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Ultraproducts and metastability

Jeremy Avigad and José Iovino

Abstract. Given a convergence theorem in analysis, under very gen-
eral conditions a model-theoretic compactness argument implies that
there is a uniform bound on the rate of metastability. We illustrate
with three examples from ergodic theory.
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1. Introduction

Convergence theorems in analysis are often disappointingly nonuniform.
For example, Krengel [31] has shown, roughly speaking, that even if one
fixes an ergodic measure preserving system, the convergence of averages
guaranteed by the mean ergodic theorem can be arbitrarily slow. Our goal
here is to show that even in such cases, a compactness argument can often
be used to establish a weaker uniformity, namely, the existence of uniform
bounds on the rate of metastable convergence.

If (an)n∈N is a sequence of elements in a metric space (X, d), saying that
(an) is Cauchy is equivalent to saying that, for every ε > 0 and function
F : N → N, there is an n such that d(ai, aj) < ε for every i, j ∈ [n, F (n)].
Think of F as trying to disprove the convergence of (an) by finding intervals
where the sequence fluctuates by more than ε; the n asserted to exist foils
F in the sense that the sequence remains ε-stable on [n, F (n)]. We will
call a bound on such an n, depending on F and ε, a bound on the rate of
metastability.

The arguments below show that, in many convergence theorems, there
is a bound on the rate of metastability that depends on only a few of the
relevant parameters. All is that required is that the class of structures in
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question, and the hypotheses of the theorem, are preserved under a certain
model-theoretic ultraproduct construction in which these parameters remain
fixed. A sufficient condition for this can be formulated in syntactic terms,
by asserting that the the relevant hypotheses and axioms can be put in a
certain logical form. Section 2 summarizes the necessary background on
ultraproducts in analysis, and presents a theorem which characterizes the
existence of a uniform bound on the rate of metastability of a collection of
sequences in terms of the convergence of ultraproducts of those sequences.
Section 3 illustrates the use of this equivalence with three examples from
ergodic theory.

Metastability has proved useful in ergodic theory and ergodic Ramsey
theory [14, 46, 47]; see also [48, Sections 1.3–1.4], and [4, 3, 28, 26, 27, 29,
44] for various instances of metastability in analysis. Sometimes stronger
uniformities are available than the ones we consider here, in the form of
variational inequalities (e.g., [21, 20, 22, 5]). Bergelson et al. [8] explore
aspects of uniformity in ergodic theory and ergodic Ramsey theory, but
most of the methods there rely on specific combinatorial features of the
phenomena under consideration.

The methods developed here complement proof-theoretic methods devel-
oped by Kohlenbach and collaborators, e.g., in [25, 13]. Roughly, those
methods provide “metatheorems” which show that when a statement with
a certain logical form is derivable in a certain (fairly expressive) axiomatic
theory, certain uniformities always obtain. The arguments we present here
replace derivability in an axiomatic system with closure under the formation
of ultraproducts. Indeed, it seems likely that such arguments can be used
to establish general metatheorems likes the ones in [25, 13], by considering
ultraproducts of models of the axiomatic theories in question.

It is worth noting that although the methods we describe here can be
used to establish the existence of a very uniform bound, they give no ex-
plicit quantitative information at all, nor even show that it is possible to
compute such a bound as a function of F and ε. In contrast, the proof-
theoretic techniques provide ways that such information can be “mined”
from a specific proof. In particular, the general metatheorems described in
the last paragraph guarantee that the associated bounds are computable. If
one is primarily interested in uniformity, however, the methods here have
the virtue of being easy to understand and apply.

Acknowledgements. We are grateful to Ulrich Kohlenbach and Terence
Tao for helpful suggestions and corrections.

2. Ultraproducts of Banach spaces

In this section we review standard ultraproduct constructions in analysis;
see [7, 16, 17, 36] for more details.
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Let I be any infinite set, and let D be a nonprincipal ultrafilter on I.
(Below, we will always take I to be N.) Any bounded sequence (ri)i∈I of
real numbers has a unique limit r with respect to D, written r = limi,D ri;
this means that for every ε > 0 the set {i ∈ I | |ri−r| < ε} is in D. Suppose
that for each i, (Xi, di) is a metric space with a distinguished point ai. Let

X∞ =

{
(xi) ∈

∏
i∈I

Xi

∣∣∣∣ sup
i
d(xi, ai) <∞

}
/ ∼,

where (xi) ∼ (yi) if and only if limi,D d(xi, yi) = 0. Let d∞ be the metric on
X∞ defined by d∞((xi), (yi)) = limi,D d(xi, yi). Leaving the dependence on
the choice of the base points ai implicit, we will call this an ultraproduct of
the metric spaces (Xi, di), denoted by

(∏
i∈I(Xi, di)

)
D

. If there is a uniform
bound on the diameters of these spaces, the choice of the sequence (ai) of
“anchor points” is clearly irrelevant.

This ultraproduct construction is an instance of Luxemburg’s nonstan-
dard hull construction [38]. We can extend it to ultraproducts of a sequence
(Xi) of normed spaces using ai = 0 and the distance given by the norm.
Ultraproducts of Banach spaces were introduced by Dacunha-Castelle and
Krivine [10], and are an important tool in a number of branches of analysis
(see e.g., [17]).

In first-order model theory, one can take an ultraproduct of any sequence
of structures Mi, and  Los’s theorem says that any first-order sentence ϕ
is true in the ultraproduct if and only if it is true in almost every Mi, in
the sense of D; in other words, if and only if {i | Mi |= ϕ} ∈ D. The
constructions above, however, are not ultraproducts in the first-order sense,
since we restrict to “finite” elements, mod out by infinitesimal proximity ∼,
and (implicitly, by taking limits with respect to D) pass to the standard part
of nonstandard distances and norms. This gives rise to two complications.

First, if we extend the metric or normed spaces with other functions,
their lifting to the ultraproduct will not be well defined if they fail to map
finite elements to finite elements, or fail to respect ∼. We can lift, however,
any family (fi) of functions that satisfies an appropriate uniform bounded-
ness condition (roughly, elements of the family are uniformly bounded on
bounded sets around the base point) and an appropriate uniform continu-
ity condition (which is to say that there is a uniform modulus of uniform
continuity on such sets). The resulting function on the ultraproduct will be
denoted (

∏
i fi)D. For details, see [17, Section 4] or [7, Section 4].

Second,  Los’s theorem needs to be modified. One strategy, described in
[17], is to restrict attention to a class of positively bounded formulas. These
are formulas generated from atomic formulas r ≤ t and t ≤ r, where t is an
appropriate term and r is rational, using only the positive connectives ∧ and
∨, as well as universal and existential quantification over compact balls in the
structure. An approximation to such a formula is obtained by replacing each
r in an atomic formula r ≤ t by any r′ < r, and each r in an atomic formula
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t ≤ r by any r′ > r. Say that a formula ϕ with parameters is approximately
true in a structure if every approximation ϕ′ to ϕ is true in the structure.
One can then show that if a1, . . . , an are elements of the ultraproduct with
each aj represented by the sequence (aj,i)i∈I , then a positively bounded
formula ϕ(a1, . . . , an) is approximately true in the ultraproduct

(∏
i∈IMi

)
D

if and only if
{i ∈ I | Mi |= ϕ′(a1,i, . . . , an,i)} ∈ D

for every approximation ϕ′ to ϕ.
Suppose Γ is a set of positively bounded sentences, and C is the class

of structures that approximately satisfy each sentence in Γ. The previous
equivalence implies that C is closed under ultraproducts. In fact, Henson
and Iovino [17, Proposition 13.6] show that a class of structures C can
be axiomatized in this way if and only if C is closed under isomorphisms,
ultraproducts, and ultraroots.

Another strategy, described in [7], is to modify first-order semantics so
that formulas take on truth values in a bounded interval of reals, in which
case the truth value of a formula ϕ in the ultraproduct is the D-limit of
its truth values in the individual structures. Spelling out the details here
would take us too far afield. Below we will only use the fact that certain
classes of structures and hypotheses are preserved under ultraproducts, as
well as the easy fact that a quantifier-free positively bounded formula ϕ is
true in a structure if and only if every approximation to it is true, thereby
simplifying the equivalence above.

If the ultrafilter D is nonprincipal, an ultraproduct (
∏

i∈IMi)D of met-
ric spaces or normed spaces is ℵ1-saturated, or countably saturated, in the
following sense: if Γ is a countable set of positive bounded formulas of the
form ϕ(x1, . . . , xn) such that every finite set of approximations of formulas
in Γ is satisfied by some n-tuple of elements of (

∏
iMi)D, then there ex-

ists an n-tuple of elements of (
∏

iMi)D that satisfies all the formulas in Γ
[17, Proposition 9.18]. In particular, every ultraproduct over a nonprincipal
ultrafilter is metrically complete [17, Proposition 9.21]. (For an arbitrary
infinite cardinal κ, the concept of κ-saturation is defined similarly, by re-
placing ℵ1 above with κ. If the cardinality of I is sufficiently large relative
to κ, the structure (

∏
i∈IMi)D can be made be κ-saturated with a careful

choice of D [17, Theorem 10.8].)
The following theorem provides a neat characterization of the relationship

between convergence in ultraproducts and uniformity.

Theorem 2.1. Let C be any collection of pairs ((X, d), (an)n∈N), where each
(an) is a sequence of elements in the corresponding metric space (X, d). For
any nonprincipal ultrafilter on D, the following statements are equivalent:

(1) There is a uniform bound on the rate of metastability for the se-
quences (an). In other words, for every F : N→ N and ε > 0, there
is a b with the following property: for every pair ((X, d), (an)n∈N) in
C, there is an n ≤ b such that d(ai, aj) < ε for every i, j ∈ [n, F (n)].
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(2) For any sequence ((Xk, dk), (akn))k∈N of elements of C, let (X̄, d̄)
be the ultraproduct

(∏
k∈N(Xk, dk)

)
D

, and for each n let ān be the

element of (X̄, d̄) represented by (akn)k∈N. Then for any ε > 0 and
F : N → N, there is an n such that d̄(āi, āj) < ε for every i, j ∈
[n, F (n)].

(3) For any sequence ((Xk, dk), (akn))k∈N of elements of C, the sequence
(ān) is Cauchy.

(4) For any sequence ((Xk, dk), (akn))k∈N of elements of C, the sequence
(ān) converges in (X̄, d̄).

Proof. As noted in the introduction, the conclusions of (2) and (3) are
equivalent in any metric space, and they are clearly equivalent to the con-
clusion of (4) given the fact that the ultraproduct is complete.

To prove that (1) implies (2), fix a rational ε > 0 and F : N → N, and a
sequence ((akn), (Xk, dk)k∈N) of elements of C. By (1), there is a b with the
property that for every k, there is an n ≤ b such that dk(aki , a

k
j ) < ε/2 for

every i, j ∈ [n, F (n)]. Thus, for each k, the statement

∃n ≤ b ∀i, j ∈ [n, F (n)] dk(aki , a
k
j ) ≤ ε/2

is true in (Xk, dk). Since the existential quantifier can be replaced by finite
disjunction and the universal quantifier can be replaced by a finite con-
junction, this is equivalent to a quantifier-free positively bounded formula.
Hence ∃n ≤ b ∀i, j ∈ [n, F (n)] d̄(āi, āj) ≤ ε/2 is true of (X̄, d̄), as required.

Conversely, suppose the conclusion of (1) fails for F and ε. For each
k in N, choose a counterexample to the claim for b = k, that is, a pair
((Xk, dk), (akn)n∈N) such that for every n ≤ k there are i, j ∈ [n, F (n)] such
that dk(aki , a

k
j ) ≥ ε. Then for each n the statement

∃i, j ∈ [n, F (n)] dk(aki , a
k
j ) ≥ ε

is true for all but finitely many k, which implies that

∃i, j ∈ [n, F (n)] d̄(āi, āj) ≥ ε

is true of (X̄, d̄). �

Tao [45] makes use of the equivalence between (2) and (3). In all the
applications below, we will use only the implication from (4) to (1), in
situations where the metric spaces bear additional structure that is preserved
under the formation of ultraproducts.

3. Applications

Let T be any nonexpansive operator on a Hilbert space, H, let f be any
element of H, and for each N ≥ 1 let ANf denote the ergodic average
1
n

∑
n<N Tnf . Riesz’s generalization of von Neumann’s mean ergodic the-

orem states that the sequence (ANf) of averages converges in the Hilbert
space norm. The following generalization is due to Lorch [37], but also a
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consequence of results of Riesz [42], Yosida [53], and Kakutani [23] from
around the same time (see [32, p. 73]). A linear operator T on a Banach
space B is power bounded if there is an M such that ‖Tn‖ ≤M for every n.

Theorem 3.1. If T is any power-bounded linear operator on a reflexive
Banach space B, and f is any element of B, then the sequence (ANf)N∈N
converges.

As noted in Section 1, even in the original von Neumann setting there
is no uniform bound on the rate of convergence. Indeed, Fonf, Lin, and
Wojtaszczyk [11] show that if B is a Banach space with basis, then there is
a uniform bound on the rate of convergence in Theorem 3.1 if and only if B is
finite dimensional. Moreover, in the general case, a rate of convergence is not
necessarily computable from the given data [6, 50]; see also the discussion
in [4, Section 5]. However, we can obtain a strong uniformity if we shift
attention to metastability.

Theorem 3.2. Let C be any class of Banach spaces with the property that
the ultraproduct of any countable collection of elements of C is a reflexive
Banach space. For every ρ > 0, M , and function F : N → N, there is K
such that the following holds: given any Banach space B in C, any linear
operator on B satisfying ‖Tn‖ ≤M for every n, any f ∈ B, and any ε > 0,
if ‖f‖/ε ≤ ρ, then there is an n ≤ K such that ‖Aif − Ajf‖ < ε for every
i, j ∈ [n, F (n)].

Proof. Scaling, we can restrict attention to elements f such that ‖f‖ ≤ 1.
Fix ρ > 0 and M , and set ε = 1/ρ. We apply Theorem 2.1 to the class of
pairs ((B, T, f), (Anf)n∈N), where B is in C, T is a linear operator satisfying
‖Tn‖ ≤M for every n, and ‖f‖ ≤ 1.

Let ((Bk, Tk, fk), (Anfk))k∈N be any sequence of elements of that class.
The fact that ‖Tk‖ ≤ M for every k guarantees that the family (Tk) sat-
isfies the uniform boundedness and uniform continuity conditions. Let
B = (

∏
k Bk)D be the Banach space ultraproduct, and set T = (

∏
k Tk)D

and f = (
∏

k fk)D. By hypothesis, B is reflexive, and so Theorem 3.1 im-
plies that (Anf) converges in B. By Theorem 2.1, this implies that there
is a uniform bound on the rate of metastability for the sequences (Anf)
occurring in C. �

The class C of all reflexive Banach spaces does not satisfy the hypothesis
of Theorem 3.2, which is to say, an ultraproduct of reflexive Banach spaces
need not be reflexive. However, there are interesting classes C to which
the theorem applies. For example, every uniformly convex Banach space
is reflexive, and if one fixes a modulus of uniform convexity, the class of
uniformly convex spaces with that modulus is closed under ultraproducts.
Thus, Theorem 3.2 guarantees the existence of a uniform bound on the rate
of metastability that depends only on ρ, M , F , and the modulus of uniform
convexity. Avigad and Rute [5] show that any such bound for uniformly
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convex spaces has to depend on the modulus of uniform convexity, and that
there is single separable, reflexive, strictly convex Banach space for which
the conclusion of Theorem 3.2 fails.

In the case of a linear operator on a uniformly convex Banach space that
is either nonexpansive or power-bounded from above and below, Avigad and
Rute [5] provide a variational inequality which implies an explicit uniform
bound on the number of ε-fluctuations of the sequence (Anf), in terms of ρ
and the modulus of uniform convexity. We do not know the extent to which
this stronger uniformity extends. (Safarik and Kohlenbach [30] provide some
general conditions that guarantee that it is possible to compute a bound on
the number of ε-fluctuations.)

For another example of a class C to which Theorem 3.2 applies, say that
a Banach space B is J-(n, ε) convex if for every x1, . . . , xn in the unit ball
of B there is a j, 1 ≤ j ≤ n, such that∥∥∥∥∥∑

i<j

xi −
∑
i≥j

xi

∥∥∥∥∥ ≤ n(1− ε).

A space is J-convex if and only if it is J-(n, ε) convex for some n ≥ 2
and ε > 0. Pisier [39] shows that a Banach space is J-convex if and only
if it is super-reflexive, so, in particular, every J-convex space is reflexive.
Moreover, it is immediate from the form of the definition that, for fixed
n ≥ 2 and ε > 0, the class of J-(n, ε) convex Banach spaces is closed under
ultraproducts. Thus, Theorem 3.2 once again guarantees the existence of a
uniform bound on the rate of metastability that depends only on ρ, M , F ,
n, and ε. Note that for n = 2, a space is J-(n, ε) convex for some ε > 0 if
and only if it is uniformly nonsquare, a weakening of strict convexity due to
James [19].

The list of classes of structures to which Theorem 3.2 applies can easily
be extended. For example, we can obtain many classes of spaces that sat-
isfy the hypothesis of that theorem by simply fixing bounds on appropriate
parameters in the various characterizations of superstability given by Pisier
in Chapter 3 of [39]. Other examples of classes of reflexive spaces that are
closed under formation of ultraproducts can be found in [34, 41, 40].

We now consider two additional examples, with respect to which notions
of metastability have been considered in the past. For the first example,
we consider extensions of the mean ergodic theorem to “diagonal averages.”
Furstenberg’s celebrated ergodic-theoretic proof of Szemerédi’s theorem in-
volves averages of the form

1

n

∑
i<n

f1(T
−i
1 x) · · · fj(T−ij x)

where T1, . . . , Tj are commuting measure-preserving transformations of a
finite measure space (X,X , µ). Settling a longstanding open problem, Tao
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[47] showed that such sequences always converge in the L2(X) norm. This
result was recently generalized by Walsh [51], as follows:

Theorem 3.3. Let (X,X , µ) be a finite measure space with a measure-
preserving action of a nilpotent group G. Let T1, . . . , Tl be elements of G,
and let

(pi,j)i=1,...,l;j=1,...,d

be a sequence of integer-valued polynomials on Z. Then for any f1, . . . , fd ∈
L∞(X,X , µ), the sequence of averages

1

N

N∑
n=1

d∏
j=1

(
T
p1,j(n)
1 · · ·T pl,j(n)

l

)
fj

converges in the L2(X) norm.

When the relevant data ~T , ~p are clear, it will be convenient to write AN (~f)
for these averages. Once again, a compactness argument yields the following
uniformity:

Theorem 3.4. For every r, l, d, s, ρ > 0, and function F : N → N, there
is a K such that the following holds: given a nilpotent group G of nilpo-
tence class at most r, elements T1, . . . , Tl in G, a sequence (pi,j)i=1,...,l;j=1,...,d

of integer-valued polynomials on Z of degree at most s, a probability space
(X,X , µ), a measure-preserving action of G on (X,X , µ), and any sequence
of elements f1, . . . , fd ∈ L∞(X,X , µ), if ‖fi‖∞/ε ≤ ρ for each i, then there

is an n ≤ K such that ‖Ai(~f)−Aj(~f)‖ < ε for every i, j ∈ [n, F (n)].

As above, we can restrict attention to the case where ‖fi‖∞ ≤ 1 in the
statement of the theorem, and without loss of generality we can assume
that G is generated by T1, . . . , Tl. An ultraproduct construction due to
Loeb [35], analogous to the constructions described in Section 1, can be
used to amalgamate a sequence of measure spaces (Xk,Xk, µk) to a mea-
sure space (X,X , µ), and since first-order properties of discrete structures
are preserved under ultraproducts, the ultraproduct of a sequence (Gk) of
groups of nilpotence class at most r is again a group of nilpotence class at
most r. A measure-preserving action of each Gk on (Xk,Xk, µk) gives rise
to a measure-preserving action of G on (X,X , µ), and the product of the
spaces L2(Xk,Xk, µk) embeds isometrically into the space L2(X,X , µ) (see,
for example, [16, Section 5]).

There is a catch, though: the ultraproduct of a sequence of polynomials
pk with coefficients in Z need not be a polynomial, since the coefficients
can “go off to infinity.” One could rule that out by assuming that there
is a uniform bound on those coefficients, in which case the value K in the
statement of the theorem would depend on that bound as well. As it turns
out, however, in this particular case there is a trick that eliminates the
dependence on this parameter. Call a sequence (gn) of elements of the form

gn = T
p1(n)
1 · · ·T pl(n)

l a polynomial sequence.



ULTRAPRODUCTS AND METASTABILITY 721

Lemma 3.5. Let G be a nilpotent group, and let (gn) be a polynomial se-

quence of elements of G. Then there are a nilpotent extension η : Ĝ → G
and elements τ and c of Ĝ such that for every n, gn = η(τnc). Moreover,

there is a bound on the nilpotence class of Ĝ that depends only on bounds
on the nilpotence class of G, the number l of polynomials, and a bound on
their degrees.

Via η, the action of G on X lifts to an action of Ĝ on X, whereby the
action of gn lifts to the action of τnc. Applying the lemma d times, we

can thus assume that each polynomial sequence gi,n = T
pi,1(n)
1 · · ·T pi,l(n)

l
appearing in the statement of Walsh’s theorem is of the form τni ci for some
τi and ci in G, at the expense of increasing the nilpotence rank of G.

Lemma 3.5 is a special case of a construction carried out by Leibman [33]
in the more general setting of an action of Lie group, with both continu-
ous and discrete elements. We are grateful to Terence Tao for bringing this
lemma to our attention, and pointing out that it can be used to obtain a
stronger uniformity in the statement of Theorem 3.4. As Leibman points
out, an instance of this trick was used by Furstenberg [12, page 31]. Leib-
man’s construction can be divided into two parts: Proposition 3.14 of [33]

shows how to define a nilpotent extension η : G̃→ G, a unipotent automor-
phism τ of G̃, and an element c of G̃, such that for every n, g(n) = η(τn(c));

and Proposition 3.9 of [33] shows that the extension Ĝ of G̃ by τ is again
a nilpotent group. Here, saying that τ is a unipotent automorphism means
that the mapping ξ(a) = τ(a)a−1 has the property that ξq is the identity
for sufficiently large q. Leibman’s proof of Proposition 3.9 gives an explicit
bound on how large q has to be and the nilpotence class of G̃; and Proposi-
tion 1 of Gruenberg [15] then provides the requisite bound on the nilpotence

class of Ĝ.
With this lemma in hand, we can prove Theorem 3.4.

Proof. As above, we can restrict attention to the case where ‖fi‖∞ ≤ 1 in
the statement of the theorem. Using Lemma 3.5, we can moreover assume
d = 2l, s = 1, and for every i, pi,2i(n) = ni, pi,2i+1(n) = 1, and pi,j = 0 for
all other j, so that the ith polynomial sequence is given by gi,n = Tn

2iT2i+1.
Once again, we fix r, l, and ρ, and use Theorem 2.1 with ε = 1/ρ. Suppose

we are given, for each k, a probability space (Xk,Xk, µk), a group Gk of
nilpotence class at most r, elements T1,k, . . . , Tl,k, and elements f1,k, . . . , fd,k
with infinity norm at most 1. Let (X,X , µ) be the result of applying the Loeb
construction to the sequence of spaces (Xk,Xk, µk), letG be the ultraproduct
of the sequence (Gk) with respect to D. For each i let Ti = (

∏
k Ti,k)D, and

for each j let fj = (
∏

k fj,k)D. Then G has nilpotence class at most r, and
each Ti is measure-preserving transformation of X, so Theorem 3.3 implies

convergence of the sequence (An(~f)). By Theorem 2.1, this implies a uniform
bound on the rate of metastability. �
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Tao [45] shows that one can alternatively formulate Walsh’s theorem in
algebraic terms, which allows one to avoid the reference to the Loeb con-
struction in the proof of Theorem 3.4. In fact, both Walsh’s original proof
[51] and Tao’s later proof of Walsh’s result [45] establish Theorem 3.4 di-
rectly. Tao’s proof of his prior result [47] also established the corresponding
uniformity, but there are now other proofs of that theorem that do not
[2, 18, 49]. Tao [45] emphasizes that Theorem 3.4 is stronger than Theo-
rem 3.3; the observation here is that they are essentially the same, modulo
compactness and Lemma 3.5.

We consider a final example, this time from nonlinear ergodic theory. Fix
a Hilbert space H. Let C be a closed, convex subset of H, and let T be a
nonexpansive map from C to C. Let (λn) be a sequence of elements of [0, 1],
and let f and u be any elements of C. The Halpern iteration corresponding
to T , (λn), f , and u is the sequence given by

f0 = f, fn+1 = λn+1u+ (1− λn+1)Tfn.

If T is linear, u = f , and λn = 1/(n+ 1), then (fn) is the familiar sequence
(Anf) of ergodic averages. Wittmann [52] showed that, assuming the set of
fixed points of T is nonempty, the following conditions on the sequence (λn)
suffice to ensure that the sequence fn of Halpern iterates converges to the
projection onto the space of fixed points:

• limn→∞ λn = 0.
•
∑∞

n=1 ‖λn+1 − λn‖ converges.
•
∑∞

n=1 λn =∞.

In particular, these are satisfied when λn = 1/(n+ 1).
The linear structure ofH only comes into play in the assumption that C is

convex. Seajung [43] has generalized Wittmann’s result to CAT(0) spaces.
These are metric spaces with an abstract notion of “linear combination,”
that is, metric spaces equipped with a function W (x, y, λ) which, intuitively,
plays the role of (1 − λ)x + λy. The specific axioms that W is assumed to
satisfy can be found in [9, 29, 43]; we only need the fact, established in [9,
pages 77–78], that the ultraproduct of CAT(0) spaces is again a CAT(0)
space. Saejung’s theorem states the following:

Theorem 3.6. Let C be a closed convex subspace of a complete CAT(0)
space, and let T : C → C be a nonexpansive map such that the set of fixed
points of T is nonempty. Suppose (λn) satisfies the three conditions above.
Then for any u, f in C, the sequence of Halpern iterates (fn) converges to
the projection of u onto the set of fixed points of T .

If g is a fixed point of T and b = max(‖f−g‖, ‖u−g‖), then it is not hard
to show that one can restrict attention to C ∩ B(g, b) in the statement of
Theorem 3.6. In other words, there is no loss of generality in assuming that
C has a bounded diameter. Kohlenbach and Leuştean [29] have shown that
in that case there is a uniform bound on the rate of metastability, given by
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a primitive recursive functional, which depends on the diameter of C. If one
is only interested in uniformity and not the particular rate, the following
provides a quick proof:

Theorem 3.7. Fix (λn) satisfying (1–3) above. For every ε > 0, M , and
function F : N → N, there is a K such that the following holds: given a
CAT(0) space (X, d,W ), a closed convex subset C of X with diameter at
most M , a nonexpansive map T : C → C with a fixed point in C, and
f, u in C, if (fn) denotes the sequence of Halpern iterates, then there is an
n ≤ K such that d(fi, fj) < ε for every i, j in [n, F (n)].

Proof. Once again, we apply Theorem 2.1. We have already noted that
the ultraproduct of CAT(0) spaces is again a CAT(0) space. The uniform
bound on the diameter of each of the sets C is also a bound on the diameter
of their product. The fact that convexity is preserved is immediate, and it
is not hard to show that an ultraproduct of closed sets is again closed (see,
for example, [7, Proposition 5.3]). �

Theorem 3.7 can also be seen as a consequence of Corollary 4.26 in Ger-
hardy and Kohlenbach [13], modulo verification of the fact that Saejung’s
theorem can be derived in the formal axiomatic system mentioned there.
That corollary ensures, moreover, that the bound is computable from the
parameters.

Under the assumption that C is a bounded, closed, convex subset of a
CAT(0) space, Kirk [24, Theorem 18] shows that a nonexpansive map from
C to C necessarily has a fixed point. Thus in the statement of Theorem 3.7
that hypothesis could be dropped. Gerhardy and Kohlenbach note that, in
more general situations, one can weaken the hypothesis that T has a fixed
point in C to the hypothesis that T has an ε-fixed point in C for every
ε > 0. This is easy to see from the ultraproduct argument as well, since
an ultralimit of ε-fixed points for a sequence ε decreasing to 0 is an actual
fixed point. This fact is commonly used in applications of ultraproducts to
fixed-point theory; see, for example, Aksoy and Khamsi [1].
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[28] Kohlenbach, U.; Leuştean, L. A quantitative mean ergodic theorem for
uniformly convex Banach spaces. Ergodic Theory Dynam. Systems 29 (2009),
no. 6, 1907–1915. MR2563097 (2011c:37011), Zbl 1190.37005, arXiv:0804.3844,
doi: 10.1017/S0143385708001004. Erratum: Ergodic Theory Dynam. Sys-
tems 29 (2009), no. 6, 1995. MR2563103 (2011c:37012), Zbl 1180.37008,
doi: 10.1017/S0143385709000947.
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