Conway-Gordon type theorem for the complete four-partite graph $\boldsymbol{K}_{3,3,1,1}$

Hiroka Hashimoto and Ryo Nikkuni

Abstract

We give a Conway-Gordon type formula for invariants of knots and links in a spatial complete four-partite graph $K_{3,3,1,1}$ in terms of the square of the linking number and the second coefficient of the Conway polynomial. As an application, we show that every rectilinear spatial $K_{3,3,1,1}$ contains a nontrivial Hamiltonian knot.

Contents

1. Introduction 471
2. Conway-Gordon type formula for $K_{3,3,1,1} 477$
3. $\triangle Y$-exchange and Conway-Gordon type formulae 490
4. Rectilinear spatial embeddings of $K_{3,3,1,1} 493$

References 494

1. Introduction

Throughout this paper we work in the piecewise linear category. Let G be a finite graph. An embedding f of G into the Euclidean 3 -space \mathbb{R}^{3} is called a spatial embedding of G and $f(G)$ is called a spatial graph. We denote the set of all spatial embeddings of G by $\operatorname{SE}(G)$. We call a subgraph γ of G which is homeomorphic to the circle a cycle of G and denote the set of all cycles of G by $\Gamma(G)$. We also call a cycle of G a k-cycle if it contains exactly k edges and denote the set of all k-cycles of G by $\Gamma_{k}(G)$. In particular, a k-cycle is said to be Hamiltonian if k equals the number of all vertices of G. For a positive integer $n, \Gamma^{(n)}(G)$ denotes the set of all cycles of $G(=\Gamma(G))$ if $n=1$ and the set of all unions of n mutually disjoint cycles of G if $n \geq 2$. For an element γ in $\Gamma^{(n)}(G)$ and an element f in $\mathrm{SE}(G), f(\gamma)$ is none other than a knot in $f(G)$ if $n=1$ and an n-component link in $f(G)$ if $n \geq 2$. In particular, we call $f(\gamma)$ a Hamiltonian knot in $f(G)$ if γ is a Hamiltonian cycle.

[^0]For an edge e of a graph G, we denote the subgraph $G \backslash$ inte by $G-e$. Let $e=\overline{u v}$ be an edge of G which is not a loop, where u and v are distinct end vertices of e. Then we call the graph which is obtained from $G-e$ by identifying u and v the edge contraction of G along e and denote it by G / e. A graph H is called a minor of a graph G if there exists a subgraph G^{\prime} of G and the edges $e_{1}, e_{2}, \ldots, e_{m}$ of G^{\prime} each of which is not a loop such that H is obtained from G^{\prime} by a sequence of edge contractions along $e_{1}, e_{2}, \ldots, e_{m}$. A minor H of G is called a proper minor if H does not equal G. Let \mathcal{P} be a property of graphs which is closed under minor reductions; that is, for any graph G which does not have \mathcal{P}, all minors of G also do not have \mathcal{P}. A graph G is said to be minor-minimal with respect to \mathcal{P} if G has \mathcal{P} but all proper minors of G do not have \mathcal{P}. Then it is known that there exist finitely many minor-minimal graphs with respect to \mathcal{P} [RS].

Let K_{m} be the complete graph on m vertices, namely the simple graph consisting of m vertices in which every pair of distinct vertices is connected by exactly one edge. Then the following are very famous in spatial graph theory, which are called the Conway-Gordon theorems.
Theorem 1.1 (Conway-Gordon [CG]).
(1) For any element f in $\mathrm{SE}\left(K_{6}\right)$,

$$
\begin{equation*}
\sum_{\gamma \in \Gamma^{(2)}\left(K_{6}\right)} \mathrm{lk}(f(\gamma)) \equiv 1 \quad(\bmod 2), \tag{1.1}
\end{equation*}
$$

where lk denotes the linking number.
(2) For any element f in $\mathrm{SE}\left(K_{7}\right)$,

$$
\begin{equation*}
\sum_{\gamma \in \Gamma_{7}\left(K_{7}\right)} a_{2}(f(\gamma)) \equiv 1 \quad(\bmod 2), \tag{1.2}
\end{equation*}
$$

where a_{2} denotes the second coefficient of the Conway polynomial.
A graph is said to be intrinsically linked if for any element f in $\operatorname{SE}(G)$, there exists an element γ in $\Gamma^{(2)}(G)$ such that $f(\gamma)$ is a nonsplittable 2component link, and to be intrinsically knotted if for any element f in $\operatorname{SE}(G)$, there exists an element γ in $\Gamma(G)$ such that $f(\gamma)$ is a nontrivial knot. Theorem 1.1 implies that K_{6} (resp. K_{7}) is intrinsically linked (resp. knotted). Moreover, the intrinsic linkedness (resp. knottedness) is closed under minor reductions [NeTh] (resp. [FL]), and K_{6} (resp. K_{7}) is minor-minimal with respect to the intrinsically linkedness [S] (resp. knottedness [MRS]).

A $\triangle Y$-exchange is an operation to obtain a new graph G_{Y} from a graph G_{\triangle} by removing all edges of a 3 -cycle \triangle of G_{\triangle} with the edges $\overline{u v}, \overline{v w}$ and $\overline{w u}$, and adding a new vertex x and connecting it to each of the vertices u, v and w as illustrated in Figure 1.1 (we often denote $\overline{u x} \cup \overline{v x} \cup \overline{w x}$ by $Y)$. A $Y \triangle$-exchange is the reverse of this operation. We call the set of all graphs obtained from a graph G by a finite sequence of $\triangle Y$ and $Y \triangle$ exchanges the G-family and denote it by $\mathcal{F}(G)$. In particular, we denote
the set of all graphs obtained from G by a finite sequence of $\triangle Y$-exchanges by $\mathcal{F}_{\Delta}(G)$. For example, it is well known that the K_{6}-family consists of exactly seven graphs as illustrated in Figure 1.2, where an arrow between two graphs indicates the application of a single $\triangle Y$-exchange. Note that $\mathcal{F}_{\Delta}\left(K_{6}\right)=\mathcal{F}\left(K_{6}\right) \backslash\left\{P_{7}\right\}$. Since P_{10} is isomorphic to the Petersen graph, the K_{6}-family is also called the Petersen family. It is also well known that the K_{7}-family consists of exactly twenty graphs, and there exist exactly six graphs in the K_{7}-family each of which does not belong to $\mathcal{F}_{\Delta}\left(K_{7}\right)$. Then the intrinsic linkedness and the intrinsic knottedness behave well under $\triangle Y$ exchanges as follows.

Proposition 1.2 (Sachs [S]).
(1) If G_{\triangle} is intrinsically linked, then G_{Y} is also intrinsically linked.
(2) If G_{\triangle} is intrinsically knotted, then G_{Y} is also intrinsically knotted.

Figure 1.1.

Figure 1.2.
Proposition 1.2 implies that any element in $\mathcal{F}_{\Delta}\left(K_{6}\right)$ (resp. $\mathcal{F}_{\Delta}\left(K_{7}\right)$) is intrinsically linked (resp. knotted). In particular, Robertson-SeymourThomas showed that the set of all minor-minimal intrinsically linked graphs equals the K_{6}-family, so the converse of Proposition 1.2(1) is also true [RST].

On the other hand, it is known that any element in $\mathcal{F}_{\Delta}\left(K_{7}\right)$ is minorminimal with respect to the intrinsic knottedness [KS], but any element in $\mathcal{F}\left(K_{7}\right) \backslash \mathcal{F}_{\Delta}\left(K_{7}\right)$ is not intrinsically knotted [FN], [HNTY], [GMN], so the converse of Proposition 1.2(2) is not true. Moreover, there exists a minorminimal intrinsically knotted graph which does not belong to $\mathcal{F}_{\Delta}\left(K_{7}\right)$ as follows. Let $K_{n_{1}, n_{2}, \ldots, n_{m}}$ be the complete m-partite graph, namely the simple graph whose vertex set can be decomposed into m mutually disjoint nonempty sets $V_{1}, V_{2}, \ldots, V_{m}$ where the number of elements in V_{i} equals n_{i} such that no two vertices in V_{i} are connected by an edge and every pair of vertices in the distinct sets V_{i} and V_{j} is connected by exactly one edge, see Figure 1.3 which illustrates $K_{3,3}, K_{3,3,1}$ and $K_{3,3,1,1}$. Note that $K_{3,3,1}$ is isomorphic to P_{7} in the K_{6}-family, namely $K_{3,3,1}$ is a minor-minimal intrinsically linked graph. On the other hand, Motwani-Raghunathan-Saran claimed in [MRS] that it may be proven that $K_{3,3,1,1}$ is intrinsically knotted by using the same technique of Theorem 1.1, namely, by showing that for any element in $\operatorname{SE}\left(K_{3,3,1,1}\right)$, the sum of a_{2} over all of the Hamiltonian knots is always congruent to one modulo two. But Kohara-Suzuki showed in [KS] that the claim did not hold; that is, the sum of a_{2} over all of the Hamiltonian knots is dependent to each element in $\mathrm{SE}\left(K_{3,3,1,1}\right)$. Actually, they demonstrated the specific two elements f_{1} and f_{2} in $\mathrm{SE}\left(K_{3,3,1,1}\right)$ as illustrated in Figure 1.4. Here $f_{1}\left(K_{3,3,1,1}\right)$ contains exactly one nontrivial knot $f_{1}\left(\gamma_{0}\right)$ (= a trefoil knot, $a_{2}=1$) which is drawn by bold lines, where γ_{0} is an element in $\Gamma_{8}\left(K_{3,3,1,1}\right)$, and $f_{2}\left(K_{3,3,1,1}\right)$ contains exactly two nontrivial knots $f_{2}\left(\gamma_{1}\right)$ and $f_{2}\left(\gamma_{2}\right)$ ($=$ two trefoil knots) which are drawn by bold lines, where γ_{1} and γ_{2} are elements in $\Gamma_{8}\left(K_{3,3,1,1}\right)$. Thus the situation of the case of $K_{3,3,1,1}$ is different from the case of K_{7}. By using another technique different from Conway-Gordon's, Foisy proved the following.

Figure 1.3.
Theorem 1.3 (Foisy [F02]). For any element f in $\mathrm{SE}\left(K_{3,3,1,1}\right)$, there exists an element γ in $\cup_{k=4}^{8} \Gamma_{k}\left(K_{3,3,1,1}\right)$ such that $a_{2}(f(\gamma)) \equiv 1(\bmod 2)$.

Theorem 1.3 implies $K_{3,3,1,1}$ is intrinsically knotted. Moreover, Proposition $1.2(2)$ and Theorem 1.3 imply that any element G in $\mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$ is

Figure 1.4.
also intrinsically knotted. It is known that there exist exactly twenty six elements in $\mathcal{F}_{\triangle}\left(K_{3,3,1,1}\right)$. Since Kohara-Suzuki pointed out that each of the proper minors of G is not intrinsically knotted [KS], it follows that any element in $\mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$ is minor-minimal with respect to the intrinsic knottedness. Note that a $\triangle Y$-exchange does not change the number of edges of a graph. Since K_{7} and $K_{3,3,1,1}$ have different numbers of edges, the families $\mathcal{F}_{\Delta}\left(K_{7}\right)$ and $\mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$ are disjoint.

Our first purpose in this article is to refine Theorem 1.3 by giving a kind of Conway-Gordon type formula for $K_{3,3,1,1}$ not over \mathbb{Z}_{2}, but integers \mathbb{Z}. In the following, $\Gamma_{k, l}^{(2)}(G)$ denotes the set of all unions of two disjoint cycles of a graph G consisting of a k-cycle and an l-cycle, and x and y denotes the two vertices of $K_{3,3,1,1}$ with valency seven. Then we have the following.

Theorem 1.4.

(1) For any element f in $\operatorname{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{align*}
& 4 \sum_{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right)} a_{2}(f(\gamma))-4 \sum_{\substack{\gamma \in \Gamma_{7}\left(K_{3,3,1,1,1}\right) \\
\{x, y\} \not(\gamma)}} a_{2}(f(\gamma)) \tag{1.3}\\
& \quad-4 \sum_{\gamma \in \Gamma_{6}^{\prime}} a_{2}(f(\gamma))-4 \sum_{\substack{\gamma \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
\{x, y\} \not \subset \gamma}} a_{2}(f(\gamma)) \\
& \quad=\sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,3,1}\right)} \operatorname{lk}(f(\lambda))^{2}+2 \sum_{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)} \operatorname{lk}(f(\lambda))^{2}-18,
\end{align*}
$$

where Γ_{6}^{\prime} is a specific proper subset of $\Gamma_{6}\left(K_{3,3,1,1}\right)$ which does not depend on f (see (2.31)).
(2) For any element f in $\operatorname{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{equation*}
\sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1)}\right.} \operatorname{lk}(f(\lambda))^{2}+2 \sum_{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1)}\right.} \operatorname{lk}(f(\lambda))^{2} \geq 22 . \tag{1.4}
\end{equation*}
$$

We prove Theorem 1.4 in the next section. By combining the two parts of Theorem 1.4, we immediately obtain the following.

Corollary 1.5. For any element f in $\mathrm{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{align*}
\sum_{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right)} a_{2}(f(\gamma))- & \sum_{\substack{\gamma \in \Gamma_{7}\left(K_{3,3,1,1}\right) \\
\{x, y\} \not(\gamma}} a_{2}(f(\gamma)) \tag{1.5}\\
& -\sum_{\gamma \in \Gamma_{6}^{\prime}} a_{2}(f(\gamma))-\sum_{\substack{\gamma \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
\{x, y\} \not \subset \gamma}} a_{2}(f(\gamma)) \geq 1 .
\end{align*}
$$

Corollary 1.5 gives an alternative proof of the fact that $K_{3,3,1,1}$ is intrinsically knotted. Moreover, Corollary 1.5 refines Theorem 1.3 by identifying the cycles that might be nontrivial knots in $f\left(K_{3,3,1,1}\right)$.

Remark 1.6. We see the left side of (1.5) is not always congruent to one modulo two by considering two elements f_{1} and f_{2} in $\mathrm{SE}\left(K_{3,3,1,1}\right)$ as illustrated in Figure 1.4. Thus Corollary 1.5 shows that the argument over \mathbb{Z} has a nice advantage. In particular, f_{1} gives the best possibility for (1.5), and therefore for (1.4) by Theorem 1.4(1). Actually $f_{1}\left(K_{3,3,1,1}\right)$ contains exactly fourteen nontrivial links all of which are Hopf links, where the six of them are the images of elements in $\Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)$ by f_{1} and the eight of them are the images of elements in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$ by f_{1}.

As we said before, any element G in $\mathcal{F}_{\Delta}\left(K_{7}\right) \cup \mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$ is a minorminimal intrinsically knotted graph. If G belongs to $\mathcal{F}_{\Delta}\left(K_{7}\right)$, then it is known that Conway-Gordon type formula over \mathbb{Z}_{2} as in Theorem 1.1 also holds for G as follows.

Theorem 1.7 (Nikkuni-Taniyama [NT]). Let G be an element in $\mathcal{F}_{\Delta}\left(K_{7}\right)$. Then, there exists a map ω from $\Gamma(G)$ to \mathbb{Z}_{2} such that for any element f in $\mathrm{SE}(G)$,

$$
\sum_{\gamma \in \Gamma(G)} \omega(\gamma) a_{2}(f(\gamma)) \equiv 1 \quad(\bmod 2) .
$$

Namely, for any element G in $\mathcal{F}_{\Delta}\left(K_{7}\right)$, there exists a subset Γ of $\Gamma(G)$ which depends on only G such that for any element f in $\mathrm{SE}(G)$, the sum of a_{2} over all of the images of the elements in Γ by f is odd. On the other hand, if G belongs to $\mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$, we have a Conway-Gordon type formula over \mathbb{Z} for G as in Corollary 1.5 as follows. We prove it in Section 3.

Theorem 1.8. Let G be an element in $\mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$. Then, there exists a map ω from $\Gamma(G)$ to \mathbb{Z} such that for any element f in $\operatorname{SE}(G)$,

$$
\sum_{\gamma \in \Gamma(G)} \omega(\gamma) a_{2}(f(\gamma)) \geq 1
$$

Our second purpose in this article is to give an application of Theorem 1.4 to the theory of rectilinear spatial graphs. A spatial embedding f of a graph G is said to be rectilinear if for any edge e of $G, f(e)$ is a straight line segment in \mathbb{R}^{3}. We denote the set of all rectilinear spatial embeddings of G by $\operatorname{RSE}(G)$. We can see that any simple graph has a rectilinear spatial embedding by taking all of the vertices on the spatial curve $\left(t, t^{2}, t^{3}\right)$ in \mathbb{R}^{3} and connecting every pair of two adjacent vertices by a straight line segment. Rectilinear spatial graphs appear in polymer chemistry as a mathematical model for chemical compounds, see [A] for example. Then by an application of Theorem 1.4, we have the following.
Theorem 1.9. For any element f in $\operatorname{RSE}\left(K_{3,3,1,1}\right)$,

$$
\sum_{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right)} a_{2}(f(\gamma)) \geq 1
$$

We prove Theorem 1.9 in section 4 . As a corollary of Theorem 1.9, we immediately have the following.
Corollary 1.10. For any element f in $\operatorname{RSE}\left(K_{3,3,1,1}\right)$, there exists a Hamiltonian cycle γ of $K_{3,3,1,1}$ such that $f(\gamma)$ is a nontrivial knot with $a_{2}(f(\gamma))>$ 0.

Corollary 1.10 is an affirmative answer to the question of Foisy-Ludwig [FL, Question 5.8] which asks whether the image of every rectilinear spatial embedding of $K_{3,3,1,1}$ always contains a nontrivial Hamiltonian knot.
Remark 1.11.
(1) In [FL, Question 5.8], Foisy-Ludwig also asked that whether the image of every spatial embedding of $K_{3,3,1,1}$ (which may not be rectilinear) always contains a nontrivial Hamiltonian knot. As far as the authors know, it is still open.
(2) In addition to the elements in $\mathcal{F}_{\Delta}\left(K_{7}\right) \cup \mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$, many minorminimal intrinsically knotted graph are known [F04], [GMN]. In particular, it has been announced by Goldberg-Mattman-Naimi that all of the thirty two elements in $\mathcal{F}\left(K_{3,3,1,1}\right) \backslash \mathcal{F}_{\Delta}\left(K_{3,3,1,1}\right)$ are minorminimal intrinsically knotted graphs [GMN]. Note that their method is based on Foisy's idea in the proof of Theorem 1.3 with the help of a computer.

2. Conway-Gordon type formula for $\boldsymbol{K}_{3,3,1,1}$

To prove Theorem 1.4, we recall a Conway-Gordon type formula over \mathbb{Z} for a graph in the K_{6}-family which is as below.
Theorem 2.1. Let G be an element in $\mathcal{F}\left(K_{6}\right)$. Then there exist a map ω from $\Gamma(G)$ to \mathbb{Z} such that for any element f in $\mathrm{SE}(G)$,

$$
\begin{equation*}
2 \sum_{\gamma \in \Gamma(G)} \omega(\gamma) a_{2}(f(\gamma))=\sum_{\gamma \in \Gamma^{(2)}(G)} \operatorname{lk}(f(\gamma))^{2}-1 . \tag{2.1}
\end{equation*}
$$

We remark here that Theorem 2.1 was shown by Nikkuni (for the case $\left.G=K_{6}\right)[\mathrm{N}]$, O'Donnol $\left(G=P_{7}\right)[\mathrm{O}]$ and Nikkuni-Taniyama (for the others) [NT]. In particular, we use the following explicit formulae for Q_{8} and P_{7} in the proof of Theorem 1.4. For the other cases, see Hashimoto-Nikkuni [HN].

Theorem 2.2.

(1) (Hashimoto-Nikkuni [HN]). For any element f in $\operatorname{SE}\left(Q_{8}\right)$,

$$
\begin{aligned}
2 \sum_{\gamma \in \Gamma_{7}\left(P_{7}\right)} a_{2}(f(\gamma))+2 \sum_{\substack{\gamma \in \Gamma_{6}\left(Q_{8}\right) \\
v, v^{\prime} \notin \gamma}} a_{2}(f(\gamma))-2 & \sum_{\substack{\gamma \in \Gamma_{6}\left(Q_{8}\right) \\
\gamma \cap\left\{v, v^{\prime}\right\} \neq \emptyset}} a_{2}(f(\gamma)) \\
& =\sum_{\gamma \in \Gamma_{4,4}^{(2)}\left(Q_{8}\right)} \operatorname{lk}(f(\gamma))^{2}-1,
\end{aligned}
$$

where v and v^{\prime} are exactly two vertices of Q_{8} with valency three.
(2) (O'Donnol [O]). For any element f in $\operatorname{SE}\left(P_{7}\right)$,

$$
\begin{aligned}
2 \sum_{\gamma \in \Gamma_{7}\left(P_{7}\right)} a_{2}(f(\gamma))-4 \sum_{\substack{\gamma \in \Gamma_{6}\left(P_{7}\right) \\
u \notin \gamma}} a_{2}(f(\gamma))-2 & \sum_{\gamma \in \Gamma_{5}\left(P_{7}\right)} a_{2}(f(\gamma)) \\
& =\sum_{\gamma \in \Gamma_{3,4}^{(2)}\left(P_{7}\right)} \operatorname{lk}(f(\gamma))^{2}-1
\end{aligned}
$$

where u is the vertex of P_{7} with valency six.
By taking the modulo two reduction of (2.1), we immediately have the following fact containing Theorem 1.1(1).

Corollary 2.3 (Sachs [S], Taniyama-Yasuhara [TY]). Let G be an element in $\mathcal{F}\left(K_{6}\right)$. Then, for any element f in $\operatorname{SE}(G)$,

$$
\sum_{\gamma \in \Gamma^{(2)}(G)} \operatorname{lk}(f(\gamma)) \equiv 1 \quad(\bmod 2)
$$

Now we give labels for the vertices of $K_{3,3,1,1}$ as illustrated in the left figure in Figure 2.1. We also call the vertices $1,3,5$ and $2,4,6$ the black vertices and the white vertices, respectively. We regard $K_{3,3}$ as the subgraph of $K_{3,3,1,1}$ induced by all of the white and black vertices. Let G_{x} and G_{y} be two subgraphs of $K_{3,3,1,1}$ as illustrated in Figure 2.1(1) and (2), respectively. Since each of G_{x} and G_{y} is isomorphic to P_{7}, by applying Theorem 2.2(2) to $\left.f\right|_{G_{x}}$ and $\left.f\right|_{G_{y}}$ for an element f in $\operatorname{SE}\left(K_{3,3,1,1}\right)$, it follows that

$$
\begin{align*}
2 \sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma))-4 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) & -2 \sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma)) \tag{2.2}\\
& =\sum_{\gamma \in \Gamma_{3,4}^{(2)}\left(G_{x}\right)} \operatorname{lk}(f(\gamma))^{2}-1,
\end{align*}
$$

$$
\begin{align*}
2 \sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma))-4 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) & -2 \sum_{\gamma \in \Gamma_{5}\left(G_{y}\right)} a_{2}(f(\gamma)) \tag{2.3}\\
& =\sum_{\gamma \in \Gamma_{3,4}^{(2)}\left(G_{y}\right)} \operatorname{lk}(f(\gamma))^{2}-1 .
\end{align*}
$$

Figure 2.1. (1) G_{x}, (2) G_{y}
Let γ be an element in $\Gamma\left(K_{3,3,1,1}\right)$ which is a 8 -cycle or a 6 -cycle containing x and y. We will assign a type to γ as follows:

- γ is of Type A if the neighbor vertices of x in γ consist of both a black vertex and a white vertex (if and only if the neighbor vertices of y in γ consist of both a black vertex and a white vertex).
- γ is of Type B if the neighbor vertices of x in γ consist of only black (resp. white) vertices and the neighbor vertices of y in γ consist of only white (resp. black) vertices.
- γ is of Type C if γ contains the edge $\overline{x y}$.
- γ is of Type D if $\gamma \in \Gamma_{6}\left(K_{3,3,1,1}\right)$ and the neighbor vertices of x and y in γ consist of only black or only white vertices.
Note that any element in $\Gamma_{8}\left(K_{3,3,1,1}\right)$ is of Type A, B or C, and any element in $\Gamma_{6}\left(K_{3,3,1,1}\right)$ containing x and y is of Type A, B, C or D.

On the other hand, let λ be an element in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$. We assign types to λ as follows:

- λ is of Type A if λ does not contain the edge $\overline{x y}$ and both x and y are contained in either connected component of λ.
- λ is of Type B if x and y are contained in different connected components of λ.
- λ is of Type C if λ contains the edge $\overline{x y}$.

Note that any element in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$ is of Type A, B or C.
Then the following three lemmas hold.

Lemma 2.4. For any element f in $\mathrm{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{align*}
& \sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)} \operatorname{lk}(f(\lambda))^{2}+2 \sum_{\substack{ \\
\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right) \\
\text { Type A }}} \operatorname{lk}(f(\lambda))^{2} \tag{2.4}\\
= & 4 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,3,1,1} \\
\right. \text { Type }}} a_{2}(f(\gamma))-4\left\{\sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma))+\sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma))\right\} \\
& +8 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma))-4 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,3,1)}\right) \\
x, y \in \gamma, \text { Type A }}} a_{2}(f(\gamma)) \\
& -4\left\{\sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma))+\sum_{\gamma \in \Gamma_{5}\left(G_{y}\right)} a_{2}(f(\gamma))\right\}+10 .
\end{align*}
$$

Proof. For $i=1,3,5$ and $j=2,4,6$, let us consider subgraphs $F_{x}^{(i j)}=$ $\left(G_{x}-\overline{i j}\right) \cup \overline{i y} \cup \overline{j y}$ and $F_{y}^{(i j)}=\left(G_{y}-\overline{i j}\right) \cup \overline{i x} \cup \overline{j x}$ of $K_{3,3,1,1}$ as illustrated in Figure 2.2(1) and (2), respectively. Since each of $F_{x}^{(i j)}$ and $F_{y}^{(i j)}$ is homeomorphic to P_{7}, by applying Theorem 2.2(2) to $\left.f\right|_{F_{x}^{(i j)}}$, it follows that

$$
\begin{align*}
& \sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,5}^{(2)}\left(F_{x}^{(i j)}\right) \\
\gamma \in \Gamma_{3}\left(F_{x}^{(i j)}\right), \gamma^{\prime} \in \Gamma_{5}\left(F_{x}^{(i j)}\right)}} \operatorname{lk}(f(\lambda))^{2}+\sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{4,4}^{(2)}\left(F_{x}^{(i j)}\right) \\
x, y \in \gamma^{\prime}}} \operatorname{lk}(f(\lambda))^{2} \tag{2.5}\\
& x \in \gamma, y \in \gamma^{\prime} \\
& +\sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,4}^{(2)}\left(G_{x}\right) \\
\gamma \in \Gamma_{3}\left(\frac{G x}{}\right), \gamma^{\prime} \in \Gamma_{4}\left(G_{x}\right) \\
\bar{i} \nmid \not \subset \lambda, x \in \gamma}} \operatorname{lk}(f(\lambda))^{2} \\
& =2\left\{\sum_{\gamma \in \Gamma_{8}\left(F_{x}^{(i j)}\right)} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{7}\left(G_{x}\right) \\
\bar{i} \not \supset \gamma \gamma}} a_{2}(f(\gamma))\right\} \\
& -4\left\{\sum_{\substack{\gamma \in \Gamma_{7}\left(F_{x}^{(i j)}\right) \\
x \notin \gamma, y \in \gamma}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3}\right) \\
\overline{i j} \not \subset \gamma}} a_{2}(f(\gamma))\right\} \\
& -2\left\{\sum_{\substack{\gamma \in \Gamma_{6}\left(F_{x}^{(i j)}\right) \\
x, y \in \gamma}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{5}\left(G_{x}\right) \\
i j \nsubseteq \not \subset \gamma}} a_{2}(f(\gamma))\right\}+1 .
\end{align*}
$$

Figure 2.2. (1) $F_{x}^{(i j)}$, (2) $F_{y}^{(i j)}(i=1,3,5, j=2,4,6)$

Let us take the sum of both sides of (2.5) over $i=1,3,5$ and $j=2,4,6$. For an element γ in $\Gamma_{8}\left(K_{3,3,1,1}\right)$ of Type A , there uniquely exists $F_{x}^{(i j)}$ containing γ. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\gamma \in \Gamma_{8}\left(F_{x}^{(i j)}\right)}} a_{2}(f(\gamma))\right)=\sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,1,1)} \\ \text { Type } A\right.}} a_{2}(f(\gamma)) . \tag{2.6}
\end{equation*}
$$

For an element γ of $\Gamma_{7}\left(G_{x}\right)$, there exist exactly four edges of $K_{3,3}$ which are not contained in γ. Thus γ is common for exactly four $F_{x}^{(i j)}$,s. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\gamma \in \Gamma_{7}\left(G_{x}\right) \\ \bar{i} \not \supset \not \subset \gamma}} a_{2}(f(\gamma))\right)=4 \sum_{\Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma)) . \tag{2.7}
\end{equation*}
$$

For an element γ in $\Gamma_{7}\left(G_{y}\right)$, there uniquely exists $F_{x}^{(i j)}$ containing γ. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\gamma \in \Gamma_{7}\left(F_{x}^{(i j)}\right) \\ x \notin, y \in \gamma}} a_{2}(f(\gamma))\right)=\sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma)) . \tag{2.8}
\end{equation*}
$$

For an element γ in $\Gamma_{6}\left(K_{3,3}\right)$, there exist exactly three edges of $K_{3,3}$ which are not contained in γ. Thus γ is common for exactly three $F_{x}^{(i j)}$ s. This
implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3}\right) \\ \bar{i} \bar{j} \not \gamma \gamma}} a_{2}(f(\gamma))\right)=3 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \tag{2.9}
\end{equation*}
$$

For an element γ in $\Gamma_{6}\left(K_{3,3,1,1}\right)$ containing x and y, if γ is of Type A, then there uniquely exists $F_{x}^{(i j)}$ containing γ. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\gamma \in \Gamma_{6}\left(F_{x}^{(i j)}\right) \\ x, y \in \gamma}} a_{2}(f(\gamma))\right)=\sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1} \\ x, y \in \gamma,\right. \text { Type A }}} a_{2}(f(\gamma)) . \tag{2.10}
\end{equation*}
$$

For an element γ in $\Gamma_{5}\left(G_{x}\right)$, there exist exactly six edges of $K_{3,3}$ which are not contained in γ. Thus γ is common for exactly six $F_{x}^{(i j)}$,s. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\gamma \in \Gamma_{5}\left(G_{x}\right) \\ \bar{i} \nsubseteq \not \subset \gamma}} a_{2}(f(\gamma))\right)=6 \sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma)) \tag{2.11}
\end{equation*}
$$

For an element $\lambda=\gamma \cup \gamma^{\prime}$ in $\Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)$ where γ is a 3 -cycle and γ^{\prime} is a 5 -cycle, if γ contains x and γ^{\prime} contains y, then there uniquely exists $F_{x}^{(i j)}$ containing λ. This implies that

$$
\sum_{i, j}\left(\begin{array}{c}
\left.\sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,5}^{(2)}\left(F_{x}^{(i j)}\right) \\
\gamma \in \Gamma_{3}\left(F_{x}^{(i j)}\right), \gamma^{\prime} \in \Gamma_{5}\left(F_{x}^{(i j)}\right) \\
x \in \gamma, y \in \gamma^{\prime}}} \operatorname{lk}(f(\lambda))^{2}\right) \tag{2.12}\\
\\
\\
\end{array} \sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,5}^{(2)}\left(K _ { 3 , 3 , 1 , 1) } \\
\gamma \in \Gamma _ { 3 } \left(K_{3,3,3,1)}, \gamma^{\prime} \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
x \in \gamma, y \in \gamma^{\prime}\right.\right.}} \operatorname{lk}(f(\lambda))^{2} .\right.
$$

For an element λ in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$ of Type A, there uniquely exists $F_{x}^{(i j)}$ containing λ. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{4,4}^{(2,)}\left(F_{x}^{(i j)}\right) \\ x, y \in \gamma^{\prime}}} \operatorname{lk}(f(\lambda))^{2}\right)=\sum_{\substack{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1)} \\\right. \text { Type A }}} \operatorname{lk}(f(\lambda))^{2} . \tag{2.13}
\end{equation*}
$$

For an element λ in $\Gamma_{3,4}^{(2)}\left(G_{x}\right)$, there exist exactly four edges of $K_{3,3}$ which are not contained in λ. Thus λ is common for exactly four $F_{x}^{(i j)}$,s. This implies that

$$
\begin{equation*}
\sum_{i, j}\left(\sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,4}^{(2)}\left(G_{x}\right) \\ \gamma \in \Gamma_{3}\left(G_{x}, \gamma^{\prime} \in \Gamma_{4}\left(G_{x}\right) \\ \overline{i j} \not \subset \lambda, x \in \gamma\right.}} \mathrm{lk}(f(\lambda))^{2}\right)=4 \sum_{\substack{\lambda \in \Gamma_{3,4}^{(2)}\left(G_{x}\right)}} \mathrm{lk}(f(\lambda))^{2} . \tag{2.14}
\end{equation*}
$$

Thus by (2.5), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13) and (2.14), we have

$$
\begin{align*}
& \sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1)}\right)}} \operatorname{lk}(f(\lambda))^{2}+\sum_{\substack{\lambda \in \Gamma_{4}^{(2)}\left(K_{3,3,1,1}\right) \\
\text { Type A }}} \operatorname{lk}(f(\lambda))^{2} \tag{2.15}\\
& \gamma \in \Gamma_{3}\left(K_{3,3,1,1}\right), \gamma^{\prime} \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
& x \in \gamma, y \in \gamma^{\prime} \\
& +4 \sum_{\lambda \in \Gamma_{3,4}^{(2)}\left(G_{x}\right)} \operatorname{lk}(f(\lambda))^{2} \\
& =2 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,31,1}\right) \\
\text { Type } A}} a_{2}(f(\gamma))+8 \sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma)) \\
& -4 \sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma))-12 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \\
& -2 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1)} \\
x, y \in \gamma,\right. \text { Type A }}} a_{2}(f(\gamma)) 12 \sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma))+9 .
\end{align*}
$$

Then by combining (2.15) and (2.2), we have

$$
\begin{align*}
& \sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right) \\
\gamma \in \Gamma_{3}\left(K_{3,3,3,1,1}, \gamma^{\prime} \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
x \in \gamma, y \in \gamma^{\prime}\right.}} \operatorname{lk}(f(\lambda))^{2}+\sum_{\substack{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,3,1)} \\
\right. \text { Type A }}} \operatorname{lk}(f(\lambda))^{2} \tag{2.16}\\
& =2 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right) \\
\text { Type }}} a_{2}(f(\gamma))-4 \sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma)) \\
& +4 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma))-2 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1)}\right) \\
x, y \in \gamma, \text { Type A }}} a_{2}(f(\gamma)) \\
& -4 \sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma))+5 .
\end{align*}
$$

By applying Theorem 2.2(2) to $\left.f\right|_{F_{y}^{(i j)}}$ and combining the same argument as in the case of $F_{x}^{(i j)}$ with (2.3), we also have

$$
\begin{align*}
& \sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1)}\right) \\
\gamma \in \Gamma_{3}\left(K_{3,3,3,1)}, \gamma^{\prime} \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
y \in \gamma, x \in \gamma^{\prime}\right.}} \operatorname{lk}(f(\lambda))^{2}+\sum_{\substack{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right) \\
\text { Type A }}} \operatorname{lk}(f(\lambda))^{2} \tag{2.17}\\
& =2 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right) \\
\text { Type A }}} a_{2}(f(\gamma))-4 \sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma))+4 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \\
& \quad-2 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1)}\right) \\
y, x \in \gamma, \text { Type A }}} a_{2}(f(\gamma))-4 \sum_{\gamma \in \Gamma_{5}\left(G_{y}\right)} a_{2}(f(\gamma))+5 .
\end{align*}
$$

Then by adding (2.16) and (2.17), we have the result.
Lemma 2.5. For any element f in $\mathrm{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{align*}
& \sum_{\substack{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1)} \\
\right. \text { Type B }}} \operatorname{lk}(f(\lambda))^{2} \tag{2.18}\\
= & 2 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,3,1,1}\right) \\
\text { Type }}} a_{2}(f(\gamma))+4 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \\
& -2\left\{\sum_{\substack{\gamma \in \Gamma_{6}\left(G_{x}\right) \\
x \in \gamma}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{6}\left(G_{y}\right) \\
y \in \gamma}} a_{2}(f(\gamma))\right\} \\
& -2 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1)}\right) \\
x, y \in \gamma, \text { TypeB }}} a_{2}(f(\gamma))+2 .
\end{align*}
$$

Proof. Let us consider subgraphs $Q_{8}^{(1)}=K_{3,3} \cup \overline{x 1} \cup \overline{x 3} \cup \overline{x 5} \cup \overline{y 2} \cup \overline{y 4} \cup \overline{y 6}$ and $Q_{8}^{(2)}=K_{3,3} \cup \overline{x 2} \cup \overline{x 4} \cup \overline{x 6} \cup \overline{y 1} \cup \overline{y 3} \cup \overline{y 5}$ of $K_{3,3,1,1}$ as illustrated in Figure 2.3(1) and (2), respectively. Since each of $Q_{8}^{(1)}$ and $Q_{8}^{(2)}$ is homeomorphic to Q_{8}, by applying Theorem 2.2(1) to $\left.f\right|_{Q_{8}^{(1)}}$ and $\left.f\right|_{Q_{8}^{(2)}}$, it follows that

$$
\begin{align*}
\sum_{\lambda \in \Gamma_{4,4}^{(2)}\left(Q_{8}^{(i)}\right)} \operatorname{lk}(f(\lambda))^{2}= & 2 \sum_{\gamma \in \Gamma_{8}\left(Q_{8}^{(i)}\right)} a_{2}(f(\gamma))+2 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \tag{2.19}\\
& -2 \sum_{\substack{\gamma \in \Gamma_{6}\left(Q_{8}^{(i)}\right) \\
x \in \gamma, y \notin \gamma}} a_{2}(f(\gamma))-2 \sum_{\substack{\gamma \in \Gamma_{6}\left(Q_{8}^{(i)}\right) \\
x \notin \gamma, y \in \gamma}} a_{2}(f(\gamma)) \\
& -2 \sum_{\substack{\gamma \in \Gamma_{6}\left(Q_{8}^{(i)}\right) \\
x, y \in \gamma}} a_{2}(f(\gamma))+1
\end{align*}
$$

for $i=1,2$. By adding (2.19) for $i=1,2$, we have the result.

(1)

(2)

Figure 2.3. (1) $Q_{8}^{(1)}$, (2) $Q_{8}^{(2)}$

Lemma 2.6. For any element f in $\mathrm{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{align*}
& \sum_{\substack{\left(\in \Gamma ^ { (2) } \left(K_{3,3,1,1} \\
\text { i, } \\
\right.\right. \text { Type C }}} \operatorname{lk}(f(\lambda))^{2} \tag{2.20}\\
= & 2 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right) \\
\text { Type C }}} a_{2}(f(\gamma))-8 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \\
& -2 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1}\right) \\
x, y \in \gamma, \text { Type C }}} a_{2}(f(\gamma))+2 .
\end{align*}
$$

Proof. For $k=1,2, \ldots, 6$, let us consider subgraphs

$$
F_{x}^{(k)}=\left(G_{x}-\overline{x k}\right) \cup \overline{x y} \cup \overline{k y},
$$

$$
F_{y}^{(k)}=\left(G_{y}-\overline{y k}\right) \cup \overline{k x} \cup \overline{y x}
$$

of $K_{3,3,1,1}$ as illustrated in Figure 2.4(1) and (2), respectively. Since each of $F_{x}^{(k)}$ and $F_{y}^{(k)}$ is also homeomorphic to P_{7}, by applying Theorem 2.2(2) to $\left.f\right|_{F_{x}^{(k)}}$, it follows that

$$
=2\left\{\sum_{\gamma \in \Gamma_{8}\left(F_{x}^{(k)}\right)} a_{2}(f(\gamma))+\sum_{\gamma \in \frac{\Gamma_{7}\left(G_{x}\right)}{\bar{k} \not \subset \gamma}} a_{2}(f(\gamma))\right\}
$$

$$
-4 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma))
$$

$$
-2\left\{\sum_{\substack{\gamma \in \Gamma_{6}\left(F_{x}^{(k)}\right) \\ x, y \in \gamma}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{5}\left(G_{x}\right) \\ x k \not \subset \chi \gamma}} a_{2}(f(\gamma))\right\}+1
$$

(1)

(2)

Figure 2.4. (1) $F_{x}^{(k)}$, (2) $F_{y}^{(k)}(k=1,2,3,4,5,6)$
Let us take the sum of both sides of (2.21) over $k=1,2, \ldots, 6$. For an element γ in $\Gamma_{8}\left(K_{3,3,1,1}\right)$, if γ is of Type C, then there uniquely exists $F_{x}^{(k)}$ containing γ. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\gamma \in \Gamma_{8}\left(F_{x}^{(k)}\right)} a_{2}(f(\gamma))\right)=\sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right) \\ \text { Type C }}} a_{2}(f(\gamma)) . \tag{2.22}
\end{equation*}
$$

For an element γ of $\Gamma_{7}\left(G_{x}\right)$, there exist exactly four edges which are incident to x such that they are not contained in γ. Thus γ is common for exactly four $F_{x}^{(k)}$'s. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\frac{\gamma \in \Gamma_{7}\left(G_{x}\right)}{x k \not \subset \gamma}} a_{2}(f(\gamma))\right)=4 \sum_{\Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma)) . \tag{2.23}
\end{equation*}
$$

It is clear that any element γ in $\Gamma_{6}\left(K_{3,3}\right)$ is common for exactly six $F_{x}^{(k)}$,s. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma))\right)=6 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) . \tag{2.24}
\end{equation*}
$$

For an element γ in $\Gamma_{6}\left(K_{3,3,1,1}\right)$ containing x and y, if γ is of Type C, then there uniquely exists $F_{x}^{(k)}$ containing γ. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\substack{\gamma \in \Gamma_{6}\left(F_{x}^{(k)}\right) \\ x, y \in \gamma}} a_{2}(f(\gamma))\right)=\sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1)} \\ x, y \in \gamma,\right. \text { Type C }}} a_{2}(f(\gamma)) . \tag{2.25}
\end{equation*}
$$

For an element γ of $\Gamma_{5}\left(G_{x}\right)$, there exist exactly four edges which are incident to x such that they are not contained in γ. Thus γ is common for exactly four $F_{x}^{(k)}$'s. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\frac{\gamma \in \Gamma_{5}\left(G_{x}\right)}{\overline{x k} \not \subset \gamma}} a_{2}(f(\gamma))\right)=4 \sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma)) . \tag{2.26}
\end{equation*}
$$

For an element $\lambda=\gamma \cup \gamma^{\prime}$ in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$, if λ is of Type C , then there uniquely exists $F_{x}^{(k)}$ containing λ. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\substack{\lambda=\gamma \cup \gamma^{\prime} \in \Gamma_{4,4}^{(2)}\left(F_{x}^{(k)}\right) \\ \text { s,y<f, TypeC }}} \operatorname{lk}(f(\lambda))^{2}\right)=\sum_{\substack{\lambda \in \Gamma_{4.4}^{(2)}\left(K_{3,3,1,1}\right) \\ \text { Type C }}} \operatorname{lk}(f(\lambda))^{2} . \tag{2.27}
\end{equation*}
$$

For an element λ in $\Gamma_{3,4}^{(2)}\left(G_{x}\right)$, there exist exactly four edges which are incident to x such that they are not contained in λ. Thus λ is common for
exactly four $F_{x}^{(k)}$,s. This implies that

$$
\begin{equation*}
\sum_{k}\left(\sum_{\substack{\lambda \in \Gamma_{3,4}^{(2)}\left(G_{x}\right) \\ \overline{x k} \not \subset \lambda}} \mathrm{lk}(f(\lambda))^{2}\right)=4 \sum_{\lambda \in \Gamma_{3,4}^{(2)}\left(G_{x}\right)} \mathrm{lk}(f(\lambda))^{2} . \tag{2.28}
\end{equation*}
$$

Then by (2.21), (2.22), (2.23), (2.24), (2.25), (2.26), (2.27) and (2.28), we have

$$
\begin{align*}
& \sum_{\substack{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,3,1}\right) \\
\text { Type C }}} \operatorname{lk}(f(\lambda))^{2}+4 \sum_{\lambda \in \Gamma_{3,4}^{(2)}\left(G_{x}\right)} \operatorname{lk}(f(\lambda))^{2} \tag{2.29}\\
= & 2 \sum_{\substack{\gamma \in \Gamma_{8}\left(K_{3,3,31,1}\right) \\
\text { Type C }}} a_{2}(f(\gamma))+8 \sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma))-24 \sum_{\gamma \in \Gamma_{6}\left(K_{3,3}\right)} a_{2}(f(\gamma)) \\
& -2 \sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,1,1)}\right) \\
x, y \in \gamma, \operatorname{Type~C~C~}^{2}}} a_{2}(f(\gamma))-8 \sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma))+6 .
\end{align*}
$$

Then by combining (2.29) and (2.2), we have the reslut. We remark here that by by applying Theorem 2.2 (2) to $\left.f\right|_{F_{y}^{(k)}}$ combining the same argument as in the case of $F_{x}^{(k)}$ with (2.3), we also have (2.20).

Proof of Theorem 1.4. (1) Let f be an element in $\operatorname{SE}\left(K_{3,3,1,1}\right)$. Then by combining (2.4), (2.18) and (2.20), we have

$$
\begin{aligned}
& \sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)} \operatorname{lk}(f(\lambda))^{2}+2 \sum_{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)} 1 \mathrm{k}(f(\lambda))^{2} \\
= & 4 \sum_{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right)} a_{2}(f(\gamma))-4\left\{\sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma))+\sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma))\right\} \\
& -4\left\{\sum_{\substack{\gamma \in \Gamma_{6}\left(G_{x}\right) \\
x \in \gamma}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{6}\left(G_{y}\right) \\
y \in \gamma}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{6}\left(K_{3,3,3,1}\right) \\
x, y \in \gamma \\
\text { Type } \mathrm{A}, \mathrm{~B}, \mathrm{C}}} a_{2}(f(\gamma))\right\} \\
& -4\left\{\sum_{\gamma \in \Gamma_{5}\left(G_{x}\right)} a_{2}(f(\gamma))+\sum_{\gamma \in \Gamma_{5}\left(G_{y}\right)} a_{2}(f(\gamma))\right\}+18 .
\end{aligned}
$$

Note that

$$
\Gamma_{k}\left(G_{x}\right) \cup \Gamma_{k}\left(G_{y}\right)=\left\{\gamma \in \Gamma_{k}\left(K_{3,3,1,1}\right) \mid\{x, y\} \not \subset \gamma\right\}
$$

for $k=5,7$. Moreover, we define a subset Γ_{6}^{\prime} of $\Gamma_{6}\left(K_{3,3,1,1}\right)$ by

$$
\begin{align*}
\Gamma_{6}^{\prime}= & \left\{\gamma \in \Gamma_{6}\left(G_{x}\right) \mid x \in \gamma\right\} \cup\left\{\gamma \in \Gamma_{6}\left(G_{y}\right) \mid y \in \gamma\right\} \tag{2.31}\\
& \cup\left\{\gamma \in \Gamma_{6}\left(K_{3,3,1,1}\right) \mid x, y \in \gamma, \gamma \text { is of Type } \mathrm{A}, \mathrm{~B} \text { or } \mathrm{C}\right\}
\end{align*}
$$

Then we see that (2.30) implies (1.3).
(2) Let f be an element in $\mathrm{SE}\left(K_{3,3,1,1}\right)$. Let us consider subgraphs $H_{1}=$ $Q_{8}^{(1)} \cup \overline{x y}$ and $H_{2}=Q_{8}^{(2)} \cup \overline{x y}$ of $K_{3,3,1,1}$ as illustrated in Figure 2.5(1) and (2), respectively. For $i=1,2, H_{i}$ has the proper minor $H_{i}^{\prime}=H_{i} / \overline{x y}$ which is isomorphic to P_{7}. For a spatial embedding $\left.f\right|_{H_{i}}$ of H_{i}, there exists a spatial embedding f^{\prime} of H_{i}^{\prime} such that $f^{\prime}\left(H_{i}^{\prime}\right)$ is obtained from $f\left(H_{i}\right)$ by contracting $f(\overline{x y})$ into one point. Note that this embedding is unique up to ambient isotopy in \mathbb{R}^{3}. Then by Corollary 2.3 , there exists an element μ_{i}^{\prime} in $\Gamma_{3,4}^{(2)}\left(H_{i}^{\prime}\right)$ such that $\operatorname{lk}\left(f^{\prime}\left(\mu_{i}^{\prime}\right)\right) \equiv 1(\bmod 2)(i=1,2)$. Note that μ_{i}^{\prime} is mapped onto an element μ_{i} in $\Gamma_{4,4}\left(H_{i}\right)$ by the natural injection from $\Gamma_{3,4}\left(H_{i}^{\prime}\right)$ to $\Gamma_{4,4}\left(H_{i}\right)$. Since $f^{\prime}\left(\mu_{i}^{\prime}\right)$ is ambient isotopic to $f\left(\mu_{i}\right)$, we have $\operatorname{lk}\left(f\left(\mu_{i}\right)\right) \equiv 1$ $(\bmod 2)(i=1,2)$. We also note that both μ_{1} and μ_{2} are of Type C in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$.

Figure 2.5. (1) H_{1}, (2) H_{2}
For $v=x, y$ and $i, j, k=1,2, \ldots, 6(i \neq j)$, let $P_{8}^{(k)}(v ; i j)$ be the subgraph of $K_{3,3,1,1}$ as illustrated in Figure 2.6 (1) if $v=y, k \in\{1,3,5\}$ and $i, j \in\{2,4,6\}$, (2) if $v=y, k \in\{2,4,6\}$ and $i, j \in\{1,3,5\}$, (3) if $v=x, k \in\{1,3,5\}$ and $i, j \in\{2,4,6\}$ and (4) if $v=x, k \in\{2,4,6\}$ and $i, j \in\{1,3,5\}$. Note that there exist exactly thirty $\operatorname{six} P_{8}^{(k)}(v ; i j)$'s and they are isomorphic to P_{8} in the K_{6}-family. Thus by Corollary 2.3 , there exists an element λ in $\Gamma^{(2)}\left(P_{8}^{(k)}(v ; i j)\right)$ such that $\operatorname{lk}(f(\lambda)) \equiv 1(\bmod 2)$. All elements in $\Gamma^{(2)}\left(P_{8}^{(k)}(v ; i j)\right)$ consist of exactly four elements in $\Gamma_{3,5}^{(2)}\left(P_{8}^{(k)}(v ; i j)\right)$
and exactly four elements in $\Gamma_{4,4}^{(2)}\left(P_{8}^{(k)}(v ; i j)\right)$ of Type A or Type B because they do not contain the edge $\overline{x y}$. It is not hard to see that any element in $\Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)$ is common for exactly two $P_{8}^{(k)}(v ; i j)$'s, and any element in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$ of Type A or Type B is common for exactly four $P_{8}^{(k)}(v ; i j)$'s.

Figure 2.6. $P_{8}^{(k)}(v ; i j)$
By (2.4), there exist a nonnegative integer m such that

$$
\sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1)}\right.} \operatorname{lk}(f(\lambda))^{2}=2 m .
$$

If $2 m \geq 18$, since there exist at least two elements μ_{1} and μ_{2} in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$ of Type C such that $\operatorname{lk}\left(f\left(\mu_{i}\right)\right) \equiv 1(\bmod 2)(i=1,2)$, we have

$$
\sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)} \operatorname{lk}(f(\lambda))^{2}+2 \sum_{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)} \operatorname{lk}(f(\lambda))^{2} \geq 18+4=22 .
$$

If $2 m \leq 16$, then there exist at least $(36-4 m) / 4=9-m$ elements in $\Gamma_{4,4}^{(2)}\left(K_{3,3,1,1}\right)$ of Type A or Type B such that each of the corresponding 2component links with respect to f has an odd linking number. Then we have

$$
\begin{aligned}
\sum_{\lambda \in \Gamma_{3,5}^{(2)}\left(K_{3,3,1,1}\right)} \operatorname{lk}(f(\lambda))^{2}+2 \sum_{\lambda \in \Gamma_{4,4}^{(2)}\left(K_{3,3,3,1}\right)} & \mathrm{lk}(f(\lambda))^{2} \\
& \geq 2 m+2\{(9-m)+2\}=22 .
\end{aligned}
$$

3. $\triangle \boldsymbol{Y}$-exchange and Conway-Gordon type formulae

In this section, we give a proof of Theorem 1.8. Let G_{\triangle} and G_{Y} be two graphs such that G_{Y} is obtained from G_{\triangle} by a single $\triangle Y$-exchange. Let γ^{\prime} be an element in $\Gamma\left(G_{\triangle}\right)$ which does not contain \triangle. Then there exists an
element $\Phi\left(\gamma^{\prime}\right)$ in $\Gamma\left(G_{Y}\right)$ such that $\gamma^{\prime} \backslash \triangle=\Phi\left(\gamma^{\prime}\right) \backslash Y$. It is easy to see that the correspondence from γ^{\prime} to $\Phi\left(\gamma^{\prime}\right)$ defines a surjective map

$$
\Phi: \Gamma\left(G_{\triangle}\right) \backslash\{\triangle\} \longrightarrow \Gamma\left(G_{Y}\right)
$$

The inverse image of an element γ in $\Gamma\left(G_{Y}\right)$ by Φ contains at most two elements in $\Gamma\left(G_{\triangle}\right) \backslash \Gamma_{\triangle}\left(G_{\triangle}\right)$. Figure 3.1 illustrates the case that the inverse image of γ by consists of exactly two elements. Let ω be a map from $\Gamma\left(G_{\triangle}\right)$ to \mathbb{Z}. Then we define the map $\tilde{\omega}$ from $\Gamma\left(G_{Y}\right)$ to \mathbb{Z} by

$$
\begin{equation*}
\tilde{\omega}(\gamma)=\sum_{\gamma^{\prime} \in \Phi^{-1}(\gamma)} \omega\left(\gamma^{\prime}\right) \tag{3.1}
\end{equation*}
$$

for an element γ in $\Gamma\left(G_{Y}\right)$.

Figure 3.1.
Let f be an element in $\mathrm{SE}\left(G_{Y}\right)$ and D a 2-disk in \mathbb{R}^{3} such that $D \cap$ $f\left(G_{Y}\right)=f(Y)$ and $\partial D \cap f\left(G_{Y}\right)=\{f(u), f(v), f(w)\}$. Let $\varphi(f)$ be an element in $\mathrm{SE}\left(G_{\triangle}\right)$ such that $\varphi(f)(x)=f(x)$ for $x \in G_{\triangle} \backslash \triangle=G_{Y} \backslash Y$ and $\varphi(f)\left(G_{\triangle}\right)=\left(f\left(G_{Y}\right) \backslash f(Y)\right) \cup \partial D$. Thus we obtain a map

$$
\varphi: \mathrm{SE}\left(G_{Y}\right) \longrightarrow \mathrm{SE}\left(G_{\triangle}\right) .
$$

Then we immediately have the following.
Proposition 3.1. Let f be an element in $\mathrm{SE}\left(G_{Y}\right)$ and γ an element in $\Gamma\left(G_{Y}\right)$. Then, $f(\gamma)$ is ambient isotopic to $\varphi(f)\left(\gamma^{\prime}\right)$ for each element γ^{\prime} in the inverse image of γ by Φ.

Then we have the following lemma which plays a key role to prove Theorem 1.8. This lemma has already been shown in [NT, Lemma 2.2] in more general form, but we give a proof for the reader's convenience.

Lemma 3.2 (Nikkuni-Taniyama [NT]). For an element f in $\operatorname{SE}\left(G_{Y}\right)$,

$$
\sum_{\gamma \in \Gamma\left(G_{Y}\right)} \tilde{\omega}(\gamma) a_{2}(f(\gamma))=\sum_{\gamma^{\prime} \in \Gamma\left(G_{\Delta}\right)} \omega\left(\gamma^{\prime}\right) a_{2}\left(\varphi(f)\left(\gamma^{\prime}\right)\right) .
$$

Proof. Since $\varphi(f)(\triangle)$ is the trivial knot, we have

$$
\sum_{\gamma^{\prime} \in \Gamma\left(G_{\Delta}\right)} \omega\left(\gamma^{\prime}\right) a_{2}\left(\varphi(f)\left(\gamma^{\prime}\right)\right)=\sum_{\gamma^{\prime} \in \Gamma\left(G_{\Delta}\right) \backslash\{\Delta\}} \omega\left(\gamma^{\prime}\right) a_{2}\left(\varphi(f)\left(\gamma^{\prime}\right)\right) .
$$

Note that

$$
\Gamma\left(G_{\triangle}\right) \backslash\{\triangle\}=\bigcup_{\gamma \in \Gamma\left(G_{Y}\right)} \Phi^{-1}(\gamma) .
$$

Then, by Proposition 3.1, we see that

$$
\begin{aligned}
\sum_{\gamma^{\prime} \in \Gamma\left(G_{\Delta}\right) \backslash\{\Delta\}} \omega\left(\gamma^{\prime}\right) a_{2}\left(\varphi(f)\left(\gamma^{\prime}\right)\right) & =\sum_{\gamma \in \Gamma\left(G_{Y}\right)}\left(\sum_{\gamma^{\prime} \in \Phi^{-1}(\gamma)} \omega\left(\gamma^{\prime}\right) a_{2}\left(\varphi(f)\left(\gamma^{\prime}\right)\right)\right) \\
& =\sum_{\gamma \in \Gamma\left(G_{Y}\right)}\left(\sum_{\gamma^{\prime} \in \Phi^{-1}(\gamma)} \omega(\gamma) a_{2}(f(\gamma))\right) \\
& =\sum_{\gamma \in \Gamma\left(G_{Y}\right)} \tilde{\omega}(\gamma) a_{2}(f(\gamma)) .
\end{aligned}
$$

Proof of Theorem 1.8. By Corollary 1.5, there exists a map

$$
\omega: \Gamma\left(K_{3,3,1,1}\right) \rightarrow \mathbb{Z}
$$

such that for any element g in $\operatorname{SE}\left(K_{3,3,1,1}\right)$,

$$
\begin{equation*}
\sum_{\gamma^{\prime} \in \Gamma\left(K_{3,3,1,1}\right)} \omega\left(\gamma^{\prime}\right) a_{2}\left(g\left(\gamma^{\prime}\right)\right) \geq 1 . \tag{3.2}
\end{equation*}
$$

Let G be a graph which is obtained from $K_{3,3,1,1}$ by a single $\triangle Y$-exchange and $\tilde{\omega}$ the map from $\Gamma(G)$ to \mathbb{Z} as in (3.1). Let f be an element in $\operatorname{SE}(G)$. Then by Lemma 3.2 and (3.2), we see that

$$
\sum_{\gamma \in \Gamma(G)} \tilde{\omega}(\gamma) a_{2}(f(\gamma))=\sum_{\gamma^{\prime} \in \Gamma\left(K_{3,3,1,1}\right)} \omega\left(\gamma^{\prime}\right) a_{2}\left(\varphi(f)\left(\gamma^{\prime}\right)\right) \geq 1 .
$$

By repeating this argument, we have the result.
Remark 3.3. In Theorem 1.8, the proof of the existence of a map ω is constructive. It is also an interesting problem to give $\omega(\gamma)$ for each element γ in $\Gamma(G)$ concretely.

4. Rectilinear spatial embeddings of $\boldsymbol{K}_{\mathbf{3 , 3 , 1 , 1}}$

In this section, we give a proof of Theorem 1.9. For an element f in $\operatorname{RSE}(G)$ and an element γ in $\Gamma_{k}(G)$, the knot $f(\gamma)$ has stick number less than or equal to k, where the stick number $s(K)$ of a knot K is the minimum number of edges in a polygon which represents K. Then the following is well known.

Proposition 4.1 (Adams [A], Negami [Ne]). For any nontrivial knot K, it follows that $s(K) \geq 6$. Moreover, $s(K)=6$ if and only if K is a trefoil knot.

We also show a lemma for a rectilinear spatial embedding of P_{7} which is useful in proving Theorem 1.9.
Lemma 4.2. For an element f in $\operatorname{RSE}\left(P_{7}\right)$,

$$
\sum_{\gamma \in \Gamma_{7}\left(P_{7}\right)} a_{2}(f(\gamma)) \geq 0 .
$$

Proof. Note that $a_{2}($ trivial knot $)=0$ and a_{2} (trefoil knot $)=1$. Thus by Proposition 4.1, $a_{2}(f(\gamma))=0$ for any element γ in $\Gamma_{5}\left(P_{7}\right)$ and $a_{2}(f(\gamma)) \geq 0$ for any element γ in $\Gamma_{6}\left(P_{7}\right)$. Moreover, by Corollary 2.3, we have

$$
\begin{equation*}
\sum_{\lambda \in \Gamma_{3,4}^{(2)}\left(P_{7}\right)} \operatorname{lk}(f(\lambda))^{2} \geq 1 \tag{4.1}
\end{equation*}
$$

Then Theorem 2.2(2) implies the result.
Proof of Theorem 1.9. Let f be an element in $\operatorname{RSE}\left(\mathrm{K}_{3,3,1,1}\right)$. Since G_{x} and G_{y} are isomorphic to P_{7}, by Lemma 4.2, we have

$$
\begin{equation*}
\sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma)) \geq 0, \sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma)) \geq 0 . \tag{4.2}
\end{equation*}
$$

Then by Corollary 1.5 and (4.2), we have

$$
\begin{aligned}
\sum_{\gamma \in \Gamma_{8}\left(K_{3,3,1,1}\right)} a_{2}(f(\gamma)) \geq & \sum_{\gamma \in \Gamma_{7}\left(G_{x}\right)} a_{2}(f(\gamma))+\sum_{\gamma \in \Gamma_{7}\left(G_{y}\right)} a_{2}(f(\gamma)) \\
& +\sum_{\gamma \in \Gamma_{6}^{\prime}} a_{2}(f(\gamma))+\sum_{\substack{\gamma \in \Gamma_{5}\left(K_{3,3,1,1}\right) \\
\{x, y\} \nless \chi}} a_{2}(f(\gamma))+1 \\
\geq & 0+0+0+0+1 \\
= & 1 .
\end{aligned}
$$

Remark 4.3. All of knots with $s \leq 8$ and $a_{2}>0$ are $3_{1}, 5_{1}, 5_{2}, 6_{3}$, a square knot, a granny knot, 8_{19} and 8_{20} (Calvo [C]). Therefore, Theorem 1.9 implies that at least one of them appears in the image of every rectilinear spatial embedding of $K_{3,3,1,1}$. On the other hand, it is known that the image of every rectilinear spatial embedding of K_{7} contains a trefoil knot (Brown
[B], Ramírez Alfonsín [RA], Nikkuni [N]). It is still open whether the image of every rectilinear spatial embedding of $K_{3,3,1,1}$ contains a trefoil knot.

References

[A] Adams, Colin C. The knot book. An elementary introduction to the mathematical theory of knots. Revised reprint of the 1994 original. American Mathematical Society, Providence, RI, 2004. xiv+307 pp. ISBN: 0-8218-3678-1. MR2079925 (2005b:57009), Zbl 1065.57003.
[B] Brown, A.F. Embeddings of graphs in E^{3}. Ph. D. Dissertation, Kent State University, 1977.
[C] Calvo, Jorge Alberto. Geometric knot spaces and polygonal isotopy, Knots in Hellas '98, Vol. 2 (Delphi). J. Knot Theory Ramifications 10 (2001), no. 2, 245-267. MR1822491 (2002b:57002), Zbl 1001.57024, arXiv:math/9904037, doi: 10.1142/S0218216501000834.
[CG] Conway, J.H.; Gordon, C. McA. Knots and links in spatial graphs. J. Graph Theory $\mathbf{7}$ (1983), no. 4, 445-453. MR0722061 (85d:57002), Zbl 0524.05028, doi: 10.1002/jgt. 3190070410.
[FL] Fellows, Michael R.; Langston, Michael A. Nonconstructive tools for proving polynomial-time decidability. J. Assoc. Comput. Mach. 35 (1988), no. 3, 727-739. MR0963169 (90i:68046), Zbl 0652.68049, doi: 10.1145/44483.44491.
[FN] Flapan, Erica; Naimi, Ramin. The Y-triangle move does not preserve intrinsic knottedness. Osaka J. Math. 45 (2008), no. 1, 107-111. MR2416651 (2009b:05078), Zbl 1145.05019, arXiv:1205.4798.
[F02] Foisy, Joel. Intrinsically knotted graphs. J. Graph Theory 39 (2002), no. 3, 178-187. MR1883594 (2003a:05051), Zbl 1176.05022, doi: 10.1002/jgt.10017.
[F04] Foisy, Joel. A newly recognized intrinsically knotted graph. J. Graph Theory 43 (2003), no. 3, 199-209. MR1985767 (2004c:05058), Zbl 1022.05019, doi: 10.1002/jgt. 10114.
[FL] Foisy, Joel S.; Ludwig, Lewis D. When graph theory meets knot theory. Communicating mathematics, 67-85, Contemp. Math., 479. Amer. Math. Soc., Providence, RI, 2009. MR2513358 (2010j:57003), Zbl 1184.05027.
[GMn] Goldberg, Noam; Mattman, Thomas W.; Naimi, Ramin. Many, many more intrinsically knotted graphs. Preprint, 2011. arXiv:1109.1632.
[HNTY] Hanaki, Ryo; Nikkuni, Ryo; Taniyama, Kouki; Yamazaki, Akiko. On intrinsically knotted or completely 3-linked graphs. Pacific J. Math. 252 (2011), no. 2, 407-425. MR2860431 (2012k:57007), Zbl 1232.57003, arXiv:1006.0698, doi: $10.2140 / \mathrm{pjm} .2011 .252 .407$.
[HN] Hashimoto, Hiroka; Nikkuni, Ryo. On Conway-Gordon type theorems for graphs in the Petersen family. J. Knot Theory Ramifications 22 (2013), no. 9, 1350048, 15 pp. MR3105307, Zbl 06212952, doi: 10.1142/S021821651350048X.
[KS] Kohara, Takashi; Suzuki, Shin'ichi. Some remarks on knots and links in spatial graphs. Knots 90 (Osaka, 1990), 435-445, de Gruyter, Berlin, 1992. MR1177440 (93i:57004), Zbl 0771.57002.
[MRS] Motwani, R.; Raghunathan, A.; Saran, H. Constructive results from graph minors: Linkless embeddings. 29th Annual Symposium on Foundations of Computer Science, IEEE, 1988, 398-409. doi: 10.1109/SFCS.1988.21956.
[Ne] Negami, Seiya. Ramsey theorems for knots, links and spatial graphs. Trans. Amer. Math. Soc. 324 (1991), no. 2, 527-541. MR1069741 (92h:57014), Zbl 0721.57004, doi: 10.1090/S0002-9947-1991-1069741-9.
[NeTh] Nešetřil, Jaroslav; Thomas, Robin. A note on spatial representation of graphs. Comment. Math. Univ. Carolin. 26 (1985), no. 4, 655-659. MR0831801 (87e:05063), Zbl 0602.05024, http://hdl.handle.net/10338.dmlcz/106404.
[N] Nikkuni, Ryo. A refinement of the Conway-Gordon theorems. Topology Appl. 156 (2009), no. 17, 2782-2794. MR2556036 (2010i:57007), Zbl 1185.57003, arXiv:0907.0152, doi: 10.1016/j.topol.2009.08.013.
[NT] Nikkuni, Ryo; Taniyama, Kouki. $\triangle Y$-exchanges and the Conway-Gordon theorems. J. Knot Theory Ramifications 21 (2012), no. 7, 1250067, 14 pp. MR2911083, Zbl 1239.57007, arXiv:1104.0828, doi: 10.1142/S0218216512500678.
[O] O'Donnol, Danielle. Knotting and linking in the Petersen family. Preprint, 2010. arXiv:1008.0377.
[RA] Ramírez Alfonsín, J.L. Spatial graphs and oriented matroids: the trefoil. Discrete Comput. Geom. 22 (1999), no. 1, 149-158. MR1692678 (2000c:05056), Zbl 0931.05061, doi: 10.1007/PL00009446.
[RS] Robertson, Neil; Seymour, P. D. Graph minors. XX. Wagner's conjecture. J. Combin. Theory Ser. B 92 (2004), no. 2, 325-357. MR2099147 (2005m:05204), Zbl 1061.05088, doi: 10.1016/j.jctb.2004.08.001.
[RST] Robertson, Neil; Seymour, Paul; Thomas, Robin. Sachs' linkless embedding conjecture. J. Combin. Theory Ser. B64 (1995), no. 2, 185-227. MR1339849 (96m:05072), Zbl 0832.05032, doi: 10.1006/jctb.1995.1032.
[S] Sachs, H. On spatial representations of finite graphs. Finite and infinite sets, Vol. I, II (Eger, 1981), 649-662, Colloq. Math. Soc. Janos Bolyai, 37. NorthHolland, Amsterdam, 1984. MR0818267 (87c:05055), Zbl 0568.05026.
[TY] Taniyama, Kouki; Yasuhara, Akira. Realization of knots and links in a spatial graph. Topology Appl. 112 (2001), no. 1, 87-109. MR1815273 (2002e:57005), Zbl 0968.57001, doi: 10.1016/S0166-8641(99)00228-X.
(Hiroka Hashimoto) Division of Mathematics, Graduate School of Science, Tokyo Woman's Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
etiscatbird@yahoo.co.jp
(Ryo Nikkuni) Department of Mathematics, School of Arts and Sciences, Tokyo Woman's Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
nick@lab.twcu.ac.jp
This paper is available via http://nyjm.albany.edu/j/2014/20-27.html.

[^0]: Received August 29, 2013.
 2010 Mathematics Subject Classification. Primary 57M15; Secondary 57M25.
 Key words and phrases. Spatial graph, Intrinsic knottedness, Rectilinear spatial graph.
 The second author was partially supported by Grant-in-Aid for Young Scientists (B) (No. 21740046), Japan Society for the Promotion of Science.

