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A short note on p-adic families of Hilbert
modular forms

Aftab Pande

Abstract. We extend previous work of the author using an idea of Buz-
zard and give an elementary construction of nonordinary p-adic families
of Hilbert modular eigenforms.
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1. Introduction

The notion of p-adic analytic families of modular forms started with Serre
[S] using p-adic Eisenstein series. Hida ([H2], [H3]) showed examples of cus-
pidal eigenforms of slope zero or ordinary cuspidal eigenforms. For nonordi-
nary cuspidal eigenforms, the conjectures of Gouvea–Mazur [GM] asserted
local constancy of the dimensions of the slope spaces. Then, Coleman [C]
showed that almost every overconvergent eigenform of finite slope lives in a
p-adic family; these results were generalized by Coleman–Mazur [CM] into a
geometric object called the eigencurve which is a rigid-analytic curve whose
points correspond to normalized finite-slope p-adic overconvergent modular
eigenforms of a fixed tame level N . In the case of Hilbert modular forms,
Kisin–Lai [KL] extended the construction of the eigencurve and showed that
a finite slope Hilbert modular eigenform can be deformed into a one param-
eter family of finite slope eigenforms.

In this short note, we use an idea of Buzzard [B] and give an elementary
construction of a p-adic family of Hilbert modular eigenforms. In previous
work of the author [P], results on local constancy of slope α spaces of Hilbert
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modular forms were obtained in the spirit of the Gouvea–Mazur conjectures.
Using the same setting as in [P], and assuming the dimensions of the slope α
spaces is 1, we are able to obtain a p-adic family of Hilbert modular forms.

Theorem 1.1. Let D(k, α) be the number of eigenvalues of slope α of the Up
operator acting on SDk (U,R), the space of Hilbert modular forms of weight
k. Assuming that the slope α spaces have dimension 1 with Fk the unique
eigenform of slope α and ak(t) the eigenvalue of t on Fk with

κ = bc1n1/d+1 − 1− 3αc,
if n > (κ+1+3α

c1
)d+1and k,k′ sufficiently large are congruent to k0 and k ≡ k′

mod pn−1 we have for all t ∈ T, ak(t) ≡ ak′(t) mod pκ.

2. Overview

Definition. Let c ∈ Zp and for r ≥ 0, let

B(c, r) = {k ∈ Zp : |k − c| < r}.
Let N be an integer prime to p. Then a p-adic family of modular forms of
level N is a formal power series: ∑

n≥0
Fnq

n,

where each Fn : B(c, r)→ Cp is a p-adic analytic function, with the property
that for all sufficiently large (rational) integers k, each

∑
Fn(k)qn is the

Fourier expansion of a modular form of weight k.

The p-adic Eisenstein series E∗k(z) = Ek(z)− pk−1Ek(pz) are an example
of a p-adic family of noncuspidal eigenforms.

After Hida’s work on slope zero (ordinary) eigenforms Gouvea and Mazur
[GM] made some very precise conjectures about the dimensions of the nonzero
slope α spaces. Let d(k, α) be the dimension of the slope α subspace of the
space of classical cuspidal eigenforms of weight k for the Tp operators. If
k1, k2 > 2α + 2, and k1 ≡ k2 mod pn(p − 1) then, d(k1, α) = d(k2, α) (this
condition is called local constancy). Buzzard and Calegari [BC] later showed
the conjecture is not true.

In [P], we obtained results on local constancy for Hilbert modular forms
by finding bounds for the Newton polygons using methods of Buzzard [B].
We give a brief description of Newton polygons here.

Let L be a finite free Zp-module equipped with a Zp-linear endomorphism

ξ and
∑t

s=o csX
t−s be the characteristic polynomial of ξ acting on L⊗Qp.

Let C denote the convex hull of the points (i, vp(ci)) in R2, for 0 ≤ i ≤ t,
ignoring the i for which ci = 0. The Newton polygon of ξ on L is the lower
faces of C, that is the union of the sides forming the lower of the two routes
from (0, 0) to (t, vp(ct)) on the boundary of C. If the Newton polygon has
a side of slope α whose projection onto the x axis has length n, then there
are precisely n eigenvectors of ξ with p-adic valuation equal to α.
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Our strategy is as follows:
L will correspond to a space of automorphic forms and we will define K

to be a submodule of L such that L/K ≡ ⊕O/paiO with the ai decreasing
and ai ≤ n, where n is fixed. We consider the characteristic polynomial
p(x) of ξ (which corresponds to the Up operator) acting on L and plot
its Newton polygon. We let L′ be a space of forms corresponding to a
different weight, and choose K ′ to be a submodule similar to K such that
modulo a certain power of p the spaces L/K and L′/K ′are isomorphic.
This isomorphism leads to congruences of the coefficients of the respective
characteristic polynomials. This tells us that the Newton polygons of fixed
slope coincide which gives us local constancy of the slope α spaces. When
the dimension is assumed to be one, there exists a unique eigenform f ∈ L
for Up with eigenvalue of slope α. Using a result of Buzzard we show that
these f ’s form a family of eigenforms.

3. Definitions and setup

We refer the reader to [P] for the details and summarize the results here.
Let F be a totally real field, [F : Q] = d, where d is even with D a totally

definite quaternion algebra over F , unramified at all finite places and fix OD
to be a maximal order of D. Fix an isomorphism D⊗F K ∼= M2(K), where
K is a Galois extension of Q, which splits D, with F ⊆ K.

Fix k = (kτ ) ∈ ZI such that each component kτ is ≥ 2 and all components
have the same parity. Set t = (1, 1, . . . , 1) ∈ ZI and set m = k − 2t. Also
choose v ∈ ZI such that each vτ ≥ 0, some vτ = 0 and m + 2v = µt for
some µ ∈ Z≥0. Let A be the ring of adeles and G = ResF/QD

∗ the algebraic
group defined by restriction of scalars.

Let R be any commutative ring. For any R-algebra A and for a, b ∈ Z≥0,
we let Sa,b(A) denote the M2(R)-module Symma(A2) (the ath symmetric

power) with an action by M2(R) given by xα = (detα)bxSa(α). If A2 has
a natural basis e1, e2, then Sa,b(A) has a basis f0, . . . , fa where each

fi = e⊗i1 ⊗ e
⊗(a−i)
2 .

If k ∈ Z[I] and m,v, µ are as before we set Lk = ⊗τ∈ISmτ ,vτ (C). If R is a
ring such that OK,v ⊆ R, for some v|p, then, Lk(R) = ⊗τ∈ISmτ ,vτ (R)

We let p be a rational prime which is inert in K, M be the semigroup in

M2(OF,p) consisting of matrices

(
a b
c d

)
such that c ≡ 0 mod p and d ≡ 1

mod p. Let U ⊆ Gf (where Gf = G(Af ) with Af the finite adeles) be an
open compact subgroup such that the projection to G(Fp) lies inside M . If
u ∈ U , let up ∈ G(Fp) denote the image under the projection map.
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If f : G(A)→ Lk(R) and u = uf .u∞ ∈ G(A) then the weight k operator
is defined as:

(f |ku)(x) = u∞f(x.u−1), when R = C,

(f ||ku)(x) = upf(x.u−1), when R is an OK,p-algebra.

Using the definition of the weight k operator we can define the space of
automorphic forms for D, of level U and weight k as:

SDk (U) = {f : D∗ \G(A)→ Lk | f |ku = f,∀u ∈ U}
= {f : Gf/U → Lk | f(α.x) = α.f(x),∀α ∈ D∗},

SDk (U,R) = {f : D∗ \G(A)→ Lk(R) | f ||ku = f, ∀u ∈ U}.

The purpose of introducing SDk (U,R) is to give SDk (U) an integral struc-

ture which allows us to think of SDk (U,R) as ⊕γi∈X(U)(γiLk(R))D
∗∩γiUγ−1

i .

Thus, we see that SDk (U,R) is an R-lattice in SDk (U).
Let X(U) = D∗\Gf/U . We know this is finite, so let h = |X(U)| and let

{γi}hi=1 be the coset representatives. Hence we can write

Gf =
h∐
i=1

D∗.γi.U.

Define Γ̃i(U) := D∗ ∩ γi.U.GD∞.γ−1i and let Γi(U) := Γ̃i(U)/Γ̃i(U) ∩ F ∗.
Due to a result by Hida [H1, Sec. 7], U can be chosen such that the Γi(U)

are torsion free for all i. Coupled with the statements above, this means
that the Γi(U) are trivial, provided U is chosen carefully.

4. Results

We follow the description in [B]. Let L be a R[ξ, ψ]-module which is finite
and free over R, K a submodule of L of finite index so that

L/K ∼= ⊕ri=1O/p
aiO (ai ≤ n)

and ξ(K) ⊂ pnL. Let L′ be another R[ξ, ψ]-module with K ′ a submodule of
finite index such that ξ(K ′) ⊂ pnL′ and L/K ∼= L′/K ′ as R[ξ, ψ]-modules.

Define B(j) =
∑j

i=1 b(i) where bi = n − ai, and T (j) = M + B(j − 1),
where M is the smallest integer such that 2M ≥ n. These functions B and T
can be thought of as the top and bottom boundaries of the Newton polygon
of ξ acting on L.

Let c(L/K) = infi≥0{T (i)/i}. This will be the slope of the largest line
through the origin that does not lie above T . Assume that for all integers
n′ with n − 2α ≤ n′ ≤ n we have α < c(L/(K + pn

′
L)). Let κ be any

positive integer such that κ ≤ n− 2α and α < c(L/(K+ pn
′
L)) for n′ where

n− 2α− κ < n′ ≤ n.
Let pαu, pαu′ be the roots of slope α of the characteristic polynomials

of ξ acting on L,L′. Choose F ∈ L but F /∈ pL such that ξ(F ) = pαuF
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and F ′ ∈ L′ (F ′ /∈ pL′) using the isomorphism of L/K ∼= L′/K ′ such that

ξ(F ′) = pα
′
u′F ′. Since ξ and ψ commute, F, F ′ are eigenvectors for ψ as

well. Let a be the eigenvalue of ψ acting on F and a′ the eigenvalue of ψ on
F ′. In [B], he proved the following proposition.

Proposition 4.1. a and a′ are congruent modulo pκ.

Proof. We give a sketch of Buzzard’s proof.
Let H ∈ L such that H + K maps to F ′ + K ′ under the isomorphism

L/K ∼= L′/K ′. Consider the lattice Λ = (QpF + QpξH) ∩ L. If it has
rank one, then ξH is a multiple of F which means ψξH = aξH ⇒ (a− a′)
ξH ∈ pnL⇒ pn−2α|(a− a′)⇒ a ≡ a′ mod pκ as κ ≤ n− 2α.

So we can assume Λ has rank 2 and extend F to a basis {F,G} of Λ and
write ξH = λF + µG with λ, µ ∈ Zp. Let µ = pβu′′. There are two cases:

Case 1. β ≥ 2α+ κ.

Applying ψ to ξH = λF + µG, we get that the lines λa′F + µa′G, and
λaF + µψG are congruent mod pn. Reducing mod p2α+κ, we get that
(a − a′)λF ∈ p2α+κ. We assumed that F /∈ pL so we see that a ≡ a′

mod pκ.

Case 2. β < 2α+ κ.

By the definition of Λ, L/Λ is torsion-free so we can extend F,G to a basis

{F,G, l1, . . . , lr} of L. Define ξ̃ : L→ L by ξ̃(F ) = pαuF , ξ̃(G) = νF+pαu′G

and ξ̃(li) = ξli for all i so we see that ξ̃ has 2 eigenvalues of slope α.

Let n′ = n − β, then ξ(K + pn
′
L) ⊆ pn

′
L ⊆ K and ξ̃ ≡ ξ mod pn

′
. If

α < c(L/(K+pn
′
L)), then due to the result on local constancy the number of

eigenvalues of ξ and ξ̃ of slope α must be equal. But ξ only has one eigenvalue
of slope α so we have a contradiction as we chose α < c(L/(K + pn

′
L)) for

κ where n− 2α− κ < n′ ≤ n. �

Now we adapt Buzzard’s method to the case of Hilbert modular forms.
We fix a prime p ∈ Q which is inert in K, let R = OK,p and assume that
Γi(U) are trivial.

In order to do some computations on the space of automorphic forms we
can think of
Lk(R) = Lk1(R)⊗Lk2(R)⊗· · ·⊗Lkd(R)⊗det()nk , where det()nk accounts

for the twist by determinants and Lki(R) are the kith symmetric powers.
We define Wn

k (R) (where n ≤ ki)to be generated by the submodules

Wn
k1(R)⊗ Lk2(R)⊗ · · · ⊗ Lkd(R)⊗ det()nk ,

Lk1(R)⊗Wn
k2(R)⊗ · · · ⊗ Lkd(R)⊗ det()nk

...

Lk1(R)⊗ Lk2(R)⊗ · · · ⊗Wkd(R)⊗ det()nk ,

where eachWn
ki

(R) is generated by the (n+1)R submodules {pn−jxjLk−j(R)}nj=0.
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Let L correspond to SDk (U,R), K to WD
k (U,R) equipped with an R-

linear endomorphism ξ (which corresponds to the Up operator) and ψ as the
t-operator. In [P], by the definition of WD

k (U,R) and the choice of the Up
operator, we know that ξ(K) ⊂ pnL and

L/K = SDk (U,R)/WD
k (U,R)

∼= ⊕hi=1Lk(R)/⊕hi=1 W
n
k (R)

∼= ⊕(O/pnO)︸ ︷︷ ︸
σ1 times

⊕(O/pn−1O)︸ ︷︷ ︸
σ2 times

. . .⊕(O/p1O))︸ ︷︷ ︸
σn times

∼= ⊕ri=1O/p
aiO,

for all k = (k1, k2, . . . , kd) and where a1 ≥ a2 ≥ · · · .
To use the proposition above we first need to compute c(L/(K + pn

′
L)).

In [P], based on the structure of L/K we saw that B(x) was a piecewise
linear function with slope r for rdh ≤ x ≤ (r + 1)dh. We chose a poly-

nomial q(x) = (x/h)1/d − 1 < B′(x) and then computed Q(x) =
∫
q(y)dy

so that Q(x) < B(x) and P (x) := M + Q(x) < T (x). Computing the

minimum of P (x)/x we saw that c1n
1/(d+1) − 1 < P (x)/x < T (x)/x and

found the value of c(L/K) = inf{T (x)/x} = min{c1n1/(d+1), n}, where

c1 = ( 1
d+1)d/(d+1)( 1

hd/(d+1) + 1).
We see that

L/(K + pn
′
L) ∼= ⊕(O/pn

′
O)︸ ︷︷ ︸

σ1+σ2+···+σβ+1 times

⊕(O/pn
′−1O)︸ ︷︷ ︸

σβ times

. . .⊕(O/p1O))︸ ︷︷ ︸
σn times

,

where β = n− n′.
Using the same methods as in [P], we see that T (x) is a piecewise linear

function with slope r for (r + β)dh ≤ x ≤ (r + β + 1)dh. Thus

c(L/(K + pn
′
L) = c1n

1/(d+1) − 1− β,
where c1 is as above.

In [P] the following theorem was proved:

Theorem 4.2. Let D(k, α) be the number of eigenvalues of the p−
∑
viTp

operator acting on SDk (U,R). Let

α ≤ c1n1/(d+1) + c2 ⇒ n ≥ b(β1α− β2)d+1c = n(α).

If k,k′ ≥ n(α), k ≡ k′ mod pn(α) and γi are trivial, then

D(k, α) = D(k′, α).

(The βi are constants which depend only on α and n.)

We can now state and prove our main theorem.

Theorem 4.3. Assuming the conditions of the previous theorem, let us fur-
ther assume that there exists d0 such that for all k where k ≡ k0 mod pn(α)

we have D(k, α) = d0. If do = 1 let Fk denote the unique up to scalar form



p-ADIC FAMILIES OF HILBERT MODULAR FORMS 953

of slope α which is an eigenform for all t ∈ T with ak(t) the eigenvalue of

t on Fk. Choose κ = bc1n1/d+1 − 1 − 3αc. Then if n > (κ+1+3α
c1

)d+1and

k,k′ ≥ n(α) congruent to k0 and k ≡ k′ mod pn−1 we have for all t ∈ T,
ak(t) ≡ ak′(t) mod pκ.

Proof. To prove the theorem we will use Buzzard’s proposition. Thus, we
need to verify that 2α+ κ ≤ n and that for all integers n′ where

n− 2α− κ < n′ ≤ n

we have that α < c(L/(K + pn
′
L)).

To show that 2α+ κ ≤ n, we know that

κ < c1n
1/d+1 − 1− 3α ⇒ 2α+ κ < c1n

1/d+1 − 1− α

⇒ 2α+ κ < c1n
1/d+1,

where c1 = ( 1
d+1)d/(d+1)

(
1

hd/(d+1) + 1
)

.

Now

c1n
1/d+1 =

(
1

d+ 1

)d/d+1( 1

hd/d+1
+ 1

)
n1/d+1

≤
(

1

(d+ 1)h
+

1

d+ 1

)d/d+1

n1/d+1

< n1/d+1 < n.

For the second assertion, let β = n− n′. We need to show β < 2α+ κ.

β < 2α+ κ ⇒ α < c(L/(K + pn
′
L)) = c1n

1/(d+1) − 1− β.

We look at the choice of κ = bc1n1/d+1 − 1− 3αc.
If β < 2α+ κ, this means that

β < c1n
1/d+1 − 1− α ⇒ α < c1n

1/d+1 − 1− β,

so we are done. �

5. Concluding remarks

• In [B], the result was established for classical modular forms (d = 1).
Substituting d = 1 in our calculations would give us the bound for
n in terms of α2 in place of αd+1.
• Hida [H1] provided examples of families of Hilbert modular forms of

slope zero (or ordinary Hilbert modular forms).
• The existence of families of non ordinary Hilbert modular forms

is due to [KL] and the results we obtain here are much weaker as
we prove only continuity, not analyticity, of the families. See also
Yamagami [Y] for similar results using rigid analytic methods.
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[GM] Gouvêa, F; Mazur, B. Families of modular eigenforms. Math. Comp. 58 (1992),
no. 198, 793–805. MR1122070 (93d:11049), Zbl 0773.11030, doi: 10.1090/S0025-
5718-1992-1122070-1.

[H1] Hida, Haruzo. On p-adic Hecke algebras for GL2 over totally real fields. Ann. of
Math. (2) 128 (1988), no. 2, 295 - 384. MR0960949 (89m:11046), Zbl 0658.10034,
doi: 10.2307/1971444.

[H2] Hida, Haruzo. Iwasawa modules attached to congruences of cusp forms. Ann.
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