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A superclass of the posinormal operators

H. Crawford Rhaly, Jr.

Abstract. The starting place is a brief proof of a well-known result,
the hyponormality of Ck (the generalized Cesàro operator of order one)
for k ≥ 1. This leads to the definition of a superclass of the posinormal
operators. It is shown that all the injective unilateral weighted shifts
belong to this superclass.

Sufficient conditions are determined for an operator in this superclass
to be posinormal and hyponormal. A connection is established between
this superclass and some recently-published sufficient conditions for a
lower triangular factorable matrix to be a hyponormal bounded linear
operator on `2.
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1. Introduction

1.1. Preliminaries. If B(H) denotes the set of all bounded linear opera-
tors on a Hilbert space H, then A ∈ B(H) is said to be posinormal if there
exists a positive operator P ∈ B(H) satisfying AA∗ = A∗PA. The operator
A is coposinormal if A∗ is posinormal. From [7, Theorem 2.1] we know that
A is posinormal if and only if

γ2A∗A ≥ AA∗
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for some γ ≥ 0. A is hyponormal when γ = 1. The operator A is dominant
if Ran(A− λ) ⊂ Ran(A− λ)∗ for all λ in the spectrum of A; A is dominant
if and only if A− λ is posinormal for all complex numbers λ [7, Proposition
3.5]. Hyponormal operators are necessarily dominant. If A is posinormal,
then KerA ⊂ KerA∗; see [7, Corollary 2.3].

A lower triangular infinite matrix M = [mij ], acting through multipli-
cation to give a bounded linear operator on `2, is factorable if its entries
are

mij =

{
aicj if j ≤ i
0 if j > i

where ai depends only on i and cj depends only on j. A factorable matrix
is terraced (see [5], [6]) if cj = 1 for all j.

1.2. The motivating example. For fixed k > 0, the generalized Cesàro
matrices of order one are the terraced matrices Ck that occur when ai = 1

k+i
for all i.

Proposition 1. Ck is posinormal for all k > 0, and Ck is hyponormal for
all k ≥ 1.

Proof. If

Q :≡ diag{k, 1, 1, 1, . . . } and

P :≡ diag

{
k + i

k + i+ 1
: i = 0, 1, 2, 3, . . .

}
,

it can be verified that CkQC
∗
k = C∗

kPCk for all k > 0. If δ :≡ max
{
1
k , 1
}

,

then for all f in `2 we have

〈(δC∗
kCk − CkC

∗
k)f, f〉 = 〈(δC∗

kCk − δC∗
kPCk + δCkQC

∗
k − CkC

∗
k)f, f〉

= 〈δ(I − P )Ckf, Ckf〉+ 〈(δQ− I)C∗
kf, C

∗
kf〉 ≥ 0,

and this gives the result. �

We note that the preceding proof first appeared in [9]; for different proofs
of the hyponormality of Ck for k ≥ 1, see [7], [12]. The key role played by
the relationship CkQC

∗
k = C∗

kPCk in the proof of Proposition 1 leads us to
the definition of a very large class of operators.

2. Definition, properties, and examples of supraposinormal
operators

Definition 1. If A ∈ B(H), we say that A is supraposinormal if there exist
positive operators P and Q on H such that AQA∗ = A∗PA, where at least
one of P , Q has dense range. It will sometimes be convenient to refer to the
ordered pair (Q,P ) as an interrupter pair associated with A.
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It is straightforward to verify that supraposinormality is a unitary invari-
ant. We note that a normal operator A is supraposinormal with interrupter
pair (I, I).

As the name suggests, this superclass of operators contains all the posi-
normal operators (and hence all the hyponormal operators and all the in-
vertible operators; see [7]), as well as all the coposinormal operators: If A
is posinormal, then AA∗ = A∗PA for some positive operator P , so A is
supraposinormal with interrupter pair (I, P ). If A is coposinormal, then
A∗A = AQA∗ for some positive operator Q, so A is supraposinormal with
interrupter pair (Q, I).

Proposition 2. The collection S of all supraposinormal operators on H
forms a cone in B(H), and S is closed under involution.

Proof. It is easy to see that S is closed under scalar multiplication, so S
contains all αA for A ∈ S and α ≥ 0, and therefore S is a cone. Moreover,
it is equally easy to see that A is supraposinormal if and only if A∗ is
supraposinormal, so S is closed under involution. �

Theorem 1. Suppose A ∈ B(H) satisfies AQA∗ = A∗PA for positive op-
erators P,Q ∈ B(H).

(a) If Q has dense range, then A is supraposinormal and

KerA ⊂ KerA∗.

(b) If P has dense range, then A is supraposinormal and

KerA∗ ⊂ KerA.

(c) If Q is invertible, then the supraposinormal operator A is posinormal.
(d) If P is invertible, then the supraposinormal operator A is coposinor-

mal.
(e) If P and Q are both invertible, then A is both posinormal and coposi-

normal with KerA = KerA∗ and RanA = RanA∗.

Proof. For (a) and (b), the proof is straightforward. For (c) and (d), the
proof requires only a minor adjustment in the discussion of Douglas’s The-
orem at the beginning of Section 2 in [7]. The proof of (e) is also straight-
forward. �

Corollary 1. If A ∈ B(H) is supraposinormal, then KerA ⊂ KerA∗ or
KerA∗ ⊂ KerA.

Corollary 2. If A ∈ B(H) is posinormal with an invertible interrupter,
then A is also coposinormal.

Corollary 3. If A is supraposinormal with interrupter pair (P, P ) for some

positive operator P , then KerA = KerA∗; also,
√
PA
√
P is normal.

Theorem 2. Assume A− λ is supraposinormal for distinct real values λ =
0, r1, and r2, and assume that the same interrupter pair (Q,P ) serves A−λ
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in each of those three cases. Then Q = P and Ker(A − λ) = Ker(A − λ)∗

when λ = 0, r1, and r2.

Proof. Since (A− λ)Q(A− λ)∗ = (A− λ)∗P (A− λ) for λ = 0, r1, and r2,
we find that for k = 1 and 2,

(A− rk)Q(A− rk)∗ = (A− rk)∗P (A− rk)

reduces to

PA+A∗P + rkQ = QA∗ +AQ+ rkP.

Thus (r1 − r2)Q = (r1 − r2)P , so Q = P . The assertion that Ker(A− λ) =
Ker(A− λ)∗ for λ = 0, r1, and r2 follows from Corollary 3. �

Definition 2. For A ∈ B(H), we say that A is totally supraposinormal if
A− λ is supraposinormal for all complex numbers λ.

Theorem 3. If A ∈ B(H) is totally supraposinormal and the same two
positive operators Q,P ∈ B(H) form an interrupter pair (Q,P ) for A − λ
for all complex numbers λ, then Q = P ; it also follows that

Ker(A− λ) = Ker(A− λ)∗

for all λ.

Proof. This result is a consequence of Theorem 2 and Corollary 3. �

We have already observed that the class of posinormal operators is in-
cluded in the class of supraposinormal operators, which is included in the
class of all operators. As we are about to see, the unilateral weighted shifts
are enough to show that these inclusions are all proper.

Let {en} denote the standard orthonormal basis for `2.

Proposition 3. A unilateral weighted shift W with the weight sequence

{wn : w0 6= 0}n≥0

is supraposinormal if and only if it is injective.

Proof. First assume that W is injective, so wn 6= 0 for all n. If

Q :≡ diag{|w1|2, |w2|2, |w3|2, . . . }
and

P :≡ diag{p0, 0, |w0|2, |w1|2, |w2|2, . . . }
for some p0 > 0, then it is straightforward to verify that WQW ∗ = W ∗PW .
Since {|w1|2, |w2|2, |w3|2, . . . } is a strictly positive sequence, Q is a one-to-
one positive operator; thus Q has dense range, so W is supraposinormal.

Next we assume that W is not injective, so wn = 0 for some n > 0;
assume that n is the smallest integer for which this holds. We have Wen = 0
and W ∗en = wn−1en−1 6= 0, so KerW 6⊂ KerW ∗. Also, W ∗e0 = 0 while
We0 = w0e1 6= 0, so KerW ∗ 6⊂ KerW . It follows from Corollary 1 that W
is not supraposinormal. �
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Corollary 4. Every injective unilateral weighted shift is supraposinormal.

We note that a noninjective unilateral weighted shift can also be supra-
posinormal, as the next example illustrates.

Example 1. Let W denote the unilateral weighted shift with w0 = 0
and wn = 1 for all n ≥ 1. Glancing at the proof of Proposition 3, we
take Q = I and P :≡ diag{1, 0, 0, 1, 1, 1, 1, . . . }. One easily verifies that
WW ∗ = diag{0, 0, 1, 1, 1, 1, . . . } = W ∗PW , so W is posinormal and hence
supraposinormal.

In fact, it can be shown that if, for some nonnegative integer n, W satisfies

(a) wk = 0 for 0 ≤ k ≤ n and wk 6= 0 for k > n and
(b) supk>n | wk

wk+1
| < +∞,

then W is posinormal and hence also supraposinormal.

Proposition 4. An injective unilateral weighted shift is posinormal if and
only if supn | wn

wn+1
| < +∞.

Proof. See [4]. �

Proposition 3 gives us a collection of operators that are supraposinor-
mal, as well as a collection of operators that are not supraposinormal. We
emphasize the latter now with a specific example.

Example 2. Suppose W is the unilateral weighted shift with weights w2n =
1 and w2n+1 = 0 for all n. It follows from Proposition 3 that W cannot be
supraposinormal.

Next we present an example of a supraposinormal operator that is neither
posinormal nor coposinormal.

Example 3. Let W denote the unilateral weighted shift with weights w2n =
1 and w2n+1 = 1/(n+ 1) for all n. By Proposition 3, W is supraposinormal.
Since supn | wn

wn+1
| = +∞, it follows from Proposition 4 that W is not posi-

normal. Since W ∗e0 = 0 while We0 = e1, we see that KerW ∗ 6⊂ KerW , so
W is also not coposinormal.

We model the following proof on that for the motivating example.

Theorem 4. Assume that the bounded linear operator A on H is supraposi-
normal with AQA∗ = A∗PA. If D is a positive operator satisfying

(1) δ1Q ≥ D ≥ δ2P ≥ 0

for some constants δ1, δ2 > 0, then
√
DA
√
D is posinormal. If (1) holds

for some pair of positive constants δ1, δ2 with δ1 ≤ δ2, then
√
DA
√
D is

hyponormal.
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Proof. We find that〈[
δ1
δ2

(
√
DA∗√D)(

√
DA
√
D)− (

√
DA
√
D)(
√
DA∗√D)

]
f, f

〉
=

〈[
δ1
δ2

√
DA∗DA

√
D − δ1

√
DA∗PA

√
D + δ1

√
DAQA∗√D

−
√
DADA∗√D

]
f, f

〉
= δ1

〈(
1

δ2
D − P

)
A
√
Df,A

√
Df

〉
+ 〈(δ1Q−D)A∗√Df,A∗√Df〉 ≥ 0

for all f in `2, as needed. �

Corollary 5. If A is a supraposinormal operator on H with AQA∗ = A∗PA
and

(2) δ1Q ≥ I ≥ δ2P ≥ 0

for some constants δ1, δ2 > 0, then A is posinormal. If (2) holds for some
pair of positive constants δ1, δ2 with δ1 ≤ δ2, then A is hyponormal.

We note that Theorem 4 and Corollary 5 above are restricted to the case
where P is dominated by a multiple of Q.

In the next section we will apply this theorem and its corollary to fac-
torable matrices. We note that a large collection of examples of supraposi-
normal factorable matrices M having interrupter pair (I, P ) with P diagonal
and I ≥ P , in which case M is hyponormal, can be found in [10].

3. Application to factorable matrices

Throughout this section we will restrict our attention to those factorable
matrices M that are lower triangular and give bounded linear operators on
H = `2.

3.1. Sufficient conditions for hyponormality.

Theorem 5. If M is a supraposinormal factorable matrix with MQM∗ =
M∗PM , and if P , Q, and D are diagonal matrices satisfying

Q ≥ D ≥ P ≥ 0,

then
√
DM
√
D is a hyponormal factorable matrix.

Proof. This is an immediate consequence of Theorem 4. �

Example 4 (Generalized Cesàro matrices of order one for k ≥ 1). We have
already seen that Ck is hyponormal for k ≥ 1 and that Ck is posinormal
for all k > 0. Ck is known to be nonhyponormal when 0 < k < 1 (see
[7]). If k ≥ 1 and D :≡ diag{di : i = 0, 1, 2, 3, . . . } where k

k+1 ≤ d0 ≤ k and
k+i

k+i+1 ≤ di ≤ 1 for i = 1, 2, 3, . . . ., then Proposition 1 (proof) and Theorem 5

together guarantee that
√
DCk

√
D is another hyponormal factorable matrix.
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We note that Theorem 1(d) can be used to prove that Ck is coposinormal
for all k > 0.

The following proposition will be useful to us throughout the remainder
of this section.

Proposition 5. Assume that the factorable matrix M = [aicj ] is a bounded
operator on `2 with ai, cj > 0 for all i, j, and {akck } is strictly decreasing to

0. If

P :≡ diag

{
ck+1ak − ckak+1

ckck+1a
2
k

: k = 0, 1, 2, . . .

}
∈ B(`2)

and

Q :≡ diag

{
1

c0a0
,
ck+1ak − ckak+1

c2k+1akak+1
: k = 0, 1, 2, . . .

}
∈ B(`2),

then M is supraposinormal with interrupter pair (Q,P ).

Proof. Once the hypothesis is assumed, it is straightforward to verify that

M∗PM =


c0a0 c0a1 c0a2 c0a3 . . .
c0a1 c1a1 c1a2 c1a3 . . .
c0a2 c1a2 c2a2 c2a3 . . .
c0a3 c1a3 c2a3 c3a3 . . .

...
...

...
...

. . .

 = MQM∗.

Clearly the positive operators P and Q are one-to-one, so they both have
dense range; thus M is supraposinormal with interrupter pair (Q,P ). �

Our goal now is to obtain restrictions on the sequences {ai}, {cj} that
are sufficient to guarantee that the factorable matrix M = [aicj ] ∈ B(`2) is
hyponormal.

Theorem 6. Assume that M = [aicj ] is a bounded operator on `2 with
ai, cj > 0 for all i, j,

{
ak
ck

}
is strictly decreasing to 0, and

{
akck

ak+1ck+1

}
is

bounded. If there exists a δ > 0 such that 0 < c0a0 ≤ δ and

1

δ

ak
ck

(δ − ckak) ≤ ak+1

ck+1
≤

δ akck
δ + c2k+1

ak
ck

for each nonnegative integer k, then M is hyponormal.

Proof. Assume the conditions of the hypothesis and also that

(3) sup

{
ck+1ak − ckak+1

ckck+1a
2
k

: k = 0, 1, 2, . . .

}
<∞;

this is enough to guarantee that

sup

{
ck+1ak − ckak+1

c2k+1akak+1
: k = 0, 1, 2, . . .

}
<∞
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also. If P and Q are the operators defined in Proposition 5, then M∗PM =
MQM∗. By Corollary 5, M will be hyponormal if there exists a δ > 0 such
that δQ ≥ I ≥ δP > 0, and this leads to inequalities stated in the theorem.
We note that since P ≤ (1/δ)I, the assumption (3) was not needed in the
hypothesis. �

Example 5 (Toeplitz matrix). Suppose that M is the factorable matrix
with entries mij = aicj where ai = ri, cj = 1/rj for all i, j where 0 < r < 1.
One easily verifies that Theorem 6 is satisfied with δ = 1/(1− r2), so M is
hyponormal.

We note that the conditions presented in Theorem 6 are not necessary
for the hyponormality of a factorable matrix. For consider the case when
cj = 1 for each j and ai = (i+ 3)/(i+ 2)2 for each i. This example is known
to be hyponormal since it satisfies the hypothesis of [8, Theorem 2.2], but
it does not satisfy the inequality in Theorem 6 since that would require
1 ≥ δ ≥ 12/11, an impossibility.

We point out that for δ = 1, the inequality in Theorem 6 reduces to
the result in [11], which was obtained using a somewhat different approach,
without invoking posinormality; for several examples that hold for δ = 1,
see that paper.

3.2. Some nonhyponormal examples. We now investigate posinormal-
ity and coposinormality for some nonhyponormal, supraposinormal factora-
ble matrices.

Example 6 (Fibonacci matrix; see [3]). We recall that the Fibonacci se-
quence {fn} is defined by the linear recurrence equations f0 = 0, f1 = 1,
and

fn = fn−1 + fn−2 for n ≥ 2.

Let M denote the factorable matrix with nonzero entries

mij = aicj

where ai = 1/(fi+1fi+2) and cj = f2j+1 for j ≤ i. When n ≥ 3,

cna1

n−1∏
j=2

(c0a0 − cjaj)/(cn0an0 ) = fn+1/fn > 1,

so it follows from [11, Theorem 2], that M is not a dominant operator and
is hence also not hyponormal. If

P :≡ diag{(f2n+2fn+3 − f3n+1)/(fn+1fn+2fn+3) : n = 0, 1, 2, 3, . . . }
and

Q :≡diag{1, (f2n+2fn+3 − f3n+1)/f
3
n+2 : n = 0, 1, 2, 3, . . . }

= diag{(f2n+1fn+2 − f3n)/f3n+1 : n = 0, 1, 2, 3, . . . },
it follows from Proposition 5 that M∗PM = MQM∗. It can be verified that
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I ≤ Q ≤ 2I and (1/2)I ≤ P ≤ 4I;

thus

Q ≥ I ≥ (1/4)P,

so by Corollary 5, M is posinormal. Similarly, since

2P ≥ I ≥ (1/2)Q,

M is also coposinormal.

Example 7 (q-Cesàro matrix for q > 1; see [1], [13]). If M is the factorable
matrix with nonzero entries

mij = aicj

where ai = (q − 1)/(qi+1 − 1) and cj = qj for 0 ≤ j ≤ i, and if

P :≡ diag{(qn+1 − 1)(qn+2 + qn+1 − 1)/[qn+1(qn+2 − 1)] : n = 0, 1, 2, 3, . . . }

and

Q :≡diag{1, (qn+2 + qn+1 − 1)/qn+2 : n = 0, 1, 2, 3, . . . }
= diag{1 + 1/q − 1/qn+1 : n = 0, 1, 2, 3, . . . },

it follows from Proposition 5 that MQM∗ = M∗PM . It is straightforward
to check that

Q ≥ I ≥ (1/2)P and (q + 1)P ≥ I ≥ [1/(q + 1)]Q,

so we know from Corollary 5 that M is both posinormal and coposinormal
for q > 1. It is demonstrated in [11] that M is not dominant and hence also
not hyponormal.

Example 8 (q-Cesàro matrix for 0 < q < 1; see [2], [13]). If M is the
factorable matrix with nonzero entries

mij = aicj

where ai = (1− q)qi/(1− qi+1) and cj = 1/qj for 0 ≤ j ≤ i, and if

P :≡ diag{(1− qn+1)(1 + q − qn+2)/(1− qn+2) : n = 0, 1, 2, 3, . . . }

and

Q :≡diag{1, 1 + q − qn+2 : n = 0, 1, 2, 3, . . . }
= diag{1 + q − qn+1 : n = 0, 1, 2, 3, . . . },

it follows from Proposition 5 that MQM∗ = M∗PM . One can easily check
that

Q ≥ I ≥ (1/2)P and [(q + 1)/q]P ≥ I ≥ [q/(q + 1)]Q,

so M is both posinormal and coposinormal for 0 < q < 1. We know from
[11] that M is not dominant and not hyponormal.
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4. Conclusion

We close with two questions that seem natural but whose answers have
not been found here:

(1) Does there exist an operator A that is totally supraposinormal but
neither posinormal nor coposinormal?

(2) Does there exist an operator A that is totally supraposinormal but
neither dominant nor codominant?

Acknowledgment. The author is grateful to Carlos Kubrusly for reading
and commenting on an earlier version of this manuscript.
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