = (α (x))p

n

. Since exponentiation-by-p
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is a K-algebra map,

α (b) = α
(
xp

n)
= Sd

((
fp

n

d

(
xp

dr
)pn
⊗ 1, . . . , xp

n ⊗ 1

)
;(

1⊗ fp
n

d

(
tp

dr
)pn

, . . . , 1⊗ f1
(
tp

r)pn
, 1⊗ tpn

))
= Sd

((
fp

n

d

(
xp

dr
)pn
⊗ 1, . . . , xp

n ⊗ 1

)
; (0, . . . , 0)

)
= xp

n ⊗ 1 = b⊗ 1,

and so α is a well-defined K-algebra map.

Lemma 4.1. The map α above gives L the structure of a right H-comodule.

Proof. We need to show

(1⊗∆)α (x) = (α⊗ 1)α (x) ,

µ (1⊗ ε)α (x) = x.

The first follows immediately from the associativity of Sd. The second com-
putation is similar to the one in Equation (2). �

Proposition 4.2. Let γ : L⊗ L→ L⊗H be given by

γ (a⊗ b) = (a⊗ 1)α (b) .

Then γ is a K-module isomorphism, hence L is an H-Galois object.

Proof. First, notice that since α is a K-algebra map we have that γ pre-
serves multiplication, i.e., γ ((a⊗ b) (c⊗ d)) = γ (a⊗ b) γ (c⊗ d). Also, γ is
an L-module map if we view L⊗L as an L-module via the first factor since
γ (a⊗ b) = (a⊗ 1) γ (b). Since L ⊗ L and L ⊗H are both K-vector spaces
of dimension p2n, it suffices to show that γ is onto. Now

γ (−x⊗ 1 + 1⊗ x) = − (x⊗ 1)α (1) + (1⊗ 1)α (x)

= −x⊗ 1 + Sd

((
fdx

pdr ⊗ 1, . . . , x⊗ 1
)

;(
1⊗ fdtp

dr
, . . . , 1⊗ t

))
= −x⊗ 1 + x⊗ 1 + 1⊗ t+ t2ξ

= 1⊗ t+ t2ξ1

for some ξ1 ∈ L⊗H. As γ is multiplicative we see that

γ
(

(−x⊗ 1 + 1⊗ x)i
)

= 1⊗ ti + ti+1ξi, ξi ∈ L⊗H

for 1 ≤ i < pn. Thus
{
γ
(

(−x⊗ 1 + 1⊗ x)i
)}

is an L-linearly independent

set, we have dimL Im γ ≥ pn. As [L : K] = pn we have dimK Im γ ≥ p2n so
Im γ = L⊗H. �
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One will notice many parallels between this theory and the Kummer the-
ory of formal groups construction in, e.g., [2, Sec. 39]. This is to be expected
since a smooth resolution for SpecHn,r,f can be easily constructed by adapt-
ing the resolution in [7, Sec. 4].

Of course, there are many different descriptions for the same field exten-
sion L. Indeed, pick g ∈ K× and let y = gx. Then yp

n
= gp

n
b ∈ K and so

L = K (y). With the coaction above we have

α (y) = α (gx)

= gSd

((
fdx

pdr ⊗ 1, . . . , x⊗ 1
)

;
(

1⊗ fdtp
dr
, . . . , 1⊗ t

))
= Sd

((
gp
−d
fdx

pdr ⊗ 1, . . . , gx⊗ 1
)

;
(

1⊗ gp−d
fdt

pdr , . . . , 1⊗ gt
))

= Sd

((
gdfdx

pdr ⊗ 1, . . . , g1f1x
pr ⊗ 1, gx⊗ 1

)
;(

1⊗ gdfdtp
dr
, . . . , g1f1u

pr tp
r
, 1⊗ gt

))
where gi = gp

−i−pri as in the previous section. Thus, since gp1 = g1−p
r+1
,

changing the generator of L in this manner results in the same coaction:
t ∈ Hn,r,f acts on x in the same way as gt ∈ H

n,r,fg1−pr+1 acts on y, and

these two Hopf algebras are isomorphic.
On the other hand, let xi = xi, 1 ≤ i ≤ n − 1, gcd (p, i) − 1. Then

L = K (x) = K (xi) , and defining

αi(xi) =

Sd

((
fdx

pdr

i ⊗ 1, . . . , f1x
pr

i ⊗ 1, xi ⊗ 1
)

;
(

1⊗ fdtp
dr
, . . . , 1⊗ f1tp

r
, 1⊗ t

))
allows for a coaction of Hn,r,f on L; as i varies each resulting coaction is
different. This provides φ (pn) = pn−1 (p− 1) different ways to view L as an
Hn,r,f -Galois object. There are certainly many other coactions, for example

those found by replacing x with wx for w ∈ K [x]× ; these will not all be
distinct coactions, however.

Remark 4.3. Proposition 3.1 can be used to provide examples of finite
field extensions L/K with an infinite number of K-Hopf algebras which L
is an H-Galois object. For example, let K = k (T1, T2, . . . ) and let L be
any primitive purely inseparable extension of degree p2 (or greater). Then
Hn,r,Ti 6∼= Hn,r,Tj unless i = j.

Both Chase’s construction and the Hopf algebras presented here can be
considered under one general theory. Indeed, were we to allow r = n and
f = 0, then d = 0 and we recover Chase’s Hopf algebra. We have chosen
to treat them as separate cases to simplify the question of isomorphic Hopf
algebras — clearly, the Hopf algebra “Hn,n,f” does not depend at all on f .
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5. Explicit computations: the case r = n − 1

We shall now explicitly describe the action of H := H∗n,r,f on L in the
case where r = n− 1. In this case, d = 1, and hence the comultiplication on
Hn,r,f is

∆ (t) = t⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`! (p− `)!
tp

r` ⊗ tpr(p−`).

We view this as a restriction on r, not on n — that is, L/K can be any
extension, but we only consider the Hopf algebras with r = n− 1. This will
provide a family of explicit Hopf Galois actions on any purely inseparable
extension L/K of degree pn, n ≥ 2.

As a K-module, H has a basis {z0 = 1, z1, . . . , zpn−1} with zi : H → K
given by

zj
(
ti
)

= δi,j ,

where δi,j is the Kronecker delta. The algebra structure on H is induced
from the coalgebra structure on Hn,r,f ; explicitly,

(3) zj1zj2 (h) = mult (zj1 ⊗ zj2) ∆ (h) .

We claim that
{
zp, zp2 , zp3 , . . . , zpr

}
generate H as a K-algebra.

We start with a result which will facilitate the study of the algebra struc-
ture of H as well as the action of H on L.

Lemma 5.1. Let

Sf (u, v) = u+ v + f

p−1∑
`=1

1

`! (p− `)!
up

r`vp
r(p−`).

Then, for every positive integer i, Sf (u, v)i is a K-linear combination of
elements of the form

ui1+p
r`′vi2+p

r`′′ ,

where i1 + i2 + i3 = i; `′, `′′ ≥ 0; and `′ + `′′ = pi3.

Proof. We have

Sf (u, v)i =

(
u+ v + f

p−1∑
`=1

1

`! (p− `)!
up

r`vp
r(p−`)

)i

=
∑

i1+i2+i3=i

(
i

i1, i2, i3

)(
ui1vi2

)(
f

p−1∑
`=1

1

`! (p− `)!
up

r`vp
r(p−`)

)i3
.

The last factor in each summand can be expanded as

f i3
∑

i3,1+···+i3,p−1=i3

((
i3

i3,1, . . . , i3,p−1

)(p−1∏
j=1

1

(`! (p− `)!)i3,j

)
u

i1+pr`′
v
i2+pr`′′

)
.

The result follows. �
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Next, we consider powers of the zps ’s.

Lemma 5.2. For 0 ≤ s ≤ r, 1 ≤ m ≤ p− 1, zmps = m!zmps.

Proof. Clearly, this holds for m = 1. Suppose zm−1ps = (m− 1)!z(m−1)ps .
By Equation (3) we have

zmps
(
ti
)

= mult
(
zm−1ps ⊗ zps

)
∆
(
ti
)

= mult
(
zm−1ps ⊗ zps

)
Sf (t⊗ 1, 1⊗ t)i

= mult
(
(m− 1)!z(m−1)ps ⊗ zps

)
(
t⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`! (p− `)!
tp

r` ⊗ tpr(p−`)
)i
.

By Lemma 5.1, the tensors are of the form

ti1+p
r`′ ⊗ ti2+pr`′′ ,

with `′, `′′ as before. Recall that `′ + `′′ = pi3. Since zps
(
t`
)

= δps,` and

z(m−1)ps
(
t`
)

= δ(m−1)ps,i, the expression(
z(m−1)ps ⊗ zps

) (
ti1+p

r`′ ⊗ ti2+pr`′′
)

is nontrivial only if

(m− 1) ps = i1 + pr`′

ps = i2 + pr`′′.

If we add the two equations together we get

mps = i1 + i2 + pr+1i3.

From this it is clear that i3 = 0, which means `′ = `′′ = 0 as well. Thus
i2 = ps and i1 = (m− 1) ps, hence i = mps and with the help of Lucas’
Theorem [3] we get

zmps (tmp) = (m− 1)!

(
mps

(m− 1) ps, ps, 0

)
= (m− 1)!

(
mps

ps

)
= (m− 1)!m

= m!

Therefore, zmps = m!zmps . �

Lemma 5.3. For 0 ≤ s ≤ r − 1, zpps = 0.
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Proof. We have

zpps
(
ti
)

= (p− 1)! mult
(
z(p−1)ps ⊗ zps

)( ∑
i1+i2+i3=i

(
i

i1, i2, i3

)(
ti1 ⊗ ti2

)

·

(
f

p−1∑
`=1

1

`! (p− `)!
tp

r` ⊗ tpr(p−`)
)i3)

.

If
(
z(p−1)p ⊗ zp

) (
ti1+p

r`′ ⊗ ti2+pr`′′
)

is nontrivial then

(p− 1) ps = i1 + pr`′

ps = i2 + pr`′′.

Again, i3 = 0, so i2 = ps and i1 = (p− 1) ps, hence i = ps+1. But then

zpps
(
tp

s+1
)

= (p− 1)!

(
ps+1

(p− 1) ps, ps, 0

)
= −

(
ps+1

ps

)
= 0.

So zpps = 0. �

Remark 5.4. While not part of the generating set we are constructing,
notice that the above results show zm1 = m!zm and zp1 = 0.

The behavior is slightly different for pr.

Lemma 5.5. We have zppr = fz1 and zp
2

pr = 0.

Proof. If the expression
(
z(p−1)pr ⊗ zpr

) (
ti1+p

r`′ ⊗ ti2+pr`′′
)

in the expan-

sion of zppr
(
ti
)
is nontrivial then

(p− 1) pr = i1 + pr`′

pr = i2 + pr`′′.

If i3 = 0 then i2 = pr, i1 = (p− 1) pr and i = pr+1; however, i < pr+1 = pn

so this cannot occur. Thus i3 = 1, `
′

= p − 1, `′′ = 1 (both of these can
occur only by setting i3,j = δj,p−1), i2 = 0, and i1 = 0. Hence, i = 1 and

zppr (t) = (p− 1)!

(
1

0, 0, 1

)
f

1

(p− 1)! (p− (p− 1))!
= f.

Therefore, zppr = fz1. That zp
2

pr = 0 follows immediately. �

From the results above, we can deduce that {zps : 1 ≤ s ≤ r} generate H
as a K-algebra.
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The coalgebra structure on H is induced from the multiplication on Hn,r,f

and is much more straightforward. For all h ∈ H, when we apply the
comultiplication ∆ we get a K-linear map Hn,r,f ⊗Hn,r,f → K given by

∆ (h) (a⊗ b) = h (ab) .

Thus,

∆ (zj)
(
ti1 ⊗ ti2

)
= zj

(
ti1+i2

)
= δj,i1+i2

and so

∆ (zj) =

j∑
i=0

zj−i ⊗ zi.

Note that this is true for all j, not just the powers of p.
We summarize.

Proposition 5.6. The Hopf algebra H above is

H = K
[
zp, zp2 , . . . , zpr

]
/
(
zpp , z

p
p2
, . . . , zp

pr−1 , z
p2

pr

)
∆ (zps) =

ps∑
i=0

zps−i ⊗ zi.

Of course, it is possible to write ∆ (zps) solely in terms of zp, . . . , zpr , but
that is not needed for our purposes.

We will now describe the Hopf Galois action of H on L. The K-algebra
map α : L→ L⊗Hn,r,f is given by

α (x) = x⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`! (p− `)!
xp

r` ⊗ tpr(p−`).

This gives L the structure of an Hn,r,f -comodule — in fact it makes L an
Hn,r,f -Galois object. Here, we compute the induced action of H on L which
makes L/K an H-Galois extension.

Generally, if A is a K-Hopf algebra such that L is an A-Galois object,
then A∗ acts on L by

(4) h (y) = mult (1⊗ h)α (y) , h ∈ A∗, y ∈ L.

Here, it suffices to compute zps
(
xi
)

for 1 ≤ s ≤ r, 1 ≤ i ≤ pn − 1, however

it will also be useful to compute zj
(
xi
)

for some choices of j which are not
powers of p. Notice that we use zj (−) in two different contexts: one to
describe zj as a map Hn,r,f → K, the other to describe how zj acts on L.

The first result handles the case i = 1.

Lemma 5.7. We have

z0 (x) = x, z1 (x) = 1, zpr (x) = −fxpr(p−1).

For 1 ≤ j ≤ pr − 1, zj (x) = 0.
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Proof. Applying Equation 4 to h = zj , y = x gives

zj (x) = xzj (1) + zj (t) + f

p−1∑
`=1

1

`! (p− `)!
xp

r`zj

(
tp

r(p−`)
)
,

from which the result follows. �

The second result handles the cases where i is a nontrivial power of p.

Lemma 5.8. For 1 ≤ m ≤ r we have

z0
(
xp

m)
= xp

m
, zpm

(
xp

m)
= 1.

For all other choices of j, zj
(
xp

m)
= 0.

Proof. The computations are facilitated by observing that α
(
xp

m)
= xp

m⊗
1 + 1⊗ tpm . Indeed,

α
(
xp

m)
= α (x)p

m

=

(
x⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`! (p− `)!
xp

r` ⊗ tpr(p−`)
)pm

= xp
m ⊗ 1 + 1⊗ tpm + f

p−1∑
`=1

1

`! (p− `)!
xp

r+m` ⊗ tpr+m(p−`)

= xp
m ⊗ 1 + 1⊗ tpm

since r +m ≥ r + 1 = n. Now for 0 ≤ j ≤ pn − 1 we have

zj
(
xp

m)
= xp

m
zj (1) + zj

(
tp

m)
,

from which the result follows. �

Next, we have

Theorem 5.9. Let H = H∗n,r,f be as in Proposition 5.6, that is,

H = K
[
zp, zp2 , . . . , zpr

]
/
(
zpp , z

p
p2
, . . . , zp

pr−1 , z
p2

pr

)
∆ (zps) =

ps∑
i=0

zps−i ⊗ zi.

For 0 ≤ i ≤ pn − 1, write

i =

r∑
`=0

i(`)p
`, where 0 ≤ i(`) ≤ p− 1.

Then, for 0 ≤ s ≤ r − 1 we have

zps
(
xi
)

= i(s)x
i−ps .

Additionally,

zpr
(
xi
)

= i(r)x
i−pr − ifxpr(p−1)+i−1.
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Remark 5.10. Note that if i < ps < pr then zps
(
xi
)

= 0, and if i < pr

then zpr
(
xi
)

= −ifxpr(p−1)+i−1.

Proof. We have

zps
(
xi
)

= mult (1⊗ zps)α
(
xi
)

= mult (1⊗ zps)Sf (x⊗ 1, 1⊗ t)i

= mult (1⊗ zps)

(
x⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`! (p− `)!
xp

r` ⊗ tpr(p−`)
)i

= mult (1⊗ zps)
∑

i1+i2+i3=i

(
i

i1, i2, i3

)(
xi1 ⊗ ti2

)

·

(
f

p−1∑
`=1

1

`! (p− `)!
xp

r` ⊗ tpr(p−`)
)i3

.

After expanding, the tensors are of the form xi1+p
r`′ ⊗ ti2+p

r`′′ , `′, `′′ as
before. Applying 1⊗ zps to this expression will give 0 unless

(5) ps = i2 + pr`′′.

Assume first that s < r. Since pr > ps we see that i3 = 0 and i2 = ps.
Thus i1 = i− ps and we get

zps
(
xi
)

=

(
i

i− ps, ps, 0

)
xi−p

s
zps
(
tp

s)
=

(
i

ps

)
xi−p

s

= i(s)x
i−ps ,

as desired.
Now we consider the case s = r. Then i3 = 0, i2 = pr, i1 = i − pr

certainly satisfies Equation 5. However, we get an additional solution to
this equation, namely i3 = 1, ` = p− 1, i2 = 0, i1 = i− 1. Thus

zpr
(
xi
)

=

(
i

i− pr, pr, 0

)
xi−p

r
zpr
(
tp

r)
+

(
i

i− 1, 0, 1

)
xi−1f

1

(p− 1)! (p− (p− 1))!
xp

r(p−1)zpr
(
tp

r)
= i(r)x

i−pr − ifxpr(p−1)+i−1. �

The results above do not generalize easily to the case n > r+1. Certainly,
if 2r < n then the comultiplication on Hn,r,f (and its coaction on L) becomes
much more complicated, making the computations of the algebra structure
(and the action) of its dual much more involved as well. If r + 1 < n ≤ 2r,
computation of the algebra structure of H∗n,r,f is somewhat more complex



796 ALAN KOCH

than the case considered here — in particular, zppr 6= fz1 — but, as a future
paper [8] will show, it is possible to show that H∗n,r,f is generated as a K-

module by
{∏n−1

s=0 z
js
ps : 0 ≤ js ≤ p− 1

}
, and much of its action on L can be

made explicit.

6. A note on modular extensions

While the focus of this work is primitive purely inseparable extensions, it
should be pointed out that the constructions here can be adapted easily to
general modular extensions. The following should be clear.

Proposition 6.1. Let L/K be modular, L ∼= L1 ⊗ · · · ⊗ Ls with Li/K
primitive of degree pni , ni ≥ 2, 1 ≤ i ≤ s. For each i, pick 0 < ri < ni and
fi ∈ K×. Set

H = Hn1,r1,f1 ⊗ · · · ⊗Hns,rs,fs .

Then L is an H-Galois object.

Thus, the constructions in the previous sections show that any modular
extension of exponent at least 2 can be equipped with numerous Hopf Galois
structures. However, it is not the case that all (local-local) Hopf Galois
structures on modular extensions have been exhibited here, as the following
example shows.

Example 6.2. Let K = Fp (T1, T2). Let L = K (x, y) with xp
2

= T1,

yp
2

= T2. Then L/K is modular. Let H = K (t, u) /
(
tp

2
, up

2
)
, and define

∆ : H → H ⊗H by

∆ (t) = S3 ((up ⊗ 1, tp ⊗ 1, u⊗ 1, t⊗ 1) ; (1⊗ up, 1⊗ tp, 1⊗ u, 1⊗ t))
∆ (u) = S2 ((up ⊗ 1, tp ⊗ 1, u⊗ 1) ; (1⊗ up, 1⊗ tp, 1⊗ u)) .

Along with the counit ε given by ε (t) = ε (u) = 0 and antipode λ (t) =
−t, λ (u) = −u, this gives H the structure of a K-Hopf algebra which is not
monogenic: checking that the Hopf algebra axioms hold is straightforward.
Define α : L→ L⊗H by

α (x) = S3 ((yp ⊗ 1, xp ⊗ 1, y ⊗ 1, x⊗ 1) ; (1⊗ up, 1⊗ tp, 1⊗ u, 1⊗ t))
α (y) = S2 ((yp ⊗ 1, xp ⊗ 1, y ⊗ 1) ; (1⊗ up, 1⊗ tp, 1⊗ u)) .

Then L is an H-Galois object. The proof is almost identical to the proofs
of Lemma 4.1 and Proposition 4.2.

In fact, this example seems to suggest that the biggest obstacle to a
modular extension L being an H-Galois object is the algebra structure of
H; the coalgebra structure seems to naturally give a coaction. If L is an
H-Galois object, then L ⊗ L ∼= L ⊗ H. Also, L ⊗ L is a truncated poly-
nomial algebra: in the simple, degree pn case L = K (x), clearly we have
L (u) /

(
up

n) ∼= L ⊗ L via u 7→ 1 ⊗ x − x ⊗ 1. Thus, for a given modular
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extension L/K, the problem appears to be reduced to finding the Hopf al-
gebra structures on the truncated polynomial algebra L ⊗ L. We have not
found a local-local Hopf algebra of the proper type (as an algebra) which
does not give L the structure of an H-Galois object.
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